PHYSICAL REVIEW D 104, 084013 (2021)

Higher-dimensional minimal theory of mass-varying massive gravity
and its cosmological consequences
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In this paper we construct higher-dimensional minimal theory of mass-varying massive gravity
(MTMVMG) where the masslike scalar potential is coupled to a vielbein potential, unlike in the previous
literature where it is coupled to metric, such that the number of graviton degrees of freedom in the theory is
the same as in general relativity. We then study the cosmological aspects of this theory and show that it has
eight critical points: five in the massless sector and three in the massive sector. In contrast to the standard
theory of mass-varying massive gravity where the graviton mass asymptotically approaches zero at late
times, hence making the contribution of massive gravity to the late-time cosmic expansion minimum, the
MTMVMG can provide good descriptions both in the massless and massive sectors. Especially, there are at
least two interesting possible scenarios for the late-time cosmology in the theory: the dark energy is either
due to the constant graviton mass which comes from the scalar field that becomes frozen after the reheating
era, or due to the quintessence paradigm where the scalar field is dynamic. Therefore, if the accelerating
expansion of the universe in the massless sector can be explained by standard quintessence paradigm, in the
massive sector it has to be explained by the nontrivial interplay between quintessence and massive gravity.
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I. INTRODUCTION

Several alternative theories modifying Einstein’s general
relativity have been proposed in the past decades as parts of
an effort to solve long-standing cosmological problems
such as dark energy, dark matter, and inflation. One of these
theories, based on the assumption that graviton might have
nonzero mass and hence later coined as the theory of
massive gravity, was originally visioned by M. Fierz and
W. Pauli in 1939 [1]. However, the theory did not have a
continuous transition to general relativity in the limit of
zero graviton mass, an issue known as the van Dam-
Veltman—Zakharov discontinuity [2,3]. This problem was
remedied by Vainshtein’s nonlinear mechanism in 1972 [4],
but the nonlinear terms then gave rise to another problem
called the Boulware-Deser ghost [5]. Building on several
previous attempts [6,7], this problem was then finally
resolved in 2010 by C. de Rham, G. Gabadadze, and
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A. Tolley (dRGT) [8,9], resulting in a Lorentz-invariant,
ghost-free nonlinear theory of massive gravity [10-18].
(See also Refs. [19,20] for reviews.)

Unfortunately, the dRGT theory also had some serious
challenges: there was no stable homogeneous and isotropic
cosmological solutions [21-24], together with other path-
ologies such as Higuchi bound [25,26] and positivity bound
[27,28]. To overcome this, the minimal theory of massive
gravity (MTMG) was then proposed by A. De Felice and
S. Mukohyama in 2016 [29] by imposing some constraints
which suppress the five degrees of freedom in the
original dRGT theory such that there are only two degrees
of freedom, both of them are tensor modes, as in the
case of general relativity, but now the theory is not Lorentz
invariant. It has the same Friedmann—Lemaitre—Robertson—
Walker (FLRW) equations as in the dRGT theory, but now
the FLRW background is stable [30]. There are two
branches of solutions. The first is the self-accelerating
branch, which is phenomenologically the same with the
ACDM cosmology, except that the accelerating expansion
of the universe is now caused by the graviton mass term,
not necessarily by the cosmological constant. The second is
the normal branch, which is phenomenologically different

© 2021 American Physical Society
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from general relativity in the scalar and tensor sectors,
leading to nontrivial dynamics which could be tested
against the predictions of general relativity [30,31].

Another attempt to modify the dRGT theory was done by
Q.-G. Huang, Y.-S. Piao, and S.-Y. Zhou in 2012 by
coupling the graviton potentials to a scalar field y, enabling
the graviton to have a varying mass [32]. This theory of
mass-varying massive gravity (MVMG) is again Boulware-
Deser ghost-free and the Lorentz invariance is satisfied.
Varying the graviton mass can lead to interesting cosmo-
logical behaviors both in the inflationary and late-time
era. Specifically, the graviton mass will asymptotically
approach zero at late times due to the dynamics of the
theory, hence there is no need to fine tune the graviton mass
to a very small number to be in line with the cosmological
bounds for the graviton mass in the present time [33].
However, this may be a disadvantage, since it means that
the contribution of massive gravity to explain the cosmic
expansion at late times is minimum [34].

Another disadvantage of the MVMG theory is that it has
many graviton degrees of freedom, which may lead to
instabilities. Therefore, to suppress these degrees of free-
dom, we will follow in this paper the method of
Refs. [29,30]. First, we define the precursor theory by
writing the MVMG action using the vielbein formulation in
the Arnowitt—Deser—Misner (ADM) formalism, but here
we generalize the theory to the case of higher dimensions.
We also adopt the vielbein potential in Ref. [35] and couple
it to the masslike scalar potential W(y), unlike in the
previous literature where it is coupled to metric. The
purpose of this is such that the number of graviton degrees
of freedom in the theory is the same as in general relativity.
We then perform the Legendre transformation to the
precursor action to obtain the precursor Hamiltonian.
After imposing the nontrivial constraints to the theory,
we will obtain the minimal theory of mass-varying massive
gravity (MTMVMG), where the number of graviton
degrees of freedom in this theory becomes D(D —3)/2,
as in the D-dimensional general relativity, where D is the
number of spacetime dimensions. For D = 4, the number
of graviton degrees of freedom in the MTM VMG is two, in
contrast to the MVMG theory where there are five graviton
degrees of freedom. Therefore, in the light of minimally
modified gravity (MMG), a modified theory of gravity with
two local gravitational degrees of freedom, discussed in
Refs. [36,37], where the type-I MMG is for the theory in
which there exists an Einstein frame and the type-II MMG
is for the one in which there is no Einstein frame [38,39],
the MTM VMG can be viewed as an extended type-1l MMG
theory.

To study the cosmological aspects of this theory, we can
perform the Legendre transformation again to get the
expression for the MTMVMG action, which then can be
used to obtain the Friedmann-Lemaitre equations. We take
both the scalar potential and the graviton mass couplings to

have exponential forms, and find that there are eight critical
points in the theory: five in the massless sector and three in
the massive sector. Therefore, the MTMVMG theory can
have both massless and massive sectors even in the late-
time era, in contrast to the ordinary MVMG theory where,
as mentioned previously, the dynamics of the theory will
lead the graviton mass to asymptotically approach zero at
late times. This makes the MTMVMG a richer theory,
which then can give us good descriptions of both the
inflationary and late-time era. Especially, there are at least
two interesting possible scenarios for the late-time cosmol-
ogy: the dark energy is either due to the constant graviton
mass which comes from the scalar field y ., that becomes
frozen after the reheating era, or due to the quintessence
paradigm where the scalar field y is dynamic. Therefore, if
the accelerating expansion of the universe in the massless
sector can be explained by standard quintessence paradigm,
in the massive sector it has to be explained by the nontrivial
interplay between quintessence and massive gravity.

This paper is organized as the following: In Sec. II we
derive the precursor action by writing the MVMG theory
using the vielbein formulation. In Sec. III we then construct
the minimal theory by imposing D-constraints. In Sec. IV
we derive the Friedmann-Lemaitre equations for our model.
We then perform in Sec. V the dynamical analysis around
the critical points and check in Sec. VI their local and
global existences. In Sec. VII we discuss the cosmological
implication on the inflationary expansion and late-time
acceleration. We then conclude the paper and write several
remarks in Sec. VIII. Detailed calculations are presented in
the Appendix.

II. PRECURSOR THEORY

In this section we will construct the MVMG action by
replacing the graviton mass with the masslike scalar
potential W(y). However, we will adopt the vielbein
potential from Ref. [35] and couple it to W(y), in contrast
to Ref. [32] where W (y) is coupled to metric. We will then
define the action for the precursor theory, which will be
needed later to construct the MTMVMG action.

Let us first consider two D-dimensional Lorentzian
manifolds (M, g) and (M, gy) parametrized by the
coordinate systems x* and y* with y,a =0,...,D —1,
respectively. Using the ADM formalism, the metrics g and
go can be written as

2
dsi,

(= —N?dr* +y;(dx' + N'dr)(dx/ + N/dr), (1)

ds?, = —N3de® + yo;(dy' + Njde)(dy' + Nydr),  (2)
where y;; and y;; are the components of the induced spatial
metrices, N and N are the lapse functions, N' and N, are
the shift vectors, and i, j = 1, ..., D — 1. The subscripts (d)
and (b) denote the dynamic and the background,

084013-2



HIGHER-DIMENSIONAL MINIMAL THEORY OF MASS-VARYING ...

PHYS. REV. D 104, 084013 (2021)

respectively. Let us then introduce the vielbeins E4 , and
Ey*, such that the metrics (1) and (2) can be written as
G = WABEA v and goqp = ’1ABE0 an »» Where A, B =
0,....D-1 and nap 1s the flat Minkowski metric.
Therefore, the vielbeins E4, and Ey*, have the form

N 0 Ny 0
A A _
E”_<N"el e’->’ an_<Nke’ e’-)’ 3)
k i 0€0 k €0 i

whose duals are given by

such that they satisfy

EAﬂE”B - 5AB’ EoAanaB = 5AB’

E*\Er, =&, Eg“sEq"y = &%
Here e/, and e,!; are the spatial vielbeins, with
i,]=1,...,D—1, and €', and e, are their duals,
respectively.

Now, we consider a smooth embedding ¢: M - M,
such that we could have pulled back quantities |

D-2

M
SMVMG = / dDX det(E) (%
M

1
R(E) = 5 0p0,y -

B0 = 20 g (g10). ©
a b
Fu0) = 20 90, (©

so that M obeys diffeomorphism rules through a
Stiickelberg field ¢“. In the unitary gauge where
¢*=6,x*, we simply recover E*, =Ey*, and f,,=go,,.
Note that the original formulation of the dRGT theory has a
Minkowski background, gy, = 1,,- Using the vielbein
formulation in Ref. [35], the ghost-free potential related
to the graviton mass has the form

n=0

€AA2 A,;E 1 /\.../\EAn/\EAn+1 /\.../\E’AD

(7)

with one-forms EA = E* dx* and E* = E* dx" the dRGT
mass term for arbitrary background and dimension. The
quantity € denotes the Levi-Civita symbol in the flat
spacetime. Furthermore, inspired by [32], the graviton
mass is replaced by a function of a scalar field W(y),
where y(x) is well defined on M. Coupling W(y) to the
potential in Eq. (7) and adding this coupling term to the
Einstein—Klein—Gordon action, we obtain the ghost-free
MVMG action as the following,

V(w))

1 D Cn N A A LA oA
—Z[M W(W)(ZmeAIAZ”'ADE A AES NEYS N o AE s (8)

n=0

where V() is the scalar potential function.

The action for the precursor theory can be obtained by simply substituting the vielbeins in (3) and (4) to the action (8),

D-2

M
Spre = /deN det(e)[

D-1
- W) (1ae0l ) S i
n=0

where (P~UR(e) is the spatial Ricci scalar, while K/ and K
are the second fundamental form and the mean curvature,
respectively. For any function y, we define yy = Oy/0t and
Ojw = Oy /Ox'. Here, the quantities {M, M &';} are the
pull back of {Ny, N, ey’;} via Stiickelberg field ¢ as a
background image on M given by Eq. (5) and (6),
respectively. The elements S, are the nth order symmetric
polynomials which depend on either Y/, = e/, &%, or
X', =¢' ek, (see Appendix A for more discussions).

§ 1 N'N/
—;1 (P=UR(e) + KUK, — K?) + =5y — _al‘//a U

D-1
Y) + Z CD—nSn(X)
n=0

2N?

i

: N
Sz OO = vlw — V()

©)

Note that the action (9) violates the local Lorentz symmetry
because we have used the ADM vielbeins in Egs. (3)
and (4).

III. MINIMAL THEORY OF MVMG

The discussion in this section is divided into two parts.
First, we construct the Hamiltonian for the MTM VMG and
identify some constraints which restricts the graviton
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degrees of freedom. Second, we discuss the MTMVMG
action which is constructed from the precursor action
discussed in the previous section but with some additional
constraints.

A. MTMVMG Hamiltonian and some constraints

Let us first consider the spatial vielbeins e; and the
scalar field y as the canonical variables which correspond
to the conjugate momenta defined as

ss, 5 5
n'y =2 = det(e)MB2(KY — Ky')s5¢’ 5, (10)

T=— :det(e)(ly}—ﬁiﬁil//). (11)

N N

We can switch from Lagrangian to Hamiltonian by
performing the Legendre transformation in order to see
some constraints of the theory. As it is well-known in the
vielbein language that the lapse function N and the shift
vector N’ appear as Lagrange multipliers enforcing the
diffeomorphism constraints [35], namely Ry~ 0 and
R;~0. These constraints are called the primary con-
straints of the first kind, which then enable us to construct
another set of constraints called the secondary constraints
of the first kind [40]. Note that there are only D —2
independent secondary constraints, since two of them can
be obtained from the others. We denote them as éT
(r=1,...,D—2), together with their Lagrange multi-
pliers A"

Additionally, as studied in Refs. [29,30], from Eq. (10)
we also have another set of primary constraints of the
second kind P™" that lead to the secondary constraints of
the second kind Z™" in the phase space, together with
their Lagrange multipliers «y and fyy, with
M,N=1,....,(D—-1)(D—-2)/2. These secondary con-
straints are necessary since the primary constraints should
be preserved with respect to the time evolution. Therefore,
the precursor Hamiltonian can be written down as

Hpe = / dP~'x(-NRy — N'R,

+ W(p)NHy + W(yw)MH, + 1°C,
+ aynPMN + By ZMN), (12)

where

D-2
Ry = det(e) };1 (P-1R(e)
1 i1 1 i, \2
2det(e)MB2 |1 T p =g e
1 , det(e) ;
2de(e)” T 2 WOV
—det(e)V(y), (13)
Rz = v](ﬂjleli) - ﬂazw’ (14)
D—-1
Ho = det(e) Y cp_yS,(X), (15)
n=0
D—-1
My = det(e)| det(X)] > c,S,(Y). (16)
n=0
and
PIMN] = (eMj(SKN _ eNjéKM>n.jK’ (17)
ZIMN] = (eMjéKN - eNj(SKM)éjK. (18)

Since the constraints above remove some graviton degrees
of freedom, we can construct a theory in which the spatial
graviton degrees of freedom coincide with the standard
general relativity. Inspired by Ref. [29], we can impose the
D-constraints in unitary gauge given by

OH
Co={Ro.H,}pp — W(‘//)a—to ~ 0, (19)

C;={Ri.H }pg 0, (20)

where {---}pg denotes the Poisson bracket and
H, = / dP=1xW (y)MH,. (21)

Note that these constraints consist of two new constraints

and D — 2 independent constraints C, which already exist
in the precursor theory. Moreover, the constraints in
Egs. (19) and (20) imply that the theory admits the
Lorentz symmetry violation. The Hamiltonian of the
MTMVMG theory then reads

Hyirmvmc = /dD_lx[_NRo - N'R;

+ oy PMN g ZMNT], (22)

Thus, in total we have D? — D + 2 constraints, which
means that the number of spatial graviton degrees of
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freedom are D(D — 3)/2, as in the D-dimensional general
relativity.

B. MTMVMG action

To construct the MTMVMG action, one has to employ
the Legendre transformation on the Hamiltonian functional
(22). It will be shortly discussed in this subsection, but its
detailed derivations will be presented in the Appendix B.

As discussed in the previous subsection, we should
have the nontrivial D-constraints (19) and (20) in the
MTMVMG theory. In order to have a consistent theory,
we have to modify the conjugate momenta (10) and (11) to

i

0y
EM Kis -K
det(e) ( IJe 61)
Wy)M _..
—ATNGJC%‘/E']], (23)
/4 V¢ N! dwW M
=———0y—1——0, 24
detle) N NV ay N (24)
with
@ij = —| det(X)l(le(eiKEjj -+ ejKéij)
X ZZ Ym_ ) ISn—m(Y)’ (25)
n=1 m=
D-1
D= det(X)] 3 euS,(7). (26)
n=I
|
2 W(y) M
_ D _
S;LMgl_z/d XN\/}7< 4 N
1 dW M
_ D -
+2/de\/_</1d N)
and
_ 1 1
Co :EW(’I/)M YikVji — D—2
y)| det(K) |ZZ
n=1 m=
aw N?
- a5 (5
dg \N N
D—1 n
C; = =W (y)ViM|det(K)| (=1)"c
n=1 m=1
with

n (’Cm)kisn—m (K)

The notation (M™), means

(Mm), = ]V[]KIA’[KU(2 e MKt (27)

The modifications (23) and (24) imply that the MTMVMG
theory modifies both the kinetic part and the mass term. As
we will see later, this also provides a class of solutions
which coincides in the dRGT theory in the FLRW
background.

For the sake of convenience, let us first introduce the
following tensors

i — i Ll i — i 3l
,Cjzelle j» jzelle je (28)

satisfying K kIC j» which correspond to the spatial

metrics by
KKk, =75, KKK = vy, (29)

where 7;; = 6;;¢';2’; is the spatial metric on M.
Performing the Legendre transformation, we obtain the
MTMVMG action,

SMrMyMG = Spre T S5 (30)

where

2 1
i kil
) <7/ik7j1 D_ 2711}%1)@ 4C)

- / dPx\/y[ACy + XCy), (31)

7!/71{1) G)kl(KU K}/ij)

]Cm l)klzlksn—m (K)

&w) S 6,5,(K), (32)

— M|det(K |61//

Zc S,(K), (33)
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01 = 2/ det(R) 1 S 3 (1)

n=1 m=

® =|det(K

It is worth mentioning that the additional term in (23)
implies that we have to set @y = fyn = 0[30,41]. This is
so because the tensors PN and Y™ are antisymmetric,
while the tensor ®Y is symmetric.

We could extend the action (30) by adding the matter
field,

SMTMVMGM = Spre + 57 + Smatter- (36)
Here, we consider the matter field part S, to be the
perfect fluid whose energy-momentum tensor has the form

T 2 5Smatter
o v
NG

where U* and p,, are the unit velocity of the fluid and the

energy density, respectively. The pressure P,, is given by
the state equation of matter fields,

= meﬂUl/ + Pm(gm/ + U/lUl/)’ (37)

SMTMVMGM = — / deaD_l{(D — 1)M{>NH? -

W (K™),8, 1 (K) (34)

1
Zc S, ( (35)
P, = WpPms (38)

with w,, is a real constant [42]. In the standard higher-
dimensional cosmology, we particularly have w,, = ==

D-1
(radiation), w,, = 0 (dust), and w,, = —1 (vacuum) [43].

IV. FRIEDMANN-LEMAITRE EQUATIONS

In this section we consider a cosmological model in the
MTMVMG theory. Our starting point is to write down the
metric ansatz for the dynamic and the background mani-
folds which are spatially flat,

ds%d) = Gudxtdx’ = =N*(1)dr* + a*(1)8;;dx' dx/,
dsty) = fudxtdx’ = —M>(1)di + & (1)5;;dx'dx’ .

In the case at hand, the action (36) simplifies to

D-1

1 D-1
ﬁl[/z—‘r‘NV(l//)—W (MchAnuD n- 1+NZCD WA, u)

2M?[D -1 W(y) R 21 fdw R
B D—n—1 N e
TN [D 2Mf312< 4 Zc” ! ) +2<d1,/

n=0 n=0

2
Z CnAnMD—n—l> ]

n=1

M dW R =
M x ) Z AT (D = WM = 1) Y 6B ||+ S (39)
Here, we have introduced the quantities
H=""\ Hy="-, u=% (40)
Na Ma a
and parameters
D-1)!
Ayj=— 41
" (D=n-1)n! (“41)
n _ 1 '
Bn = (_1 )m ( ) (42)

(D=n+m-1)(n—m)!"

Then, the variation with respect to the lapse function N(¢) gives us the first Friedmann-Lemaitre equation,
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1 1
5D =1)(D =2)H? =55 (P + pric + 1), (43)

Pl

where
1. .
MG = TNZV’Z +Viy) + W) Z Cnp1AyuP ™" (44)
WM dw 2 . D—12MW(y 1\’
PEZTNT dy ZC”A’”D T 2N2 ZC”B u
-1 /1HMW P M? ’

+( Zc,,B ubn-l 4 —— SN (dll/) (chA ub=n= 1) . (45)

The variation with respect to the scale factor a(¢) gives us the second Friedmann-Lemaitre equation,

H 1
(D_2>N+§(D_ 1)(D-2)H?> = M1L>)1 —+5 (P + Pyug + P;). (46)
where
1. W (y) o= ne
Pyg = WU/Z -Viy) - TZ(MC" + Ney)nA,uP="=1, (47)

n=1

PMPW2(y) (RAD —2n—1 e
P, = B D—n—1 B D—n—1
» = OMEN? (Z D—p Cnontt ) (Z Cnnk )

n=1

2M? (dWN2 (2D —2n -1 ot ) (2 Do
~ N7 (@) (Z —5-1 A u ) (Z c,Aqu >

n=1 n=lI

/1MW M
-1)— -1 B,uP"1
Z( —n= 1) (0= D ey
AMN + A(MN — MN) = bt AM AW [ nA, P
_< N3 )W(W>;C B u +— Eg n m—‘v—Bn u . (48)
From the variation with respect to w(7), we obtain the equation of motions,
1 . ((D-1)H N\. dv 1law [ o
el (T'F)"’ @Ww{ZWGﬁNw)Anu’) 1
M D-1 - D-1 .
+N<NH;ncA u?’"- +MHf; —1)c,Au _"_>
M A(MN — MN)\ =L AM d*W ?
' (W“N—z)) > ot [ o (S
n=1
2 D-1
— 1 AMW (y <
B,uP~"= 1) +(D—-1)(H-uH;))» c,B uD_”_l]} =0. (49)
2 Cn f nn
oo (3 >

Performing the variation with respect to A will give us
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W(y)(uH; — H <Zc B,uP~"~ ‘>+

aw (2=
_d_ <Z CnAnuD—n—l>
{1g

which relates the Hubble rate of the background spacetime
with the Hubble rate of the dynamical spacetime. In the
simple case where y is trivial and D =4, Eq. (50)
corresponds to the branches of solutions discussed in
[30]. In the case of D =5, 6 with trivial y, one has to
solve the qubic and the quartic polynomials, respectively,
while for D > 7 the solutions of the polynomials are still
unknown. For nontrivial v, it is still unknown whether
such branches exist. These aspects will be considered
elsewhere.

V. DYNAMICAL SYSTEM ANALYSIS

Let us consider a special case where the couplings W (i)
and V(y) have the form

W) = Woexp (- jﬂji) (51)
Pl

Vi) = Voerp (- jML) (52)
Pl

which has been considered in four dimensional cases
[44,45] where the constants V,, W, > 0 and Ay, Ay > 0.
Moreover, the form of the scalar potential V(y) may
provide inflationary expansion of the early universe model
and has been well studied in the context of dynamical
systems in Ref. [46]. Note that for Ay, = 0 we have the
MTMVMG theory with ordinary constant graviton
mass [29,30].

For the rest of the paper we simply take a branch of
solutions of Eq. (50) where A= 0. Setting the lapse
functions N(7) = M(t) = 1, we introduce the autonomous

variables,

20, \'?
=(—ar | 53
(Mﬁ‘%HZ) )
v = 54
«/M{,)l pH (54)

(w) 1/2
vE ot ], 55
M{,J1 2,12 H2> (53)

W) 1/2
w= | —s | 56
ME- 2A%H2> (56)

o Wiy

2
D- 2MD2N <ZCB”DM)

A M

(50)

Y ) -
|

with 13 = (D —1)(D —2) such that the equations of
motion (46), (49), and (50) can be written down in terms
of the autonomous variables,

:(l—wm) = (14 wy)x, X2

- [ 2(”) + Wmfl(”)]xwx‘zﬁf - (1 - Wm>xy/

D -2
+24 D_ ][lvx%/ + Aw 1 (u)xy ),

ﬁx@ =1 +wy)xy+(1-

(57)

wm)xixv

= (L wy)xy, = [f2(u) +w fr(u)]xyaxiy
/D —2
- ﬁﬂvxwx‘/,

(58)

- wm)xg,xw
[ 2( ) + Wmfl (“)]x%/v

(59)

D1

= (1 4+ wy)xxy —

D-2
- ﬁ/lwxy,xw,

where we have used the constraint coming from Eq. (43),
X+ x5+ xp + filu)xg, = 1. (60)

Note that here the prime symbol denotes the derivative with
respect to In(a). We also have defined

D-1
=) ¢, AuP (61)
n=0
D-1
fZ(u) = (Cn + CnJrl)nAnuD_n_]’ (62)

Il
=

n

which are assumed to be bounded functions. As we have
seen above, the scale factor a(7) can be thought of as a
parameter in this picture and the fiducial scale a(¢) is only a
background in this setup. Therefore, we conclude that the
quantity « in Eq. (40) is not a dynamical variable; it might
be either a function of time, u(7), or a constant. The first
case is called the normal branch, while the latter is called
the self-accelerating branch. Both have been appeared in
the context of four-dimensional MTMG [30]. Similar
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situation also occurs in the cosmological model of dRGT
massive gravity (see, for example, Ref. [47]).

We could also introduce some higher dimensional
quantities which are analogous to the four-dimensional
cases. First, the state equation parameter and the density
parameter in this theory are given by

WG = Py y/ - xv fz(”) (63)
PMG xw+xv+f1(”) W
2
Qg = o =22+ + fi(w)ay. (64)

MB223 H?

respectively. Then, the decelerated parameter has the form

qg=-1 —%
=—1+ (D2— D (14w, + (1 —w,)x,
= (14 wu)xy = (f2(u) + wyfr(u)xy],  (65)

where for ¢ < 0 we have an accelerated universe model.
There are five critical points in the massless sector and three
critical points in the massive sector, which are listed in
the Table I and II, respectively, including their properties.

TABLE 1.

Note that the quantities A (D, w,,, Ay) and B (D, w,,, Aw)
mentioned in these tables are defined as

_I+w, (D -2)4
Ai<Da Wn17/1V) = 3— W, (D - 2)(3 - Wm)
x{lj:[l— (D=2)22
(D= 1)(1+w,)\?]?
(o) e
14w, (D-2)%,
Bo(Dwm ) =34 5 G w )

X {1 + [1 _2(D —1)(2=w,)(1+w,)
(D —2)2%

)

Let us first discuss the massless sector in which there are
five critical points, namely, CP;, CP,, CP5, CP,, and CP;
with trivial coupling Wy = 0. The point CP; describes a
matter-dominated era in which the stability behavior
depends on the state parameter w,,. We find the late-time

The properties, the existence, the equation-of-state parameter wyg, the density parameter Qy;g, the deceleration parameter

g, and the stability conditions of the critical points of the autonomous system in the massless sector, W(y) = 0. Note that we have

introduced the notation .4, in Eq. (66).

Critical

points Xy ¢ Xy Xw.e Existence

WMG Qi q

Stability

CP, 0 0 0 Always

CP, 1 0 0 Always

CP, -1 0 0 Always

CP, Xy, 0 0

e w,, = 1 and

0<lx,]<1

0< AL <2

CP;s \/7 (D-1)(2-A ) A, Ai
2 v\ 2(b-2)

Undefined 0

34,22

D=3+w,(D=1) Stable node for w,, < —1,
: unstable node for w,, > 1,
saddle point otherwise

Stable node for wm > 1,
Ay > 24/5= and

Aw > 2,/$=5, unstable node

for w,, < 1, Ay < 24/5=L

and Ay < 2 g—‘é, saddle
point otherwise

Unstable node for w,, < 1,
saddle point otherwise

Unstable for —1 < Xye < 0, or
0 <x, . <1 with at least

D-1

D2 or

i 2
either 1y < e

D—1
D=2’

nonhyperbohc for0<x, <1

/’{VV<2

(D-1)(2+AL)A, (D- I)Ai

AL+2 2(D-2)23,

—1 See Fig. 1
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TABLE II.

The properties, the existence, the equation-of-state parameter wy,g, the density parameter Qy;, the deceleration parameter

g, and the stability conditions of the critical points of the autonomous system in massive sector, W(y) # 0. Note that we have introduced

the notation B in Eq. (67).

Critical
points X, . Xy Existence WMG Qnig q Stability
CPg¢ 0 w Ay Aw > 4y and -1 1 -1 Stable node for w,, > —1
\ T @lw=a) f 1 (u) = fo(u) < 0 and Aydy < 3574,
stable spiral for w,, >
—1 and Aydy > 1822,
saddle point otherwise
CP,; 0 1= £, ()23 Xy 0<xy. <1, -1 1 -1 Unstable for w,, < —1,
e Ay = Ay =0, nonhyperbolic for
and f(u)=f>(u)>0 Wy > —1
CP. B — 0 (D—1)(2-B.)B 0<BL<2 3B:-2 (D-1)(2+B,)B. (D-1)B. _ | See Fig. 2
§ T o ﬁ \ 20-2) OB * B2 2(D-2)&, 2 ! £

attractor identified by a stable node and the past-time
attractor identified by an unstable node. There are three
possible stabilities, namely stable node, unstable node, and
saddle point. The universe is either acceleratedly expanded
for w,, < —=(D —3)/(D — 1) or unacceleratedly expanded

02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38

D-1
~(V5)
Saddle Unstable Unstable Saddle
node node spiral focus

- Forbidden
zone

02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38

()

for w, > —(D—3)/(D—1). The first case is however
unphysical since it contains vacuum with w,, = —1, while
in the latter case the matter of the universe could be

dominated by dust (w,, = 0) or radiation (w,, = 5.

02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38

D-1
w ( m)
Saddle Unstable Unstable Saddle -Forbidden
node node spiral focus zone

02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38

D-1
Saddle Stable
node node

Saddle
node

Stable Stable -Saddle -Forbidden
node spiral focus zone

FIG. 1. The stability conditions of the critical point CPs
obtained by plotting A, defined in Eq. (66) as a function of
Ay. The forbidden zone is the area with unphysical properties
Qn > 1. This figure consist of two possibilities of the parameter
values Ay and Ay, where (a) for 4y > Ay, and (b) for Ay < Ay.

Stable Saddle -:orbidden
spiral focus one

FIG. 2. The stability conditions of the critical point CPg obtained
by plotting B, defined in Eq. (67) as a function of Ay. The
forbidden zone is the area with unphysical properties Qg > 1.
This figure consists of two possibilities of the parameter values 4y
and Ay, where (a) for 1y < 4y, and (b) for 4y > Ay.
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At CP, we also find a late-time and past-time attractors
according to the parameter values with also three possible
stabilities, namely stable node, unstable node, and saddle
point. At this point, gravitons can be thought of as non-
phantom energy dominated by nonaccelerating expansion
process of the universe (Qyg = 1). The point CP; has
similar properties as CP, in terms of its existence and the
values of w,,, Qyg, and g. At this point we do not have a
late-time attractor (a stable node).

The point CP, exists on the interval O < |x,, .| < 1 which
are unstable on -1 < x,, . <0,0ron 0 < x, . <1 with at

i 2 /D=1 2 /D=1
least either Ay < o\ /=3 Or Ay < e /5= It becomes

nonhyperbolic on 0 < x,, . < 1 with 4y > X.,% b=} and

Aw > -2 1/B=L At this point, we have a class of universe
Xye D=2

with nonaccelerating expansion since D > 4. These uni-
verse are filled by the matter and the scalar field with
constraint x%_c + xs,,c = 1 and the equation of state param-
eters w,, = wyg = 1.

The point CP;5 exists on the interval 0 < A, < 2 which
could be either the late-time attractor, the past-time attrac-
tor, or saddle points, depending on the parameter 1y, dan
Aw. For Ay (D, Ay, Aw) < 525 we have a class of universe
which acceleratedly expands and the scalar field plays a
role as quintessencelike. The density parameter are on the

(D-)2+A)A, -
33 18

not allowed since it will produce Qg > 1. Around

Ao n o JO=DCHADAL
v 2(D-2)

dominated by the scalar field (g =~ 1) which will be a
good candidate for saddle power-law inflation model. This
will be discussed in detail in Sec. VIL

Next, we consider the massive sector which consists of
the points CP¢, CP-, and CPg. The points CP¢ and CP; have
vanishing kinetic part of the scalar field, which implies that
the scalar becomes very massive. On the other hand, the
kinetic part of the scalar is nonzero at CPg.

The point CPg4 could be either the late-time attractor for
w,, > —1 or saddle point for w,, < —1 where the graviton
mass plays a role as the cosmological constant which
dominates the accelerating expansion of universe. This
cosmological constant has to be positive since the param-
eter Ay > Ay. These features give us a good candidate for
the compatible description of the well-known observation
result [48].

The point CP; is defined on the circle x3  +
fi(u)x}, . =1 which may be either unstable for
w,, < —1 or nonhyperbolic for w,, > —1. At this point,

interval 0 < Qug <1 such that 1y <

, the expansion of the universe is

the parameter 1, = Ay = 0 showing that both the scalar
potential and the graviton mass are constant. They behave
like the cosmological constant which dominates the accel-
erating expansion of universe.

Finally, the point CPg which could be either the late-time
attractor or the saddle point depending on the values
of Ay and Ay. For B.(D,Ay.Ay) < z= the universe
acceleratedly expands and the mass-varying massive
graviton plays a role as quentessence dark energy. There
exists a forbidden zone in CPg; it has Qyg > 1 for

(D-1)(24+B.)B.

Aw < 0=

VI. LOCAL-GLOBAL EXISTENCE
OF SOLUTIONS

In this section we will prove the local-global existence
and the uniqueness of the evolution equations (57), (58),
and (59) with constraint (60) using Picard’s iteration
and the contraction mapping properties. We will first
discuss the f(u) >0 case, then continue with the
Sf1(u) <0 case.

First of all, we introduce the dynamical variables

Xy

u=1xy |, (68)
Xw

defined on an interval I = [s,s + ¢] where s =1Ina € R
and € is a small positive constant. The functions f;(«) and
f2(u) in Egs. (61) and (62)are bounded. In the first part of
this section, we consider the case of f;(«) > 0 such that
from the constraint (60) we could have

0<|x,|<1
0<|xy| <1 (69)
0 < |f1 ()| xy| <1

In other words, all of the quantities (x,,.xy, f(u)xy) are

defined on an open set U C S® where S* is the 3-sphere. It
is important to notice that the critical point CPg is excluded
in this setup.

All of the evolution equations (57), (58), and (59) can be
simply rewritten into

du_

T, (70)

with
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(1= w)xg, = (1 wy )2y = (F2(u) + w1 (1)), x5
(1= W), +20/B2(0% + A 1 (0)33)
(1 +Wm)xV+(1 - )xsz_ (1 +Wm)x:\§/
D-2) . (71
( _(fZ( ) + Wmfl xVxW \/—_’AVXV/-XV )

(I+w,)xw + (1= wm)xg,xw = (14 wy)x3xw

~(faln) + w1 ()5 = /B3,

N =

J (u)

Lemma VIL1. The operator 7 (u) in Eq. (70) is locally Lipschitz with respect to u.
Proof.—We have the following estimate

1
Ty < (D 2)@1— W12 > 4 114 w3 ey 12 4 | f2 (1) 4w f 1 () [, [ [ew [P+ [1 = w|x,, |
D - 2 2 2 3
+2 (3v|xv| + Al f1 (@) [|xw]?) + 114wy [xy] + [T = w,[|x, 2y ] + [T+ w,|Jxy]
2 D -2 2
+ | f2 () +wifr(w)[[xy|Jxw|* + ﬁﬂv|xw||xv|—|—|1—|—wm||xw|+|1—wm||x(,,| x|

D -2
14wy Pla ]+ 175000 + w1 0w+ = huls o (72)

Then, using Eq. (69), we can show that |7 (u, x)|, is indeed bounded on U.
Moreover, for u,i2 € U we have

N 1 . AR .
| T () =T @)y <5 (D=2) [Il = Wil = 2yl 1+ w2 = 2,85+ [1 = wallx, — £,

A D-2 . .
+ 1f2(u) + w1 ()2, = 2, 85| + 24| 5 (v e) = 51+ Awlf1 ()]l - 25)
+ |1 +WmHXV _5CV| + |] _wm”x%/xV A2AV‘ + |1 +WmH)CV _xV|

+ |f2 () + wy f1(u)||xyxg, — vy |

D -2 A R o
Vo1 1/1V|x xy = X &y| + [T+ w,|lxw — 2wl + |1 = w,|[xgxw — X5 2wl
> 222 3. D-2 s
+ |14 wi|[xpxw = 393w | + [f2(u) + wpf1 () |lxyy — X[ + ﬁﬂwmﬂw =%, &wl|.  (73)

After some computations, we obtain

T () = T(@)]y < ()| —af, (74)
showing that J is locally Lipshitz with respect to u. [
Next, we rewrite Eq. (70) into the integral form
s) = u(so) + / T (u(3))ds. (75)
So

We define a Banach space
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X={ueCll,R):u =uy,suplu(x)| < Ly}, 76 s AN\ | gm
fu € CULR o) = tto- suplu()l < Lol (760 () < o)l + [ 1T@EIE. (50
So
endowed with the norm We first consider the self-accelerating branch where the
. parameter u in Eq. (40) is constant. Using Egs. (69) and
|u|X - ilélljlu(x) ’ (77) (72)’ we get
where L, > 0. Introducing an operator K u(r)] < |ulty)] +%(D ~2) [3“ —wy| + 3|1+ w,|
Ku(x)) =u +/xjus,sds, 78 D-2
o) =t | T 7 F1f20) 4wl 4/ D230+ 220)
and using Lemma V1.1, we have the following result [49]: ) fa(u) +w l+2 11+ w,| 11 —w,|
Lemma VL2. Let K be an operator defined in Eq. (78). filu) " £ ()|V2 | f1(u)|?
Suppose there exists a constant ¢ > 0 such that IC is a () + Wy f1 ()]
mapping from X to itself and X is a contraction mapping on +22 "; /21
I = [x,x + ¢] with 1f1(u)]
D-2 Jy

¢ < min (L (79)

1
Cr, Cr,Lo+ ||~7(X)||>'

Then, the operator C is a contraction mapping on X.

The above lemma shows that there exists a unique fixed
point of Eq. (78) ensuring a unique local solution of the
differential equation (70). We can further construct a
maximal solution by repeating the above arguments of
the local existence with the initial condition u(x — x,,) for
some x, < x,, < x and using the uniqueness condition to
glue the solutions.

We can now show the existence of global solutions of
Eq. (70). Let us consider the integral form (75) such that
|

D-1 |f1<u>|1/2] " (ZZ((;)))‘ (81)

The second part is to consider the f(u) < 0 case. From
the constraint (60) we could have
X, = cosa

xy = sinacosh

f1 (M)|1/2xw = sina sinh 8

(2)

where a = a(s) and = f(s). In this case, Lemma VI.1
and Lemma VI.2 still hold, but we need to modify the
estimate to show the global existence. In the case at hand,
using Eq. (82), the estimate (80) becomes

1
(o) < ()| + 50 = 2){ 201 = i 5
[ _ |1+Wm‘ |1_Wm| D_2< /1W ):| $ N
+ _|1 +wul + 1 =w,| + \fl(u)|1/2+ |f1(u)|1/2+ “D—l Ay +—|f1(u)|'/2 /SO cosh Bds
I [T ﬁgzgwm +2\/g—:fuv+lw)] / ’ cosh2fds
[ fo(u) If2(u) +w, fr(w)]] [s 3 0.1
+ _2|1+Wm|+‘f1(u)+wm + |f1(u)|3/2 ]fo COshzﬁds}. (83)

For the normal branch with u(r), we employ similar
procedure as above and use the assumptions that f(u)
and f,(u) are bounded. Then, we obtain the slightly
modified forms of Eqgs. (81) and (83).

Thus, we have proven

Theorem VI.1. There exists a global solution of
the evolution equations (57), (58), and (59) with
constraint (60).

VII. COSMOLOGICAL MODELS

In this section we will discuss some possible cosmo-
logical models of the theory. To simplify the computation,
we particularly choose the self-accelerating branch where
the parameter u in Eq. (40) is constant. In the case of the
exponential form of the potentials (51) and (52), we may
have an inflation era in which it can be described by the
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well-known power law inflation [50] where a(f) o /¢,
with the slow-roll parameter € = |H|/H? < .

If the scalar y plays a role as the inflaton field in the early
epoch, then the critical points CP5 and CPg are the good
candidates to describe that era, with the slow-roll parameter
given by

which is negative for D > 3. Hence, from Table I, we have

2D -2)13 1
< .
8D—1)—(D-2)22 D-1

(D -2)4% Similarly, in the CPg case, which is in the massive sector,
€= 4 <1 (84) assuming that u is constant, we can use Eqgs. (64) and (85)
to get
(D - 2)}’%4/ ZE:_(} an”uD_”_l
€ = 4 1 + ZD_I c A uD—n—l < 1, (85)
n=0 “n+14%n
D=2 () SRR eAd N
for CP5 and CPy, respectively. In the CPs case, whichisin =~ "MG ~ p_ 12 Sl AuPl — 1. (88)
the massless sector, we can use Eqs. (64) and (84) to get
Waree — D - 2& _ (86) which is negative for D > 3. Hence, from Table II, we
MET D12 obtain
J
20D =2 2 D-1 A D—n—1 1
Bj: ( >/1W n=0 (Cn + Cn+1) nlit < 5 ; ) (89)

The scalar y in the inflation era has the form

VME2 | 22V et?

e T2MER(D-1-¢)|

w(t) x (90)

where 1, = Ay (dy) for the case of CP5 (CPg), respectively.

In order to have a nucleosynthesis era, we have to
assume € < 1 such that the reheating phase begins at ¢; and
ends at Iy Therefore, we have the scale factor

In addition, the scalar potential in y; = y/(¢;) drops to the
scalar potential in y, = y(t;) implying that the argument
of the exponential is positive and the scale factor increases
during this period. At the end of the inflation (or in the
beginning of the reheating at ¢ = ¢;), the scalar field y still
dominates the universe with initial density parameter
Qi = 1. Then, the phase transition of y occurs such
that w decays to matter fields in the time interval
t; <t < t;. The decay process of the scalar y becoming
a matter field occurs relativistically with P, =
Pm+/(D — 1). From Eq. (91) and the conservation of energy
of relativistic matter (radiation), we obtain the relation
pyG.r/pvci = (aifag)®  and  py/py; = (a;/ap)P,
respectively. Since the inflaton density parameter Qg =
2pvc/ (MB223H?) and the matter field density, we find
that Qg decreases according to

T 8D = 1) S0 e AP = (D = 2)22, 5 P (0 + Copt ) AU

1M V4 2¢/D
Qg ~ < ¢ ) L (<<, (92)
Pm

as py increases. Note that here we have assumed that
€ = |H|/H* < 1 in the interval. At the end, we have py; ~
10°-10® MeV* at 1 = t;.

On the other hand, we may also apply the theory to the
case of late-time era. Here, we have at least two interesting
possible scenarios. The first is that the scalar field y
becomes frozen, after the reheating era, at fixed value
Ve With wyg = —1 at CP4. The value of W(y,) then
becomes the graviton mass in the present time, which can
be determined using observational constraints. Hence, the
accelerating expansion of the universe is due to the constant
mass term, as in the dRGT theory. The second possible
scenario is that the scalar field y could play a role as
dynamical quintessensial dark energy, either from CPjs in
the massless sector or from CPyg in the massive sector. In the
massless sector, the accelerating expansion of the universe
is due solely to the standard quintessence paradigm.
However, in the massive sector, it is due to the nontrivial
interplay between quintessence and massive gravity in the
massive sector.

VIII. CONCLUSIONS

We have constructed higher-dimensional MTMVMG
with nonzero scalar potential, where the graviton mass is
varied with respect to the real scalar field . Our con-
struction can be summarized as follows. First, we write the
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MVMG action for higher dimensions using the vielbein
formulation in the ADM formalism. We also adopt the
vielbein potential in Ref. [35] and couple it to the masslike
scalar potential W (). Inserting the ansatz metric (3) and
(4) into the MVMG action, we then derive the precursor
action (9). By imposing the set of D-constraints (19) and
(20) to the precursor action (9), we obtain a theory in which
the graviton has D(D —3)/2 degrees of freedom for
general D spacetime dimensions, without scalar and vector
modes of the Stiickelberg field. The resulting theory admits
the Lorentz violation since we have used the ADM vielbein
(3) and (4). Still, the O(D — 1) symmetry and the spatial
diffeomorphism are preserved in the MTMVMG action
(36). This theory generalizes the four-dimensional MTMG
in Refs. [29,30] and the four-dimensional MVMG in
Ref. [32].

Then, we derive the Friedmann-Lemaitre equations (43)
and (46) for the case of spatially flat spacetimes. To
proceed, inspired by Refs. [44—46], we take both the scalar
potential and the graviton mass couplings to have expo-
nential forms (51) and (52), such that Egs. (43) and (46) can
be written into a set of autonomous equations (59) with
constraint (60). By performing dynamical system analysis,
we find that in this theory there exists five critical points in
the massless sector, namely CP;_s, whereas in the massive
sector we have three critical points, namely CPg_g. We also
discuss their stability, their existence, and their cosmologi-
cal aspects related to the state equation parameter wy;g, the
density parameter Qy,g, and the decelerated parameter g.
Among them, we may have some critical points that are
suitable to explain either inflation phenomenon or the
accelerated universe in the late-time era.

We also have established the local-global existence and
the uniqueness of the evolution equations (57), (58), and
(59) with constraint (60) using Picard’s iteration and the
contraction mapping properties, assuming that the func-
tions f(u) and f,(u) are bounded. The discussion is then
divided into two parts: the f(u) >0 case and the f(u) < 0
case. Note that our results apply to all branches, namely the
self-accelerating branch and the normal branch.

Finally, we have particularly discussed some possible
cosmological models of the MTMVMG in the self-accel-
erating branch. Since both the scalar potential and the
graviton mass couplings have exponential forms (51) and
(52), the theory has a good description of the inflation era in
the early universe using the power-law inflation [50] in
which the scale factor a(f)  t'/¢ with the slow-roll

parameter ¢ = |H|/H? < 1. This era can be described

either by the critical point CP5 or CPg. In other words,
our theory can describe the inflationary era using both the
massless and the massive sectors. Also, we have shown that
the MTMVMG could accommodate the reheating mecha-
nism in this framework, again for both massless and
massive sectors. Perturbative approach needs to be applied,
for example, to study the behavior of primordial gravita-
tional waves based on MTMVMG, as in the case of four-
dimensional MTMG [51,52]. The detailed construction and
the phenomenological predictions are left for subsequent
works. On the other hand, we have at least two interesting
possible scenarios for the late times. The first scenario is
that the dark energy in the present time is due to the
graviton mass which depends on the scalar field y, that
becomes frozen after the reheating era. The second scenario
is that the scalar field y plays role as dynamical quintes-
sential dark energy. Therefore, contrary to the massless
sector where the accelerating expansion is due to the
standard quintessence paradigm, in the massive sector it
is due to the nontrivial interplay between quintessence and
massive gravity.
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APPENDIX A: MASS TERM

In this Appendix we are going to evaluate potential
element in Eq. (7) by taking the ADM vielbein in Egs. (3)
and (4). For n = 0 we obtain

1 - - - .
A A A A A
HeAlAZ"‘ADE VANE2 ANES AL NEPD

— &g it up AV Ay PAs L BAp

Y AjAyAp 2 M M3 UD

_ d°x AB|By--Bp sA,  sA A 7

= FGAIAZ”‘ADe 13} 315 B, " -0 B) det(E)

= dPxM det(?). (A1)
Note that we have used the relations dx*' A dx*> A --- A
dxto = kb dPy in  first step  and @M HD =
ebiBBopp Frep . oy in the  second  step.

Following the same way as above for other n, we have
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éAlAZ"'ADEA] A EAZ A EA3 AN A EAD = (D
an,a, BN NEY NES A L ANEY = (D -
ean,a,EN NEY2 NES A L ANEY = (D -

ean,-a,EN NE2 NEYS A
Ea,n,-a,EM A EY NES A

ean,-a, BN N EY NEAS A
where |- -

Cn
n!(D—n)!

M

n=0

= dPxN det(e) ( det(X)] %Z

with §,, symmetric polynomial. For example given matrix ol

A size D x D,
So(A) = 1.
§1(A) =[],
§2(A) = 5, (AP - [A7)),
§3(A) = 57 (AP - 3[ATIA?] + 2[A7),
§4(A) = g (A ~ 61APAY + B[A][A]
+3[A% — 6[A1)

APPENDIX B: MTMVMG ACTION

+2[(e”

-] denotes the trace. Now we define X/, =

2 A
€an,-A BN A L

)M det(2)[e"e] + Ndet(é)),
2) (M €)= (€] + 2N @),
DN der@) (2] 3l

o)) + 3N det(2) (e 2 ~ (271 e)?))).

. AE™ = (D —2)!(N det(e)([e"e]2 -
. ANE* = (D -
.. A E* = DIN det(e),

[(e718)?]) + 2M det(e)[e~"e]),

1IN det(e)[e~"2] + M det(e)).

& e*; and Y, = e/, &, such that

D-1

n=0

A EA N EA A L

A EAv

(A2)

+ZCD n n )

_ SHyrmvme
I R

57[1i

1 [ N 1
_ I _ k K I
MB? [det(e) <”’ D27 KC ke )

+ (vl’Nj>5IJ€jj

1
+ae (O (7o — L,

D-1 n
D ) WA (7] T}
n=1 m=1
~ 5HMTMVMG
orn
Nr .
= F() + N ail//
+ | det(X MM Z S, (B2)

respectively, such that we have the new conjugate momenta

In this Appendix we fill some gaps in the derivation of
the MTMVMG action in Sec. III. Let us begin with the
MTMVMG Hamiltonian (22) which can be expressed in
terms of the time derivative of spatial vielbein and the scalar

field,
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det(e) =My 2(K”5IJ€ - Ke'))
Wypy)M ..
—A¥N®U§1]€Jj, (B3)
n W N dW M
=———0w—-1——o. B4
det(e) N Na dy N (B4)
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The last terms in Eqgs. (B3) and (B4) arise since the MTMVMG constraints depend on the conjugate momenta ;' and 7.
The symmetrical property of ®"/ cancels the antisymmetric terms, namely a,;yP™M and g5 YN out of the MTMVMG
Hamiltonian. Employing the Legendre transformation, we obtain the MTMVMG action,

SmrmvmG = /M de(”iléli + 7y — HMTMVMGlaMN:ﬂMN:O) (BS)
4 2 W(y)M\? 1
=S — dPx(ACy + AC;) ——=— [ dPxN det —— @’/® -——02
pre /.M x( 0+ l) les)l_z//\/l X € (e)( 4 N D=2
1 dW M\ 2
- 5[\4 dD)CN det(e) (ﬂwﬁ) (I)2 + Smatter (B6)
= —/ dPx(C +/1iC-)+2/ dPxN det(e) /IM% ’ 070, — ! e’
pre " 0 i Mﬁ_z M 4 N Y D=2
1 dw m
+§[A4 deNdet(e) (ld—ﬁ> q) + Smatten (B7)
where S;. and Sy, are the precursor action and the matter action, respectively, whereas
W(W)Mdet |det |ZZ n Ym 1 ISn m( )
n=1 m=
. 1 . . A Wy)M _ .. 1 0 .
X |:<7ikekjelj D— 27/th ) (K] _Kyj _Mgl_gTNGJ) _ek.l ot Ik
dwW [y N dW M\ 2
Mdet(e) — ( ——— 0w | D — AN det —— ) @ B8
+aaete) 4 (%~ T ow) e(e) (G ) (B8)
D-1 n
€= M et W)V (140 3 (1) (1715 (MY '
n=1 m=1
JW P!
det(X)|0w — S.(Y)], B9
L4 G e.5,00) (89)
with
% sk 1 1 I i i 9 I Ol m m—1\J
Co=Coli—o=M|det(X){W(w) | | yu*se’;— D— ZVUY (K’—KW)——e T8k (=D)"e,(Y" 1)1 Spem(Y)
n=1 m=1
_dW [y N 2
T_ 9 Y) . B10
o (= ow) s, (B10)

APPENDIX C: LINEAR STABILITY

In this Appendix we consider the linear perturbation of dynamical equations (57)—(59) in the critical points
(xy/,L‘?xV,c’xW,c)' First, we expand autonomous variables around these points

Xy = Xy o+ Uy, (C1)
Xy = Xy, + uy, (C2)
Xw = Xw.e -+ Uy . (C3)
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The first order equation of motions has the form

L= [3(1 - Wm)xgl,c - (1 + Wm)x%/,c - (fZ(”) + Wmfl(”))x%l/,c - (1 - Wm)]ul//

- |:2<1 + Wm)xl//,c -4 \/ %ﬂv] Xy Uy — [2<f2(u) + Wmfl (”))xw,c -4 \/ %lwfﬂ”)] Xw.cUw, (C4)

2u D-2
D _Vl = |:2(1 - Wm)xl//.c - m/lv} xV.cuy/ + |:(1 + Wm) + (1 - Wm)xgl.c
5 5 D -2
=31+ wp)xy . — (f2(u) + wyf1(u))xy . — ﬁlvxw,c uy = 2(fa2(u) +wpf1(u))xy xw iy, (C5)
2u; D -2
D——Wl = {2(1 — W)Xy e = m/lw] Xw ety = 2(1 4 wy) Xy Xy cuty
2 2 2 D-2
+ (1 + Wm) + (1 - Wm)xl//,c - (1 + Wm>xV,c - 3(f2(u) + Wmfl (u))xW,c - ﬁlwxy/.c Uy, (C6)
such that we can cast the above equations into the matrix form
7 Uy,
uy, | =J| uy |, (C7)
MIVV Uy

where J is Jacobian matrix. Let the eigenvalues of J are y;, y,, and pu3. We write the Jacobian matrix J and its eigenvalues
for each of the critical points below. These then can be used to analyze their stability properties, which we summarize in
Table III.

TABLE III.  Stability properties of the critical point (x,, ., Xy .. Xy ) based on the three eigenvalues y;, p, and 3.

Eigenvalues Stability
Real eigenvalues

u, <0, forn=1,2,3 Stable node

u, >0,forn=1,2,3 Unstable node

u,>0and p, <0, fornum=1, 2, Unstable

Saddle point
Nonhyperbolic, linear stability fails to determine
and other methods are needed

w W W

1
u, >0and p,, <0, fornum=1, 2,
u, =0and p,, <0, fornum=1,2

s

Complex eigenvalues

Re(p,) <0, forn=1,2,3 Strongly stable spiral
Re(u,) >0, forn=1,2,3 Strongly unstable spiral
Re(u,) < 0 and Re(p,,) >0, fornum=1, 2,3 Saddle focus

Re(u,) = 0 and Re(p,,) #0, fornum =1, 2, 3 Weakly center point
Re(y,) =0,forn=1,2,3 Strongly center point
Real eigenvalues y, and complex eigenvalues p,, forn Um =1, 2, 3

H, <0 and Re(y,,) <0 Weakly stable spiral

u, > 0 and Re(y,,) > 0 Weakly unstable spiral
U, <0 and Re(y,,) >0 Saddle focus

u, >0 and Re(y,,) <0 Saddle focus
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(i) The Jacobian matrix for CP;: (0,0,0) is

—(1=w,) 0 0
J= 0 1 +w, 0 , (C8)
0 0 I +w,
with eigenvalues
{=(1=w,,),1+w,}. (C9)
(i) The Jacobian matrix for CP,: (1,0,0) is
2(1-wy,) 0 0
J— 0 2= dy\/53 0 , (C10)
0 0 2 — Ay %

with eigenvalues

{2(1—wm),2—lv\/g—f,2—ﬂw\/g;?}- (C11)

(iii) The Jacobian matrix for CP5: (—1,0,0) is
2(1 -wy,) 0 0

J= 0 2+ Ay g—j 0 , (C12)

0 0 2+ Ay /B2

2(1=wy). 2+ D—:2,2+/1W D—:2 . (C13)
D-1 D-1

with eigenvalues

(iv) The Jacobian matrix for CP4: (x,,.,0,0) is
0 0 0
o0 2-dume /52 0 ’ (C14)
0 0 2 = AwXy g—j

with eigenvalues

/D —2 /D —2
{0,2 _)“ny/,c m@ —iwxw.c ﬁ} (CIS)

(v) One of the eigenvalues of the Jacobian matrix for CPs: (j‘—vi, /g_:é, % %, 0) is

4 = <1 _i—W>Ai. (C16)

|
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(vi) The Jacobian matrix for CPg:

Aw Ay .
(0, \/ po \/ @it 18

-2 _MV\/ 1/1;—W/1V 4w g %I%—)Aljv
. A 2 1+W,,,)AW 2<1+Wm) ‘f (M)H A
J = —Av D 1/1W1V/1V _W - /1W—/1]V = (C17)
| Ay 2(14w,) Aviw 2(14wpy)dy
WDt Flw—a)  ~ dway \ T Aw—=rv
with eigenvalues
4(D — 1) Aydy
=2(1 —1+4/1——> "3 1
{20 w141 - 4212 c18)
(vii) The Jacobian matrix for CP7: (0, /1 — f(u)x} ., xw.) is
-2 0 0
J= 0 =2(1 4 wy) (1 = fr(u)xiy ) =2(1+ wy) fr(u)xw e /1= fr(u )ch , (C19)
0 =2(1+w,)xwer/1 = fr(u)xy,. =2(1 4wy, ) f1 ()x3y
with eigenvalues
{-2,-2(1 +w,,),0}. (C20)
(viii) One of the eigenvalues of the Jacobian matrix for CPg: (f—; %, 0, ﬁ %) is
A
M1 = (1 —A—V)Bi (C21)
w
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