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Scalar-tensor theories whose phenomenology differs significantly from general relativity on large (e.g.,
cosmological) scales do not typically pass local experimental tests (e.g., in the Solar System) unless they
present a suitable “screening mechanism.” An example is provided by chameleon screening, whereby the
local general relativistic behavior is recovered in high-density environments, at least in weak-field and
quasistatic configurations. Here, we test the validity of chameleon screening in strong-field and highly
relativistic/dynamical conditions by performing fully nonlinear simulations of neutron stars subjected to
initial perturbations that cause them to oscillate or even collapse to a black hole. We confirm that screened
chameleon stars are stable to sufficiently small radial oscillations, but that the frequency spectrum of the
latter shows deviations from the general relativistic predictions. We also calculate the scalar fluxes
produced during collapse to a black hole, and we comment on their detectability with future gravitational-
wave interferometers.
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I. INTRODUCTION

Astrophysical compact objects, such as neutron stars
(NSs) and black holes (BHs), offer an exceptional labo-
ratory to test gravity in the strong-field regime and
constrain extensions of general relativity (GR) [1–14].
The most studied extensions of GR are scalar-tensor
(ST) theories of gravity [15–20], which introduce one
(or more [19,21]) scalar field(s) that mediate the gravita-
tional interaction (together with the metric tensor).
These theories may have applications in cosmology (at
both early and late times), and scalar fields may even play
the role of dark matter [22–29], although agreement with
both local and cosmological scales is not always easy to
ensure.
Because of no-hair theorems (see Refs. [30–32] for

reviews), a broad class of ST theories do not leave any
characteristic imprint in the physics of vacuum solutions
(with the exception of theories allowing for BH scalarization
[33–40]). However, although no-hair theorems are known to
exist also for stars in certain classes of ST theories [41–43],
non-vacuum spacetimes are generally regarded as more
promising testing grounds for extensions of GR, because
deviations from GR are enhanced by the modified coupling
between matter and gravity. In particular, ST theories
typically introduce a coupling of the scalar gravitational
field to the trace of the stress-energy tensor, which can
produce nonperturbative effects such as scalarization [1,44–
48]. In fact, even when these theories satisfy the constraints
coming from Solar System tests [2,49,50], they can predict

measurable deviations from GR in the structure, dynamics,
and radiative emissions of NSs [47,51–62].
Particularly interesting is the existence of classes of ST

theories that are endowed with screening mechanisms
devised to hide non-GR effects on astrophysical (local)
scales, while leaving room for modifications on cosmo-
logical ones [63]. Known examples of these mechanisms
include kinetic screening (k-mouflage [64–67]); Vainshtein
screening [68–71]; screening based on an environmentally
weak coupling of the scalar field to matter (symmetron
[72–74] or dilaton models [75,76]); and screening based on
an environmentally large mass of the scalar field, as in
chameleon screening [77,78].
Chameleon screening is indeed realized by endowing the

scalar degree of freedom with an effective mass that
depends on the ambient matter density: in high-density
environments (e.g., compact objects, our Solar System, or
even galaxies and clusters) small perturbations are sup-
pressed by the large inertia of the field, while on larger
cosmological scales, lower densities allow for quintes-
sence-like effects, arising from to the nontrivial self-
interaction potential [78]. Moreover, the scalar charge of
compact objects receives contributions only from a small
volume located close to the surface: this thin-shell effect
effectively suppresses the scalar force [77].
Screening mechanisms generally make modifications of

gravity elusive and hard to constrain with astrophysical
observations. Nonetheless, their efficacy at screening com-
pact stars is typically tested in the static nonrelativistic limit,
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and little work has been done outside these simplifying
approximations (e.g., see Refs. [79,80] for the dynamics of
k-mouflage). This is also the case for chameleon screening,
the robustness of which has only been tested so far in the
dynamical Newtonian limit [81], or in the relativistic but
static regime [82–84] (see also Refs. [85–88] for other
relevant work on chameleon screening). In this regard, one
potential loophole in chameleon screening could be opened
by a tachyonic instability developing inside relativistic
compact stars. This instability arises in ST theories without
screening [52], where it leads either to scalarization or,
alternatively, to gravitational collapse [56]. Past work
[82,83] reported instabilities of the chameleon field inside
neutron stars with a pressure-dominated core. These insta-
bilities were interpreted as due to the chameleon effective
potential not having a well-defined minimum for the scalar
field to relax to, as a consequence of the trace of the matter
stress-energy tensor changing sign in the highly relativistic
interior of the stars. Recently, however, Ref. [84] has studied
static NS solutions coupled to chameleon scalar fields and,
in contrast to previous work, found no sign of such
instabilities. Instead, they observed that NSs with pres-
sure-dominated cores typically present a partial descreening
in their interior and are linearly stable. Many realistic candi-
dates for the equation of state (EOS) of nuclearmatter predict
pressure-dominated cores at sufficiently highdensities,while
agreeing with current experimental constraints [89]. One
may therefore place bounds on theories with chameleon
screening from observations of the most massive NSs.
Asour firstmain contribution, in thisworkwewill confirm

and generalize the conclusions obtained in Ref. [84], which
are in principle valid only at the level of linear perturbations
around static solutions. We will do that by demonstrating
numerically the long-term nonlinear stability of NS solutions
coupled to a chameleon scalar field, which we will hence-
forth refer to as chameleon NSs (CNSs). To our knowledge,
these are the first dynamical simulations of the chameleon
screening mechanism, thanks to which we confirm that the
partial descreening inside pressure-dominated cores leads to
stable CNSs that deviate strongly from GR.
As is well known, in GR, radial oscillations of relativistic

stars do not source gravitational-wave (GW) emissions
(although in principle they can couple to nonradial modes
[90–92] and potentially be observable during the post-
merger phase [93–95]). For this reason, they are typically
studied only for assessing the stability of NS solutions [96–
100]. However, in ST theories, a new family of modes
typically appears in association with the additional degree
of freedom [101–103]. These radial modes can source the
emission of (scalar) GWs [104] (for instance, during
collapse [80,105–107]). In this work, we study the spec-
trum of radially perturbed CNSs, characterizing the devia-
tions from GR induced by the chameleon field. In addition,
we compute the scalar flux radiated by CNSs when
oscillating or collapsing to a BH, focusing on the

comparison between screened and descreened stars and
on the observability with current and future GW detectors.
This paper is organized as follows: In Sec. II, we briefly

review chameleon gravity and its screening mechanism. We
also discuss the current constraints and the relevance of
these theories for cosmological applications. In Sec. III, we
discuss the initial data that are used in our simulations and
the numerical method employed to produce them. The
evolution formalism is presented in Sec. IV, where we also
discuss the stability of CNSs. In Sec. V, we discuss
characteristic radial oscillations of CNSs, and in Sec. VI,
we characterize the monopole emission of oscillating and
collapsing CNSs. Finally, in Sec. VII, we discuss our
conclusions and the future prospects to test chameleon
screening with NSs. Throughout this paper, we use natural
units where ℏ ¼ c ¼ 1.

II. THEORETICAL FRAMEWORK

A. Screened modified gravity action

ST theories with environmentally dependent screening,
such as symmetron, dilaton, or chameleon screening
[including certain fðRÞ models], are described by the
following action [108]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R −

1

2
gμν∇μϕ∇νϕ − VðϕÞ

�
þ Sm½AðϕÞ2gμν;ψm�; ð1Þ

where g and R are the determinant and Ricci scalar of the
Einstein-frame metric gμν, and Mpl ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
is the

(reduced) Planck mass. The scalar field ϕ has a self-
interaction potential VðϕÞ, and is coupled to matter
(collectively represented by the field ψm) through the
conformal coupling AðϕÞ. Because of this coupling, matter
does not follow the geodesics of gμν, but those of the
Jordan-frame metric [109]

g̃μν ≡ AðϕÞ2gμν: ð2Þ
Therefore, in this frame, one can define a stress-energy

tensor,

T̃m
μν ≡ −

2ffiffiffiffiffiffi
−g̃

p
�
δSm
δg̃μν

�
; ð3Þ

and a baryon mass current, J̃μ, that are covariantly con-
served,

∇̃μJ̃μ ¼ 0; ð4Þ
∇̃μT̃

μν
m ¼ 0; ð5Þ

where ∇̃ indicates the covariant derivative compatible with
the Jordan-frame metric (2). In this work, the matter content
of the spacetime is modeled as a perfect fluid in the Jordan
frame, with stress-energy tensor
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T̃μν
m ≡ ðϵ̃þ p̃Þũμũν þ p̃gμν: ð6Þ

The Jordan-frame fluid variables in this equation (total
energy density, ϵ̃, and isotropic pressure, p̃) are defined as
measured by an observer comoving with the fluid elements
with four-velocity ũμ.
By defining the Einstein-frame stress-energy tensor as

Tμν
m ≡ −2= ffiffiffiffiffiffi−gp ðδSm=δgμνÞ and comparing the latter with

Eq. (3), one obtains the relation Tm
μν ¼ AðϕÞ2T̃m

μν. From this
conformal transformation, and from uμ ¼ AðϕÞũμ
(obtained from the normalization gμνuμuν ¼ −1), one
can obtain the correspondence between fluid variables in
the two frames, ϵ ¼ AðϕÞ4ϵ̃ and p ¼ AðϕÞ4p̃. The con-
served Jordan-frame baryon mass current, J̃μ ≡ ρ̃ũμ, where
ρ̃ is the rest-mass density, is related to the corresponding
Einstein-frame quantity by Jμ ¼ AðϕÞ5J̃μ [46]. Note that in
the Einstein frame, covariant conservation of the stress-
energy tensor and baryon mass current is lost, and Eqs. (4)
and (5) are replaced by

∇μJμ ¼
d lnAðϕÞ

dϕ
Jμ∇μϕ; ð7Þ

∇μT
μν
m ¼ d lnAðϕÞ

dϕ
Tm∇νϕ; ð8Þ

where Tm ¼ gμνTm
μν is the trace of the stress-energy tensor.

Variation of the action (1) with respect to the Einstein
metric gives the modified Einstein field equations

Gμν ¼ 8πGðTϕ
μν þ Tm

μνÞ; ð9Þ

which are sourced by the stress-energy tensor of the scalar
field:

Tϕ
μν ≡∇μϕ∇νϕ − gμν

�
1

2
∇σϕ∇σϕþ VðϕÞ

�
: ð10Þ

The scalar field equation is obtained by variation of Eq. (1)
with respect to ϕ:

□ϕ ¼ dVðϕÞ
dϕ

−
d lnAðϕÞ

dϕ
Tm; ð11Þ

which is a generalized wave equation on curved spacetime
with □≡ gμν∇μ∇ν, sourced by the scalar self-interaction
and by the coupling to the Einstein-frame trace of the
stress-energy tensor.
Specifying VðϕÞ and AðϕÞ, one specializes to a particu-

lar model of chameleon gravity. In this work, we will focus
on the classic chameleon models that feature an inverse
power-law self-interaction potential in combination with an
exponential conformal coupling to matter, i.e.,

VðϕÞ ¼ Λnþ4

ϕn ; AðϕÞ ¼ exp ðα0ϕÞ; ð12Þ

where Λ is the chameleon energy scale and α0 is the
dimensionful conformal coupling. Plugging Eq. (12) into
Eq. (11), one can see that the chameleon scalar field obeys
an effective potential

VeffðϕÞ≡ Λnþ4

ϕn −
1

4
e4α0ϕT̃m: ð13Þ

In this paper, we consider only the simplest chameleon
model, n ¼ 1. The scalar configuration that minimizes the
potential [Eq. (13)], ϕ̄, can be found by requiring
dVeff=dϕjϕ̄ ¼ 0 or, equivalently, by solving the transcen-
dental equation ϕ2e4α0ϕ þ Λ5=ðα0T̃mÞ ¼ 0, which in the
limit α0ϕ ∼ ϕ=Mpl ≪ 1 yields the solution

ϕ̄ ≃
Λ5=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α0T̃m

p : ð14Þ

From the effective potential (13), one can determine the
chameleon effective mass,

m2
eff ≡ d2Veff

dϕ2
¼ 2Λ5

ϕ3
− 4α20e

4α0ϕT̃m: ð15Þ

B. Chameleon screening

The field configuration that minimizes the effective
potential [Eq. (13)] strongly depends on the ambient matter
distribution: in denser regions, the chameleon will settle to
lower field values, and scalar perturbations around the
minimum will feature a larger effective mass [Eq. (15)]. As
a result, the chameleon fifth force will be short-range in
high-density environments (i.e., stars, clusters, or galaxies),
while being effectively long-range on cosmological scales.
In addition, a thin-shell effect will further suppress the fifth
force around compact objects (e.g., NSs [78]).
As an illustrative example, let us consider a nonrelativ-

istic, static, and spherical star of mass M and radius R,
surrounded by a medium (e.g., the interstellar medium, or
even the cosmological background) with lower density, ϵ̃∞.
Inside the star and far from it, the chameleon will settle to
different field values. The large effective mass, correspond-
ing to the high density in the interior, will suppress
exponentially the scalar perturbations and keep the cha-
meleon field small up to a screening radius, rs. The latter
can be defined as the distance from the center at which the
field starts rolling towards the “exterior” minimum. Inside
the screening radius, the gradient of the scalar field is
negligible, and the fifth force (proportional to the gradient)
reactivates only outside of it, r≳ rs. One can show that
sufficiently far away from the star, at r ≫ R, the scalar field
solution is
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ϕ ≃ ϕ∞ −
�

Q
4πMpl

�
Me−m∞ðr−RÞ

r
; ð16Þ

with Q being the (dimensionless) effective scalar charge of
the object and m∞ the chameleon effective mass [Eq. (15)]
at large distances. From Eq. (16), one can notice that the
chameleon mass term introduces an exponential suppres-
sion of the “Yukawa” type.
In the nonrelativistic Newtonian limit, the charge reads

QM ≃ α0MplðM −MðrsÞÞ, where MðrsÞ is the gravita-
tional mass contained inside the screening radius
[77,110]. When the star is efficiently screened—i.e.,
rs ∼ R—the scalar charge is only sourced by a “thin shell”
of matter between rs and R, and the fifth force is addi-
tionally suppressed by the factor Q ≪ 1 [77,78,111,112].
As long as T < 0 (which in the nonrelativistic limit is
automatically satisfied), the chameleon effective potential
[Eq. (13)] has a minimum in the stellar interior, and this
thin-shell effect is present. However, in the pressure-
dominated core of very dense NSs, T can change sign,
leading to a partial breakdown of chameleon screening
[84]. In this paper, we will explore the dynamics of this
breakdown, or descreening.

C. Constraints

Although it has been demonstrated that chameleon scalar
fields cannot give rise to self-acceleration [113], they could
still be relevant for cosmological applications in combina-
tion with a cosmological constant, as both could have a
common origin at high energies [114]. Indeed, the low-
energy effective theories derived from string theory are
generically populated with light scalar fields, and the
chameleon screening might be a viable mechanism to hide
their presence in experiments. In this perspective, relatively
recent work has found that chameleon models are com-
patible with the swampland program, provided that a lower
bound on the conformal coupling is satisfied [115].
However, while not completely ruled out yet, classic

chameleon models are constrained by a variety of obser-
vations (see Refs. [112,116,117] for reviews). The viable
region of the parameter space of the most studied chame-
leon model [i.e., Eq. (13) with n ¼ 1] is α0Mpl ≲Oð102Þ
for energy scales Λ≲ ΛDE [112], where ΛDE ¼ 2.4 meV is
the dark energy scale. Further constraints may come from
the scales of galaxies/galaxy clusters, although they have
not been worked out in detail [118], and from short-range
experiments [119].

III. INITIAL DATA

In this section, we derive static and spherically sym-
metric solutions for CNSs by generalizing the Tolman-
Oppenheimer-Volkoff (TOV) equations to the chameleon
case and solving them numerically. We also discuss the

EOS of nuclear matter and the boundary conditions used,
and present results for the mass-radius relation of CNSs.

A. Chameleon TOV equations

To obtain the modified TOV equations, we adopt
the following spherically symmetric ansatz (in polar
coordinates):

ds2 ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ: ð17Þ

By inserting the ansatz (17) into the chameleon field
equations (9) and (11), one obtains

dν
dr

¼
�
e2λ−1

2r

�
þ4πGre2λ

�
e4α0ϕp̃þΛ5

ϕ
−
e−2λ

2
σ2
�
; ð18Þ

dλ
dr

¼
�
1−e2λ

2r

�
þ4πGre2λ

�
e4α0ϕϵ̃−

Λ5

ϕ
−
e−2λ

2
σ2
�
; ð19Þ

dσ
dr

¼
�
dλ
dr

−
dν
dr

−
2

r

�
σ − e2λ

�
α0e4α0ϕð3p̃ − ϵ̃Þ þ Λ5

ϕ2

�
;

ð20Þ

dϕ
dr

¼ σ; ð21Þ

dp̃
dr

¼ −ðp̃þ ϵ̃Þ
�
dν
dr

þ α0σ

�
: ð22Þ

The differences from the TOV equations in GR depend on
the conformal coupling α0 and the chameleon energy scale
Λ, both introduced in Eq. (12). This system of equations
can be solved numerically by using suitable boundary
conditions and choosing an adequate EOS for nuclear
matter, as we explain in detail in the next subsection.

B. Equation of state and boundary conditions

To close the system of Eqs. (18)–(22), a relation between
the fluid variables must be provided. We choose to describe
the stellar interior with a polytropic EOS:

p̃ðρ̃Þ≡ Kρ̃Γ; ϵ̃ðp̃Þ ¼ p̃
Γ − 1

þ
�
p̃
K

�
1=Γ

; ð23Þ

where K is the polytropic constant and Γ is the (constant)
adiabatic index. This EOS, while approximate, allows for
reproducing the relativistic effects found in pressure-domi-
nated NS cores (e.g., see Ref. [56] for an application to
scalarized NSs) for appropriately stiff polytropic coeffi-
cients [89]. In this paper, we generally set Γ ¼ 3, which
approximates the polytropic exponent of more realistic
EOSs [120], and K ≃ 6.9 × 104G6M4

⊙ c−10. In GR, this
EOS yields a maximum mass Mmax ≃ 2.03 M⊙, consistent
with current bounds [121]. As we will see, this stiff EOS
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yields static stars with a partially descreened interior. We
will also use a different polytropic EOS with Γ ¼ 2 and
K ¼ 123 G3 M2

⊙ c−4 to obtain CNSs with similar baryon
mass but with a completely screened interior for compari-
son (see Sec. V).
Outside the star, r ≥ R, we assume a homogeneous

atmosphere, ϵ̃ ¼ ϵ̃∞ ¼ const., with a “cosmological” EOS,
p̃ ¼ −ϵ̃∞, corresponding to a cosmological constant.
Chameleon models with a runaway potential such as that
of Eq. (12) do not admit a constant scalar field solution in
pure vacuum, and for this reason a homogeneous atmosphere
is required to have awell-behaved exterior solution. In fact, it
is easy to see that with this cosmological atmosphere, the
field equations allow for the asymptotic solution ϵ̃ ¼ ϵ̃∞,
p̃ ¼ −ϵ̃∞, ϕ ¼ ϕ∞ at r ≫ R, with R being the radius of the
star. Once the atmosphere density ϵ̃∞ is fixed, the asymptotic
chameleon configuration ϕ∞ is determined by Eq. (14),
where T̃m ¼ −4ϵ̃∞. Consistently, the metric is then given
(asymptotically) by the Schwarzschild–de Sitter solution

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð24Þ

where fðrÞ≡ 1 − 2GM=r − br2=3, withM being the gravi-
tationalmass andb ¼ 8πGVeffðϵ̃∞Þjϕ∞

. Instead, the (Jordan-
frame) baryon mass of the star is defined as

Mbar ≡
Z

d3x
ffiffiffiffiffiffi
−g̃

p
J̃0: ð25Þ

Other prescriptions for the atmosphere are possible—for
instance, in terms of a nonrelativistic homogeneous dust
distribution modeling the interstellar medium—but the
advantage of choosing a cosmological EOS is that it yields
a simple exterior solution [84].

C. Static chameleon neutron stars

Static and spherically symmetric CNS solutions are
obtained numerically by integrating the modified TOV
equations outwards starting from the center of the star,
where we impose regular boundary conditions. To imple-
ment the Schwarzchild–de Sitter boundary conditions
[Eq. (24)] far away from the star, we use a direct shooting
method.
We consider atmosphere densities of order

ϵ̃∞ ∼ 10−6–10−4ρnucc2, where ρnuc ¼ 1.7 × 1014 g=cm3 is
a typical nuclear density. Notice that our direct shooting
method cannot handle more realistic atmospheres like a
background cosmological density, ρc ≃ 1.0 × 10−23 g=cm3,
or the density of the interstellar medium (in a giantmolecular
cloud [122]), ρGMC ≃ 1.7 × 10−20 g=cm3. For the chame-
leon action parameters we set α0Mpl ¼ 1 and
Λ ≃ 73–175 GeV. These chameleon energy scales are
inconsistent with current bounds [112], but lower (and
viable) values of Λ are again impossible to explore with
our shooting method. This is because to solve for CNSs, we

have to utilize code units adapted to the problem, where
G ¼ c ¼ M⊙ ¼ 1. Reinstating all ℏ, c, and G factors, one
obtains Λ5 ¼ ð8πÞ−3=2ðMpl=ℏcÞ2ðGM⊙=c2Þ2ðΛ̄=MplÞ5≈
2.6 × 1072ðΛ̄=MplÞ5, and realistic values of Λ therefore
become tiny and hard to handle numerically. This is a
problem commonly encountered when simulating compact
stars in theories with screening (see, e.g., Refs. [66,80,84]),
and it stems from the separation between the cosmological
scale Λ and that of NSs. In Sec. VI, however, we will
extrapolate our results to more realistic values of bothΛ and
ϵ̃∞ by using semianalytic arguments.
Mass-radius curves for different values ofΛ are shown in

Fig. 1, where we also show the GR case (Λ ¼ 0). These
curves are comprised of stable and unstable stars, which lie,
respectively, on the right of the maximum mass configu-
ration (red star tokens) and on its left. Additionally,
solutions between each red star token and the correspond-
ing cyan round token have T > 0 (pressure dominated
core). As mentioned previously, in chameleon gravity, a
pressure-dominated core can produce a partial descreening.
As can be observed from Fig. 2, that consists of a
reactivation of the scalar gradient (and thus of the fifth
force) in the stellar interior, where it would normally be
suppressed by screening. For fixed mass, screened CNSs
are typically smaller in size and more compact than NSs in
GR. However, in the limit Λ → 0, screened solutions tend
smoothly to GR configurations. Descreened solutions,
instead, feature strong deviations, as can be observed from
the fact that the maximum mass is typically lower than in

FIG. 1. Mass-radius plots for varying chameleon energy scales.
Dotted, dash-dotted, and dashed lines correspond to CNSs with
α0Mpl ¼ 1; darker lines correspond to lower-chameleon-energy
scales. The darkest solid line corresponds to NS solutions in GR
(α0 ¼ 0, Λ ¼ 0, and no atmosphere). Red star tokens indicate the
solutions with maximum mass. Cyan round tokens instead
indicate the lightest star featuring a pressure-dominated
(T > 0) core: stable CNSs with a partially descreened core are
those between the star and round tokens.
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GR, and in the limit Λ → 0, the most massive GR
configuration is not recovered smoothly. Moreover, the
branch of unstable solutions shows the strongest deviations
from GR, even for smaller chameleon energy scales Λ.

IV. TIME EVOLUTION IN SPHERICAL
SYMMETRY

In this section, we explain in detail how we perform fully
nonlinear evolutions of CNSs and summarize our numeri-
cal methods. We present results for the dynamics of CNS
stars by analyzing their stability. We have considered
screened and descreened CNSs under perturbations that
trigger either oscillations or collapse to a BH.

A. Evolution equations

The fully nonlinear evolution of CNS stars is followed in
the Einstein frame, where the equations of motion for CNSs

are given by the Einstein equations (9), the conservation
laws for the Einstein-frame baryon mass current [Eq. (7)]
and stress-energy tensor [Eq. (8)], and the scalar field
equation (11). We restrict our study to spherical symmetry
and decompose the spacetime tensors into their space
(radial) and time components.
We consider the following line element:

ds2 ¼ −α2ðt; rÞdt2 þ grrðt; rÞdr2 þ r2gθθðt; rÞdΩ2; ð26Þ

where αðt; rÞ is the lapse function, grrðt; rÞ and gθθðt; rÞ are
positive metric functions, and dΩ2 ¼ dθ2 þ sin2 θdφ2 is
the solid angle element. These quantities are defined on
each leaf Σt of the spatial foliation, which has normal vector
nμ ¼ ð−α; 0Þ and extrinsic curvature Kij ≡ − 1

2
Lnγij. Here,

Ln is the Lie derivative along nμ, and γij is the metric
induced on each leaf.
The Einstein equations (9) are written as an evolution

system by using the Z3 formulation in spherical symmetry
[123,124]. We can express Eq. (9) as a first-order system by
introducing first derivatives of the fields as independent
variables, namely

Ar ¼
1

α
∂rα; Drr

r ¼ grr

2
∂rgrr; Drθ

θ ¼ gθθ

2
∂rgθθ;

and write the system of equations in the conservative form

∂tUþ ∂rFðUÞ ¼ SðUÞ; ð27Þ

where U ¼ fα; grr; gθθ; Kr
r; Kθ

θ; Ar;Drr
r; Drθ

θ; Zrg is a
vector containing the full set of evolution fields. In the
Z3 formulation, the momentum constraint has been
included in the evolution system by considering an addi-
tional vector Zi as an evolution field [125]. In fact, the Zr
component is the time integral of the momentum constraint.
In addition, FðUÞ is the radial flux, and SðUÞ is a source
term. The evolution equations for the Z3 formulation can be
found explicitly in Ref. [126]. A gauge condition for the
lapse is required to close the system.We use the singularity-
avoidance 1þ log slicing condition ∂tα ¼ −2αtrK, where
trK ¼ Kr

r þ 2Kθ
θ; see Ref. [127].

In addition, the equations of motion for the fluid
[Eqs. (7) and (8)] and for the scalar field [Eq. (11)] are
written in conservative form:

∂tðζDÞ ¼ −∂r½ζDαvr� − αζD

�
2

r
vr − α0ðvrΦþ

ffiffiffiffiffiffi
grr

p
ΠÞ

�
; ð28Þ

∂tðζUÞ ¼ −∂r½ζαSr� þ αζ

�
SrrKr

r þ 2SθθKθ
θ − Sr

�
Ar þ

2

r

�
− α0T

ffiffiffiffiffiffi
grr

p
Π
�
; ð29Þ

FIG. 2. Partial descreening of CNSs. Gradient of the chame-
leon field around CNS solutions with varying central densities:
less dense stars (blue end of the color scale) are screened in their
interior, as can be seen from the suppression of the scalar field
gradient; stellar solutions with higher central densities (red end of
the color scale) feature a scalar field gradient (proportional to the
chameleon-propagated fifth force) reactivated in their interior as a
result of relativistic effects—i.e., the pressure-dominated cores.
In the plot, the gradient of the scalar field is normalized by the
radius of the star divided by the Planck mass, R=Mpl, while the
distance from the center is normalized by R.
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∂tðζSrÞ ¼ −∂r½ζαSrr� þ αζ

�
Srr

�
Drr

r −
2

r

�
þ 2Sθθ

�
Drθ

θ þ 1

r

�
−UAr þ α0TΦ

�
; ð30Þ

∂tϕ ¼ αffiffiffiffiffiffi
grr

p Π; ð31Þ

∂tΦ ¼ ∂r

�
αffiffiffiffiffiffi
grr

p Π
�
; ð32Þ

∂tΠ ¼ ∂r

�
αffiffiffiffiffiffi
grr

p Φ
�
þ αffiffiffiffiffiffi

grr
p

�
2

�
Drθ

θ þ 1

r

�
Φþ 2

ffiffiffiffiffiffi
grr

p
Kθ

θΠ − grr
dVeff

dϕ

�
; ð33Þ

where ζ ¼ ffiffiffiffiffiffi
grr

p
gθθ and

Φ ¼ ∂rϕ; Π ¼
ffiffiffiffiffiffi
grr

p
α

∂tϕ: ð34Þ

Note that Eqs. (28)–(30) are given in terms of the conserved quantities fD;U; Srg, which are defined in terms of the

physical (or primitive) variables—i.e., fluid pressure p,
rest-mass density ρ, specific internal energy1 ξ, radial
velocity of the fluid vr, and the enthalpy of the fluid,
h≡ ρð1þ ξÞ þ p. The conserved quantities are explicitly
defined as follows:

D ¼ ρW; U ¼ hW2 − p; Sr ¼ hW2vr; ð35Þ

Srr ¼ hW2vrvr þ p; Sθθ ¼ p; T ¼ −hþ 4p;

ð36Þ

with W2 ¼ 1=ð1 − vrvrÞ being the Lorentz factor, and Srr

and Sθθ the spatial projections of the stress energy tensor of
the fluid in the Einstein frame. Finally, to recover the
physical fields fρ; ξ; p; vrg during the evolution, the
algebraic relation (35) has to be inverted, which involves
solving a nonlinear equation at each time step. During this
process, we employ an ideal-gas EOS P ¼ ðΓ − 1Þρξ (see
Appendix B in Ref. [126]), with the appropriate Γ depend-
ing on the CNS simulation, as explained in Sec. III.

B. Implementation

The one-dimensional (1D) numerical code used in this
work is an extension of the one presented in Ref. [126] for
fully nonlinear simulations of fermion-boson stars, and
used in Refs. [79,123,128,129] to study the dynamics of
BHs, boson stars, anisotropic stars, and NSs with a kinetic
screening mechanism. As initial data, we use the static CNS
solutions discussed in Sec. III, transformed from the areal

coordinates of Eq. (17) to maximal isotropic coordinates, in
which the line element is given by

ds2 ¼ −α2ðrÞdt2 þ ψ4ðrÞðdr2 þ r2dΩ2Þ; ð37Þ

with ψ being the conformal factor.
We have used a high-resolution shock-capturing (HRSC)

finite difference scheme, described inRef. [123], to discretize
the spacetime, the scalar field, and the fluid matter fields. In
particular, this method can be viewed as a fourth-order finite
difference scheme plus third-order adaptive dissipation. The
dissipation coefficient is given by themaximum propagation
speed at each grid point. The method of lines is used to
perform the time evolution through a third-order-accurate
strong stability-preserving Runge-Kutta integration scheme,
with a Courant factor of Δt=Δr ¼ 0.25 (in code units,
G ¼ c ¼ M⊙ ¼ 1), so that the Courant-Friedrichs-Levy
condition imposed by the principal part of the system of
equations is satisfied. Most of the simulations presented in
this work have been performed with spatial resolutions of
Δr ¼ f0.005; 0.0025; 0.00125gGM⊙, in a domain with
outer boundary located between r ¼ 500GM⊙ and
r ¼ 1000GM⊙. We have verified the convergence of results
with increasing resolution, as well as their robustness against
changes in the position of the outer boundary. We use
maximally dissipative boundary conditions for the spacetime
variables, and outgoing boundary conditions for the scalar
field and for the fluid matter fields.

C. Screened and descreened CNSs

To test the stability of CNSs, we have first evolved the
initial data described in Sec. III, subjected only to the small
perturbations given by truncation errors. In addition, we have
tested the migration of CNSs from the unstable to the stable
branch of solutions. In the subsections below, we report and

1Note that this quantity must not be confused with the (total)
energy density, ϵ. The connection between the two is given by the
relation ξ ¼ ϵ=ρ − 1, from which it becomes clear that ξ is
adimensional.
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discuss examples of such tests. Finally, we discuss the results
from simulations of gravitational collapse to aBH.All results
shown in this section have been produced for the parameter
choice ðΛ; ϵ̃∞Þ ¼ ð175 GeV; 6.5 × 1010 g=cm3Þ.

1. Stability

In Fig. 3, we show the time evolution of the central
density (upper panel) and central scalar field (bottom panel)
for two CNSs, one with complete screening (solid magenta
line) and one with partial descreening in the core (dash-
dotted cyan line). The first star has a lighter gravitational
mass M ¼ 1.72 M⊙ and initial (Jordan-frame) central
density ρc ≃ 1.38 × 1015 g=cm3. The descreened star is
heavier, with a mass of M ¼ 1.84 M⊙ and initial central
density ρc ≃ 1.57 × 1015 g=cm3. The simulations were
conducted on a grid that extends up to r ¼ 1000GM⊙
with a spacing as fine as Δr ¼ 0.0025GM⊙ for the
screened star. For simulations of the descreened star,

however, we have doubled the number of points of our
spatial grid, which correspond to Δr ¼ 0.00125GM⊙. We
have observed that simulations of descreened stars are more
challenging, as higher resolutions are typically needed to
keep the numerical dissipation under control during the
evolution. We interpret this technical issue as stemming
again from the separation between stellar and cosmological
scales.
Both stars were evolved in time with no other perturba-

tion but the one introduced by truncation errors: their
stability is manifest in Fig. 3, which shows that the central
density and central scalar field remain constant over time.

2. Migration

The migration test is a standard diagnostics tool utilized
in GR to characterize the (in)stability of NS solutions (e.g.,
see Refs. [130–132]): depending on the initial perturbation
[133], solutions that lie on the unstable branch (i.e., to the
left of the maximum mass configuration in mass-radius
plots such as Fig. 1) can either collapse to a BH or undergo
a series of wide oscillations and migrate towards a solution
on the stable branch (with approximately the same baryon
mass). In our simulations, migration of highly compact and
unstable CNSs is induced via small perturbations given by
the truncation error. An example of migration is given in
Fig. 4, where a star with initial central density ρc ≃ 1.87 ×
1015 g=cm3 and baryon mass Mbar ¼ 2.17 M⊙ (and gravi-
tational mass M ¼ 1.88 M⊙) can be seen undergoing large
dampened oscillations. It eventually relaxes to a stable
descreened star with approximately the same baryon mass
(modulo a small loss due to numerical dissipation ≲1%),
slightly lower gravitational mass M ¼ 1.87 M⊙, and cen-
tral density ρc ≃ 1.64 × 1015 g=cm3.

3. Spherical collapse

We have conducted simulations of spherical collapse to
BHs, which are another standard benchmark for numerical
relativity simulations of NSs. The collapse has been induced
by an initial pressure gradient up to 10%. We illustrate the
results of this test by discussing the case of a collapsing
descreened CNS with gravitational massM ¼ 1.89 M⊙ and
initial central density ρc ¼ 1.70 × 1015 g=cm3. In Fig. 5, we
show the time evolution of the density, chameleon field, and
lapse at the center of the collapsing star. As matter collapses
to the center of the star, the density and pressure in the core
grow, pushing the chameleon field down its effective
potential (i.e., to higher values). This is counterintuitive,
as the minimum of the effective potential [Eq. (13)] moves to
smaller ϕ when the density increases, as long as the star
remains nonrelativistic. However, this behavior breaks down
when the configuration becomes relativistic, as a result of the
change of sign of Tm. Indeed, for Tm > 0, the effective
potential has no minimum, and the scalar field rolls down to
larger and larger values.

FIG. 3. Stability of CNS. Top panel: ρcðtÞ≡ ρ̃ðt; r ¼ 0Þ (Jordan
frame) vs time. Bottom panel: ϕcðtÞ≡ ϕðt; r ¼ 0Þ vs time. The
(magenta) solid line corresponds to a screened CNS with initial
central density ρc ≃ 1.38 × 1015 g=cm3. The (cyan) dash-dotted
line corresponds to a descreened CNS with initial central density
ρc ≃ 1.57 × 1015 g=cm3. The matter and chameleon field con-
figurations are stable against small perturbations given by
truncation errors.
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The lapse decreases to zero and, as a consequence of the
1þ log slicing coordinate choice that we employ, the time
evolution of matter in the collapsing core is effectively
frozen. In Fig. 6, we show time snapshots of the radial
profile of the lapse and chameleon scalar field. Inside the
star, as the lapse goes to zero, an apparent horizon (black

dots) forms and slowly expands, until it eventually engulfs
the whole matter content. While the chameleon field inside
the apparent horizon grows as a result of the (runaway)
effective potential, outside the horizon it slowly relaxes to
the exterior configuration minimizing the effective poten-
tial in the presence of an atmosphere. No instabilities
develop during collapse outside the apparent horizon, and
the end state is therefore a BH with a trivial scalar field
solution.

V. RADIAL OSCILLATIONS

In this section, we analyze the spectrum of the radial
oscillations of spherically symmetricCNSs and compare it to
the oscillation spectrum of NSs with similar gravitational
masses in GR. The CNSs have been produced with the
parameter choice ðΛ; ϵ̃∞Þ ¼ ð175 GeV, 6.5 × 1010 g=cm3).
As a first step,we test the accuracyof our codebyproducinga
NS inGR,with gravitationalmassM ¼ 1.4 M⊙ and an EOS
defined by Γ ¼ 2 and K ¼ 100 G3M2

⊙ c−4. From suffi-
ciently long simulations, the frequencies of the characteristic
radial oscillations (induced by truncation errors) have been
extracted and comparedwith the ones estimated inRef. [133]
from an independent three-dimensional (3D) code. The
results, summarized in Table I, are an indicator of the
accuracy of our frequency estimates.
From long-term simulations of several CNSs with central

densities in the range ρc ¼ ð0.96–1.67Þ × 1015 g=cm3, we
have then computed the power spectral density (PSD) of the
density perturbations and extracted the peak frequency of
the fundamental radial mode (F) and its higher overtones
(HN , with N ¼ 1; 2;…). As a reference, we have also
evolved spherical NSs produced in GR with comparable
gravitational masses, using the same EOS (Γ ¼ 3). The

FIG. 6. Collapse of a descreened CNS. Snapshots of the radial
profile of the lapse function (top panel) and scalar field (bottom
panel) for the same collapsing star as in Fig. 5. Quantities are
plotted against the Einstein-frame isotropic radius, r. Black dots
indicate the position of the apparent horizon.

FIG. 5. Collapse of a descreened CNS. Time evolution of the
lapse (solid red line), density (dashed green line), and chameleon
field (dotted blue line) at the center of a collapsing descreened
star with gravitational mass M ¼ 1.88 M⊙, normalized by their
initial values. As matter collapses towards the center, the density
and chameleon field values increase. The lapse function de-
creases to small values close to zero.

FIG. 4. Migration test. The time evolution of the (Jordan-frame)
central density ρcðtÞ≡ ρ̃ðt; r ¼ 0Þ (red solid line) and central
scalar field ϕcðtÞ≡ ϕðt; r ¼ 0Þ (blue dashed line), for an unstable
and partially descreened CNS with baryon massMbar ¼ 2.17 M⊙
(gravitational mass M ¼ 1.88 M⊙) and ρc ≃ 1.87 × 1015 g=cm3.
The star is expanding in volume and relaxes through large
dampened oscillations to a stable descreened CNS with the same
baryon mass and slightly lower gravitational massM ¼ 1.87 M⊙,
but lower central density ρc ≃ 1.64 × 1015 g=cm3.
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presence of the chameleon field coupled to matter inside the
star has multiple effects on the spectrum. The first, which
can be observed in Fig. 7, consists of a modification of the
relation between the peak frequencies and the properties of
the stars.

Radial oscillations of NSs in GR have been studied
extensively in the past. For instance, it is known that
nonrelativistic homogeneous stars feature a fundamental
mode frequency, F, that is proportional to the (constant)
rest-mass density [134]. This relation is more complicated
in the relativistic regime, and the result for nonrelativistic
homogeneous stars only holds approximately at low
densities [100,135]. In order to quantify the differences
between spectra in GR and chameleon gravity, we have
fitted the relation between the F-mode frequency and the
average density, ρ̄≡ ð4π=3Þ−1M=R3, in either theory. We
present the result of the comparison in Fig. 8.
The additional scalar degree of freedom of ST theories

can also produce a new family of characteristic oscillations
inside NSs. These scalar radial modes correspond to
monopole GW emission. Indeed, in the spectra of CNSs,
we observe several high-frequency peaks that do not have
any correspondence in the GR power spectra (see Fig. 7,
bottom panel). We interpret these peaks as due to the
chameleon field oscillations. The fundamental (massive)
scalar mode of oscillation has a frequency, Fs ≡meff=2π,
that is of the order of the inverse of the Compton wave-
length: the larger the mass, the larger the corresponding
frequency (see, e.g., Fig. 2 in Ref. [102]). For
Λ ¼ 175 GeV, the chameleon field inside objects as dense
as NSs acquires a very large mass [Eq. (15)], which yields
frequencies Fs ∼Oð10Þ kHz. This is indeed the correct
order of magnitude for the frequencies of the new family of
modes that we observe. For Λ ≃ 2.4 meV, one can check
that Fs ≫ kHz, because the chameleon acquires even
larger masses inside relativistic stars. These modes are
hardly excited and are unobservable with GW detectors.

FIG. 7. Spectra of radial oscillations. The two plots show the
PSDs of the radial modes extracted from the time evolution of the
central rest-mass density for three CNSs and one GR NS. Top
panel: F, H1, and H2 modes. Bottom panel: higher overtones,HN
with N > 2, and the new family of scalar modes (Fs and higher
overtones). The results shown in this plot are valid for the
parameter choice ðΛ; ϵ̃∞Þ ¼ ð175 GeV, 6.5 × 1010 g=cm3).

FIG. 8. F-mode frequency vs average density. Linear fits of the
fundamental mode (F) frequency as a function of the average
density (ρ̄) for NSs in GR (blue dotted line, cyan cross tokens)
and in chameleon gravity (magenta dash-dotted line, red round
tokens). The results shown in this plot are valid for the parameter
choice ðΛ; ϵ̃∞Þ ¼ ð175 GeV, 6.5 × 1010 g=cm3).

TABLE I. Radial oscillation frequencies of a NS in GR.
Comparison between estimates with our 1D code vs an inde-
pendent 3D code [133].

Mode 1D code (kHz) 3D code (kHz) Rel. diff. (%)

F 1.443 1.450 0.6
H1 3.952 3.958 0.2
H2 5.902 5.935 0.6
H3 7.763 7.812 0.6
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Regarding the shift in the peak frequencies, note that
such an effect is present even in CNSs with a screened
interior (see, e.g., the ρc ≃ 1.38 × 1015 g=cm3 configura-
tion in Fig. 7). Like in the case of the mass-radius relation
(cf. Fig. 1 and related discussion), we expect deviations
from GR in the spectrum of oscillations to disappear in the
limit Λ → 2.4 meV for screened stars, while they could
survive for descreened CNSs. As we will see in the
following, however, these effects are likely outside the
reach of ground-based gravitational interferometers.

VI. SCALAR RADIATION

In this section, we investigate the characteristic GW
output of CNSs, focusing on detectability with current and
future detectors. To this end, for each signal produced with
our simulations, we estimate the signal-to-noise ratio
(SNR) as [136]

SNR2 ≡
Z

∞

0

4jh̃ðfÞj2
SnðfÞ

df; ð38Þ

where h̃ðfÞ is the strain signal in the frequency domain, and
SnðfÞ is the one-sided noise power spectral density of the
detector. As a reference, we compare the simulated signals
with the design sensitivity curves of the Advanced Laser
Interferometer Gravitational-Wave Observatory (Advanced
LIGO)2 [137,138], Einstein Telescope (ET) [139], and
Laser Interferometer Space Antenna (LISA) [140,141].
The geometry of the detector is encoded in the pattern
functions, Fþ; F×; F0, which are different in the case of a
tensor wave [h̃ðfÞ ¼ Fþh̃þðfÞ þ F×h̃×ðfÞ] and for a scalar
wave [breathing mode, h̃ðfÞ ¼ F0h̃0ðfÞ]. For simplicity,
we will assume optimal detector orientation [105,142,143]
in our calculations—i.e., F0 ¼ 1=2.
The effect of GWs on the detector is encoded in the

Newman-Penrose curvature scalars [144]. The latter can be
obtained by projecting the Riemann tensor onto a null
tetrad basis ðk; l; m; m̄Þ adapted to the wavefronts. In
particular, the scalar mode is encoded in Φ22 ¼ −Rlmlm̄
(evaluated in the Jordan frame) [145]. This quantity can be
computed from our simulations (which are performed in the
Einstein frame) via

Φ22 ¼ AðϕÞ−2ðΦE
22 þ lalb∇a∇b logAðϕÞ

−ðla∇a logAðϕÞÞ2Þ; ð39Þ
where ΦE

22 is the same Newman-Penrose scalar in the
Einstein frame. Since in that frame the ST theories that we
consider simply reduce (in vacuum) to GR with a mini-
mally coupled scalar field, we can conclude that ΦE

22 ≃ 0,
and the only significant contribution comes from the
oscillating chameleon field—i.e., [45]

Φ22 ≃ 2α0∂2
tϕþO

�
1

r2

�
; ð40Þ

in the deriving of which we have used ∂2
tφ ∼Oð1=rÞ and

neglected terms decaying as 1=r2 or faster. In practice, Φ22

is computed from our simulations by evaluating Eq. (40) at
an extraction radius placed sufficiently far away from the
star, rext ≫ R. At the same time, the extraction radius must
be far from the cosmological horizon, rext ≪ rcosmo, in an
intermediate region where geometric effects from the de
Sitter asymptotics are negligible and the spacetime is
approximately flat. In addition to the spacetime flatness
requirement, the extraction radius must also be chosen to
satisfy rext ≫ λc ¼ 1=m∞. By combining all the require-
ments listed above, one obtains the radiation zone condition
[106], λc ≪ rext ≪ rcosmo. (Note that one typically has
λc ≫ R.) Because of the rather large effective cosmological
constant, in our simulations the wave zone requirements are
met only in a rather tight range of the isotropic radius
coordinate (e.g., rext ¼ 50–100 GM⊙ for Λ ¼ 175 GeV).
We have checked that our results are robust with respect to
variations of the extraction radius in this range and to the
position of the outer boundary of our simulations, which we
place sufficiently far from the extraction point, at distances
typically larger than 500GM⊙.
The signal is produced as a function of the retarded time,

tret ≈ t − r�, defined in terms of the Schwarzschild–de
Sitter tortoise coordinate, r� ≡ R

dr=fðrÞ. This approxi-
mate prescription works well for our purposes, even though
more involved expressions can be employed [146,147]. We
finally reconstruct the scalar strain in two independent
ways. In the first method, with a fast Fourier transform
algorithm we compute the frequency-domain Newmann-
Penrose scalar Φ̃22ðfÞ, from which we reconstruct the
scalar strain hs (with Φ22 ≡ ∂2

t hs) with the following filter
in the frequency domain:

h̃sðfÞ ¼
(− 1

ð2πfÞ2 Φ̃22ðfÞ f > f0

− ð2πfÞ2
ð2πf0Þ4 Φ̃22ðfÞ f ≤ f0

; ð41Þ

inspired by Refs. [147,148] with the addition of a factor
∼ðf=f0Þ2 suppressing unphysical low-frequency noise.
The frequency cutoff, f0, is chosen according to the lowest
physical frequency of the system. In practice, for simu-
lations of oscillating stars, we fix this to be of the order of
the fundamental radial mode, F, since under this threshold
there is no stellar mode that can source the scalar radiation.
Instead, the gravitational collapse produces what is some-
times referred to as an “inverse chirp” [105–107]: the GW
burst excites lower and lower frequencies as the matter
collapses. In this case, the mass of the chameleon field
in the exterior introduces a natural cutoff frequency,
f∞ ≡m∞=2π, as the propagation of modes with lower

2For the sensitivity, we refer to the zero-detuning, high-power
configuration.
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frequencies, f ≲ f∞, is exponentially suppressed. As a test,
we check the robustness of our results by varying the cutoff
frequency down to the lowest resolvable frequency in our
simulations, f0 ≃ 1=T, where T is the total simulation time.
The second method consists in computing the strain
of the scalar monopole radiation directly from the formula
[105–107]

hs ¼ 2α0ðϕ − ϕ∞Þ; ð42Þ

which can be derived by combining Φ22 ¼ ∂2
t hs and

Eq. (40), which is approximately valid in the “wave zone”
defined earlier. The agreement of the results obtained with
the two methods confirms the robustness of our
conclusions.

A. Oscillating CNSs

Oscillations in the CNSs were induced by an initial
perturbation in the specific internal energy (see Sec. IVA),
δξðrÞ ¼ δξ0 cosðσrÞ expð−r2=σ2Þ, with σ ¼ 5GM⊙ and
δξ0 ¼ f10−6; 10−5; 10−4; 10−3; 4 × 10−3g. We have com-
pared CNSs with different masses, the lighter one having
M ¼ 1.02 M⊙ and belonging to the screened branch of
solutions, while the heavier, M ¼ 1.84 M⊙, belongs to the
branch with partial descreening. Here we take ðΛ; ϵ̃∞Þ ¼
ð175 GeV, 6.5 × 1010 g=cm3).
Let us first assess the effectiveness of the screening

mechanism at suppressing the scalar radiation emitted by
CNSs. In Fig. 9, we plot the monopole GW signal sourced
by an oscillating star at a luminosity distance of
DL ¼ 10 kpc. One can observe that both the Φ22 curvature
scalar and the strain amplitude hs, in the top and bottom
panels, respectively, are suppressed [by a factor ∼Oð10Þ]
when the screening mechanism is active inside the star.
To investigate the observability of the GWs sourced by

the characteristic modes of matter inside oscillating CNSs
(see Fig. 7), we compare the strain amplitude (in the
frequency domain) of the signals produced by the screened
and descreened stars (both perturbed with the largest initial
perturbation that we consider, δξ0 ¼ 4 × 10−3) with the
sensitivity curves of Advanced LIGO and ET, as is shown
in Fig. 10. We observe that only the fundamental mode F
(and, depending on the mass of the star, the first overtone
H1) have frequencies falling within (the high end of) the
sensitivity range of ground-based detectors. We conclude
that oscillating CNSs located within our Galaxy would
produce signals that are well above the sensitivity threshold
of Advanced LIGO, even in the case of the screened star,
for the theory considered in these simulations. Conversely,
oscillating stars located outside our Galaxy (DL ≳Mpc)
might be undetectable by Advanced LIGO (even in the case
of descreened CNSs) but within reach of third-generation
detectors such as the ET, for which we predict higher SNR
values (see Table II).

The scaling of our results with the initial perturbation
amplitude is shown (together with a power-law fit) in
Fig. 11. As can be seen, the logarithmic dependence on the
initial amplitude suggests that our results are robust against
changes in that quantity. We stress again, however, that all
the results presented in this section have been obtained for
Λ ≃ 175 GeV. When the chameleon energy scale is com-
parable to the dark-energy scale (∼meV), we expect the
frequency of the F mode to approach the GR predictions,
and thus to remain in the kHz range. However, the
fundamental scalar mode, Fs, will have even higher
frequencies because of the huge mass [Eq. (15)] acquired
by the chameleon field at nuclear densities, which may
render the detection of scalar effects challenging. As for the
amplitude of the scalar signal, we expect it to be suppressed
for Λ ∼meV and more realistic atmosphere densities. We
will show this in detail for the (much stronger) scalar
emission produced in gravitational collapse, in the next
section.

B. Collapsing CNSs

In this subsection, we extract the scalar (monopole) GW
emission from simulations of collapsing unstable CNSs,
comparing those with and without descreened cores. In
particular, we fix the parameters of the theory to ðΛ; ϵ̃∞Þ ¼

FIG. 9. Scalar radiation from oscillating stars. Top panel: Φ22

vs retarded time. Bottom panel: strain amplitude vs retarded time.
The results shown in these plots have been obtained for
ðΛ; ϵ̃∞Þ ¼ ð175 GeV, 6.5 × 1010 g=cm3). The scalar radiation
is extracted from simulations of oscillating CNSs with (dashed
magenta lines) and without (continuous cyan lines) screening in
the interior. The gravitational masses of the stars are, respectively,
M ¼ 1.02 M⊙ (screened CNS) and M ¼ 1.84 M⊙ (descreened
CNS). The distance of the detector from the source is set to
DL ¼ 10 kpc. To trigger the oscillations, an initial perturbation
with amplitude δξ0 ¼ 10−6 is employed.
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ð175 GeV; 6.5 × 1010 g=cm3Þ and choose two CNSs with
the same baryon mass [see Eq. (25)] Mbar ¼ 1.75 M⊙, but
with different EOS polytropic indices: Γ ¼ 3 and Γ ¼ 2. For
the latter value (and unlike for the former), the CNS does not
feature a pressure-dominated core, and the chameleon
screening is fully effective. The collapse is induced with a
small initial perturbation, introduced by decreasing the
polytropic index by a tiny amount (∼0.1%), which

corresponds to a small increase of the initial pressure (by
less than 2%) and of the specific internal energy (by 0.5%).
The plots in Fig. 12 show the monopole scalar GWs

produced by the two CNSs described above, at a distance of
DL ¼ 10 kpc. The infalling matter produces a typical burst
signal, visible in both the Newman-Penrose scalar Φ22 (top
panel) and the scalar strain amplitude hs (bottom panel). In
these simulations, we see no evidence of a suppression of
the scalar emission due to screening (complete or partial).
In Fig. 13, we compare the two scalar strain amplitudes, in
the frequency domain, to the design sensitivity curves of
current and next-generation terrestrial interferometers.

TABLE II. SNR. Estimates of the SNR of scalar GWs produced
by oscillating and collapsing CNSs. Results are labeled by the
presence or absence of screening in the core of the stars, and by
the detector taken as a reference (Advanced LIGO or ET). The
source-detector distance is set to DL ¼ 10 kpc. The gravitational
masses of the oscillating stars areM ¼ 1.02 M⊙ (screened CNS)
andM ¼ 1.84 M⊙ (descreened CNS). The collapsing CNSs have
been chosen to have a fixed baryon mass Mbar ¼ 1.75 M⊙. The
results are obtained for ðΛ; ϵ̃∞Þ ¼ ð175 GeV; 6.5 × 1010 g=cm3Þ.
Scenario Screening LIGO ET

Oscillations Yes 4 3.3 × 101

No 2.0 × 101 1.6 × 102

Collapse Yes 7.6 × 103 7.8 × 104

No 5.6 × 103 5.6 × 104

FIG. 11. Scalar strain vs initial perturbation amplitude. The
plots show the maximum amplitude of the monopole scalar
radiation against themaximumamplitude of the initial perturbation
of the specific internal energy, δξ. The top and bottom panels
correspond to a screened star withM ¼ 1.02 M⊙ and a descreened
star with M ¼ 1.84 M⊙, respectively, located at a DL ¼ 10 kpc
distance from the detector. The amplitudes of the initial perturba-
tion (in the specific internal energy) that we consider are
δξ0 ¼ f10−6; 10−5; 10−4; 10−3; 4 × 10−3g. The parameters of the
model are set to ðΛ; ϵ̃∞Þ ¼ ð175 GeV; 6.5 × 1010 g=cm3Þ. The
black dashed lines show a power-law fit.

FIG. 10. Signal vs detector sensitivity curves—oscillating stars.
The strain amplitude in the frequency domain, SðfÞ ¼ fjhðfÞj2,
is compared to the design sensitivity curves, SðfÞ ¼ SnðfÞ, of
Advanced LIGO (red dot-dashed line) and ET (blue dotted line).
The source-detector distance is set to DL ¼ 10 kpc. The signals
correspond to the monopole GWs produced by screened (con-
tinuous magenta line) and descreened (dashed cyan line) stars.
The gravitational masses of the stars are, respectively, M ¼
1.02 M⊙ (screened CNS) and M ¼ 1.84 M⊙ (descreened CNS).
The initial perturbations (in the specific internal energy) em-
ployed to trigger the oscillations and scalar GWemission have an
amplitude of δξ0 ¼ 4 × 10−3. The visible peaks in the signals
correspond to the fundamental mode, F, of the characteristic
radial oscillations of the CNSs. The results have been obtained for
ðΛ; ϵ̃∞Þ ¼ ð175 GeV, 6.5 × 1010 g=cm3).

DYNAMICAL CHAMELEON NEUTRON STARS: STABILITY, … PHYS. REV. D 104, 084017 (2021)

084017-13



As can be seen in the plot, a collapsing (screened or
descreened) CNS would produce a very loud burst that
would correspond to large SNRs already in Advanced
LIGO (see Table II).
One may wonder, however, whether this large monopole

radiation persists for smaller values of ðΛ; ϵ̃∞Þ. To answer

this question, let us try to gain some insight on why large
scalar signals are produced in our simulations. Asmentioned
in Sec. III, the end state of the collapse of a CNS is a
“hairless” BHwith the chameleon field lying in the constant
“exterior” vacuum, ϕ ¼ ϕ∞. Note indeed that vacuum
solutions with “hair” (i.e., nonconstant scalar fields) are
forbidden by a trivial generalization of the Hawking-
Bekenstein “no scalar hair” theorem [149–151]. As a result,
the scalar charge of the star must be shed away via GW
emission during collapse. Therefore, larger initial charges
will correspond to larger burst amplitudes. Note that a similar
mechanism, whereby gravitational collapse has to shed away
(because of no-hair theorems), any scalar hair that a star may
initially have, thus producing a strong scalar monopole
emission, was recently discovered for theories that yield
kinetic screening [80].
In our case, we observe that at large values of ðΛ; ϵ̃∞Þ,

the scalar charges of CNSs are not efficiently suppressed by
the “thin-shell” effect. In fact, one can notice that the
screening radius (see Sec. II B for the definition) of the
TOV solutions obtained by choosing ðΛ; ϵ̃∞Þ ¼ ð175 GeV;
6.5 × 1010 g=cm3Þ is typically≲70% of the size of the stars
(see Fig. 2, and also Fig. 2 in Ref. [84]). The relativistic
stars are thus in a “thick shell” regime—i.e., a non-
negligible fraction of the stellar mass sources the scalar
charge. In our simulations, in particular, the screened and
descreened CNSs shown in Fig. 12 emit loud scalar GWs
because they have relatively large and comparable charges:
Q ≃ 0.15 and Q ≃ 0.11, respectively. The descreened star
actually features a charge slightly smaller than the screened
CNS. We interpret this as due to the descreened core, which
gives a negative contribution to charge and thus decreases
its total value.
To extrapolate the charges of CNSs to realistic values of

ðΛ; ϵ̃∞Þ, we use the scaling

QðΛ; ϵ̃∞Þ ≃ ðΛ=Λ0Þaðϵ̃∞=ϵ̃0ÞbQðΛ0; ϵ̃0Þ; ð43Þ

where the coefficients a ≃ 2 and b ≃ −3=5were obtained by
power-law fits of simulations with baryon mass Mbar ¼
1.75 M⊙ (cf. Figs. 14 and 15). Based on Eq. (43), we predict
that the CNSs of the mass Mbar ¼ 1.75 M⊙ considered
above will have scalar charges of Q ≃ 6 × 10−11 and Q ≃
5 × 10−11 for the realistic values ðΛ; ϵ̃∞Þ ≃ ð2.4 meV;
1.67 × 10−20 g=cm3Þ, respectively. We interpret this sup-
pression of the scalar charge as a vindication of the “thin
shell” effect, which appears to be restored, even for relativ-
istic stars, at realistic values of the parameters of the theory.
Motivated by this result, we turn now to estimating the

SNRs of burst signals for realistic/viable values of ðΛ; ϵ̃∞Þ.
To overcome the technical challenges of directly simulating
stars at very small Λ and ϵ̃∞ (see discussion in Sec. IV), we
resort again to determining the scalingof the scalarmonopole
signal with these quantities. From simulations of the collapse
withΛ ≃ f175; 122; 73g GeV and ϵ̃∞ ¼ 6.5 × 1010 g=cm3,

FIG. 12. Scalar radiation from collapsing stars. Top panel:Φ22

vs retarded time. Bottom panel: strain amplitude vs retarded time.
Burst signals are extracted from simulations of collapsing CNSs,
with (dashed magenta lines) and without (continuous cyan lines)
screening in the interior. The source-detector distance is set to
DL ¼ 10 kpc.

FIG. 13. Signal vs detector sensitivity curves—collapsing stars.
The strain amplitude in the frequency domain, SðfÞ ¼ fjhðfÞj2,
is compared to the design sensitivity curves, SðfÞ ¼ SnðfÞ, of
Advanced LIGO (red dot-dashed line) and ET (blue dotted line).
The source-detector distance is set to DL ¼ 10 kpc. The signals
correspond to the monopole GWs produced by screened and
descreened stars undergoing gravitational collapse. The vertical
dash-dotted black line corresponds to f∞ ¼ m∞=2π—i.e., the
peak frequency of the burst, below which all frequencies are
Yukawa-suppressed.
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we fit themaximumstrain amplitude of theburst as a function
of Λ using a power law, as displayed in Fig. 16. We then fit
(again with a power law) the same quantity against the
exterior density, ϵ̃∞ ¼ f6.5; 2.6; 1.1g × 1010 g=cm3, using
simulations with fixed ϕ∞ ¼ 0.17Mpl. The result is shown
in Fig. 17.
Combining the results from these power-law fits, one

obtains a scaling relation for the maximum scalar amplitude

hsðΛ; ϵ̃∞; DL; tretÞ ≃ ðΛ=Λ0Þcðϵ̃∞=ϵ̃0ÞdðD0=DLÞ·
· hsðΛ0; ϵ̃0; D0; ðm0=m∞ÞtretÞ; ð44Þ

with c ≃ 5=2 and d ≃ −7=10. Note that the scaling with Λ
coincides with that of the quantity ϕ∞ − ϕs, where ϕs is the
minimum of the scalar field inside the CNS. Indeed, from

FIG. 14. Scalar charge vs chameleon energy scale. The plot
shows the scalar charge, Q, of CNSs with Mbar ¼ 1.75 M⊙
against the chameleon energy scale, Λ; the atmosphere density is
kept constant, ϵ̃∞ ¼ 6.5 × 1010 g=cm3. Red dots represent data
corresponding to Λ ¼ f175; 122; 73g GeV. The black dashed
line represents the power lawQ ∼ Λa (with a ≃ 2) fitting the data.

FIG. 15. Scalar charge vs atmosphere density. The plot shows
the scalar charge, Q, of CNSs with Mbar ¼ 1.75 M⊙ against the
atmosphere density, ϵ̃∞; the asymptotic value of the chameleon
field is fixed to ϕ∞ ≃ 0.17Mpl. Red dots represent data corre-
sponding to ϵ̃∞ ¼ f6.5; 2.6; 1.1; 0.34; 0.081g × 1010 g=cm3. The
black dashed line represents the power law Q ∼ ϵ̃b∞ (with
b ≃ −3=5) fitting the data.

FIG. 16. Maximum burst amplitude vs chameleon energy scale.
The plot shows the maximum amplitude, hmax, of the burst
produced by collapsing CNSs with Mbar ¼ 1.75 M⊙ against the
chameleon energy scale, Λ; the atmosphere density is kept
constant, ϵ̃∞ ¼ 6.5 × 1010 g=cm3. Red dots represent data cor-
responding to Λ ¼ f175; 122; 73g GeV. The black dashed line
represents the power law hmax ∼ Λc (with c ≃ 5=2) fitting
the data.

FIG. 17. Maximum burst amplitude vs atmosphere density. The
plot shows the maximum amplitude, hmax, of the scalar GW burst
against the atmosphere density, ϵ̃∞. The collapsing CNSs have a
fixed baryon mass Mbar ¼ 1.75 M⊙, and the asymptotic value of
the chameleon field is fixed to ϕ∞ ≃ 0.17Mpl. Red dots represent
data corresponding to ϵ̃∞ ¼ f6.5; 2.6; 1.1g × 1010 g=cm3. The
black dashed line represents the power law hmax ∼ ϵ̃d∞ (with
d ≃ −7=10) fitting the data.
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Eq. (14) one obtains ϕ∞, ϕs ∼ Λ5=2. Let us also note, as can
be seen from Fig. 13, that the burst signal peaks at
f ¼ f∞ ≡m∞ðΛ; ϵ̃∞Þ=2π, while lower frequencies are
suppressed. Making use of expression (15), one can check
that lower values of Λ and ϵ̃∞ correspond to smaller
chameleon masses, and thus lower peak frequencies.
Hence, to extrapolate to lower ðΛ; ϵ̃∞Þ, one also needs
to rescale the time by the factor ðm0=m∞Þ that appears
in Eq. (44).
Finally, by applying Eq. (44) to extrapolate to ðΛ; ϵ̃∞Þ ≃

ð2.4 meV; 1.67 × 10−20 g=cm3Þ (the latter corresponding
to the order of magnitude of the density inside large
molecular clouds), we find that the monopole signal would
peak in the mHz band, outside the band of terrestrial
detectors but within that of LISA. We have computed the
SNR for LISA; however, it is completely unobservable
(SNR ≃ 10−10), even for distances of a few kiloparsecs.

C. Binary systems

From the extrapolation presented in the previous section,
we have concluded that the monopole emission from
collapsing CNSs is practically unobservable with current
(and future) detectors, at least for realistic values of the
chameleon model. When it comes to (quasicircular) binary
systems involving at least one NS, the strongest effect is
expected to be dipole scalar emission, which potentially
dominates the binary’s evolution at low frequencies
[1,4,19,45,46,51,85,152]. The deviations from GR induced
by dipole emission can be parametrized via [4]

_E ¼ _EGR

�
1þ B

v2

�
; ð45Þ

where v is the relative velocity of the binary; _E and _EGR are
the total energy fluxes in chameleon gravity and in GR,
respectively; and B ∼ ðQ1 −Q2Þ2 (with Q1 and Q2 as the
component charges).
Note that Eq. (45) is valid for ST theories with a massless

scalar, while the chameleon field possesses a nonvanishing
mass. We therefore expect the energy loss due to dipole
radiation to be given by Eq. (45) only at binary separations
smaller than the Compton wavelength. For ðΛ; ϵ̃∞Þ≃
ð2.4 meV; 1.67 × 10−20 g=cm3Þ, the Compton wavelength
is λc ¼ 1=m∞ ≃Oð108Þ km, which is larger than the typical
separation of binary pulsars (which is ≲106 km). However,
from the scaling [Eq. (43)], the scalar charge of relativistic
stars extrapolated at ðΛ;ϵ̃∞Þ≃ð2.4meV;1.67×10−20g=cm3Þ
would be Q≲Oð10−10Þ, corresponding to B ∼ 10−20. This
is at least 10 orders ofmagnitude lower thanwhat is currently
measurable [4].

VII. CONCLUSION

In this paper, we have investigated the chameleon screen-
ing mechanism in the fully dynamical and nonlinear regime
of oscillating and collapsingNSs, in spherical symmetry.Our
simulations confirm the static results of Ref. [84], and in
particular the partial breakdown of the chameleon screening
inside stars with pressure-dominated cores, but also provide
evidence of the nonlinear stability of both screened and
partially descreened stars in chameleon gravity.
We have focused first on the characteristic spectrum of

(radial) oscillations of NSs. We observed a shift in the
frequencies of the fundamental mode and higher overtones
with respect to the GR predictions. While this effect could
be degenerate with the EOS, the appearance of a new
family of modes may potentially constitute the “smoking
gun” of a gravitational scalar field. However, these modes
have frequencies of the order of the large mass that the
chameleon field acquires inside relativistic stars (i.e.,
≳kHz). Moreover, we find that chameleon screening is
also quite efficient at suppressing the scalar mode ampli-
tude in oscillating screened CNSs, already at large
Λ ∼ 100 GeV. For this reason, scalar effects in oscillating
stars are probably unobservable for realistic chameleon
energy scales Λ ≃meV.
We have also simulated the gravitational collapse of NSs,

which can lead to larger monopole scalar signals than
stellar oscillations. We have assessed detectability by
existing and future GW interferometers, concluding that
the scalar radiation would be observable in the Galaxy for
large chameleon energy scales Λ ∼ 100 GeV. However, if
one extrapolates our results down to viable chameleon
energy scales Λ ≃meV, the screening suppresses the
amplitude of the signal, which also gets shifted to lower
(∼mHz) frequencies. We have checked that, as a result, this
scalar emission would be undetectable even with LISA.
Similarly, our results for the scalar charge of isolated NSs
suggest that scalar effects would be suppressed by screen-
ing also in pulsar binary systems for Λ ≃meV.
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