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In this paper we construct higher-dimensional minimal theory of mass-varying massive gravity
(MTMVMG) where the masslike scalar potential is coupled to a vielbein potential, unlike in the previous
literature where it is coupled to metric, such that the number of graviton degrees of freedom in the theory is
the same as in general relativity. We then study the cosmological aspects of this theory and show that it has
eight critical points: five in the massless sector and three in the massive sector. In contrast to the standard
theory of mass-varying massive gravity where the graviton mass asymptotically approaches zero at late
times, hence making the contribution of massive gravity to the late-time cosmic expansion minimum, the
MTMVMG can provide good descriptions both in the massless and massive sectors. Especially, there are at
least two interesting possible scenarios for the late-time cosmology in the theory: the dark energy is either
due to the constant graviton mass which comes from the scalar field that becomes frozen after the reheating
era, or due to the quintessence paradigm where the scalar field is dynamic. Therefore, if the accelerating
expansion of the universe in the massless sector can be explained by standard quintessence paradigm, in the
massive sector it has to be explained by the nontrivial interplay between quintessence and massive gravity.
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I. INTRODUCTION

Several alternative theories modifying Einstein’s general
relativity have been proposed in the past decades as parts of
an effort to solve long-standing cosmological problems
such as dark energy, dark matter, and inflation. One of these
theories, based on the assumption that graviton might have
nonzero mass and hence later coined as the theory of
massive gravity, was originally visioned by M. Fierz and
W. Pauli in 1939 [1]. However, the theory did not have a
continuous transition to general relativity in the limit of
zero graviton mass, an issue known as the van Dam–
Veltman–Zakharov discontinuity [2,3]. This problem was
remedied by Vainshtein’s nonlinear mechanism in 1972 [4],
but the nonlinear terms then gave rise to another problem
called the Boulware-Deser ghost [5]. Building on several
previous attempts [6,7], this problem was then finally
resolved in 2010 by C. de Rham, G. Gabadadze, and

A. Tolley (dRGT) [8,9], resulting in a Lorentz-invariant,
ghost-free nonlinear theory of massive gravity [10–18].
(See also Refs. [19,20] for reviews.)
Unfortunately, the dRGT theory also had some serious

challenges: there was no stable homogeneous and isotropic
cosmological solutions [21–24], together with other path-
ologies such as Higuchi bound [25,26] and positivity bound
[27,28]. To overcome this, the minimal theory of massive
gravity (MTMG) was then proposed by A. De Felice and
S. Mukohyama in 2016 [29] by imposing some constraints
which suppress the five degrees of freedom in the
original dRGT theory such that there are only two degrees
of freedom, both of them are tensor modes, as in the
case of general relativity, but now the theory is not Lorentz
invariant. It has the same Friedmann–Lemaître–Robertson–
Walker (FLRW) equations as in the dRGT theory, but now
the FLRW background is stable [30]. There are two
branches of solutions. The first is the self-accelerating
branch, which is phenomenologically the same with the
ΛCDM cosmology, except that the accelerating expansion
of the universe is now caused by the graviton mass term,
not necessarily by the cosmological constant. The second is
the normal branch, which is phenomenologically different

*Corresponding author.
bobby@fi.itb.ac.id

†akhoirulfalah94@students.itb.ac.id
‡latief@itb.ac.id
§alatas@apps.ipb.ac.id

PHYSICAL REVIEW D 104, 084013 (2021)

2470-0010=2021=104(8)=084013(21) 084013-1 © 2021 American Physical Society

https://orcid.org/0000-0001-5083-8213
https://orcid.org/0000-0002-1063-2648
https://orcid.org/0000-0002-7570-3267
https://orcid.org/0000-0002-6529-7664
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.084013&domain=pdf&date_stamp=2021-10-01
https://doi.org/10.1103/PhysRevD.104.084013
https://doi.org/10.1103/PhysRevD.104.084013
https://doi.org/10.1103/PhysRevD.104.084013
https://doi.org/10.1103/PhysRevD.104.084013


from general relativity in the scalar and tensor sectors,
leading to nontrivial dynamics which could be tested
against the predictions of general relativity [30,31].
Another attempt to modify the dRGT theory was done by

Q.-G. Huang, Y.-S. Piao, and S.-Y. Zhou in 2012 by
coupling the graviton potentials to a scalar field ψ , enabling
the graviton to have a varying mass [32]. This theory of
mass-varying massive gravity (MVMG) is again Boulware-
Deser ghost-free and the Lorentz invariance is satisfied.
Varying the graviton mass can lead to interesting cosmo-
logical behaviors both in the inflationary and late-time
era. Specifically, the graviton mass will asymptotically
approach zero at late times due to the dynamics of the
theory, hence there is no need to fine tune the graviton mass
to a very small number to be in line with the cosmological
bounds for the graviton mass in the present time [33].
However, this may be a disadvantage, since it means that
the contribution of massive gravity to explain the cosmic
expansion at late times is minimum [34].
Another disadvantage of the MVMG theory is that it has

many graviton degrees of freedom, which may lead to
instabilities. Therefore, to suppress these degrees of free-
dom, we will follow in this paper the method of
Refs. [29,30]. First, we define the precursor theory by
writing the MVMG action using the vielbein formulation in
the Arnowitt–Deser–Misner (ADM) formalism, but here
we generalize the theory to the case of higher dimensions.
We also adopt the vielbein potential in Ref. [35] and couple
it to the masslike scalar potential WðψÞ, unlike in the
previous literature where it is coupled to metric. The
purpose of this is such that the number of graviton degrees
of freedom in the theory is the same as in general relativity.
We then perform the Legendre transformation to the
precursor action to obtain the precursor Hamiltonian.
After imposing the nontrivial constraints to the theory,
we will obtain the minimal theory of mass-varying massive
gravity (MTMVMG), where the number of graviton
degrees of freedom in this theory becomes DðD − 3Þ=2,
as in the D-dimensional general relativity, where D is the
number of spacetime dimensions. For D ¼ 4, the number
of graviton degrees of freedom in the MTMVMG is two, in
contrast to the MVMG theory where there are five graviton
degrees of freedom. Therefore, in the light of minimally
modified gravity (MMG), a modified theory of gravity with
two local gravitational degrees of freedom, discussed in
Refs. [36,37], where the type-I MMG is for the theory in
which there exists an Einstein frame and the type-II MMG
is for the one in which there is no Einstein frame [38,39],
the MTMVMG can be viewed as an extended type-II MMG
theory.
To study the cosmological aspects of this theory, we can

perform the Legendre transformation again to get the
expression for the MTMVMG action, which then can be
used to obtain the Friedmann-Lemaître equations. We take
both the scalar potential and the graviton mass couplings to

have exponential forms, and find that there are eight critical
points in the theory: five in the massless sector and three in
the massive sector. Therefore, the MTMVMG theory can
have both massless and massive sectors even in the late-
time era, in contrast to the ordinary MVMG theory where,
as mentioned previously, the dynamics of the theory will
lead the graviton mass to asymptotically approach zero at
late times. This makes the MTMVMG a richer theory,
which then can give us good descriptions of both the
inflationary and late-time era. Especially, there are at least
two interesting possible scenarios for the late-time cosmol-
ogy: the dark energy is either due to the constant graviton
mass which comes from the scalar field ψ∞ that becomes
frozen after the reheating era, or due to the quintessence
paradigm where the scalar field ψ is dynamic. Therefore, if
the accelerating expansion of the universe in the massless
sector can be explained by standard quintessence paradigm,
in the massive sector it has to be explained by the nontrivial
interplay between quintessence and massive gravity.
This paper is organized as the following: In Sec. II we

derive the precursor action by writing the MVMG theory
using the vielbein formulation. In Sec. III we then construct
the minimal theory by imposing D-constraints. In Sec. IV
we derive the Friedmann-Lemaître equations for our model.
We then perform in Sec. V the dynamical analysis around
the critical points and check in Sec. VI their local and
global existences. In Sec. VII we discuss the cosmological
implication on the inflationary expansion and late-time
acceleration. We then conclude the paper and write several
remarks in Sec. VIII. Detailed calculations are presented in
the Appendix.

II. PRECURSOR THEORY

In this section we will construct the MVMG action by
replacing the graviton mass with the masslike scalar
potential WðψÞ. However, we will adopt the vielbein
potential from Ref. [35] and couple it to WðψÞ, in contrast
to Ref. [32] whereWðψÞ is coupled to metric. We will then
define the action for the precursor theory, which will be
needed later to construct the MTMVMG action.
Let us first consider two D-dimensional Lorentzian

manifolds ðM; gÞ and ðM0; g0Þ parametrized by the
coordinate systems xμ and ya with μ; a ¼ 0;…; D − 1,
respectively. Using the ADM formalism, the metrics g and
g0 can be written as

ds2ðdÞ ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ; ð1Þ

ds2ðbÞ ¼ −N2
0dτ

2 þ γ0ijðdyi þ Ni
0dτÞðdyj þ Nj

0dτÞ; ð2Þ

where γij and γ0ij are the components of the induced spatial
metrices, N and N0 are the lapse functions, Ni and Ni

0 are
the shift vectors, and i; j ¼ 1;…; D − 1. The subscripts (d)
and (b) denote the dynamic and the background,
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respectively. Let us then introduce the vielbeins EA
μ and

E0
A
a such that the metrics (1) and (2) can be written as

gμν ¼ ηABEA
μEB

ν and g0ab ¼ ηABE0
A
aE0

B
b, where A;B ¼

0;…; D − 1 and ηAB is the flat Minkowski metric.
Therefore, the vielbeins EA

μ and E0
A
a have the form

EA
μ ¼
�

N 0

NkeIk eIi

�
; E0

A
a ¼
�

N0 0

Nk
0e0

I
k e0I i

�
; ð3Þ

whose duals are given by

Eμ
A ¼

 
1
N 0

− Ni

N eiI

!
; E0

a
A ¼

 1
N0

0

− Ni
0

N0
e0iI

!
; ð4Þ

such that they satisfy

EA
μEμ

B ¼ δAB; E0
A
aE0

a
B ¼ δAB;

Eμ
AEA

ν ¼ δμν; E0
a
AE0

A
b ¼ δab:

Here eIi and e0I i are the spatial vielbeins, with
i; I ¼ 1;…; D − 1, and eiI and e0iI are their duals,
respectively.
Now, we consider a smooth embedding ϕ∶ M → M0

such that we could have pulled back quantities

ẼA
μðxÞ ¼

∂ϕa

∂xμ E0
A
aðϕðxÞÞ; ð5Þ

fμνðxÞ ¼
∂ϕa

∂xμ
∂ϕb

∂xν g0abðϕðxÞÞ; ð6Þ

so that M obeys diffeomorphism rules through a
Stückelberg field ϕa. In the unitary gauge where
ϕa¼δaμxμ, we simply recover ẼA

μ¼E0
A
μ and fμν¼g0μν.

Note that the original formulation of the dRGT theory has a
Minkowski background, g0ab ¼ ηab. Using the vielbein
formulation in Ref. [35], the ghost-free potential related
to the graviton mass has the form

XD
n¼0

cn
n!ðD−nÞ! ϵ̂A1A2���AD

EA1 ∧ � � �∧EAn ∧ ẼAnþ1 ∧ � � �∧ ẼAD

ð7Þ

with one-forms EA ¼ EA
μdxμ and Ẽ

A ¼ ẼA
μdxμ the dRGT

mass term for arbitrary background and dimension. The
quantity ϵ̂ denotes the Levi-Civita symbol in the flat
spacetime. Furthermore, inspired by [32], the graviton
mass is replaced by a function of a scalar field WðψÞ,
where ψðxÞ is well defined on M. Coupling WðψÞ to the
potential in Eq. (7) and adding this coupling term to the
Einstein–Klein–Gordon action, we obtain the ghost-free
MVMG action as the following,

SMVMG ¼
Z
M

dDx detðEÞ
�
MD−2

Pl

2
RðEÞ − 1

2
∂μψ∂μψ − VðψÞ

�

−
1

4

Z
M

WðψÞ
�XD

n¼0

cn
n!ðD − nÞ! ϵ̂A1A2���AD

EA1 ∧ � � � ∧ EAn ∧ ẼAnþ1 ∧ � � � ∧ ẼAD

�
; ð8Þ

where VðψÞ is the scalar potential function.
The action for the precursor theory can be obtained by simply substituting the vielbeins in (3) and (4) to the action (8),

Spre ¼
Z

dDxN detðeÞ
�
MD−2

Pl

2
ððD−1ÞRðeÞ þ KijKij − K2Þ þ 1

2N2
_ψ2 −

1

2
∂iψ∂iψ þ NiNj

2N2
∂iψ∂jψ −

Ni

N2
_ψ∂iψ − VðψÞ

−WðψÞ
�
j detðXÞjM

N

XD−1

n¼0

cnSnðYÞ þ
XD−1

n¼0

cD−nSnðXÞ
��

; ð9Þ

where ðD−1ÞRðeÞ is the spatial Ricci scalar, while Kij and K
are the second fundamental form and the mean curvature,
respectively. For any function ψ , we define _ψ ≡ ∂ψ=∂t and
∂iψ ≡ ∂ψ=∂xi. Here, the quantities fM;Mi; ẽI ig are the
pull back of fN0; Ni

0; e0
I
ig via Stückelberg field ϕ as a

background image on M given by Eq. (5) and (6),
respectively. The elements Sn are the nth order symmetric
polynomials which depend on either YI

J ≡ eIkẽkJ or
XI

J ≡ ẽIkekJ (see Appendix A for more discussions).

Note that the action (9) violates the local Lorentz symmetry
because we have used the ADM vielbeins in Eqs. (3)
and (4).

III. MINIMAL THEORY OF MVMG

The discussion in this section is divided into two parts.
First, we construct the Hamiltonian for the MTMVMG and
identify some constraints which restricts the graviton
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degrees of freedom. Second, we discuss the MTMVMG
action which is constructed from the precursor action
discussed in the previous section but with some additional
constraints.

A. MTMVMG Hamiltonian and some constraints

Let us first consider the spatial vielbeins eIi and the
scalar field ψ as the canonical variables which correspond
to the conjugate momenta defined as

πiI ≡ δSpre
δ_eIi

¼ detðeÞMD−2
Pl ðKij − KγijÞδIJeJj; ð10Þ

π ≡ δSpre
δ _ψ

¼ detðeÞ
�
1

N
_ψ −

Ni

N
∂iψ

�
: ð11Þ

We can switch from Lagrangian to Hamiltonian by
performing the Legendre transformation in order to see
some constraints of the theory. As it is well-known in the
vielbein language that the lapse function N and the shift
vector Ni appear as Lagrange multipliers enforcing the
diffeomorphism constraints [35], namely R0 ≈ 0 and
Ri ≈ 0. These constraints are called the primary con-
straints of the first kind, which then enable us to construct
another set of constraints called the secondary constraints
of the first kind [40]. Note that there are only D − 2
independent secondary constraints, since two of them can
be obtained from the others. We denote them as C̃τ
(τ ¼ 1;…; D − 2), together with their Lagrange multi-
pliers λτ.
Additionally, as studied in Refs. [29,30], from Eq. (10)

we also have another set of primary constraints of the
second kind P½MN� that lead to the secondary constraints of
the second kind Z½MN� in the phase space, together with
their Lagrange multipliers αMN and βMN , with
M;N ¼ 1;…; ðD − 1ÞðD − 2Þ=2. These secondary con-
straints are necessary since the primary constraints should
be preserved with respect to the time evolution. Therefore,
the precursor Hamiltonian can be written down as

Hpre ¼
Z

dD−1xð−NR0 − NiRi

þWðψÞNH0 þWðψÞMH1 þ λ̃τC̃τ

þ αMNP½MN� þ βMNZ½MN�Þ; ð12Þ

where

R0 ≡ detðeÞM
D−2
Pl

2
ðD−1ÞRðeÞ

−
1

2 detðeÞMD−2
Pl

�
πiIπ

I
i −

1

D − 2
ðπiIeIiÞ2

�
;

−
1

2 detðeÞ π
2 −

detðeÞ
2

∂iψ∂iψ

− detðeÞVðψÞ; ð13Þ

Ri ≡∇jðπjIeIiÞ − π∂iψ ; ð14Þ

H0 ≡ detðeÞ
XD−1

n¼0

cD−nSnðXÞ; ð15Þ

H1 ≡ detðeÞj detðXÞj
XD−1

n¼0

cnSnðYÞ; ð16Þ

and

P½MN� ≡ ðeMjδ
KN − eNjδ

KMÞπjK; ð17Þ

Z½MN� ≡ ðeMjδ
KN − eNjδ

KMÞẽjK: ð18Þ

Since the constraints above remove some graviton degrees
of freedom, we can construct a theory in which the spatial
graviton degrees of freedom coincide with the standard
general relativity. Inspired by Ref. [29], we can impose the
D-constraints in unitary gauge given by

C0 ≡ fR0; H1gPB −WðψÞ ∂H0

∂t ≈ 0; ð19Þ

Ci≡fRi; H1gPB ≈ 0; ð20Þ

where f� � �gPB denotes the Poisson bracket and

H1 ≡
Z

dD−1xWðψÞMH1: ð21Þ

Note that these constraints consist of two new constraints
and D − 2 independent constraints C̃τ which already exist
in the precursor theory. Moreover, the constraints in
Eqs. (19) and (20) imply that the theory admits the
Lorentz symmetry violation. The Hamiltonian of the
MTMVMG theory then reads

HMTMVMG ¼
Z

dD−1x½−NR0 − NiRi

þWðψÞðNH0 þMH1Þ þ λC0 þ λiCi

þ αMNP½MN� þ βMNZ½MN��: ð22Þ

Thus, in total we have D2 −Dþ 2 constraints, which
means that the number of spatial graviton degrees of
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freedom are DðD − 3Þ=2, as in the D-dimensional general
relativity.

B. MTMVMG action

To construct the MTMVMG action, one has to employ
the Legendre transformation on the Hamiltonian functional
(22). It will be shortly discussed in this subsection, but its
detailed derivations will be presented in the Appendix B.
As discussed in the previous subsection, we should

have the nontrivial D-constraints (19) and (20) in the
MTMVMG theory. In order to have a consistent theory,
we have to modify the conjugate momenta (10) and (11) to

πiI
detðeÞ≡MD−2

Pl ðKijδIJeJj − KeiIÞ

− λ
WðψÞ
2

M
N
ΘijδIJeJj; ð23Þ

π

detðeÞ≡
_ψ

N
−
Ni

N
∂iψ − λ

dW
dψ

M
N
Φ; ð24Þ

with

Θij ≡ −j detðXÞjδIKðeiKẽjJ þ ejKẽiJÞ

×
XD−1

n¼1

Xn
m¼1

ð−1ÞmcnðYm−1ÞJISn−mðYÞ; ð25Þ

Φ≡j detðXÞj
XD−1

n¼1

cnSnðYÞ: ð26Þ

The notation ðMmÞIJ means

ðMmÞIJ ≡MI
K1
MK1

K2
� � �MKm−1

J: ð27Þ

The modifications (23) and (24) imply that the MTMVMG
theory modifies both the kinetic part and the mass term. As
we will see later, this also provides a class of solutions
which coincides in the dRGT theory in the FLRW
background.
For the sake of convenience, let us first introduce the

following tensors

Ki
j ≡ ẽiIeIj; K̄i

j ≡ eiIẽIj: ð28Þ

satisfying Ki
kK̄

k
j ¼ δij, which correspond to the spatial

metrics by

Ki
kKk

j ¼ γ̃ilγlj; K̄i
kK̄k

j ¼ γilγ̃lj; ð29Þ

where γ̃ij ¼ δIJẽI iẽJj is the spatial metric on M.
Performing the Legendre transformation, we obtain the
MTMVMG action,

SMTMVMG ¼ Spre þ Sλ; ð30Þ

where

Sλ ¼
2

MD−2
Pl

Z
dDxN

ffiffiffi
γ

p �
λ
WðψÞ
4

M
N

�
2
�
γikγjl −

1

D − 2
γijγkl

�
ΘijΘkl

þ 1

2

Z
dDxN

ffiffiffi
γ

p �
λ
dW
dψ

M
N

�
2

Φ2 −
Z

dDx
ffiffiffi
γ

p ½λC̄0 þ λiCi�; ð31Þ

and

C̄0 ¼
1

2
WðψÞM

�
γikγjl −

1

D − 2
γijγkl

�
ΘklðKij − KγijÞ

þWðψÞj detðK̄Þj
XD−1

n¼1

Xn
m¼1

ð−1ÞmcnðKm−1Þklζ̃lkSn−mðKÞ

−Mj detðK̄Þj dW
dψ

�
_ψ

N
−
Ni

N
∂iψ

�XD−1

n¼1

cnSnðKÞ; ð32Þ

Ci ¼ −WðψÞ∇kMj detðK̄Þj
XD−1

n¼1

Xn
m¼1

ð−1ÞmcnðKmÞkiSn−mðKÞ −Mj detðK̄Þj∂iψ
dW
dψ

XD−1

n¼1

cnSnðKÞ; ð33Þ

with
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Θij ¼ −2j detðK̄Þjγil
XD−1

n¼1

Xn
m¼1

ð−1ÞmcnðKmÞjlSn−mðKÞ ð34Þ

Φ ¼j detðK̄Þj
XD−1

n¼1

cnSnðKÞ: ð35Þ

It is worth mentioning that the additional term in (23)
implies that we have to set αMN ¼ βMN ¼ 0 [30,41]. This is
so because the tensors P½MN� and Y ½MN� are antisymmetric,
while the tensor Θij is symmetric.
We could extend the action (30) by adding the matter

field,

SMTMVMG-M ¼ Spre þ Sλ þ Smatter: ð36Þ

Here, we consider the matter field part Smatter to be the
perfect fluid whose energy-momentum tensor has the form

Tμν ¼
2ffiffiffiffiffiffi−gp δSmatter

δgμν
¼ ρmUμUν þ Pmðgμν þ UμUνÞ; ð37Þ

where Uμ and ρm are the unit velocity of the fluid and the
energy density, respectively. The pressure Pm is given by
the state equation of matter fields,

Pm ¼ wmρm; ð38Þ

with wm is a real constant [42]. In the standard higher-
dimensional cosmology, we particularly have wm ¼ 1

D−1
(radiation), wm ¼ 0 (dust), and wm ¼ −1 (vacuum) [43].

IV. FRIEDMANN-LEMAÎTRE EQUATIONS

In this section we consider a cosmological model in the
MTMVMG theory. Our starting point is to write down the
metric ansatz for the dynamic and the background mani-
folds which are spatially flat,

ds2ðdÞ ¼ gμνdxμdxν ¼ −N2ðtÞdt2 þ a2ðtÞδijdxidxj;
ds2ðbÞ ¼ fμνdxμdxν ¼ −M2ðtÞdt2 þ ã2ðtÞδijdxidxj:

In the case at hand, the action (36) simplifies to

SMTMVMG-M ¼ −
Z

dDxaD−1
�
ðD − 1ÞMD−2

Pl NH2 −
1

2N
_ψ2 þ NVðψÞ −WðψÞ

�
M
XD−1

n¼0

cnAnuD−n−1 þ N
XD−1

n¼0

cD−nAnun
�

þ λ2M2

N

�
D − 1

D − 2

2

MD−2
Pl

�
WðψÞ
4

XD−1

n¼1

cnBnuD−n−1
�2

þ 1

2

�
dW
dψ

XD−1

n¼1

cnAnuD−n−1
�2�

− λ

�
_ψM
N

dW
dψ

XD−1

n¼1

cnAnuD−n−1 þ ðD − 1ÞWðψÞMðH − uHfÞ
XD−1

n¼1

cnBnuD−n−1
��

þ Smatter: ð39Þ

Here, we have introduced the quantities

H ≡ _a
Na

; Hf ≡
_̃a

Mã
; u≡ ã

a
; ð40Þ

and parameters

An ≡ ðD − 1Þ!
ðD − n − 1Þ!n! ; ð41Þ

Bn ≡
Xn
m¼1

ð−1Þm ðD − 1Þ!
ðD − nþm − 1Þ!ðn −mÞ! : ð42Þ

Then, the variation with respect to the lapse function NðtÞ gives us the first Friedmann-Lemaître equation,
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1

2
ðD − 1ÞðD − 2ÞH2 ¼ 1

MD−2
Pl

ðρm þ ρMG þ ρλÞ; ð43Þ

where

ρMG ≡ 1

2N2
_ψ2 þ VðψÞ þWðψÞ

XD−1

n¼0

cnþ1AnuD−n−1; ð44Þ

ρλ ≡ λ _ψM
N2

dW
dψ

XD−1

n¼1

cnAnuD−n−1 −
D − 1

D − 2

λ2M2W2ðψÞ
2MD−2

Pl N2

�XD−1

n¼1

cnBnuD−n−1
�2

þ ðD − 1ÞλHMWðψÞ
N

XD−1

n¼1

cnBnuD−n−1 þ λ2M2

2N2

�
dW
dψ

�
2
�XD−1

n¼1

cnAnuD−n−1
�2

: ð45Þ

The variation with respect to the scale factor aðtÞ gives us the second Friedmann-Lemaître equation,

ðD − 2Þ
_H
N

þ 1

2
ðD − 1ÞðD − 2ÞH2 ¼ −

1

MD−2
Pl

ðPm þ PMG þ PλÞ; ð46Þ

where

PMG ≡ 1

2N2
_ψ2 − VðψÞ −WðψÞ

N

XD−1

n¼1

ðMcn þ Ncnþ1ÞnAnuD−n−1; ð47Þ

Pλ ≡ λ2M2W2ðψÞ
2MD−2

Pl N2

�XD−1

n¼1

D − 2n − 1

D − 2
cnBnuD−n−1

��XD−1

n¼1

cnBnuD−n−1
�

−
λ2M2

2N2

�
dW
dψ

�
2
�XD−1

n¼1

D − 2n − 1

D − 1
cnAnuD−n−1

��XD−1

n¼1

cnAnuD−n−1
�

−
λMWðψÞHf

N

XD−1

n¼1

�
ðD − n − 1ÞM

N
þ ðn − 1Þu

�
cnBnuD−n−1

−
�
_λMN þ λð _MN −M _NÞ

N3

�
WðψÞ

XD−1

n¼1

cnBnuD−n−1 þ λM _ψ

N2

dW
dψ

XD−1

n¼1

cn

�
nAn

D − 1
þ Bn

�
uD−n−1: ð48Þ

From the variation with respect to ψðtÞ, we obtain the equation of motions,

1

N2
ψ̈ þ

�ðD − 1ÞH
N

−
_N
N3

�
_ψ þ dV

dψ
þ 1

N
dW
dψ

�XD−1

n¼0

ðMcn þ Ncnþ1ÞAnuD−n−1

þ λM
N

�
NH

XD−1

n¼1

ncnAnuD−n−1 þMHf

XD−1

n¼1

ðD − n − 1ÞcnAnuD−n−1
�

þ
�
_λM
N

þ λð _MN −M _NÞ
N2

�XD−1

n¼1

cnAnuD−n−1 − λM

�
λM
N

d2W
dψ2

�XD−1

n¼1

cnAnuD−n−1
�2

−
D − 1

D − 2

λMWðψÞ
4MD−2

Pl N

�XD−1

n¼1

cnBnuD−n−1
�2

þ ðD − 1ÞðH − uHfÞ
XD−1

n¼1

cnBnuD−n−1
��

¼ 0: ð49Þ

Performing the variation with respect to λ will give us
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WðψÞðuHf −HÞ
�XD−1

n¼1

cnBnuD−n−1
�
þ λ

D − 2

W2ðψÞM
MD−2

Pl N

�XD−1

n¼1

cnBnuD−n−1
�2

−
_ψ

D − 1

dW
dψ

�XD−1

n¼1

cnAnuD−n−1
�
−

λ

D − 1

M
N

�
dW
dψ

�
2
�XD−1

n¼1

cnAnuD−n−1
�2

¼ 0; ð50Þ

which relates the Hubble rate of the background spacetime
with the Hubble rate of the dynamical spacetime. In the
simple case where ψ is trivial and D ¼ 4, Eq. (50)
corresponds to the branches of solutions discussed in
[30]. In the case of D ¼ 5, 6 with trivial ψ , one has to
solve the qubic and the quartic polynomials, respectively,
while for D ≥ 7 the solutions of the polynomials are still
unknown. For nontrivial ψ , it is still unknown whether
such branches exist. These aspects will be considered
elsewhere.

V. DYNAMICAL SYSTEM ANALYSIS

Let us consider a special case where the couplingsWðψÞ
and VðψÞ have the form

WðψÞ ¼ W0 exp

�
−

λWψffiffiffiffiffiffiffiffiffiffiffiffi
MD−2

Pl

p
�
; ð51Þ

VðψÞ ¼ V0 exp

�
−

λVψffiffiffiffiffiffiffiffiffiffiffiffi
MD−2

Pl

p
�
; ð52Þ

which has been considered in four dimensional cases
[44,45] where the constants V0, W0 > 0 and λV , λW ≥ 0.
Moreover, the form of the scalar potential VðψÞ may
provide inflationary expansion of the early universe model
and has been well studied in the context of dynamical
systems in Ref. [46]. Note that for λW ¼ 0 we have the
MTMVMG theory with ordinary constant graviton
mass [29,30].
For the rest of the paper we simply take a branch of

solutions of Eq. (50) where λ ¼ 0. Setting the lapse
functions NðtÞ ¼ MðtÞ ¼ 1, we introduce the autonomous
variables,

xρ ≡
�

2ρm
MD−2

Pl λ2DH
2

�
1=2

; ð53Þ

xψ ≡ _ψffiffiffiffiffiffiffiffiffiffiffiffi
MD−2

Pl

p
λDH

; ð54Þ

xV ≡
�

2VðψÞ
MD−2

Pl λ2DH
2

�
1=2

; ð55Þ

xW ≡
�

2WðψÞ
MD−2

Pl λ2DH
2

�
1=2

; ð56Þ

with λ2D ≡ ðD − 1ÞðD − 2Þ such that the equations of
motion (46), (49), and (50) can be written down in terms
of the autonomous variables,

2

D − 1
x0ψ ¼ ð1 − wmÞx3ψ − ð1þ wmÞxψx2V

− ½f2ðuÞ þ wmf1ðuÞ�xψx2W − ð1 − wmÞxψ

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
½λVx2V þ λWf1ðuÞx2W �; ð57Þ

2

D − 1
x0V ¼ ð1þ wmÞxV þ ð1 − wmÞx2ψxV

− ð1þ wmÞx3V − ½f2ðuÞ þ wmf1ðuÞ�xVx2W

−
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λVxψxV; ð58Þ

2

D − 1
x0W ¼ ð1þ wmÞxW þ ð1 − wmÞx2ψxW

− ð1þ wmÞx2VxW − ½f2ðuÞ þ wmf1ðuÞ�x3W

−
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λWxψxW; ð59Þ

where we have used the constraint coming from Eq. (43),

x2ρ þ x2ψ þ x2V þ f1ðuÞx2W ¼ 1: ð60Þ

Note that here the prime symbol denotes the derivative with
respect to lnðaÞ. We also have defined

f1ðuÞ≡
XD−1

n¼0

cnþ1AnuD−n−1; ð61Þ

f2ðuÞ≡
XD−1

n¼1

ðcn þ cnþ1ÞnAnuD−n−1; ð62Þ

which are assumed to be bounded functions. As we have
seen above, the scale factor aðtÞ can be thought of as a
parameter in this picture and the fiducial scale ãðtÞ is only a
background in this setup. Therefore, we conclude that the
quantity u in Eq. (40) is not a dynamical variable; it might
be either a function of time, uðtÞ, or a constant. The first
case is called the normal branch, while the latter is called
the self-accelerating branch. Both have been appeared in
the context of four-dimensional MTMG [30]. Similar
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situation also occurs in the cosmological model of dRGT
massive gravity (see, for example, Ref. [47]).
We could also introduce some higher dimensional

quantities which are analogous to the four-dimensional
cases. First, the state equation parameter and the density
parameter in this theory are given by

wMG ≡ PMG

ρMG
¼ x2ψ − x2V − f2ðuÞx2W

x2ψ þ x2V þ f1ðuÞx2W
; ð63Þ

ΩMG ≡ 2ρMG

MD−2
Pl λ2DH

2
¼ x2ψ þ x2V þ f1ðuÞx2W; ð64Þ

respectively. Then, the decelerated parameter has the form

q ¼ −1 −
_H
H2

¼ −1þ ðD − 1Þ
2

½1þ wm þ ð1 − wmÞx2ψ
− ð1þ wmÞx2V − ðf2ðuÞ þ wmf1ðuÞÞx2W �; ð65Þ

where for q < 0 we have an accelerated universe model.
There are five critical points in the massless sector and three
critical points in the massive sector, which are listed in
the Table I and II, respectively, including their properties.

Note that the quantitiesA�ðD;wm; λVÞ and B�ðD;wm; λWÞ
mentioned in these tables are defined as

A�ðD;wm; λVÞ≡ 1þwm

3−wm
þ ðD− 2Þλ2V
ðD− 2Þð3−wmÞ

×

�
1�

�
1−

2ðD− 1Þð2−wmÞð1þwmÞ
ðD− 2Þλ2V

þ
�ðD− 1Þð1þwmÞ

ðD− 2Þλ2V

�
2
�
1=2
�

ð66Þ

B�ðD;wm; λWÞ≡ 1þwm

3−wm
þ ðD− 2Þλ2W
ðD− 1Þð3−wmÞ

×

�
1�

�
1−

2ðD− 1Þð2−wmÞð1þwmÞ
ðD− 2Þλ2W

þ
�ðD− 1Þð1þwmÞ

ðD− 2Þλ2W

�
2
�
1=2
�
: ð67Þ

Let us first discuss the massless sector in which there are
five critical points, namely, CP1, CP2, CP3, CP4, and CP5
with trivial coupling W0 ¼ 0. The point CP1 describes a
matter-dominated era in which the stability behavior
depends on the state parameter wm. We find the late-time

TABLE I. The properties, the existence, the equation-of-state parameter wMG, the density parameter ΩMG, the deceleration parameter
q, and the stability conditions of the critical points of the autonomous system in the massless sector, WðψÞ ¼ 0. Note that we have
introduced the notation A� in Eq. (66).

Critical
points xψ ;c xV;c xW;c Existence wMG ΩMG q Stability

CP1 0 0 0 Always Undefined 0 D−3þwmðD−1Þ
2

Stable node for wm < −1,
unstable node for wm > 1,
saddle point otherwise

CP2 1 0 0 Always 1 1 D − 2 Stable node for wm > 1,

λV > 2
ffiffiffiffiffiffiffi
D−1
D−2

q
, and

λW > 2
ffiffiffiffiffiffiffi
D−1
D−2

q
, unstable node

for wm < 1, λV < 2
ffiffiffiffiffiffiffi
D−1
D−2

q
,

and λW < 2
ffiffiffiffiffiffiffi
D−1
D−2

q
, saddle

point otherwise

CP3 −1 0 0 Always 1 1 D − 2 Unstable node for wm < 1,
saddle point otherwise

CP4 xψ ;c 0 0 wm ¼ 1 and
0 < jxψ ;cj < 1

1 x2ψ ;c D − 2 Unstable for −1 < xψ ;c < 0, or
0 < xψ ;c < 1 with at least

either λV < 2
xψ ;c

ffiffiffiffiffiffiffi
D−1
D−2

q
or

λW < 2
xψ ;c

ffiffiffiffiffiffiffi
D−1
D−2

q
,

nonhyperbolic for 0<xψ ;c<1

CP5 A�
λV

ffiffiffiffiffiffiffi
D−1
D−2

q
1
λV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1Þð2−A�ÞA�

2ðD−2Þ
q

0 0 < A� < 2 3A�−2
A�þ2

ðD−1Þð2þA�ÞA�
2ðD−2Þλ2V

ðD−1ÞA�
2

− 1 See Fig. 1
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attractor identified by a stable node and the past-time
attractor identified by an unstable node. There are three
possible stabilities, namely stable node, unstable node, and
saddle point. The universe is either acceleratedly expanded
for wm < −ðD − 3Þ=ðD − 1Þ or unacceleratedly expanded

for wm ≥ −ðD − 3Þ=ðD − 1Þ. The first case is however
unphysical since it contains vacuum with wm ¼ −1, while
in the latter case the matter of the universe could be
dominated by dust (wm ¼ 0) or radiation (wm ¼ 1

D−1).

TABLE II. The properties, the existence, the equation-of-state parameter wMG, the density parameter ΩMG, the deceleration parameter
q, and the stability conditions of the critical points of the autonomous system in massive sector,WðψÞ ≠ 0. Note that we have introduced
the notation B� in Eq. (67).

Critical
points xψ ;c xV;c xW;c Existence wMG ΩMG q Stability

CP6 0
ffiffiffiffiffiffiffiffiffiffi
λW

λW−λV

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λV

jf1ðuÞjðλW−λV Þ
q

λW > λV and
f1ðuÞ ¼ f2ðuÞ < 0

−1 1 −1 Stable node for wm > −1
and λVλW < 1

4
D−2
D−1,

stable spiral for wm >
−1 and λVλW > 1

4
D−2
D−1,

saddle point otherwise

CP7 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−f1ðuÞx2W;c

q
xW;c 0 ≤ xW;c ≤ 1,

λV ¼ λW ¼ 0,
and f1ðuÞ¼f2ðuÞ>0

−1 1 −1 Unstable for wm < −1,
nonhyperbolic for
wm > −1

CP8 B�
λW

ffiffiffiffiffiffiffi
D−1
D−2

q
0 1

λW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1Þð2−B�ÞB�
2ðD−2Þf1ðuÞ

q
0 < B� < 2 3B�−2

B�þ2
ðD−1Þð2þB�ÞB�

2ðD−2Þλ2W
ðD−1ÞB�

2
− 1 See Fig. 2

FIG. 2. The stability conditions of the critical point CP8 obtained
by plotting B� defined in Eq. (67) as a function of λW . The
forbidden zone is the area with unphysical properties ΩMG > 1.
This figure consists of two possibilities of the parameter values λV
and λW , where (a) for λV < λW, and (b) for λV > λW.

FIG. 1. The stability conditions of the critical point CP5
obtained by plotting A� defined in Eq. (66) as a function of
λV . The forbidden zone is the area with unphysical properties
ΩMG > 1. This figure consist of two possibilities of the parameter
values λV and λW , where (a) for λV > λW, and (b) for λV < λW.
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At CP2 we also find a late-time and past-time attractors
according to the parameter values with also three possible
stabilities, namely stable node, unstable node, and saddle
point. At this point, gravitons can be thought of as non-
phantom energy dominated by nonaccelerating expansion
process of the universe (ΩMG ¼ 1). The point CP3 has
similar properties as CP2 in terms of its existence and the
values of wm, ΩMG, and q. At this point we do not have a
late-time attractor (a stable node).
The point CP4 exists on the interval 0 < jxψ ;cj < 1which

are unstable on −1 < xψ ;c < 0, or on 0 < xψ ;c < 1 with at

least either λW < 2
xψ ;c

ffiffiffiffiffiffiffi
D−1
D−2

q
or λV < 2

xψ ;c

ffiffiffiffiffiffiffi
D−1
D−2

q
. It becomes

nonhyperbolic on 0 < xψ ;c < 1 with λV > 2
xψ ;c

ffiffiffiffiffiffiffi
D−1
D−2

q
and

λW > 2
xψ ;c

ffiffiffiffiffiffiffi
D−1
D−2

q
. At this point, we have a class of universe

with nonaccelerating expansion since D ≥ 4. These uni-
verse are filled by the matter and the scalar field with
constraint x2ρ;c þ x2ψ ;c ¼ 1 and the equation of state param-
eters wm ¼ wMG ¼ 1.
The point CP5 exists on the interval 0 < A� < 2 which

could be either the late-time attractor, the past-time attrac-
tor, or saddle points, depending on the parameter λV dan
λW . For A�ðD; λV; λWÞ < 2

D−1, we have a class of universe
which acceleratedly expands and the scalar field plays a
role as quintessencelike. The density parameter are on the

interval 0 ≤ ΩMG ≤ 1 such that λV <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1Þð2þA�ÞA�

2ðD−2Þ
q

is

not allowed since it will produce ΩMG > 1. Around

λV ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1Þð2þA�ÞA�

2ðD−2Þ
q

, the expansion of the universe is

dominated by the scalar field (ΩMG ≈ 1) which will be a
good candidate for saddle power-law inflation model. This
will be discussed in detail in Sec. VII.
Next, we consider the massive sector which consists of

the points CP6, CP7, and CP8. The points CP6 and CP7 have
vanishing kinetic part of the scalar field, which implies that
the scalar becomes very massive. On the other hand, the
kinetic part of the scalar is nonzero at CP8.
The point CP6 could be either the late-time attractor for

wm > −1 or saddle point for wm < −1 where the graviton
mass plays a role as the cosmological constant which
dominates the accelerating expansion of universe. This
cosmological constant has to be positive since the param-
eter λW > λV. These features give us a good candidate for
the compatible description of the well-known observation
result [48].
The point CP7 is defined on the circle x2V;c þ

f1ðuÞx2W;c ¼ 1 which may be either unstable for
wm < −1 or nonhyperbolic for wm > −1. At this point,

the parameter λV ¼ λW ¼ 0 showing that both the scalar
potential and the graviton mass are constant. They behave
like the cosmological constant which dominates the accel-
erating expansion of universe.
Finally, the point CP8 which could be either the late-time

attractor or the saddle point depending on the values
of λV and λW . For B�ðD; λV; λWÞ < 2

D−1, the universe
acceleratedly expands and the mass-varying massive
graviton plays a role as quentessence dark energy. There
exists a forbidden zone in CP8; it has ΩMG > 1 for

λW <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1Þð2þB�ÞB�

2ðD−2Þ
q

.

VI. LOCAL-GLOBAL EXISTENCE
OF SOLUTIONS

In this section we will prove the local-global existence
and the uniqueness of the evolution equations (57), (58),
and (59) with constraint (60) using Picard’s iteration
and the contraction mapping properties. We will first
discuss the f1ðuÞ > 0 case, then continue with the
f1ðuÞ < 0 case.
First of all, we introduce the dynamical variables

u ¼

0
B@

xψ
xV
xW

1
CA; ð68Þ

defined on an interval I ≡ ½s; sþ ϵ� where s≡ ln a ∈ R
and ϵ is a small positive constant. The functions f1ðuÞ and
f2ðuÞ in Eqs. (61) and (62)are bounded. In the first part of
this section, we consider the case of f1ðuÞ > 0 such that
from the constraint (60) we could have

0 ≤ jxψ j ≤ 1

0 ≤ jxV j ≤ 1

0 ≤ jf1ðuÞj1=2jxW j ≤ 1

9=
; ð69Þ

In other words, all of the quantities ðxψ ; xV; f1ðuÞxWÞ are
defined on an open set U ⊂ S3 where S3 is the 3-sphere. It
is important to notice that the critical point CP6 is excluded
in this setup.
All of the evolution equations (57), (58), and (59) can be

simply rewritten into

du
ds

¼ J ðuÞ; ð70Þ

with
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J ðuÞ≡ 1

2
ðD − 2Þ

0
BBBBBBBBBBBB@

ð1 − wmÞx3ψ − ð1þ wmÞxψx2V − ðf2ðuÞ þ wmf1ðuÞÞxψx2W
−ð1 − wmÞxψ þ 2

ffiffiffiffiffiffiffi
D−2
D−1

q
ðλVx2V þ λWf1ðuÞx2WÞ

ð1þ wmÞxV þ ð1 − wmÞx2ψxV − ð1þ wmÞx3V
−ðf2ðuÞ þ wmf1ðuÞÞxVx2W −

ffiffiffiffiffiffiffi
D−2
D−1

q
λVxψxV

ð1þ wmÞxW þ ð1 − wmÞx2ψxW − ð1þ wmÞx2VxW
−ðf2ðuÞ þ wmf1ðuÞÞx3W −

ffiffiffiffiffiffiffi
D−2
D−1

q
λWxψxW

1
CCCCCCCCCCCCA

: ð71Þ

Lemma VI.1. The operator J ðuÞ in Eq. (70) is locally Lipschitz with respect to u.
Proof.—We have the following estimate

jJ jU ≤
1

2
ðD − 2Þ

�
j1 − wmjjxψ j3 þ j1þ wmjjxψ jjxV j2 þ jf2ðuÞ þ wmf1ðuÞjjxψ jjxW j2 þ j1 − wmjjxψ j

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
ðλV jxV j2 þ λW jf1ðuÞjjxW j2Þ þ j1þ wmjjxV j þ j1 − wmjjxψ j2jxV j þ j1þ wmjjxV j3

þ jf2ðuÞ þ wmf1ðuÞjjxV jjxW j2 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λV jxψ jjxV j þ j1þ wmjjxW j þ j1 − wmjjxψ j2jxW j

þ j1þ wmjjxV j2jxW j þ jf2ðuÞ þ wmf1ðuÞjjxW j3 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λW jxψ jjxW j

�
: ð72Þ

Then, using Eq. (69), we can show that jJ ðu; xÞjU is indeed bounded on U.
Moreover, for u; û ∈ U we have

jJ ðuÞ − J ðûÞjU ≤
1

2
ðD − 2Þ

�
j1 − wmjjx3ψ − x̂3ψ j þ j1þ wmjjxψx2V − x̂ψ x̂2V j þ j1 − wmjjxψ − x̂ψ j

þ jf2ðuÞ þ wmf1ðuÞjjxψx2W − x̂ψ x̂2W j þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
ðλV jx2V − x̂2V j þ λW jf1ðuÞjjx2W − x̂2W jÞ

þ j1þ wmjjxV − x̂V j þ j1 − wmjjx2ψxV − x̂2ψ x̂V j þ j1þ wmjjx3V − x̂3V j
þ jf2ðuÞ þ wmf1ðuÞjjxVx2W − x̂V x̂2W j

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λV jxψxV − x̂ψ x̂V j þ j1þ wmjjxW − x̂W j þ j1 − wmjjx2ψxW − x̂2ψ x̂W j

þ j1þ wmjjx2VxW − x̂2Vx̂W j þ jf2ðuÞ þ wmf1ðuÞjjx3W − x̂3W j þ
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λW jxψxW − x̂ψ x̂W j

�
: ð73Þ

After some computations, we obtain

jJ ðuÞ − J ðûÞjU ≤ CJ ðjuj; jûjÞju − ûj; ð74Þ

showing that J is locally Lipshitz with respect to u. ▪
Next, we rewrite Eq. (70) into the integral form

uðsÞ ¼ uðs0Þ þ
Z

s

s0

J ðuðŝÞÞdŝ: ð75Þ

We define a Banach space
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X ≡ fu ∈ CðI;R2Þ∶uðx0Þ ¼ u0; sup
x∈I

juðxÞj ≤ L0g; ð76Þ

endowed with the norm

jujX ¼ sup
x∈I

juðxÞj; ð77Þ

where L0 > 0. Introducing an operator K

KðuðxÞÞ ¼ u0 þ
Z

x

x0

J ðuðsÞ; sÞds; ð78Þ

and using Lemma VI.1, we have the following result [49]:
Lemma VI.2. Let K be an operator defined in Eq. (78).

Suppose there exists a constant ε > 0 such that K is a
mapping from X to itself andK is a contraction mapping on
I ¼ ½x; xþ ε� with

ε ≤ min

�
1

CL0

;
1

CL0
L0 þ kJ ðxÞk

�
: ð79Þ

Then, the operator K is a contraction mapping on X.
The above lemma shows that there exists a unique fixed

point of Eq. (78) ensuring a unique local solution of the
differential equation (70). We can further construct a
maximal solution by repeating the above arguments of
the local existence with the initial condition uðx − xnÞ for
some x0 < xn < x and using the uniqueness condition to
glue the solutions.
We can now show the existence of global solutions of

Eq. (70). Let us consider the integral form (75) such that

juðsÞj ≤ juðs0Þj þ
Z

s

s0

jJ ðuðŝÞÞjdŝ: ð80Þ

We first consider the self-accelerating branch where the
parameter u in Eq. (40) is constant. Using Eqs. (69) and
(72), we get

juðtÞj ≤ juðt0Þj þ
1

2
ðD − 2Þ

�
3j1 − wmj þ 3j1þ wmj

þ jf2ðuÞ þ wmj þ
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
ð3λV þ 2λWÞ

þ 2

				 f2ðuÞf1ðuÞ
þ wm

				þ 2
j1þ wmj
jf1ðuÞj1=2

þ j1 − wmj
jf1ðuÞj1=2

þ jf2ðuÞ þ wmf1ðuÞj
jf1ðuÞj3=2

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λW

jf1ðuÞj1=2
�
ln

�
aðtÞ
aðt0Þ

�
: ð81Þ

The second part is to consider the f1ðuÞ < 0 case. From
the constraint (60) we could have

xψ ¼ cos α

xV ¼ sin α cosh β

jf1ðuÞj1=2xW ¼ sin α sinh β

9=
; ð82Þ

where α≡ αðsÞ and β≡ βðsÞ. In this case, Lemma VI.1
and Lemma VI.2 still hold, but we need to modify the
estimate to show the global existence. In the case at hand,
using Eq. (82), the estimate (80) becomes

juðtÞj ≤ juðt0Þj þ
1

2
ðD − 2Þ

�
2j1 − wmj ln

�
aðtÞ
aðt0Þ

�

þ
�
j1þ wmj þ j1 − wmj þ

j1þ wmj
jf1ðuÞj1=2

þ j1 − wmj
jf1ðuÞj1=2

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r �
λV þ λW

jf1ðuÞj1=2
��Z

s

s0

cosh βdŝ

þ
�
j1þ wmj þ

				 f2ðuÞf1ðuÞ
þ wm

				þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
ðλV þ λWÞ

� Z
s

s0

cosh2βdŝ

þ
�
2j1þ wmj þ

				 f2ðuÞf1ðuÞ
þ wm

				þ jf2ðuÞ þ wmf1ðuÞj
jf1ðuÞj3=2

� Z
s

s0

cosh3βdŝ

�
: ð83Þ

For the normal branch with uðtÞ, we employ similar
procedure as above and use the assumptions that f1ðuÞ
and f2ðuÞ are bounded. Then, we obtain the slightly
modified forms of Eqs. (81) and (83).
Thus, we have proven
Theorem VI.1. There exists a global solution of

the evolution equations (57), (58), and (59) with
constraint (60).

VII. COSMOLOGICAL MODELS

In this section we will discuss some possible cosmo-
logical models of the theory. To simplify the computation,
we particularly choose the self-accelerating branch where
the parameter u in Eq. (40) is constant. In the case of the
exponential form of the potentials (51) and (52), we may
have an inflation era in which it can be described by the
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well-known power law inflation [50] where aðtÞ ∝ t1=ϵ,
with the slow-roll parameter ϵ ¼ j _Hj=H2 < 1.
If the scalar ψ plays a role as the inflaton field in the early

epoch, then the critical points CP5 and CP8 are the good
candidates to describe that era, with the slow-roll parameter
given by

ϵ ¼ ðD − 2Þλ2V
4

< 1; ð84Þ

ϵ ¼ ðD − 2Þλ2W
4

�
1þ

P
D−1
n¼0 cnAnuD−n−1P

D−1
n¼0 cnþ1AnuD−n−1

�
< 1; ð85Þ

for CP5 and CP8, respectively. In the CP5 case, which is in
the massless sector, we can use Eqs. (64) and (84) to get

wMG ¼ D − 2

D − 1

λ2V
2
− 1; ð86Þ

which is negative for D > 3. Hence, from Table I, we have

A� ¼ 2ðD − 2Þλ2V
8ðD − 1Þ − ðD − 2Þλ2V

<
1

D − 1
: ð87Þ

Similarly, in the CP8 case, which is in the massive sector,
assuming that u is constant, we can use Eqs. (64) and (85)
to get

wMG ¼ D − 2

D − 1

λ2W
2

�
1þ

P
D−1
n¼0 cnAnuD−n−1P

D−1
n¼0 cnþ1AnuD−n−1

�
− 1; ð88Þ

which is negative for D > 3. Hence, from Table II, we
obtain

B� ¼ 2ðD − 2Þλ2W
P

D−1
n¼0 ðcn þ cnþ1ÞAnuD−n−1

8ðD − 1ÞPD−1
n¼0 cnþ1AnuD−n−1 − ðD − 2Þλ2W

P
D−1
n¼0 ðcn þ cnþ1ÞAnuD−n−1 <

1

D − 1
: ð89Þ

The scalar ψ in the inflation era has the form

ψðtÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffi
MD−2

Pl

p
λα

ln

�
λ2αV0ϵt2

2MD−2
Pl ðD − 1 − ϵÞ

�
; ð90Þ

where λα ¼ λV (λW) for the case of CP5 (CP8), respectively.
In order to have a nucleosynthesis era, we have to

assume ϵ ≪ 1 such that the reheating phase begins at ti and
ends at tf. Therefore, we have the scale factor

aðtfÞ
aðtiÞ

¼
�
tf
ti

�
1=ϵ

¼ exp

�
λαðψf − ψ iÞ
2ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
MD−2

Pl

p
�
: ð91Þ

In addition, the scalar potential in ψ i ¼ ψðtiÞ drops to the
scalar potential in ψf ¼ ψðtfÞ implying that the argument
of the exponential is positive and the scale factor increases
during this period. At the end of the inflation (or in the
beginning of the reheating at t ¼ ti), the scalar field ψ still
dominates the universe with initial density parameter
ΩMG;i ≃ 1. Then, the phase transition of ψ occurs such
that ψ decays to matter fields in the time interval
ti < t < tf. The decay process of the scalar ψ becoming
a matter field occurs relativistically with Pm� ¼
ρm�=ðD − 1Þ. From Eq. (91) and the conservation of energy
of relativistic matter (radiation), we obtain the relation
ρMG;f=ρMG;i ¼ ðai=afÞ2ϵ and ρM;f=ρM;i ¼ ðai=afÞD,
respectively. Since the inflaton density parameter ΩMG ¼
2ρMG=ðMD−2

Pl λ2DH
2Þ and the matter field density, we find

that ΩMG decreases according to

ΩMG ≃
�
1 MeV4

ρM

�
2ϵ=D

; ðti ≤ t ≤ tfÞ; ð92Þ

as ρM increases. Note that here we have assumed that
ϵ ¼ j _Hj=H2 ≪ 1 in the interval. At the end, we have ρM ∼
104–108 MeV4 at t ¼ tf.
On the other hand, we may also apply the theory to the

case of late-time era. Here, we have at least two interesting
possible scenarios. The first is that the scalar field ψ
becomes frozen, after the reheating era, at fixed value
ψ∞ with wMG ¼ −1 at CP6. The value of Wðψ∞Þ then
becomes the graviton mass in the present time, which can
be determined using observational constraints. Hence, the
accelerating expansion of the universe is due to the constant
mass term, as in the dRGT theory. The second possible
scenario is that the scalar field ψ could play a role as
dynamical quintessensial dark energy, either from CP5 in
the massless sector or from CP8 in the massive sector. In the
massless sector, the accelerating expansion of the universe
is due solely to the standard quintessence paradigm.
However, in the massive sector, it is due to the nontrivial
interplay between quintessence and massive gravity in the
massive sector.

VIII. CONCLUSIONS

We have constructed higher-dimensional MTMVMG
with nonzero scalar potential, where the graviton mass is
varied with respect to the real scalar field ψ . Our con-
struction can be summarized as follows. First, we write the
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MVMG action for higher dimensions using the vielbein
formulation in the ADM formalism. We also adopt the
vielbein potential in Ref. [35] and couple it to the masslike
scalar potential WðψÞ. Inserting the ansatz metric (3) and
(4) into the MVMG action, we then derive the precursor
action (9). By imposing the set of D-constraints (19) and
(20) to the precursor action (9), we obtain a theory in which
the graviton has DðD − 3Þ=2 degrees of freedom for
general D spacetime dimensions, without scalar and vector
modes of the Stückelberg field. The resulting theory admits
the Lorentz violation since we have used the ADM vielbein
(3) and (4). Still, the OðD − 1Þ symmetry and the spatial
diffeomorphism are preserved in the MTMVMG action
(36). This theory generalizes the four-dimensional MTMG
in Refs. [29,30] and the four-dimensional MVMG in
Ref. [32].
Then, we derive the Friedmann-Lemaître equations (43)

and (46) for the case of spatially flat spacetimes. To
proceed, inspired by Refs. [44–46], we take both the scalar
potential and the graviton mass couplings to have expo-
nential forms (51) and (52), such that Eqs. (43) and (46) can
be written into a set of autonomous equations (59) with
constraint (60). By performing dynamical system analysis,
we find that in this theory there exists five critical points in
the massless sector, namely CP1–5, whereas in the massive
sector we have three critical points, namely CP6–8. We also
discuss their stability, their existence, and their cosmologi-
cal aspects related to the state equation parameter wMG, the
density parameter ΩMG, and the decelerated parameter q.
Among them, we may have some critical points that are
suitable to explain either inflation phenomenon or the
accelerated universe in the late-time era.
We also have established the local-global existence and

the uniqueness of the evolution equations (57), (58), and
(59) with constraint (60) using Picard’s iteration and the
contraction mapping properties, assuming that the func-
tions f1ðuÞ and f2ðuÞ are bounded. The discussion is then
divided into two parts: the f1ðuÞ>0 case and the f1ðuÞ < 0
case. Note that our results apply to all branches, namely the
self-accelerating branch and the normal branch.
Finally, we have particularly discussed some possible

cosmological models of the MTMVMG in the self-accel-
erating branch. Since both the scalar potential and the
graviton mass couplings have exponential forms (51) and
(52), the theory has a good description of the inflation era in
the early universe using the power-law inflation [50] in
which the scale factor aðtÞ ∝ t1=ϵ with the slow-roll
parameter ϵ ¼ j _Hj=H2 < 1. This era can be described

either by the critical point CP5 or CP8. In other words,
our theory can describe the inflationary era using both the
massless and the massive sectors. Also, we have shown that
the MTMVMG could accommodate the reheating mecha-
nism in this framework, again for both massless and
massive sectors. Perturbative approach needs to be applied,
for example, to study the behavior of primordial gravita-
tional waves based on MTMVMG, as in the case of four-
dimensional MTMG [51,52]. The detailed construction and
the phenomenological predictions are left for subsequent
works. On the other hand, we have at least two interesting
possible scenarios for the late times. The first scenario is
that the dark energy in the present time is due to the
graviton mass which depends on the scalar field ψ∞ that
becomes frozen after the reheating era. The second scenario
is that the scalar field ψ plays role as dynamical quintes-
sential dark energy. Therefore, contrary to the massless
sector where the accelerating expansion is due to the
standard quintessence paradigm, in the massive sector it
is due to the nontrivial interplay between quintessence and
massive gravity.
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APPENDIX A: MASS TERM

In this Appendix we are going to evaluate potential
element in Eq. (7) by taking the ADM vielbein in Eqs. (3)
and (4). For n ¼ 0 we obtain

1

D!
ϵ̂A1A2���AD

ẼA1 ∧ ẼA2 ∧ ẼA3 ∧ … ∧ ẼAD

¼ dDx
D!

ϵ̂A1A2���AD
ϵ̂μ1μ2���μDẼA1

μ1Ẽ
A2

μ2Ẽ
A3

μ3 � � � ẼAD
μD

¼ dDx
D!

ϵ̂A1A2���AD
ϵ̂B1B2���BDδA1

B1
δA2

B2
� � � δAD

BD
detðẼÞ

¼ dDxM detðẽÞ: ðA1Þ

Note that we have used the relations dxμ1 ∧ dxμ2 ∧ � � � ∧
dxμD ¼ ϵ̂μ1μ2���μDdDx in first step and ϵ̂μ1μ2���μD ¼
ϵ̂B1B2���BDẼμ1

B1
Ẽμ2

B2
� � � ẼμD

BD
in the second step.

Following the same way as above for other n, we have
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ϵ̂A1A2���AD
EA1 ∧ ẼA2 ∧ ẼA3 ∧ … ∧ ẼAD ¼ ðD − 1Þ!ðM detðẽÞ½ẽ−1e� þ N detðẽÞÞ;

ϵ̂A1A2���AD
EA1 ∧ EA2 ∧ ẼA3 ∧ … ∧ ẼAD ¼ ðD − 2Þ!ðM detðẽÞð½ẽ−1e�2 − ½ðẽ−1eÞ2�Þ þ 2N detðẽÞ½ẽ−1e�Þ;

ϵ̂A1A2���AD
EA1 ∧ EA2 ∧ EA3 ∧ … ∧ ẼAD ¼ ðD − 3Þ!ðM detðẽÞð½ẽ−1e�3 − 3½ẽ−1e�½ðẽ−1eÞ2�

þ 2½ðẽ−1eÞ3�Þ þ 3N detðẽÞð½ẽ−1e�2 − ½ðẽ−1eÞ2�ÞÞ;
..
.

ϵ̂A1A2���AD
ẼA1 ∧ ẼA2 ∧ EA3 ∧ … ∧ EAD ¼ ðD − 2Þ!ðN detðeÞð½e−1ẽ�2 − ½ðe−1ẽÞ2�Þ þ 2M detðeÞ½e−1ẽ�Þ;

ϵ̂A1A2���AD
ẼA1 ∧ EA2 ∧ EA3 ∧ … ∧ EAD ¼ ðD − 1Þ!ðN detðeÞ½e−1ẽ� þM detðeÞÞ;

ϵ̂A1A2���AD
EA1 ∧ EA2 ∧ EA3 ∧ … ∧ EAD ¼ D!N detðeÞ;

where ½� � �� denotes the trace. Now we define XI
J ≡ ẽIkekJ and YI

J ≡ eIkẽkJ such that

XD
n¼0

cn
n!ðD − nÞ! ϵ̂A1A2���AD

EA1 ∧ … ∧ EAn ∧ ẼAnþ1 ∧ … ∧ ẼAD

¼ dDxN detðeÞ
�
j detðXÞjM

N

XD−1

n¼0

cnSnðYÞ þ
XD−1

n¼0

cD−nSnðXÞ
�
: ðA2Þ

with Sn symmetric polynomial. For example given matrix
A size D ×D,

S0ðAÞ ¼ 1;

S1ðAÞ ¼ ½A�;

S2ðAÞ ¼
1

2!
ð½A�2 − ½A2�Þ;

S3ðAÞ ¼
1

3!
ð½A�3 − 3½A�½A2� þ 2½A3�Þ;

S4ðAÞ ¼
1

4!
ð½A�4 − 6½A�2½A2� þ 8½A�½A3�

þ 3½A2�2 − 6½A4�Þ
..
.

SDðAÞ ¼ detðAÞ;
Sn>DðAÞ ¼ 0:

APPENDIX B: MTMVMG ACTION

In this Appendix we fill some gaps in the derivation of
the MTMVMG action in Sec. III. Let us begin with the
MTMVMG Hamiltonian (22) which can be expressed in
terms of the time derivative of spatial vielbein and the scalar
field,

_eIi ≈
δHMTMVMG

δπI
i

¼ 1

MD−2
Pl

�
N

detðeÞ
�
πI i −

1

D − 2
πkKeKkeIi

�

þ ð∇iNjÞδIJejJ
þ j detðXÞjλMWðψÞ

�
γikẽkLδIK −

1

D − 2
YK

LeIi

�

×
XD−1

n¼1

Xn
m¼1

ð−1ÞmcnðYm−1ÞLKSn−mðYÞ
�
; ðB1Þ

_ψ ≈
δHMTMVMG

δπ

¼ Nπ

detðeÞ þ Ni∂iψ

þ j detðXÞjλMdW
dψ

XD−1

n¼1

cnSnðYÞ; ðB2Þ

respectively, such that we have the new conjugate momenta

πiI
detðeÞ≡MD−2

Pl ðKijδIJeJj − KeiIÞ

− λ
WðψÞ
2

M
N
ΘijδIJeJj; ðB3Þ

π

detðeÞ≡
_ψ

N
−
Ni

N
∂iψ − λ

dW
dψ

M
N
Φ: ðB4Þ
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The last terms in Eqs. (B3) and (B4) arise since the MTMVMG constraints depend on the conjugate momenta πI i and π.
The symmetrical property of Θij cancels the antisymmetric terms, namely αMNP½MN� and βMNY ½MN� out of the MTMVMG
Hamiltonian. Employing the Legendre transformation, we obtain the MTMVMG action,

SMTMVMG ≡
Z
M

dDxðπiI _eIi þ π _ψ −HMTMVMGjαMN¼βMN¼0Þ ðB5Þ

¼ Spre −
Z
M

dDxðλC0 þ λiCiÞ −
2

MD−2
Pl

Z
M

dDxN detðeÞ
�
λ
WðψÞ
4

M
N

�
2
�
ΘijΘij −

1

D − 2
Θ2

�

−
1

2

Z
M

dDxN detðeÞ
�
λ
dW
dψ

M
N

�
2

Φ2 þ Smatter ðB6Þ

¼ Spre −
Z
M

dDxðλC̄0 þ λiCiÞ þ
2

MD−2
Pl

Z
M

dDxN detðeÞ
�
λ
WðψÞ
4

M
N

�
2
�
ΘijΘij −

1

D − 2
Θ2

�

þ 1

2

Z
M

dDxN detðeÞ
�
λ
dW
dψ

M
N

�
2

Φ2 þ Smatter; ðB7Þ

where Spre and Smatter are the precursor action and the matter action, respectively, whereas

C0 ¼ WðψÞM detðeÞj detðXÞj
XD−1

n¼1

Xn
m¼1

ð−1ÞmcnðYm−1ÞJISn−mðYÞ

×

��
γikẽkJeIj −

1

D − 2
γijYI

J

��
Kij − Kγij −

λ

MD−2
Pl

WðψÞ
2

M
N
Θij

�
−

1

M
ẽkJ

∂
∂t ẽ

I
k

�

þM detðeÞ dW
dψ

�
_ψ

N
−
Ni

N
∂iψ

�
Φ − λN detðeÞ

�
dW
dψ

M
N

�
2

Φ2; ðB8Þ

Ci ¼ M detðeÞ
�
WðψÞ∇j

�
j detðXÞj

XD−1

n¼1

Xn
m¼1

ð−1ÞmcnðYm−1ÞJISn−mðYÞMYK
JδKLeIieLj

�

þ j detðXÞj∂iψ
dW
dψ

XD−1

n¼1

cnSnðYÞ
�
; ðB9Þ

with

C̄0≡C0jλ¼0¼MjdetðXÞjfWðψÞ
��

γikẽkJeIj−
1

D−2
γijYI

J

�
ðKij−KγijÞ− 1

M
ẽkJ

∂
∂t ẽ

I
k

�XD−1

n¼1

Xn
m¼1

ð−1ÞmcnðYm−1ÞJISn−mðYÞ

−
dW
dψ

�
_ψ

N
−
Ni

N
∂iψ

�XD−1

n¼1

cnSnðYÞ
�
: ðB10Þ

APPENDIX C: LINEAR STABILITY

In this Appendix we consider the linear perturbation of dynamical equations (57)–(59) in the critical points
ðxψ ;c; xV;c; xW;cÞ. First, we expand autonomous variables around these points

xψ ¼ xψ ;c þ uψ ; ðC1Þ

xV ¼ xV;c þ uV; ðC2Þ

xW ¼ xW;c þ uW: ðC3Þ
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The first order equation of motions has the form

2u0ψ
D − 1

¼ ½3ð1 − wmÞx2ψ ;c − ð1þ wmÞx2V;c − ðf2ðuÞ þ wmf1ðuÞÞx2W;c − ð1 − wmÞ�uψ

−
�
2ð1þ wmÞxψ ;c − 4

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λV

�
xV;cuV −

�
2ðf2ðuÞ þ wmf1ðuÞÞxψ ;c − 4

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λWf1ðuÞ

�
xW;cuW; ðC4Þ

2u0V
D − 1

¼
�
2ð1 − wmÞxψ ;c −

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λV

�
xV;cuψ þ

�
ð1þ wmÞ þ ð1 − wmÞx2ψ ;c

− 3ð1þ wmÞx2V;c − ðf2ðuÞ þ wmf1ðuÞÞx2W;c −
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λVxψ ;c

�
uV − 2ðf2ðuÞ þ wmf1ðuÞÞxV;cxW;cuW; ðC5Þ

2u0W
D − 1

¼
�
2ð1 − wmÞxψ ;c −

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λW

�
xW;cuψ − 2ð1þ wmÞxV;cxW;cuV

þ
�
ð1þ wmÞ þ ð1 − wmÞx2ψ ;c − ð1þ wmÞx2V;c − 3ðf2ðuÞ þ wmf1ðuÞÞx2W;c −

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
λWxψ ;c

�
uW; ðC6Þ

such that we can cast the above equations into the matrix form

0
B@

u0ψ
u0V
u0W

1
CA ¼ J

0
B@

uψ
uV
uW

1
CA; ðC7Þ

where J is Jacobian matrix. Let the eigenvalues of J are μ1, μ2, and μ3. We write the Jacobian matrix J and its eigenvalues
for each of the critical points below. These then can be used to analyze their stability properties, which we summarize in
Table III.

TABLE III. Stability properties of the critical point ðxψ ;c; xV;c; xW;cÞ based on the three eigenvalues μ1, μ2, and μ3.

Eigenvalues Stability

Real eigenvalues
μn < 0, for n ¼ 1, 2, 3 Stable node
μn > 0, for n ¼ 1, 2, 3 Unstable node
μn > 0 and μm ≤ 0, for n ∪ m ¼ 1, 2, 3 Unstable
μn > 0 and μm < 0, for n ∪ m ¼ 1, 2, 3 Saddle point
μn ¼ 0 and μm < 0, for n ∪ m ¼ 1, 2, 3 Nonhyperbolic, linear stability fails to determine

and other methods are needed

Complex eigenvalues
ReðμnÞ < 0, for n ¼ 1, 2, 3 Strongly stable spiral
ReðμnÞ > 0, for n ¼ 1, 2, 3 Strongly unstable spiral
ReðμnÞ < 0 and ReðμmÞ > 0, for n ∪ m ¼ 1, 2, 3 Saddle focus
ReðμnÞ ¼ 0 and ReðμmÞ ≠ 0, for n ∪ m ¼ 1, 2, 3 Weakly center point
ReðμnÞ ¼ 0, for n ¼ 1, 2, 3 Strongly center point

Real eigenvalues μn and complex eigenvalues μm for n ∪ m ¼ 1, 2, 3
μn < 0 and ReðμmÞ < 0 Weakly stable spiral
μn > 0 and ReðμmÞ > 0 Weakly unstable spiral
μn < 0 and ReðμmÞ > 0 Saddle focus
μn > 0 and ReðμmÞ < 0 Saddle focus
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(i) The Jacobian matrix for CP1: (0,0,0) is

J ¼

0
B@

−ð1 − wmÞ 0 0

0 1þ wm 0

0 0 1þ wm

1
CA; ðC8Þ

with eigenvalues

f−ð1 − wmÞ; 1þ wmg: ðC9Þ

(ii) The Jacobian matrix for CP2: (1,0,0) is

J ¼

0
BB@

2ð1 − wmÞ 0 0

0 2 − λV

ffiffiffiffiffiffiffi
D−2
D−1

q
0

0 0 2 − λW

ffiffiffiffiffiffiffi
D−2
D−1

q

1
CCA; ðC10Þ

with eigenvalues

�
2ð1 − wmÞ; 2 − λV

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
; 2 − λW

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r �
: ðC11Þ

(iii) The Jacobian matrix for CP3: ð−1; 0; 0Þ is

J ¼

0
BB@

2ð1 − wmÞ 0 0

0 2þ λV

ffiffiffiffiffiffiffi
D−2
D−1

q
0

0 0 2þ λW

ffiffiffiffiffiffiffi
D−2
D−1

q

1
CCA; ðC12Þ

with eigenvalues

�
2ð1 − wmÞ; 2þ

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
; 2þ λW

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r �
: ðC13Þ

(iv) The Jacobian matrix for CP4: ðxψ ;c; 0; 0Þ is

J ¼

0
BB@

0 0 0

0 2 − λVxψ ;c
ffiffiffiffiffiffiffi
D−2
D−1

q
0

0 0 2 − λWxψ ;c
ffiffiffiffiffiffiffi
D−2
D−1

q

1
CCA; ðC14Þ

with eigenvalues

�
0; 2 − λVxψ ;c

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r
; 2 − λWxψ ;c

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 1

r �
: ðC15Þ

(v) One of the eigenvalues of the Jacobian matrix for CP5:


A�
λV

ffiffiffiffiffiffiffi
D−1
D−2

q
; 1
λV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1Þð2−A�ÞA�

2ðD−2Þ
q

; 0
�
is

μ1 ¼
�
1 −

λW
λV

�
A�: ðC16Þ
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(vi) The Jacobian matrix for CP6: ð0;
ffiffiffiffiffiffiffiffiffiffi
λW

λW−λV

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λV
jf1ðuÞjðλW−λVÞ

q
Þ is

J ¼

0
BBBBB@

−2 −4λV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−2
D−1

λW
λW−λV

q
4λW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−2
D−1

jf1ðuÞjλV
λW−λV

q

−λV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−2
D−1

λW
λW−λV

q
− 2ð1þwmÞλW

λW−λV
− 2ð1þwmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jf1ðuÞjλVλW

p
λW−λV

−λW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−2
D−1

λV
jf1ðuÞjðλW−λVÞ

q
− 2ð1þwmÞ

λW−λV

ffiffiffiffiffiffiffiffiffiffi
λVλW
jf1ðuÞj

q
2ð1þwmÞλV
λW−λV

1
CCCCCA
; ðC17Þ

with eigenvalues

�
−2ð1þ wmÞ;−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ðD − 1ÞλVλW
D − 2

r �
: ðC18Þ

(vii) The Jacobian matrix for CP7: ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f1ðuÞx2W;c

q
; xW;cÞ is

J ¼

0
BBB@

−2 0 0

0 −2ð1þ wmÞð1 − f1ðuÞx2W;cÞ −2ð1þ wmÞf1ðuÞxW;c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f1ðuÞx2W;c

q

0 −2ð1þ wmÞxW;c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f1ðuÞx2W;c

q
−2ð1þ wmÞf1ðuÞx2W;x

1
CCCA; ðC19Þ

with eigenvalues

f−2;−2ð1þ wmÞ; 0g: ðC20Þ

(viii) One of the eigenvalues of the Jacobian matrix for CP8:


B�
λW

ffiffiffiffiffiffiffi
D−1
D−2

q
; 0; 1

λW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1Þð2−B�ÞB�
2ðD−2Þf1ðuÞ

q �
is

μ1 ¼
�
1 −

λV
λW

�
B�: ðC21Þ
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