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We present the first application of a hierarchical Markov Chain Monte Carlo (MCMC) follow-up on
continuous gravitational-wave candidates from real-data searches. The follow-up uses an MCMC sampler
to draw parameter-space points from the posterior distribution, constructed using the matched-filter as a
log-likelihood. As outliers are narrowed down, coherence time increases, imposing more restrictive phase-
evolution templates. We introduce a novel Bayes factor to compare results from different stages: The signal
hypothesis is derived from first principles, while the noise hypothesis uses extreme value theory to derive a
background model. The effectiveness of our proposal is evaluated on fake Gaussian data and applied to a
set of 30 outliers produced by different continuous wave searches on O2 Advanced LIGO data. The results
of our analysis suggest all but five outliers are inconsistent with an astrophysical origin under the standard
continuous wave signal model. We successfully ascribe four of the surviving outliers to instrumental
artifacts and a strong hardware injection present in the data. The behavior of the fifth outlier suggests an
instrumental origin as well, but we could not relate it to any known instrumental cause.
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I. INTRODUCTION

Continuous gravitational waves (CWs) are persistent
forms of gravitational radiation. These yet-to-be detected
signals are orders of magnitude weaker than compact
binary coalescenses [1], requiring long integration times
(months to years) to differentiate them from noise.
Potentially detectable sources using the current generation
of ground-based interferometric detectors, Advanced
LIGO [2] and Advanced Virgo [3], are neutron stars
(NSs) presenting some nonaxisymmetry such as crustal
deformations, r-mode instabilities or free precession [4], or
the annihilation of ultralight boson clouds around spinning
black holes [5].
Searching for a CW consists in filtering a data stream

against a set of signal templates, each of which is related to
a certain set of parameters describing the CW model being
searched for. The number of templates required to properly
cover a certain parameter space region, however, scales as a
large power of observing time [6]. At a fixed computing
cost, the optimal strategy is to split the data stream into
segments on which the filtering is performed, and then
combine the resulting statistics [7,8]. Since phase informa-
tion is only fully preserved within each of these segments,
they are usually referred to as coherent segments spanning
a certain coherence time.

The approach taken by current implementations of wide
parameter space searches such as [9–14] lies in the middle
ground. Wide parameter space regions are analyzed using a
relatively low coherence time, ranging from half an hour to
a few weeks. Surviving outliers are then sieved through a
suite of vetoes testing their (in)consistency with a CW
signal; this includes studying their persistence over the data
stream, comparing their significance in different detectors
or checking whether they cross a frequency band contain-
ing known instrumental artifacts [15–21]. Other common
strategies are coincidence analyses between detectors or
clustering neighboring outliers in order to relate them to a
common cause [22–25]. Finally, if there are any surviving
outliers, various follow-up strategies use longer coherence
times [21,26–31], either in a single stage or in a hierarchical
scheme where candidates are narrowed down over a
“ladder” of coherence times.
Large-scale CW searches would benefit from a simple,

general hierarchical setup, as it would allow for the
systematic follow-up of CW outliers using longer coher-
ence times, imposing tighter constraints and reducing the
presence of outliers due to background noise.
Here we present the first complete framework to conduct

hierarchical Markov Chain Monte Carlo (MCMC) follow-
ups and its application to a set of outliers obtained by
different CW search pipelines on Advanced LIGO O2 data.
Our work builds on top of [32], which introduced the
MCMC follow-up of CW outliers and studied its*rodrigo.tenorio@ligo.org

PHYSICAL REVIEW D 104, 084012 (2021)

2470-0010=2021=104(8)=084012(23) 084012-1 © 2021 American Physical Society

https://orcid.org/0000-0002-3582-2587
https://orcid.org/0000-0002-2824-626X
https://orcid.org/0000-0001-9050-7515
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.084012&domain=pdf&date_stamp=2021-10-01
https://doi.org/10.1103/PhysRevD.104.084012
https://doi.org/10.1103/PhysRevD.104.084012
https://doi.org/10.1103/PhysRevD.104.084012
https://doi.org/10.1103/PhysRevD.104.084012


performance on simulated signals in pure Gaussian noise.
We propose a new hypothesis test for the presence of a
signal in the data after the full follow-up procedure. The
probability of the signal hypothesis is derived from first
principles as proposed in [33]; the probability of the noise
hypothesis is derived from the application of extreme value
theory. We demonstrate the general applicability of this
follow-up strategy by analyzing outliers stemming from
different analysis pipelines.
Although we restrict ourselves to outliers from CW

searches for unknown isolated sources, this framework and
the corresponding software [34] can also be applied to
outliers from searches for sources in binary systems
[21,30], glitching NSs [35] and long-duration gravita-
tional-wave transients [36,37].
The paper is organized as follows: Sec. II describes the

basic tools of CW data analysis and overviews the
application of MCMC samplers to the follow-up problem;
Sec. III introduces a new statistic in terms of hypothesis
testing; Sec. IV introduces the O2 outliers to be analyzed
and the follow-up setup. The results are presented in Sec. V,
concluding in Sec. VI. We briefly comment on the
statistical properties of the maximum F -statistic over
correlated templates in Appendix.

II. CONTINUOUS-WAVE DATA ANALYSIS:
SEARCH AND FOLLOW UP

A CW signal can be parametrized in terms of two
families of parameters, namely the phase-evolution param-
eters λ and the amplitude parameters A. This separation is
motivated by the response of a GW detector to such signals

hðt; λ;AÞ ¼
X3
μ¼0

Aμhμðt; λÞ; ð1Þ

where the functions Aμ are independent of time [38].
The search for a CW signal can be stated in a Bayesian

framework as a hypothesis test between the noise hypoth-
esis HG, under which the data consists of Gaussian noise
nðtÞ, and the signal hypothesis HSðλ;AÞ, supporting the
presence of a CW signal with a defined set of parameters
within said noise nðtÞ þ hðt; λ;AÞ. The support of a stream
of data x for either of these hypotheses is quantified by the
Bayes factor [39]

BS=Gðx; λ;AÞ ¼ PðxjHSðλ;AÞÞ
PðxjHGÞ

: ð2Þ

Following [40,41], and motivated by the linear dependency
of Eq. (1) on the amplitude functionsAμ, one can choose an
appropriate set of priors PðAÞ such that Eq. (2) can be
analytically marginalized:

BS=Gðx; λÞ ¼
Z

dABS=Gðx; λ;AÞPðAÞ ∝ eF ðx;λÞ: ð3Þ

The statistic F , which depends only on the data and the
phase parameters, was originally derived as the maximum-
likelihood estimator with respect to A [38,42]. This is a
general detection statistic which only relies on the wave-
form decomposition presented in Eq. (1) and hence can be
applied also to variations of the CW signal model such as
sources in binaries [43] and transients [36]. Furthermore,
the methods developed in this work can also be applied to
CW outliers from any kind of search using a different
detection statistic, as long as they can be associated with a
parameter-space point with a certain uncertainty.
The role of Eq. (3) is to update the prior probability on

the phase evolution parameters PðλÞ by means of the
information conveyed by the data stream x. This can be
stated in terms of Bayes’ theorem as

Pðλjx;HSÞ ∝ BS=Gðx; λÞPðλÞ: ð4Þ

We note that BS=G and F have the same statistical power as
they are related by a strictly monotonic function. For the
sake of later consistency, we will focus on F from now on.
We refer the reader to [36,40,44,45] for a more in-depth
analysis of these statistics.
The detection problem is now stated in terms of a

maximization: Given a stream of data x, we are interested
in finding the phase-evolution parameters λ (also referred to
as templates) which maximize Eq. (4) or, equivalently,
F ðx; λÞ.

A. Coherent and semicoherent searches

The fully coherent F -statistic can be expressed in terms
of a linear filter between the data stream and a signal
template,

F̃ ðλÞ ∝ jhx; hðλÞij2; ð5Þ

where h·i represents a functional scalar product.
Throughout this work, and following the convention of
[46], fully coherent quantities will be represented with a
tilde; semicoherent quantities, introduced in Eq. (7), will be
represented with a caret. The response of F̃ to an offset Δλ
in the phase-evolution parameters λ is quantified using the
mismatch [47], which can be defined in terms of a local
quadratic approximation around the true signal parameters
λ where the mismatch has a minimum:

mðΔλ; λÞ ¼ F̃ ðλÞ − F̃ ðλþ ΔλÞ
F̃ ðλÞ ≃ ΔλT · ¯̄g · ΔλþOðΔλ3Þ:

ð6Þ
The symmetric tensor ¯̄g is referred to as the parameter-
space metric, and can be used to set up parameter-space
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coverings, also known as template banks, at a certain
mismatch level. This quadratic approximation is known to
be valid up to m≲ 0.3–0.5, although latest developments
on this subject suggest to further extend the approximation
up to m ∼ 1 [48–50].
Maximizing Eq. (5) poses a computational challenge, as

the number of templates to be considered in the optimi-
zation scales with a large power of the total length of the
data stream [6,51], while the sensitivity only scales as the
square root of it [52,53]. As discussed in [13,54], such a
strong scaling stems from the tight restrictions imposed by
the F -statistic on the signal model, requiring phase
coherence over the whole duration of the data stream. A
looser statistic can be constructed by imposing said
coherence in a segment-wise manner. To do so, the data
stream, spanning a time of Tobs, is divided into Nseg

segments, each of them with a duration of Tcoh. The
semicoherent F -statistic is then constructed by adding
the coherent F -statistics computed in each segment

F̂ ðλÞ ¼
XNseg−1

n¼0

F̃ nðλÞ; ð7Þ

where F̃ n refers to the coherent F -statistic computed using
only data within segment n. This approach uncorrelates the
template’s phase-evolution between consecutive coherent
segments, loosening the constraints imposed on the data
and widening F -statistic peaks in the parameter space
[32,54]. In other words, given a parameter-space coordinate
volume, the number of templates required to cover it at a
given mismatch decreases with lower Tcoh. This implies a
dependency of the parameter space metric ¯̄g on Tcoh.
The optimal strategy to sweep a wide parameter-space

region under a controlled computational budget is then to
use a hierarchical scheme with a varying Tcoh: The first
stage surveys a parameter-space region with Tcoh ≪ Tobs,
using an affordable number of templates. F -statistic out-
liers are then analyzed with an increased coherence time,
further narrowing down the parameter-space region of
interest. This process continues either until Tcoh ¼ Tobs
or the candidate is vetoed by a complementary procedure
[8,28,32,46].

B. MCMC-based follow-ups

The follow-up of CW outliers requires to set up a
template bank across the parameter-space region of interest.
Typical gridded approaches use a parameter-space metric to
cover the parameter space at fixed maximum mismatch
[27,28,55]. This approach usually requires an extensive
campaign of software injections to be performed in order to
calibrate the optimal set up in terms of sensitivity and
computing cost [28].
Alternatively, one could view the problem from the point

of view of Bayesian inference. Equation (4) relates the

F -statistic to a posterior probability distribution. This
distribution can be sampled using a MCMC method,
effectively constructing an adaptative random template
bank in the parameter space in which F -statistic values
will be more densely evaluated around high posterior
probability regions. As first discussed in [32], this approach
achieves close to the theoretical optimal sensitivity for
signals in Gaussian noise as long as the parameter space
region is small enough to ensure a good convergence of
the MCMC.
For the purpose of estimating the effectiveness of an

MCMC, as discussed in [32], the effective size of a
parameter-space region can be computed in terms of the
number of templatesN required to cover it at a mismatch of
unity using a lattice with unit normalized thickness [51,56]

N ðTcoh;ΔλÞ ¼
Z
Δλ

dλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðTcohÞ

p
; ð8Þ

where gðTcohÞ is the determinant of the parameter-space
metric, which depends on Tcoh as explained in Sec. II A,
and Δλ represents the region being followed up. The
integral in Eq. (8) must be computed along the resolved
parameter-space dimensions only; i.e., one should not
include fractional templates, as doing so would under-
estimate the actual number of templates [8,43,46]. For a
follow-up search, the parameter-space region under analy-
sis is typically smaller than the scale of parameter-space
correlations, meaning

ffiffiffi
g

p
can be taken out of the integral as

a constant and Eq. (8) simplifies to

N ðTcoh;ΔλÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðTcohÞ

p
VolðΔλÞ ð9Þ

where VolðΔλÞ is the coordinate volume of the region
being followed up. Seminal analyses in [32] and follow-up
searches performed in [21,30] suggest that values up to
N � ≃ 103−4 are compatible with effective MCMC runs in
terms of convergence.
CW outliers are identified as a parameter-space point

carrying an uncertainty which depends on the pipeline used
to conduct the search. Upon entering the follow-up pipe-
line, these uncertainties are converted into prior probability
distributions to start the MCMC sampling. Reference [32]
proposed the use of bounded uniform priors in order to
restrict the surveyed parameter-space region; however, such
hard boundaries may prevent the successful follow-up of
CW candidates whose parameters are shifted due to the
presence of parameter-space correlations. We propose the
use of uncorrelated Gaussian priors, which concentrate
their probability density around a characteristic region
while being unbounded. See Sec. V for details on the
choice of Gaussian priors.
An MCMC-based follow-up is implemented in the

PYFSTAT package [34] using the parallel-tempered ensem-
ble MCMC sampler PTEMCEE [57,58] to sample the
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posterior distribution Eq. (4) using either the coherent
[Eq. (5)] or semicoherent [Eq. (7)] F -statistic. We refer the
reader to [32] for an extended discussion on the character-
istics of this particular MCMC implementation. The
analyses presented in this work were performed using
PYFSTAT version 1.11.3 [59].

C. A coherence-time ladder

Early setups of hierarchical schemes were based on the
optimization of computing resources in order to achieve a
prescribed level of sensitivity [7,8]. Alternatively, if no
computational cost model was available, software injection
campaigns were used to calibrate the number of stages [28].
For the case of an MCMC-based follow-up, one can use the
quantity N ðTcoh;ΔλÞ to design a hierarchical scheme by
imposing the proper convergence of the MCMC run at each
stage [32].
Suppose a wide parameter-space semicoherent search

produces an interesting outlier in the parameter-space
region Δλð0Þ, where the exact shape is entirely dependent
on the pipeline. Round-bracketed superindices denote
different stages of the follow-up. To set up a first

follow-up stage, we choose a coherence time Tð0Þ
coh such

that N ðTð0Þ
coh;Δλð0ÞÞ ≲N �, ensuring the effective param-

eter-space resolution is coarse enough for the MCMC
algorithm to properly converge toward the region of
interest. If successful, the resulting parameter-space region
will be narrower,Δλð1Þ ≤ Δλð0Þ, and a secondMCMC stage

using a new coherence time Tð1Þ
coh will be applied. This

procedure is repeated until Tcoh ¼ Tobs and a final fully
coherent follow-up is performed.
In [32], a simple method was proposed to find the

coherence time for a stage j given the previous stage’s
results. The idea is to increase the coherence time as much as
possible such that theMCMC is able to converge to the target
distribution. Since this convergence can be quantified in
terms of a maximum number of templates within a region

N �, the new coherence time TðjÞ
coh can be obtained by solving

N ðTðjÞ
coh;ΔλðjÞÞ ¼ N �: ð10Þ

This choice minimizes the number of stages in the scheme,
reducing the overall computing cost, while ensuring the
effectiveness of the MCMC approach. The explicit depend-
ency of Eq. (10) on the parameter-space region under
analysis ΔλðjÞ, however, hinders the construction of a
complete hierarchical scheme.
This dependency can be removed by noticing the

inherent self-similarity of MCMC stages: A successful
MCMC follow-up stage ends up with a set of samples
around a prominent global maximum, the fine structure of
which is underresolved because of the chosen coherence
time. By progressing to the next stage, this fine structure

gets resolved and the MCMC zooms in further toward the
parameter-space maximum. The setup of a coherence-time
ladder is simply a problem of minimizing the number of
stages to reduce computing cost while maintaining suffi-
ciently big underresolved regions for the MCMC follow-up
to properly sample the region of interest. This condition can
be simply expressed as N ðTðjÞ

coh;Δλðjþ1ÞÞ ≃ 1; hence, com-
paring consecutive stages factors out the problematic
dependency and the hierarchical scheme can be constructed
by solving the recurrence

N � ≃
N ðTðjþ1Þ

coh ;Δλðjþ1ÞÞ
N ðTðjÞ

coh;Δλðjþ1ÞÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðTðjþ1Þ

coh Þ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðTðjÞ

cohÞ
q ð11Þ

given Tð0Þ
coh and N �. A numerical solver for Eq. (11) is

included in the PYFSTAT package [34]. Constructing the
coherence-time ladder as proposed by [32] makes use of the
so-called SuperSky metric [60,61] to compute the param-
eter-space volume element. This metric is numerically well-
conditioned, but requires Tcoh ≳ 1 day.
Alternatively, we derive an equivalent coherence-time

ladder by considering the parameter-space volume reduc-
tion from one stage to the next. Let us define

γðjþ1Þ ¼ VolðΔλðjÞÞ
VolðΔλðjþ1ÞÞ ð12Þ

as the parameter-space volume shrinkage from stage j to
stage jþ 1. In a practical application, this quantity can be
computed by comparing the volume containing a certain
amount of posterior probability from two consecutive
stages.
Equation (10) can now be reexpressed as

1 ¼ N ðTðjþ1Þ
coh ;Δλðjþ1ÞÞ

N ðTðjÞ
coh;ΔλðjÞÞ

; ð13Þ

and Eq. (11) is generalized by including Eq. (12)

γðjþ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðTðjþ1Þ

coh Þ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðTðjÞ

cohÞ
q ; ð14Þ

where we can recognize γðjþ1Þ as a generalized version of
the refinement factor γ introduced in Eq. (73) of [62] to
account for the template bank refinement from a semi-
coherent stage to a fully coherent one. To fully recover
Eq. (11), we simply set γðjþ1Þ ¼ N � in every stage j.
According to this derivation, constructing a coherence

ladder is equivalent to imposing a ratio of posterior volume
shrinkage. For example, choosing N � ≃ 104 is equivalent
to imposing an overall volume shrinkage of γ ≃ 104
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(i.e., posterior volume is a ten-thousandth fraction of the
prior volume) at each step of the ladder. As a result, the
behavior of an MCMC stage is dependent upon its
capability to fulfill the required shrinkage rate.

III. EVALUATING THE HIERARCHICAL
FOLLOW-UP WITH A BAYES FACTOR

A multistage MCMC follow-up analyzes CWoutliers by
converging toward parameter-space regions with a high
posterior probability. After each stage, coherence time is
increased, breaking up underresolved regions into smaller
ones and allowing the MCMC to further narrow down
the parameters associated to the loudest outlier. We are
interested in evaluating the significance of the loudest
template resulting from the multistage follow-up by com-
paring its actual fully coherent F -statistic to the expected
value predicted by a previous stage of the ladder.
We construct a new Bayes factor for this comparison,

using the fully coherent F -statistic of the loudest candidate
of the MCMC, 2F̃ �, in order to quantify the support for the
presence or lack of a CW signal in the data. Following the
definition in Eq. (2),

lnB�
S=N ¼ ln

Pð2F̃ �jHSÞ
Pð2F̃ �jHNÞ

; ð15Þ

where the hypotheses HS and HN correspond to the
presence or lack of a signal, respectively. As discussed
in Sec. III A, the use of extreme value theory allows us to
formulate HN such that it is not restricted to Gaussian
noise, but includes any exponentially bounded distributions
with unbounded domain. The following subsections are
devoted to deriving the probability distributions under each
of these hypotheses.

A. Noise hypothesis

The noise hypothesis HN ascribes the obtained value of
2F̃ � to pure noise. Under the presence of Gaussian noise,
the coherent F -statistic follows a chi-squared distribution
with 4 degrees of freedom,1 2F̃ ∼ χ24. If we consider the
resulting MCMC samples as a template bank fλg, it is clear
that 2F̃ � ¼ maxλ∈fλg2F̃ ðλÞ and the corresponding proba-
bility distribution is that of the maximum over a certain
number of templates n [63]:

Pðmax 2F̃ Þ ¼ n · χ24ðmax 2F̃ Þ ·
�Z

max 2F̃

0

dξχ24ðξÞ
�
n−1

;

ð16Þ

where χ24 denotes the probability density function. The
argument equally holds for the case of the semicoherent F -
statistic; in that case, however, the number of degrees of
freedom of the chi-squared distribution would be 4Nseg.
By construction, the effective number of templates in a

CW template bank is different from the actual number of
templates. This is because template banks are set up such
that no parameter-space point is further than a certain
mismatchm from a template in the bank, implying a certain
degree of correlation among neighboring templates [56].
The problem of estimating the effective number of tem-
plates in a template bank has not found a definitive solution
in the CW literature.
A common approach, see, e.g., [64], is to evaluate the

template bank on several realizations of Gaussian noise to
numerically sample the probability distribution of the
loudest outlier; the effective number of templates is then
obtained by fitting n from Eq. (16) to the data. Another
approach, first proposed in [65], splits the results of a wide
parameter-space search into disjoint partitions such that they
are equivalent to different realizations of a smaller search.
The fractionof effective templates can be fittedusingEq. (16)
to the loudest outlier per partition, obtaining n through
extrapolation. Further developments on this method pro-
posed a nonparametric ansatz to directly estimate the dis-
tribution of the loudest candidate of a search [66].
Here we will use a solution based on extreme value

theory, which describes the three possible asymptotic
distributions followed by the maximum of n independent
trials according to the tail of their individual probability
distribution. Short-scale correlated variables, such as the
ones arising in the search for CW signals, are also covered
by the theory [67]. The family of three distributions,
usually referred to as the generalized extreme value
distribution, is parametrized by a single parameter c ∈ R
(aside from the location and scale parameters), and
encompasses every possible max-stable distribution: the
maximum value of a set of random variables following a
generalized extreme value distribution follows itself a
generalized extreme value distribution of the same class,
albeit with different parameters. Each of the three possible
distributions is related to c being positive, null or negative,
and encloses a different set of probability distributions in its
domain of attraction [68–70].
For our CWapplication, we focus on the case c ¼ 0, also

known as the Gumbel distribution

Gumbelðξ; μ; σÞ ¼ 1

σ
exp

�
−
�
ξ − μ

σ

�
− e−ð

ξ−μ
σ Þ
�
; ð17Þ

where μ and σ are its location and scale parameters,
respectively. The domain of attraction of this distribution
comprises a variety of exponentially bounded distributions,
including the chi-squared distribution. A similar procedure
could be carried out for the other two families c ≠ 0,

1We recall for the sake of consistency with the statistics
literature that a chi-squared distribution with ν degrees of free-
dom corresponds to a Gamma distribution with shape parameter
k ¼ ν=2 and scale parameter θ ¼ 2.
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including power-law and finite tails, if the behavior of the
background noise required so. This argument is consistent
with the empirical proposal of [71].
As noted in Appendix D of [53], the presence of

correlated templates renders Eq. (16) unsuitable to describe
the background noise distribution of CW searches. This is
because the family of Gumbel distributions spanned by
Eq. (16) as n → ∞ has a fixed scale parameter σ ¼ 2. The
inclusion of correlated templates makes the underlying
distribution deviate from a chi-squared [72], but exponen-
tial tails still allow the distribution of the maxima to be
described by a Gumbel distribution but with σ ≠ 2. Further
discussion on this topic is presented in Appendix.
As a result, we construct Pð2F̃ �jHNÞ by fitting both the

location and scale parameters of a Gumbel distribution to
the background distribution associated to 2F̃ �

Pð2F̃ �jHNÞ ¼
1

σN
exp

�
−
�
2F̃ � − μN

σN

�
− e−ð

2F̃�−μN
σN

Þ
�
: ð18Þ

This approach has the advantage of circumventing the
computation of an effective number of templates by directly
using the asymptotic distribution, the functional form of
which is robust as long as the individual distribution tails
fall off exponentially. The typical number of templates
evaluated in an MCMC follow-up is consistent with a good
convergence of the maximum distribution toward a Gumbel
[73]. Further discussion on the suitable application of
extreme value theory to evaluate the loudest outlier of a
gravitational-wave search will be presented elsewhere [74].
To estimate the scale and location parameters of the

background distribution μN; σN, we apply the off-sourcing
procedure, the effectiveness of which was studied in [75].
Off-sourcing consists in evaluating the F -statistic on a
template bank whose sky positions have been purposely
shifted with respect to that of the outlier of interest. This
blinds the detection statistic to the outlier under analysis
while still sampling the same background distribution from
the dataset. Incidentally, this takes into account template-
bank correlations induced by non-Gaussian noise compo-
nents. These correlations do not arise due to different
templates sampling the same spectrogram data (i.e., over-
lapping frequency-evolution tracks) [25,65], but due to the
presence of correlated spectrogram data spanning different
iso-mismatch ellipsoids in the parameter space. The former
kind is fundamental in the sense that it is independent of the
background; the latter is entirely dependent upon the
observed data: the wider the bandwidth of the disturbance,
the lower the number of effective independent templates.
In our concrete application, we produce No ¼ 600 off-

sourced template banks by randomly shifting the template’s
right ascension (azimuthal spherical angle), excluding a 90°
region around the sky position of interest. The declination
(polar spherical angle) is unchanged in order to maintain a
constant level of sensitivity in terms of F -statistic values.

Figure 1 shows an example of a background noise
distribution obtained through this procedure.
The evaluation of off-sourced template banks represents

themain contribution to the computing cost of the follow-up.
The small number of outliers evaluated in this work allowed
us to evaluate a set of off-sourced samples for each of them.
For the case of a large-scale follow-up, however, one could
benefit from the general properties of the Gumbel distribu-
tion to re-use a set of Gumbel parameters for different
parameter-space regions, lowering the overall comput-
ing cost.

B. Signal hypothesis

The presence of a signal is characterized by its (squared)
signal-to-noise ratio (SNR) ρ2, which gauges the (squared)
amplitude of a signal against that of the background noise
[9,38,42,47]. Exact expressions for ρ2, which include
amplitude-modulation effects due to the antenna pattern
of the detectors, are available in [38,52,53]. The effect
of this parameter on the probability distribution of the
F -statistic is to shift the chi-squared distribution toward a
noncentral chi-squared distribution, 2F ∼ χ24Nseg

ðρ2Þ, were
the fully coherent case corresponds to Nseg ¼ 1.
As previously discussed, we are interested in comparing

the consistency of 2F̃ � to the values 2F̂ � obtained in a
previous stage of the ladder. Any semicoherent stage of
the ladder can be used to construct a signal hypothesis; as
discussed in more detail in Sec. VA, we select the second-
to-last stage in order to benefit from the tighter constraints
imposed by the signal model. For the remainder of this
section we simplify our notation by removing the asterisks,
assuming everyF -statistic value refers to that of the loudest
candidate from the fully coherent stage.
We construct Pð2F̃ jHSÞ following the developments of

[33]. The basic idea goes as follows: Assume a single-
template search perfectly matching a signal is performed.

FIG. 1. Distribution of the maximum 2F value of a template
bank obtained from its evaluation at No ¼ 600 different off-
sourced right ascensions, excluding 90° around the sky position
of the outlier of interest. The template bank corresponds to
MCMC samples from the fully coherent stage follow-up of a
simulated signal in Gaussian noise. The solid line represents the
fit of a Gumbel distribution.
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The presence of a signal in the data, characterized by ρ2,
produces anF -statistic value which depends only on ρ2 and
the number of coherent segments Nseg. More specifically,

obtaining a value of 2F̂ on Nseg segments automatically
produces an estimate on ρ2, which, in turn, yields an
estimation of the expected 2F̃ that will be retrieved after
performing a fully coherent search.
The exact flow of information from the semicoherent to

the coherent statistic can be readily expressed by margin-
alizing over the unknown noncentrality parameter ρ2

Pð2F̃ jHSÞ ¼
Z

∞

0

dρ2Pð2F̃ jρ2; 2F̂ ; NsegÞPðρ2j2F̂ ; NsegÞ

∝
Z

∞

0

dρ2Pð2F̃ jρ2ÞPð2F̂ jρ2; NsegÞPðρ2Þ; ð19Þ

where constant factors with respect to 2F̂ and Nseg were
omitted and the same data is being used to compute both
statistics.2 The choice of a prior distribution on ρ2 depends
on the type of search carried out; for a wide parameter-
space search such as the ones in which we are interested it
is enough to consider an improper uniform prior.
In going to the second line in Eq. (19) we have assumed

no dependency between 2F̂ and 2F̃ in the sense of
Pð2F̃ jρ2;2F̂ ;NsegÞ¼Pð2F̃ jρ2Þ. This relation holds exactly
if one computes each statistic on a different dataset,
corresponding to the fresh data mode in [8]. On the other
hand, if both statistics are evaluated on the same data, it
represents a conservative choice in the sense of producing a
wider distribution. This is because it neglects any corre-
lations between 2F̂ and 2F̃ . The lack of a simple way of
quantifying correlations among said statistics in a general
case justifies the safe approach of fresh data mode even
though the same data is actually being used [33].
The functional forms of the distributions in Eq. (19) have

already been discussed in this subsection:

Pð2F̃ jρ2Þ ¼ χ24ð2F̃ ; ρ2Þ; ð20Þ

Pð2F̂ jρ2; NsegÞ ¼ χ24Nseg
ð2F̂ ; ρ2Þ: ð21Þ

It is useful to further simplify Eq. (19) to a closed analytical
form. A proxy value for ρ2 can be obtained by simply
subtracting the expected noise-only value of a chi-squared
distribution with 4Nseg degrees of freedom, namely

ρ20 ¼ 2F̂ − 4Nseg. Assuming ρ20 ≫ 1, chi-squared distribu-
tions can be replaced by Gaussian distributions [76,77] and
Eq. (19) can be further replaced by a Gaussian, the peak of
which corresponds to μS ¼ ρ20. We refer to [33] for further
details on this derivation and simply quote the final result

Pð2F̃ j2F̂ ; NsegÞ ¼ Gaussð2F̃ ; μS; σSÞ; ð22Þ

where

μS ¼ ρ20;

σ2S ¼ 8 · ð1þ Nseg þ ρ20Þ: ð23Þ

These expressions are useful to discuss the qualitative
behavior of our newly proposed Bayes factor in different
signal regimes. It will also be applicable in the analysis of
software-injected signals in Sec. VA. However, due to the
regime in which real-data outliers are typically found, we
do not apply this Gaussian approximation to their analysis;
instead, we numerically evaluate the full version
of Eq. (19).

C. Bayes factor

We will now construct an overall Bayes factor to
compare the two hypotheses supporting the presence or
lack of a signal in a given stream of data. The distribution
associated to the noise hypothesis, given in Eq. (18), is
constructed by fitting the location and scale parameters of a
Gumbel distribution to background data samples obtained
through off-sourcing. The noise hypothesis can be defined
in terms of said parameters, namely HN ¼ fμN; σNg, and
the resulting distribution is

lnPð2F̃ �jHNÞ¼−
�
2F̃ �−μN

σN
þe−ð

2F̃�−μN
σN

Þ þ lnσN

�
: ð24Þ

The signal hypothesis compares the statistical behavior
of the loudest candidate across different stages of the
coherence-time ladder. We state the signal hypothesis as
HS ¼ fμS; σSg and, to simplify the following discussion,
we write everything in this section using the Gaussian
approximation given in Eq. (22):

ln Pð2F̃ �jHSÞ ¼ −
1

2

��
2F̃ � − μS

σS

�
2

þ ln 2πσS

�
: ð25Þ

We note again that this approximated formula will not be
applied to real-data candidates, as they are not located
within the strong signal regime. Instead, we will then
numerically evaluate Eq. (19).
It is useful to introduce the following auxiliary variables

ξS ¼ 2F̃ � − μS
σS

; ξN ¼ 2F̃ � − μN
σN

; ð26Þ

which measure the discrepancy of the retrieved 2F̃ � value
with respect to the most probable values under the signal
and noise hypothesis, respectively.
Combining Eqs. (24) and (25) we obtain an explicit

expression for Eq. (15)2This corresponds to κ ¼ 1 in the notation of [33].
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lnB�
S=N ¼ −

1

2
ξ2S þ ξN þ e−ξN þ ln

σNffiffiffiffiffiffiffiffiffiffi
2πσS

p : ð27Þ

Example values of the involved quantities for the use case
later in this paper are summarized in Table I. We proceed to
analyze the general behavior of this new statistic under
different conditions.
The operating point of wide parameter-space searches is

generally such that outliers being followed up are signifi-
cant enough so that ξN > 0, in the sense that a more

sensitive method can be applied once the parameter-space
region has been narrowed down. It is also reasonable to
expect μS > μN, although this assumption may not be valid
in case of very deep searches.
We distinguish three interesting regimes of behavior of

Eq. (27), labeled in Fig. 2 using dashed vertical lines:
(a) The candidate is consistent with a noise fluctuation,

returning ξN < ξS, hence lnB�
S=N < 0 and the signal

hypothesis is disfavored.
(b) The candidate is consistent with the signal hypothesis

ξS ∼ 0; hence, the dominant contribution to the Bayes
factor is given by the discrepancy with respect to the
noise hypothesis lnB�

S=N ∼ ξN. This is the expected
behavior of a detection statistic: the favoring toward

TABLE I. Typical location and scale parameters obtained from
an injection campaign on Gaussian noise with an observing time
of Tobs ¼ 9months. Signal location and scale parameters where
computed using the second-to-last stage of the coherence-time
ladder. See Sec. V for further details.

Parameters in Gaussian noise

μS ð3 − 10Þ × 103

μN 10–20
σS 30–80
σN 2–3

FIG. 2. Illustration of different regimes in which an outlier
could be located. Shaded regions represent probability distribu-
tions associated to the indicated hypothesis. Dashed vertical lines
refer to the enumerated labels in the text.

FIG. 3. Bayes factor in terms of the discrepancy of an outlier
with respect to the noise and signal hypothesis as described in
Eq. (27). Numerical values are computed using σN ¼ 3 and
σS ¼ 30, consistent with Table I. This representation will be
referred to as the ðξN; ξSÞ plane.

FIG. 4. Flowchart ilustrating the computation of lnB�
S=N for a

CW outlier.
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the signal hypothesis is directly proportional to the
discrepancy with respect to background noise.

(c) The candidate is beyond the region expected by the
signal hypothesis, meaning lnB�

S=N ≃ − 1
2
ξ2S þ ξN. This

novel behavior is due to the chosen signal hypothesis:
As opposed to theF -statistic’s signal hypothesis, which
results in a monotonic function of SNR, Eq. (19)
establishes a particular region of interest centered at
ξS ¼ 0, penalizing deviations toward both sides of it.

A complementary description of Eq. (27) is shown in
Fig. 3, where lnB�

S=N is shown on the ðξN; ξSÞ plane. These
two variables, which represent the discrepancy of 2F̃ � with
respect to the noise and signal hypothesis, are related by

ξN ¼ σS
σN

ξS þ
μS − μN

σN
; ð28Þ

meaning that once fμS; σSg and fμN; σNg are determined,
the detection statistic is restricted to a straight line in
ðξN; ξSÞ. This description also clarifies the behavior of
lnB�

S=N in case b) of Fig. 2. In said case, ξS ∼ 0 and then

lnB�
S=N ∼ ðμS − μNÞ=σN, so that it is the combined action of

a high SNR (μS > μN) and a low discrepancy with respect
to the expected value according to previous stages (ξS ∼ 0)
what decides on the consistency of a CW candidate with
respect to the signal or noise hypothesis.
A summary of the construction and practical computa-

tion of lnB�
S=N is shown as a flowchart in Fig. 4.

IV. FOLLOW-UP OF OUTLIERS IN LIGO O2 DATA

We now present the first application of a multi-stage
MCMC-based hierarchical follow-up on real data by
studying a set of 30 outliers obtained by different CW
searches on Advanced LIGO O2 data. These are final-stage
outliers resulting from the application of a complete search
pipeline, including a set of vetoes depending upon the
particularities of each search.
Section IVA briefly describes the main traits of the

searches from which outliers are collected. The complete
set of outliers to be followed up is reported in Table II. The
follow-up setup is described in Sec. IV B.

TABLE II. CW search outliers of interest as reported by their original searches. H.E.S.S. Viterbi outliers will be further referred to
by including their corresponding frequency.

Outlier ID Search f0 [Hz] f1 [Hz=s] f2 [Hz=s2] α [rad] δ [rad] tref [GPS] References

Falcon 4 High-frequency Falcon 1891.756740 −8.22×10−12 ��� 2.986956 1.005798 1183375935 [78]
Falcon 5 High-frequency Falcon 1892.991060 −1.08×10−12 ��� 3.779161 −0.816273 1183375935 [78]
Falcon 15 Mid-frequency Falcon 900.218805 −2.20×10−12 — 2.084418 −0.102264 1183375935 [79]
Falcon 19 Mid-frequency Falcon 514.148927 1.60×10−12 ��� 2.170421 0.092501 1183375935 [79]
Falcon 23 Mid-frequency Falcon 1001.366228 4.30×10−12 ��� 1.355837 −0.770266 1183375935 [79]
Falcon 24 Mid-frequency Falcon 676.195421 2.80×10−12 ��� 3.847021 −0.101619 1183375935 [79]
Falcon 25 Mid-frequency Falcon 744.219166 2.40×10−12 ��� 3.344985 0.612566 1183375935 [79]
Falcon 29 Mid-frequency Falcon 512.490814 1.20×10−12 ��� 2.468975 −0.043050 1183375935 [79]
Falcon 31 Mid-frequency Falcon 983.151889 2.20×10−12 ��� 3.561119 0.017979 1183375935 [79]
Falcon 34 Mid-frequency Falcon 886.880087 −1.60×10−12 ��� 4.912788 −0.703498 1183375935 [79]
Falcon 35 Mid-frequency Falcon 988.373199 1.20×10−12 ��� 0.981835 0.778338 1183375935 [79]
Falcon 39 Mid-frequency Falcon 514.291681 3.20×10−12 ��� 0.569033 −0.128357 1183375935 [79]
Falcon 40 Mid-frequency Falcon 831.988473 4.00×10−13 ��� 4.917347 1.160537 1183375935 [79]
Falcon 41 Mid-frequency Falcon 873.524608 4.00×10−13 ��� 0.618991 −0.189450 1183375935 [79]
Falcon 42 Mid-frequency Falcon 895.421949 3.60×10−12 ��� 5.105590 0.249163 1183375935 [79]
Falcon 43 Mid-frequency Falcon 1224.745666 −2.16×10−12 ��� 1.715268 0.196184 1183375935 [79]
Falcon 45 Mid-frequency Falcon 698.728032 −2.00×10−13 ��� 4.557347 −0.724141 1183375935 [79]
Falcon 46 Mid-frequency Falcon 1095.557400 −1.08×10−12 ��� 4.354664 −0.260254 1183375935 [79]
J1713 Einstein@Home 368.801379 −4.37×10−9 5.9×10−19 4.509371 −0.695189 1131943508 [64]
Fomalhaut b Fomalhaut b Viterbi 876.503400 −1.00×10−12 ��� 6.011130 0.517000 1167545066 [80]
J0534þ2200 H.E.S.S. Viterbi 29.813738 −3.77×10−10 ��� 1.459675 0.384225 1164556817 [81]
J1420-6048 H.E.S.S. Viterbi 14.511294 −1.70×10−11 ��� 3.753057 −1.061240 1164556817 [81]
J1420-6048 H.E.S.S. Viterbi 19.515033 −2.30×10−11 ��� 3.753057 −1.061240 1164556817 [81]
J1420-6048 H.E.S.S. Viterbi 29.522611 −3.50×10−11 ��� 3.753057 −1.061240 1164556817 [81]
J1718-3825 H.E.S.S. Viterbi 17.503470 −3.00×10−12 ��� 4.530116 −0.670585 1164556817 [81]
J1831-0952 H.E.S.S. Viterbi 14.501823 −1.00×10−12 ��� 4.850147 −0.172213 1164556817 [81]
J1831-0952 H.E.S.S. Viterbi 15.401223 −1.00×10−12 ��� 4.850147 −0.172213 1164556817 [81]
J1831-0952 H.E.S.S. Viterbi 19.999146 −2.00×10−12 ��� 4.850147 −0.172213 1164556817 [81]
J1849-0001 H.E.S.S. Viterbi 26.308209 −9.00×10−12 ��� 4.850147 −0.000375 1164556817 [81]
J1849−0001 H.E.S.S. Viterbi 26.341209 −9.00×10−12 ��� 4.850147 −0.000375 1164556817 [81]
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A. Continuous-wave search outliers from O2 data

1. All-sky Falcon search

The Falcon pipeline [13] is designed to survey wide
parameter-space regions using a so-called loosely coherent
approach [54,82,83], increasing its robustness against small
deviations from the standard CW signal model [54].
We are interested in 18 outliers reported in two all-sky

searches targeting two different frequency bands of the
Advanced LIGO O2 dataset: mid frequency (500–
1700 Hz) [79] and high frequency (1700–2000 Hz) [78].
These searches intended to unveil unknown low-ellipticity
sources by analyzing a restricted set of spindown rates
(jf1j≲ 3 × 10−12 Hz=s). These outliers are the result of a
four-stage search using four different coherent times, namely
12, 24, 48, and 144 hours. After each stage, only those
templates over a specified threshold were further fol-
lowed up.
An additional low-frequency Falcon search was recently

reported in [84]. As will be shown in Sec. V B regarding
low-frequency outliers from the other searches discussed
below, the greater number and variety of instrumental
artifacts in the low-frequency data somewhat hinder the
effectiveness of this first incarnation of our follow-up
method, as they are not directly addressed by the noise
hypothesis. Therefore, we leave a reanalysis of the new
low-frequency Falcon outliers for future work.

2. Directed Einstein@Home search

Einstein@Home is a large-scale computing frame-
work based on the volunteer-computing platform BOINC
[85] on which the Global Correlations Transform pipeline
[86–88], intended to perform deep (very sensitive) searches
across wide parameter-space regions, is deployed. This
pipeline is flexible enough so as to be reconfigured into a
directed pipeline, using astrophysical information obtained
by electromagnetic means to restrict the sky positions to
search on.
We are interested in the surviving outlier from a directed

search for CWs from central compact objects in three
supernova remnants [64]. Said outlier is associated to the
central compact object known as 1 WGA J1713.4-949 [89]
and located in SNR G347.3-05; for consistency with [64],
we will simply refer to it as J1713.
This outlier is a subthreshold candidate from an earlier

Einstein@Home search on O1 data directed toward the
same supernova remnants [29], which was then reanalyzed
using O2 data. The statistical basis of the reanalysis was
similar to the techniques explained in Sec. III B, comparing
the significance of a candidate on different data streams
with respect to the expected significance deduced from the
initial analysis. As reported in [64], the outlier under
analysis is inconsistent with Gaussian noise, but cannot
be associated to the signal hypothesis either.

3. Fomalhaut b Viterbi search

The Viterbi method spans a family of search pipe-
lines which use a hidden Markov model (HHM) to describe
the frequency evolution of a CW signal [71,90–92]. Such a
signal model is able to incorporate stochastic contributions
into the analysis (e.g. timing noise or spin-wandering due to
the presence of an accreting companion [93]).
Reference [80] reports on a Viterbi search for CWs

directed at Fomalhaut b, an astrophysical object whose exact
nature is still surrounded by debate [94–97]. This search
complements a previous one performed on Advanced LIGO
O1 data using an F -statistic search assuming the standard
deterministic evolution of a CW [98].
The search setup assumes spindown to be the main

contribution to the frequency evolution, considering timing
noise as a subdominant component. This is doneby imposing
a biased randomwalk as a HMM, in the sense that evolution
toward higher frequencies is forbidden.3 The search was
performed using Tcoh ¼ 5 days and surviving candidates
were sieved though a set of consistency vetoes. In the end, a
single outlier was reported for further exploration.

4. H.E.S.S. Viterbi search

Another implementation of the Viterbi pipeline,
similar in scope and assumptions to that mentioned above,
was used to perform a search on a set of ten pulsars
observed by very high-energy γ-ray surveys in [81].
The search looks for CWemission at once, twice and 4=3

of the rotational frequency of the targeted pulsars in order
to address several emission mechanisms [4]. After assess-
ing the subdominant role of spin-wandering on frequency
evolution, a biased random walk is implemented in a
similar manner to [80], selecting the maximum Tcoh
allowed by the spindown rate of each pulsar so that the
frequency evolution is within the range of the HMM.
After applying a set of consistency vetoes, twelve

outliers are reported for further exploration; we only
considered ten of them as independent follow-up targets
since for two pairs of outliers, the corresponding prior
parameter-space regions significantly overlap.

B. Follow-up setup

We demonstrate the general application of an MCMC-
based multi-stage follow-up to a set of real-data outliers
regardless of the pipeline producing them. To do so,
outliers will be analyzed ignoring any information gathered
from any of the vetoes or follow-up stages reported in their
respective searches.

3This condition drastically reduces the space of possible
frequency evolutions contemplated by the HMM model, easing
the application of a model-based pipeline to follow up or estimate
the exact parameters of any resulting candidates.
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The second Advanced LIGO observing run [99,100]
comprises nine months of data taken by the two
Advanced LIGO detectors H1 (Hanford) and L1
(Louisiana) [2]. The employed time segments are those with
the “all” tag in [101]. The dataset was divided into segments
with a duration of TSFT ¼ 1800 s in which Fourier trans-
forms were computed as explained in [20]. We take the
observing time to be Tobs ¼ 270 days in order to convert the
number of segments of a stage Nseg to a coherence time as
Tcoh ¼ Tobs=Nseg.
Our follow-ups are conducted assuming a CW signal

model with two spindown components. Since the second
spindown component is only reported by the Einstein@
Home search, we assume it to be compatiblewith a null value
for the other outliers and apply a canonical uncertainty of
δf2 ¼ 2 · ðTcoh · T2

obsÞ−1 [9]. As discussed in [102], this
increases the robustness of a search method against unmod-
eled physics, such as neutron star glitches, due to an increase
of the available parameter-space correlations.
Table III collects the approximated sensitivity depth

achieved by each search according to their reported results.
A comparison to the results in Figs. 8 and 9 of [32], which
compute the detection efficiency of a four-stage MCMC
follow-up starting at Tcoh ¼ 1 day, places the outliers
within the effective region of the follow-up procedure.
Most wide parameter-space searches currently operate at

Tcoh ∼OðhoursÞ. As demonstrated in [21,30], CW candi-
dates with uncertainties at such short coherence times can
be successfully recovered by an MCMC follow-up at
Tcoh ¼ 0.5 days.
We construct a hierarchical follow-up by imposing a first

stage using Tcoh ¼ 0.5 days followed by a second stage
using Tcoh ¼ 1 day. Further stages are constructed by
means of Eq. (14) using N � ¼ 104. The resulting coher-
ence-time ladder, which is independent of the parameter-
space region and the prior specification due to the locality
of the analysis, is collected in Table IV. As per the previous
discussion on the sensitivity of the considered searches, this
ladder can be seamlessly applied to every one of the outliers
under analysis.

Table V specifies the hyperparameter setup of every
MCMC stage, following the setups employed in [21,30].
As demonstrated in Sec. VA, this setup suffices to
successfully follow up CW candidates within the probed
sensitivity range.
The choice of initial priors is directly related to the

outlier’s uncertainty returned by each of the analysis
pipelines. Pipelines like Falcon or Einstein@Home
return a well-determined parameter-space region in which
the outlier was found. The Viterbi pipelines, on the
other hand, return only the frequency-evolution track of
each candidate, which can then be related to a certain
parameter-space region if the stochastic contributions are
subdominant. The scope of a search also affects the prior
setup, as searches directed toward a particular sky position
(such as the ones performed using Viterbi) allow us to
place a narrower prior on the sky position of the outlier. It is
recommended in [32] to choose a flat prior with fixed
bounds containing the outlier’s parameters. Instead, we use
a set of Gaussian priors centered at the outlier’s parameters
with scale parameters corresponding to the uncertainty in
each dimension. After each MCMC step, we recenter the
priors on the median value of the resulting posterior
distribution, taking half of the (centered) 90% credible
interval as the new scale parameter, and resample the initial
state of the MCMC ensemble. This particular setup ensures
a fresh startup at each stage of the ladder, preventing
spurious samples dissociated from the ensemble to pollute
the final results. Moreover, the use of unbounded priors
prevents the follow-up from missing the true parameters of
an outlier due to the presence of parameter-space correla-
tions [47,103].
The uncertainty associated to Falcon outliers is speci-

fied in [79] as

TABLE III. Estimated ranges of 95% efficiency sensitivity
depths achieved by each of the searches according to their
reported results. The depth marked with an asterisk corresponds
to a 90% efficiency instead. Values in parentheses refer to the
sensitivity depth achieved by the original search producing the
outlier [29].

Search Estimated D95% ½Hz−1=2�
High-frequency Falcon 55–65
Mid-frequency Falcon 45–55
Directed Einstein@Home� 80–90 (75–85)
Fomalhaut b Viterbi 45–55
H.E.S.S. Viterbi 45–55

TABLE IV. Coherence-time ladder constructed using N � ¼
104 and including an initial stage of Tcoh ¼ 0.5 days before
imposing Tcoh ¼ 1 days and applying the SuperSky metric. The
results are independent of the parameter-space region at which
the SuperSky metric was evaluated.

Stage 0 1 2 3 4

Nseg 500 250 55 5 1
Tcoh [days] 0.5 1 5 55 270

TABLE V. MCMC hyperparameter choices for each stage of
the follow-up. The number of parallel chains equals the number
of temperatures at which the likelihood is being sampled,
following the recommendations in [32,58].

Hyperparameter Value

Parallel chains 3
Walkers per chain 100
Burn-in & Production steps 250þ 250
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δf0 ¼ 5 × 10−5 Hz;

δf1 ¼ 1 × 10−12 Hz=s;

δθ ¼ 0.06 Hz=f0 rad; ð29Þ

where δθ refers to the sky position of an outlier projected
onto the ecliptic plane. These uncertainties are conserva-
tively lower than the canonical parameter-space resolution
defined in [9] for a coherence time of Tcoh ¼ 0.5 days,
meaning their corresponding parameter-space size is within
acceptable values to ensure an effective MCMC stage
[21,30]. The Einstein@Home search reports uncertain-
ties corresponding to a coherence time of several months;
since we start our follow-up at a lower coherence time, we
used the same set of uncertainties as for the Falcon
follow-up Eq. (29). Viterbi outliers were not reported as
a parameter-space point, but as a frequency band on which
a significant frequency-evolution track was found; since
both searches were targeted at a particular sky position, we
reduced the sky position uncertainty and increased the
frequency uncertainty by the same factor in order to cover
all possible frequencies at a similar parameter-space size.

V. RESULTS

Before presenting results on the O2 outliers in Sec. V B,
here we first describe an injection campaign in simulated
Gaussian noise to demonstrate the efficacy of the follow-up
procedure and calibrate a threshold on the newly introduced
Bayes factor.

A. Injections in Gaussian noise

We characterize the behavior of lnB�
S=N using three sets

of 100 artificial signals at different signal strengths. These
are injected into Gaussian noise data compatible with the
O2 observing run characteristics, i.e. simulating data for
both Advanced LIGO detectors and with a duration of
Tobs ¼ 9 months, using lalapps_Makefakedata_v5
[104]. The actual O2 data stream covers 60% of the
duration of the run Tobs due to down time in the detectors
(actual fractions are 65.3% and 61.8% for the H1 and L1,
respectively) [99]. Since SNR scales as the square root of
observing time, this would reduce the actual SNR of a signal
to a fraction of 77%. For the simulatedGaussian noise, we set
the average amplitude spectral density to a fiducial value offfiffiffiffiffi
Sn

p ¼ 10−23 Hz−1=2. We injected the artificial signals at a
fiducial frequency of 100 Hz, uniformly spread across the
whole sky and log-uniformly distributed in spindown
parameter f1 within ½−10−8;−10−11� Hz=s. The particular
choice of a frequency band does not affect the results of this
analysis, since its effects are automatically taken into account
by parameter-space resolutions.
The CW amplitude h0 is fixed in terms of the sensitivity

depth [16,53]

D ¼
ffiffiffiffiffi
Sn

p
h0

: ð30Þ

Additionally, we define an effective sensitivity depth by
explicitly including the effects of the cosine of the
inclination angle ι [105]:

DEff ¼
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos4 ιþ 6 cos2 ιþ 1
p : ð31Þ

We selected three depth values, enumerated in Table VI,
bracketing the estimated 95% efficiency depth of the
analyzed pipelines. The rest of the amplitude parameters
were randomly drawn from uniform distributions [106].
We start by estimating the detection efficiency of the

follow-up. To do so, we run the full hierarchical follow-up
as specified in the previous section and count an injection
as “detected” if the injection parameters are within the
final-stage posterior probability support. This criterion
ensures the CW signals are strong enough to guide the
MCMC ensemble toward the relevant parameter space
region, preventing a signal from being lost. Results are
reported in Table VI. As expected from previous analyses
in [32], we obtain a detection efficiency above 95% across
the sensitivity range, meaning the follow-up is a suitable
tool to further analyze the selected set of outliers.
The computation of lnB�

S=N requires a particular semi-
coherent step from the ladder to be selected as the one
from which the expected fully coherent distribution will
be propagated. As discussed in Sec. III B, using longer
coherence times imposes a more restrictive signal model,
reducing the number of outliers due to the presence of
detector artifacts and increasing the significance of signal
candidates (see, e.g., Fig. 6 of [32]). Figure 5 shows the
obtained distribution of signal-hypothesis discrepancies
jξSj for the complete set of detected injections with respect
to two different stages. The use of a lower number of
segments (i.e., a longer coherence time) yields a tighter
consistency with respect to the expected distribution. We
decide to carry out the analysis by taking the second-to-last
stage of the ladder (Nseg ¼ 5) as the reference from which
the expected fully coherent F -statistic distribution will be
computed.

TABLE VI. Detection efficiencies for each set of 100 injec-
tions. An injection was labeled as detected if the final-stage
posterior probability contained the injection parameters in its
support. Error bars correspond to binomial errors.

Depth ½Hz−1=2� Efficiency (%)

40 97� 2
60 98� 1
80 96� 2
Overall 97� 1
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Figure 6 displays the distribution of injection results on
the ðξN; ξSÞ plane, showing the discrepancy of an outlier
with respect to the noise and signal hypotheses, respec-
tively. The configuration is such that ξS ∼ 0 and ξN ≫ ξS,
corresponding to case (b) in Sec. III. This means that the
computation of the signal contribution to lnB�

S=N can be
assumed to follow a Gaussian distribution and, correspond-
ingly, Eq. (27) applies. Figure 7 shows the Bayes factor
lnB�

S=N computed by comparing the last two stages of the

semicoherent ladder. The observed behavior lnB�
S=N ∝

DEff
−1 can be simply explained by noting that DEff is

inversely proportional to SNR by definition [53].
This injection campaign covers the sensitivity ranges

reported in Table III for all searches except one. The
Einstein@Home search differs in that it was built as a
subthreshold search: the reported outlier was thoroughly
scrutinized using a variety of tools, including a fully
coherent analysis on O2 data, following a similar scheme
as the one presented in this work. in order to assess the
follow-up capabilities of our proposed method, we perform
a second injection campaign akin to the previous one,

covering the deepest Einstein@Home search sensitivity
range. Results are reported as 90% detection-probability
thresholds in Fig. 8, following the approach proposed in
[53]. Were any of the considered outliers due to a genuine
CW signal, the corresponding lnB�

S=N should lie within the
shaded region or higher. Based on this argument, we set a
safe decision threshold at lnB�

S=N ¼ 30, also accounting
for the reduced SNR in the real dataset due to detector
downtime.
Lastly, we comment on the behavior of the multistage

MCMC itself in terms of the volume shrinkage rate
introduced in Sec. II C. Figure 9 shows the behavior of
the posterior volume of a successfully detected injection.
The quantities Vð0Þ

prior and Vpost represent approximations to

FIG. 5. Distribution of jξSj for the complete set of detected
injections using different semicoherent stages, namely Nseg ¼
500 and Nseg ¼ 5, as the reference to compute μS and σS.

FIG. 6. ðξS; ξNÞ plane for the complete set of detected injections
using Nseg ¼ 5 as the reference stage to compute μS and σS. The
horizontal axis represents the discrepancy with respect to the
noise hypothesis, while the vertical axis represents the discrep-
ancy with respect to the signal hypothesis.

FIG. 7. lnB�
S=N computed by applying the multi-stage MCMC

follow up on the three sets of software injections. Reference
values were computed with respect to the Nseg ¼ 5 stage and the
Gaussian approximation was used to compute the signal con-
tribution. Outliers marked by a star did not display an ensemble-
level volume shrinkage, as explained in the text.

FIG. 8. Estimation of 90% detection-probability threshold on
lnB�

S=N for different sensitivity depths beyond the injections
shown in Fig. 7. Each dot represents an empirical estimate of the
90% detection-probability threshold using 100 simulated signals
at a fixed depth value. Error bars correspond to the bootstrap
standard deviation using 200 resamples of 50 samples each. The
solid line and the associated envelopes represent a linear fit using
scipy.optimize.curve_fit [107] with 1, 2, and 3 sigma
uncertainties.
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the initial prior volume at the first stage of the ladder and
the posterior volume after each of the MCMC stages. These
quantities are computed by taking the product of parameter-
wise central 90% credible intervals, since we are only
interested in the overall scaling along the coherence-time
ladder. The volume shrinkage shows a power-law behavior,
the exponent of which (i.e., the slope in log-log scale)
should be approximately given by log10 γðjþ1Þ ∼ 4 from
Eq. (12). The same procedure is performed on the complete
set of detected injections, collecting the power-law indices
into a histogram in Fig. 10. The rate of volume shrinkage
accumulates a prominent peak within the order of magni-
tude of the expected result.
Figure 10 also displays a small set of injections for which

the MCMC ensemble did not produce a clear shrinkage of

the (approximated) central 90% credible region, even
though the true injection parameters are contained within
said region. Their corresponding lnB�

S=N values are marked
using stars in Fig. 7, belonging to the weakest set of
performed injections. This is a consequence of the param-
eter-space structure in the vicinity of a signal [47]: The
effective (squared) SNR recovered by a template falls off as
a linear function of the mismatch with respect to the true
signal parameters. Strong injections, associated to higher
SNR values, are able to sustain an F -statistic above
background throughout a wider parameter-space region
than weak injections. Weak injections, as a result, require
tighter priors to display a similar behavior to that of
stronger injections. The fact that the ensemble is unable
to focus into a particular parameter-space region, however,
is still compatible with a good recovery of lnB�

S=N, as for
that it is only required to sample the region of interest
during the production stage. This is in fact the principle
upon which the application of a single-stage MCMC
follow-up as a simple veto was based in [21,30], and
can be justified by interpreting the MCMC follow-up as
being equivalent to a search starting from a random
template bank at higher mismatches than traditionally
suggested in CW searches [108,109].

B. Follow-up of CW outliers from
Advanced LIGO O2 data

We now report the results of the multi-stage MCMC-
based follow-up on the set of outliers described in Sec. IVA
in terms of the obtained ðξN; ξSÞ values and the corre-
sponding lnB�

S=N.
Figure 11 shows each pipeline’s outliers across the

ðξN; ξSÞ plane, quantifying their discrepancy with respect
to the noise and signal hypotheses. The bulk of outliers
show discrepancies with respect to the signal hypothesis,
quantified by jξSj, an order of magnitude larger than those
displayed by software injections in Fig. 6. Discrepancies
with respect to background noise, quantified by ξN, are
more than an order of magnitude lower. The retrieved

FIG. 10. Distribution of (log10) posterior volume shrinkage
rates of the detected injections. The prominent peak is within the
order of magnitude of the expected value according to Eq. (12).
The presence of negative shrinkage rates for a few injections is
discussed in the text.

FIG. 9. Posterior volume shrinkage of a successfully detected
software injection. Parameter-space volumes are estimated by
taking the product of parameter-wise 90% central credible
regions as explained in the text. The vertical axis represents
the posterior volume as a fraction of the initial prior volume. The
slope of the log-log plot is an approximation to the inverse of the
volume shrinkage 1=γðjþ1Þ, where the volume shrinkage γðjþ1Þ
was defined in Eq. (12).

FIG. 11. ðξN; ξSÞ plane associated to the outliers found in O2
data by the specified searches.
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values of μN and σN are within the brackets obtained in
Gaussian noise, suggesting these results are not because of
an elevated background noise but rather a low SNR
associated to the outliers. We note the presence of three
Viterbi outliers at high values of ξN, namely J1831-
0952@19.9991 Hz, J1849-0001@26.3410 Hz, and J1831-
0952@15.4012 Hz; and another marginal pair stemming
from the same pipeline in the middle ground, namely
J1718-3825@17.5034 Hz and J1831-0952@14.5018 Hz.
We compute lnB�

S=N by numerically integrating Eq. (19)
due to the regime in which outliers are placed. Results are
listed in Table VII and displayed in Fig. 12. Five outliers
score over the decision threshold lnB�

S=N ¼ 30, all of them
related to the H.E.S.S. Viterbi pipeline.
The first set of outliers, J1831-0952@15.4012 Hz, J1831-

0952@19.9991 Hz, and J1849-0001@26.3410 Hz, is high-
lighted using circular markers in Fig. 12. The original search
[81] ascribed them to instrumental artifacts in theL1detector.
We confirm that to be the case for the outlier J1831-
0952@19.9991 Hz: the loudest fully coherent F -statistic

TABLE VII. Loudest template recovered by the multistage MCMC follow up for each of the analyzed outliers. Boldface and italic
lnB�

S=N values correspond to the two sets of outliers highlighted with circles and diamonds in Fig 12, respectively.

Outlier ID f0 [Hz] f1 [Hz=s] f2 [Hz=s2] α [rad] δ [rad] lnB�
S=N

Falcon 4 1891.756615 −6 × 10−12 1 × 10−20 2.987285 1.005941 2.10
Falcon 5 1892.991046 −2 × 10−12 −1.8 × 10−19 3.778973 −0.816265 6.46
Falcon 15 900.218764 −1 × 10−12 7 × 10−20 2.084412 −0.102330 10.49
Falcon 19 514.148984 6 × 10−12 3.7 × 10−19 2.170669 0.092978 9.04
Falcon 23 1001.366278 2 × 10−12 4.9 × 10−19 1.355553 −0.769952 5.88
Falcon 24 676.195493 3 × 10−12 −2.6 × 10−19 3.846438 −0.102138 5.80
Falcon 25 744.219196 2 × 10−12 0.4 × 10−20 3.344781 0.612270 7.42
Falcon 29 512.490782 −8 × 10−12 −2 × 10−20 2.468688 −0.041880 3.37
Falcon 31 983.151151 −1 × 10−12 −7.0 × 10−19 3.562362 0.018926 3.06
Falcon 34 886.880063 −2 × 10−12 −2.1 × 10−19 4.912748 −0.703663 10.85
Falcon 35 988.373241 2 × 10−12 −1.3 × 10−19 0.982043 0.778393 6.48
Falcon 39 514.291753 3 × 10−12 −3.5 × 10−19 0.569150 −0.128791 5.47
Falcon 40 831.988457 −3 × 10−12 −1 × 10−20 4.917884 1.160566 5.48
Falcon 41 873.524663 3 × 10−12 4 × 10−20 0.619107 −0.189295 5.77
Falcon 42 895.421995 1 × 10−12 −1.9 × 10−19 5.105728 0.249030 5.37
Falcon 43 1224.745693 1 × 10−12 −1.2 × 10−19 1.715372 0.196097 5.70
Falcon 45 698.728033 1 × 10−12 1.6 × 10−19 4.557448 −0.723930 12.69
Falcon 46 1095.557373 −4 × 10−12 −5.7 × 10−19 4.354405 −0.260292 9.60
J1713 368.801590 −4.380 × 10−9 1.18 × 10−18 4.511570 −0.694137 3.21
Fomalhaut b 876.517914 −4.2979 × 10−10 −5.67 × 10−18 6.011153 0.516952 2.96
J0534þ 2200 29.813469 −2.3430 × 10−10 1.158 × 10−17 1.461040 0.385286 −0.16
J1420-6048 14.511112 −2.5 × 10−11 1.364 × 10−17 3.750570 −1.061001 1.46
J1420-6048 19.512364 −4.4 × 10−11 9.80 × 10−18 3.753242 −1.061227 1.12
J1420-6048 29.526774 3.9 × 10−11 5.30 × 10−18 3.753011 −1.060915 4.46
J1718-3825 17.500500 −4.0 × 10−11 7.58 × 10−18 4.528719 −0.670563 33.45
J1831-0952 14.495361 2.95 × 10−10 −3.89 × 10−18 4.848071 −0.172356 65.64
J1831-0952 15.389002 8.72 × 10−10 −2.980 × 10−17 4.853052 −0.165697 203.35
J1831-0952 20.0016854 −7.13 × 10−10 7.017 × 10−17 4.859380 −0.179332 633.204
J1849-0001 26.3062476 −6.4 × 10−11 1.101 × 10−17 4.850380 −0.000331 14.71
J1849-0001 26.333433 −7.1 × 10−11 2.297 × 10−17 4.850122 0.003055 192.71

FIG. 12. lnB�
S=N values obtained after the hierarchical MCMC

follow-up of O2 outliers. Relative outlier positions in this figure
are consistent with Fig. 11. Outliers enclosed by circles and
diamonds score a lnB�

S=N value above 30. The outlier enclosed by
a square returns a negative value of lnB�

S=N and is displayed as
white due to the logarithmic color scale.
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recovered by our follow-up is located at f0 ≃ 20.0011 Hz,
crossing a well-known instrumental comb at both LIGO
detectors [110]. For outlier J1849-0001@26.3410 Hz,
we note the presence of a hardware injection (a CW-like
signal simulated by direct actuation of the interferometer
mirrors, used to test calibration and analysis pipelines)
at f0 ≃ 26.3396 Hz with an amplitude corresponding to
D ∼Oð1 Hz−1=2Þ [100,111]. Even though the spindown and
sky positions are completely mismatched, such strong
artificial signals are known to produce loud candidates
across wide parameter space regions [28,30,112–114]. We
are unable to relate J1831-0952@15.4012 Hz to any of the
listed narrow spectral artifacts in [100,110].
A manual check of the segment-wise semicoherent

F -statistic values of J1831-0952@15.4012 Hz reveals a
rapid accumulation of F -statistic as the frequency evolu-
tion crosses a narrow subband. This kind of behavior,
shown in Fig. 13, is inconsistent with a CW signal and
usually can be related to instrumental artifacts, but said

identification becomes more difficult at low frequencies as
they are populated by a wider variety of noise sources. As a
result, outlier J1831-0952@15.4012 Hz is also likely
related to an instrumental artifact.
The second group of outliers is enclosed by diamonds in

Fig. 12. Outlier J1831-0952@14.5018 Hz’s loudest can-
didate is recovered at f0 ≃ 14.4953 Hz. This is consistent
with a 1 Hz comb with an offset of 0.5 Hz.4 Another
harmonic of the same comb can be related to outlier J1718-
3825@17.5034 Hz, whose loudest candidate is located
at f0 ≃ 17.5005 Hz.
The remaining outliers from all searches return a lnB�

S=N
value below the decision threshold lnB�

S=N ¼ 30. For
completeness, we list the parameters recovered by the final
follow-up stage in Table VII. We highlight outlier J1713,
initially found by the Einstein@Home search and
scoring below our decision threshold. This result is con-
sistent with the latest Einstein@Home search for J1713
reported in [115], covering up to 400 Hz in O2 data, not
finding any significant outliers.

VI. CONCLUSION

We have introduced the first complete framework to
analyze outliers from arbitrary CW searches using a multi-
stage MCMC-based follow-up. After demonstrating its
general behavior on Gaussian noise, we applied it to a
set of 30 outliers obtained by different CW search pipelines
on O2 Advanced LIGO data [64,78–81].
The procedure constructs a Bayes factor comparing

whether the behavior of the F -statistic across different
stages of the analysis is more consistent with the presence
of a signal rather than with pure noise. The expected
evolution of this detection statistic as the follow-up pro-
gresses can be derived from first principles. The noise
contribution is described by applying extreme value theory
to samples of background noise data. These samples can be
obtained by sampling shifted sky positions with respect to
the outliers, blinding the analysis from the presence of a
signal.
The application of a multistage MCMC follow-up

deemed 25 of the analyzed outliers as less consistent with
a standard CW signal than with background noise. The
remaining five outliers passed the specified threshold and
were manually inspected. Four of them were successfully
associated to known instrumental artifacts in the Advanced
LIGO detectors. The fifth outlier displays a behavior
inconsistent with a CW signal but consistent with an
instrumental artifact; the exact instrumental cause, how-
ever, could not be identified.

FIG. 13. Segment-wise 2F̂ accumulation of the loudest tem-
plate associated to the outlier J1831-0952@15.4012 Hz through-
out the observing run using 500 coherent segments. The solid
orange line shows the results using the LIGO Hanford detector
(H1) only, while the dashed blue line shows the results using the
LIGO Livingston detector (L1). The upper panel shows the 2F̂
accumulation throughout the duration of the run. The lower panel
shows the segment-wise 2F̂ values per frequency bin. Frequency
values are computed evaluating the frequency-evolution template
at the starting time of each segment.

4The spindown value reported by the original search is such
that also positive values are covered by the initial prior volume,
and indeed our followup recovered the loudest candidate at
positive spindown.
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Although the outliers were analyzed assuming a standard
signal model corresponding to an isolated CW source, the
framework presented here (and the PYFSTAT software used
[32,34,59]) can be seamlessly applied to more general
models, such as sources in binary systems [21,30], sources
producing glitches [35], and long gravitational-wave tran-
sient signals [36,37].
This represents the first application of a multistage

MCMC-based follow-up to CW outliers from real data.
The scalability of this development is such that it can be
taken as a default follow-up strategy to outliers produced by
virtually any CW search, as long as they can be related to
a well-defined parameter space region. This allows for the
general application of long-coherence follow-ups, mas-
sively reducing the complexity associated with the setup
and calibration of ad hoc vetoes in CW searches.
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APPENDIX: ON THE DISTRIBUTION OF THE
MAXIMUM F -STATISTIC AND THE EFFECTIVE

NUMBER OF TEMPLATES

The validity of using an effective number of templates to
fit Eq. (16) for the expected maximum F -statistic from a
search over a certain actual number of templates, in the
presence of nonindependent templates, has been discussed
in the CW literature [52,53]. We attempt to shed some light
on the topic using extreme value theory. Concretely, we
analyze the toy model posed in Appendix D of [53].
The basic point in [53] is that the presence of correlated

templates not only changes the effective number of tem-
plates, but also the “functional form” of the resulting
distribution, rendering Eq. (16) inaccurate. As an example,
a toymodel is constructed by generating a time series of zero-
mean unit-varianceGaussian noise and computing the power
of its Fourier transform. By choosing a suitable normaliza-
tion, said power is the squared sum of two identical
zero-mean Gaussian variables, following a chi-squared
distribution with two degrees of freedom. This distribution
can be properly fitted using Eq. (16), and the effective
number of templates N 0 is consistent with the number of
frequency samplesN ¼ N=2 − 1, whereN is the number of
elements from the original time series. Correlated templates
are then introduced by over-resolving the Fourier transform
applying zero-padding to the time series. The resulting
distribution cannot be properly fitted using Eq. (16). The
effective number of independent templates N 0 is found to
increase with the length of zero-padding, but it remains
bounded by the actual number of power samples N .
We provide an explanation for the two main issues raised

in [53], namely what is the actual “functional form” of the
target distribution andwhy the effective number of templates
seems to increase as more correlated templates are included.
Let xn¼1;…;N be a zero-mean unit-variance Gaussian

process. We define its Fourier transform as

x̃k ¼
XN−1

n¼0

xne−2πin
k
N ðA1Þ

where k ¼ 0;…N − 1. Since xn ∈ R, the real and imagi-
nary parts of Eq. (A1) follow a zero-mean Gaussian
distribution
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Rx̃k ∼ Gaussð0;
ffiffiffiffiffiffiffiffiffi
N=2

p
Þ

Ix̃k ∼ Gaussð0;
ffiffiffiffiffiffiffiffiffi
N=2

p
Þ ðA2Þ

We then define power as

ρ̃ ¼
� ffiffiffiffi

2

N

r
Rx̃k

�2

þ
� ffiffiffiffi

2

N

r
Ix̃k

�2

ðA3Þ

which, by definition, follows a chi-squared distribution
with two degrees of freedom ρ̃ ∼ χ22. This same quantity is
referred to as 2F 2 in [53].
The case of a chi-squared distribution with two degrees

of freedom is degenerate with an exponential distribution.
For the sake of clarity, we reexpress it as a gamma
distribution with shape parameter k ¼ 1 and scale parameter
θ ¼ 2, i.e. ρ̃ ∼ Γð1; 2Þ.Wenote that chi-squared distributions
correspond to the locus θ ¼ 2 in the parameter space of
Gamma distributions, with k equal to half the degrees of
freedom; exponential distributions correspond to the locus
k ¼ 1, with θ equal to the inverse of the rate parameter.
Let us now define xpn as the zero-padded time series

containing Np elements, the last Nðp − 1Þ of which are
purposely zero. This padding rescales the variance of the
original distribution by a factor 1=p and the resulting power
can be expressed as

ρ̃p ¼
� ffiffiffiffiffiffi

2p
N

r
Rx̃pk

�2

þ
� ffiffiffiffiffiffi

2p
N

r
Ix̃pk

�2

¼ pρ̃: ðA4Þ

Then, by the properties of the Gamma function,
ρ̃p ∼ Γð1; 2pÞ, which is not a chi-squared distribution for
p > 1, but an exponential distribution with rate parameter
λ ¼ ð2pÞ−1.
Finally, we discuss the asymptotics of the distribution

followed by the maximum of a Γ-distributed random
variable. As explained in Sec. III A, such light-tailed
distributions fall under the domain of attraction of the
Gumbel distribution, meaning

max
N

Γðk; θÞ !N→∞
Gumbelðμ; σÞ; ðA5Þ

where the location and scale parameters ðμ; σÞ are given
by [70]

μ ¼ θ½lnN þ ðk − 1Þ ln lnN − lnΓðkÞ�; ðA6Þ

σ ¼ θ: ðA7Þ

In particular, the case of maxN ρ̃p results in

μpðN Þ ¼ 2p lnN ; σp ¼ 2p: ðA8Þ

It is clear from Eq. (A7) that the asymptotic distribution
described by Eq. (16) is a Gumbel distribution with a scale

parameter σ ¼ 2. On the other hand, the asymptotic
distribution followed by zero-padded Gaussian noise
(p > 1) follows a Gumbel distribution with a scale factor
σp ¼ 2p > 2. Since the scale parameter is independent of
N , Eq. (16) fails to describe the asymptotic distribution
stemming from correlated templates. In other words,
parameter-space correlations shift the distribution followed
by the power statistic away from the locus of chi-squared
distributions; since these correlations are generally con-
tained in a certain characteristic length, the resulting light
tails are still, however, within the Gumbel distribution’s
domain of attraction [67].
This result is consistent with the findings reported in

Fig. 11 of [53], which we reproduce in Fig. 14. As the zero-
padding increases, σp increases and the resulting distribu-
tion, which is well described by a Gumbel distribution,
spreads beyond the fit provided by Eq. (16).
The location parameter μ, on the other hand, does depend

on the number of templates. Indeed, if one tries to compute
the required effective number of templates N 0 so that
μp¼1ðN 0Þ coincides with μpðN Þ,

μp¼1ðN 0Þ ¼ 2 lnN 0 ¼ 2p lnN ¼ μpðN Þ; ðA9Þ

the result is

N 0 ¼ N p; ðA10Þ

which is a monotonic function of p. As a result, the
effective number of templates increases with the zero-
padding factor, again in agreement with [53]. We note,
however, that this is just a consequence of the chosen
Fourier normalization. If the normalized power was con-
structed using Np as a normalization (the actual number of
samples) rather than N (the number of nonzero-padded
samples), then Eq. (A4) would be re-written as

ρ̂p ¼ 1

p
ρ̃: ðA11Þ

Consequently ρ̂p ∼ Γð1; 2=pÞ and the effects on the stan-
dard deviation would be exactly the opposite, as shown in
Fig. 15. Indeed, in such a case the effective number of
templates would be N 0 ¼ N 1=p, which decreases as the
zero-padding increases.
Our proposed solution to the problem of estimating the

effective number of templates is then not to do so, as it
depends strongly on the specific distribution followed by
the noise, which is generally unknown in a real case.
Instead, we propose to describe the background noise
distribution by fitting an extreme value distribution to a
set of samples (see e.g. Sec. III A). For light-tailed noise,
the proper distribution is Gumbel; other distributions are
available for noise falling off as a power law or presenting
an upper cutoff.

TENORIO, KEITEL, and SINTES PHYS. REV. D 104, 084012 (2021)

084012-18



[1] R. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), GWTC-2: Compact Binary Coalescences
Observed by LIGO and Virgo During the First Half of the
Third Observing Run, Phys. Rev. X 11, 021053 (2021).

[2] J. Aasi et al., Advanced LIGO, Classical Quantum Gravity
32, 074001 (2015).

[3] F. Acernese et al., Advanced Virgo: A second-generation
interferometric gravitational wave detector, Classical
Quantum Gravity 32, 024001 (2015).

[4] M. Sieniawska and M. Bejger, Continuous gravitational
waves from neutron stars: Current status and prospects,
Universe 5, 217 (2019).

FIG. 15. Equivalent figure to Fig. 14 using the alternative normalization of Fourier power ρ̂p. In this case, increasing the number of
correlated templates narrows the resulting distribution with respect to Eq. (16).

FIG. 14. Maximum Fourier power over N ¼ 200 samples of zero-mean unit-variance zero-padded Gaussian noise. In each panel, the
stair-case line represents a histogram over 106 repeated trials of maxN ρ̃p. The dashed line is the best fit of Eq. (16) on the effective
number of templates N 0, and the solid line is the best fit of a Gumbel distribution on the location and scale parameters. Zero-padding is
indicated by p, where p ¼ 1 represents no zero-padding, as explained in the text.

APPLICATION OF A HIERARCHICAL MCMC FOLLOW-UP TO … PHYS. REV. D 104, 084012 (2021)

084012-19

https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.3390/universe5110217


[5] S. J. Zhu, M. Baryakhtar, M. A. Papa, D. Tsuna, N.
Kawanaka, and H.-B. Eggenstein, Characterizing the
continuous gravitational-wave signal from boson clouds
around galactic isolated black holes, Phys. Rev. D 102,
063020 (2020).

[6] P. R. Brady, T. Creighton, C. Cutler, and B. F. Schutz,
Searching for periodic sources with LIGO, Phys. Rev. D
57, 2101 (1998).

[7] P. R. Brady and T. Creighton, Searching for periodic
sources with LIGO II: Hierarchical searches, Phys. Rev.
D 61, 082001 (2000).

[8] C. Cutler, I. Gholami, and B. Krishnan, Improved stack-
slide searches for gravitational-wave pulsars, Phys. Rev. D
72, 042004 (2005).

[9] B. Krishnan, A.M. Sintes, M. A. Papa, B. F. Schutz, S.
Frasca, and C. Palomba, Hough transform search for
continuous gravitational waves, Phys. Rev. D 70, 082001
(2004).

[10] P. Astone, A. Colla, S. D’Antonio, S. Frasca, and C.
Palomba, Method for all-sky searches of continuous
gravitational wave signals using the frequency-Hough
transform, Phys. Rev. D 90, 042002 (2014).

[11] K. Wette, S. Walsh, R. Prix, and M. A. Papa, Implementing
a semicoherent search for continuous gravitational waves
using optimally-constructed template banks, Phys. Rev. D
97, 123016 (2018).

[12] M. Sieniawska, M. Bejger, P. Ciecieląg, and A. Królak,
Followup procedure in time-domain F -statistic searches
for continuous gravitational waves, in XXXVIII Polish
Astronomical Society Meeting, Zielona Góra, Poland,
2017, edited by A. Różańska (2018), Vol. 7, pp. 37–40,
https://www.pta.edu.pl/proc/v7p1.

[13] V. Dergachev and M. A. Papa, Sensitivity Improvements in
the Search for Periodic Gravitational Waves using O1
LIGO Data, Phys. Rev. Lett. 123, 101101 (2019).

[14] P. B. Covas and A. M. Sintes, New method to search for
continuous gravitational waves from unknown neutron
stars in binary systems, Phys. Rev. D 99, 124019 (2019).

[15] L. Sancho de la Jordana and A. M. Sintes, A χ2 veto for
continuous wave searches, Classical Quantum Gravity 25,
184014 (2008).

[16] B. Behnke, M. A. Papa, and R. Prix, Postprocessing
methods used in the search for continuous gravitational-
wave signals from the galactic center, Phys. Rev. D 91,
064007 (2015).

[17] P. Leaci, Methods to filter out spurious disturbances in
continuous-wave searches from gravitational-wave detec-
tors, Phys. Scr. 90, 125001 (2015).

[18] S. J. Zhu, M. A. Papa, and S. Walsh, New veto for
continuous gravitational wave searches, Phys. Rev. D
96, 124007 (2017).

[19] F. Morawski, M. Bejger, and P. Ciecieląg, Convolutional
neural network classifier for the output of the time-domain
F -statistic all-sky search for continuous gravitational
waves, Mach. Learn. Sci. Tech. 1, 025016 (2020).

[20] B. P. Abbott et al. (LIGO Scientific Collaboration
and Virgo Collaboration), All-sky search for continuous
gravitational waves from isolated neutron stars using
Advanced LIGO O2 data, Phys. Rev. D 100, 024004
(2019).

[21] R. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), All-sky search in early O3 LIGO data for
continuous gravitational-wave signals from unknown neu-
tron stars in binary systems, Phys. Rev. D 103, 064017
(2021).

[22] A. Singh, M. A. Papa, H.-B. Eggenstein, and S. Walsh,
Adaptive clustering procedure for continuous gravitational
wave searches, Phys. Rev. D 96, 082003 (2017).

[23] B. Beheshtipour and M. A. Papa, Deep learning for
clustering of continuous gravitational wave candidates,
Phys. Rev. D 101, 064009 (2020).

[24] B. Beheshtipour and M. A. Papa, Deep learning for
clustering of continuous gravitational wave candidates
II: Identification of low-SNR candidates, Phys. Rev. D
103, 064027 (2021).

[25] R. Tenorio, D. Keitel, and A. M. Sintes, Time-frequency
track distance for comparing continuous gravitational
wave signals, Phys. Rev. D 103, 064053 (2021).

[26] M. Shaltev and R. Prix, Fully coherent follow-up of
continuous gravitational-wave candidates, Phys. Rev. D
87, 084057 (2013).

[27] M. Shaltev, P. Leaci, M. A. Papa, and R. Prix, Fully
coherent follow-up of continuous gravitational-wave can-
didates: An application to Einstein@Home results, Phys.
Rev. D 89, 124030 (2014).

[28] M. A. Papa et al., Hierarchical follow-up of subthreshold
candidates of an all-sky Einstein@Home search for con-
tinuous gravitational waves on LIGO sixth science run
data, Phys. Rev. D 94, 122006 (2016).

[29] J. Ming et al., Results from an Einstein@Home search for
continuous gravitational waves from Cassiopeia A, Vela Jr.
and G347.3, Phys. Rev. D 100, 024063 (2019).

[30] P. B. Covas and A. M. Sintes, First All-Sky Search for
Continuous Gravitational-Wave Signals from Unknown
Neutron Stars in Binary Systems Using Advanced LIGO
Data, Phys. Rev. Lett. 124, 191102 (2020).

[31] B. Steltner, M. A. Papa, H. B. Eggenstein, B. Allen, V.
Dergachev, R. Prix, B. Machenschalk, S. Walsh, S. J. Zhu,
and S. Kwang, Einstein@Home all-sky search for con-
tinuous gravitational waves in LIGO O2 public data,
Astrophys. J. 909, 79 (2021).

[32] G. Ashton and R. Prix, Hierarchical multistage MCMC
follow-up of continuous gravitational wave candidates,
Phys. Rev. D 97, 103020 (2018).

[33] Prix and Reinhard, Coherent F -statistic on semi-coherent
candidate, https://dcc.ligo.org/LIGO-T1700236/public
(2019).

[34] D. Keitel, R. Tenorio, G. Ashton, and R. Prix, PyFstat: A
Python package for continuous gravitational-wave data
analysis, J. Open Source Software 6, 3000 (2021).

[35] G. Ashton, R. Prix, and D. I. Jones, A semicoherent glitch-
robust continuous-gravitational-wave search method,
Phys. Rev. D 98, 063011 (2018).

[36] R. Prix, S. Giampanis, and C. Messenger, Search method
for long-duration gravitational-wave transients from neu-
tron stars, Phys. Rev. D 84, 023007 (2011).

[37] D. Keitel and G. Ashton, Faster search for long gravita-
tional-wave transients: GPU implementation of the tran-
sient F -statistic, Classical Quantum Gravity 35, 205003
(2018).

TENORIO, KEITEL, and SINTES PHYS. REV. D 104, 084012 (2021)

084012-20

https://doi.org/10.1103/PhysRevD.102.063020
https://doi.org/10.1103/PhysRevD.102.063020
https://doi.org/10.1103/PhysRevD.57.2101
https://doi.org/10.1103/PhysRevD.57.2101
https://doi.org/10.1103/PhysRevD.61.082001
https://doi.org/10.1103/PhysRevD.61.082001
https://doi.org/10.1103/PhysRevD.72.042004
https://doi.org/10.1103/PhysRevD.72.042004
https://doi.org/10.1103/PhysRevD.70.082001
https://doi.org/10.1103/PhysRevD.70.082001
https://doi.org/10.1103/PhysRevD.90.042002
https://doi.org/10.1103/PhysRevD.97.123016
https://doi.org/10.1103/PhysRevD.97.123016
https://www.pta.edu.pl/proc/v7p1
https://www.pta.edu.pl/proc/v7p1
https://www.pta.edu.pl/proc/v7p1
https://www.pta.edu.pl/proc/v7p1
https://doi.org/10.1103/PhysRevLett.123.101101
https://doi.org/10.1103/PhysRevD.99.124019
https://doi.org/10.1088/0264-9381/25/18/184014
https://doi.org/10.1088/0264-9381/25/18/184014
https://doi.org/10.1103/PhysRevD.91.064007
https://doi.org/10.1103/PhysRevD.91.064007
https://doi.org/10.1088/0031-8949/90/12/125001
https://doi.org/10.1103/PhysRevD.96.124007
https://doi.org/10.1103/PhysRevD.96.124007
https://doi.org/10.1088/2632-2153/ab86c7
https://doi.org/10.1103/PhysRevD.100.024004
https://doi.org/10.1103/PhysRevD.100.024004
https://doi.org/10.1103/PhysRevD.103.064017
https://doi.org/10.1103/PhysRevD.103.064017
https://doi.org/10.1103/PhysRevD.96.082003
https://doi.org/10.1103/PhysRevD.101.064009
https://doi.org/10.1103/PhysRevD.103.064027
https://doi.org/10.1103/PhysRevD.103.064027
https://doi.org/10.1103/PhysRevD.103.064053
https://doi.org/10.1103/PhysRevD.87.084057
https://doi.org/10.1103/PhysRevD.87.084057
https://doi.org/10.1103/PhysRevD.89.124030
https://doi.org/10.1103/PhysRevD.89.124030
https://doi.org/10.1103/PhysRevD.94.122006
https://doi.org/10.1103/PhysRevD.100.024063
https://doi.org/10.1103/PhysRevLett.124.191102
https://doi.org/10.3847/1538-4357/abc7c9
https://doi.org/10.1103/PhysRevD.97.103020
https://dcc.ligo.org/LIGO-T1700236/public
https://dcc.ligo.org/LIGO-T1700236/public
https://dcc.ligo.org/LIGO-T1700236/public
https://doi.org/10.21105/joss.03000
https://doi.org/10.1103/PhysRevD.98.063011
https://doi.org/10.1103/PhysRevD.84.023007
https://doi.org/10.1088/1361-6382/aade34
https://doi.org/10.1088/1361-6382/aade34


[38] P. Jaranowski, A. Królak, and B. F. Schutz, Data analysis
of gravitational-wave signals from spinning neutron stars:
The signal and its detection, Phys. Rev. D 58, 063001
(1998).

[39] E. T. Jaynes, Probability Theory: The Logic of Science,
edited by G. L. Bretthorst (Cambridge University Press,
Cambridge, England, 2003).

[40] R. Prix and B. Krishnan, Targeted search for continuous
gravitational waves: Bayesian versus maximum-likelihood
statistics, Classical Quantum Gravity 26, 204013 (2009).

[41] J. T. Whelan, R. Prix, C. J. Cutler, and J. L. Willis, New
coordinates for the amplitude parameter space of continu-
ous gravitational waves, Classical Quantum Gravity 31,
065002 (2014).

[42] C. Cutler and B. F. Schutz, Generalized F -statistic: Multi-
ple detectors and multiple gravitational wave pulsars, Phys.
Rev. D 72, 063006 (2005).

[43] P. Leaci and R. Prix, Directed searches for continuous
gravitational waves from binary systems: Parameter-space
metrics and optimal Scorpius X-1 sensitivity, Phys. Rev. D
91, 102003 (2015).

[44] D. Keitel, R. Prix, M. A. Papa, P. Leaci, and M. Siddiqi,
Search for continuous gravitational waves: Improving
robustness versus instrumental artifacts, Phys. Rev. D
89, 064023 (2014).

[45] D. Keitel, Robust semicoherent searches for continuous
gravitational waves with noise and signal models including
hours to days long transients, Phys. Rev. D 93, 084024
(2016).

[46] R. Prix and M. Shaltev, Search for continuous gravitational
waves: Optimal StackSlide method at fixed computing
cost, Phys. Rev. D 85, 084010 (2012).

[47] R. Prix, Search for continuous gravitational waves: Metric
of the multi-detector F -statistic, Phys. Rev. D 75, 023004
(2007); 75, 069901(E) (2007).

[48] K. Wette, Empirically extending the range of validity of
parameter-space metrics for all-sky searches for gravita-
tional-wave pulsars, Phys. Rev. D 94, 122002 (2016).

[49] B. Allen, Spherical ansatz for parameter-space metrics,
Phys. Rev. D 100, 124004 (2019).

[50] B. Allen, Optimal template banks, Phys. Rev. D 104,
042005 (2021).

[51] K. Wette, Lattice template placement for coherent all-sky
searches for gravitational-wave pulsars, Phys. Rev. D 90,
122010 (2014).

[52] K. Wette, Estimating the sensitivity of wide-parameter-
space searches for gravitational-wave pulsars, Phys. Rev. D
85, 042003 (2012).

[53] C. Dreissigacker, R. Prix, and K. Wette, Fast and accurate
sensitivity estimation for continuous-gravitational-wave
searches, Phys. Rev. D 98, 084058 (2018).

[54] V. Dergachev, On blind searches for noise dominated
signals: A loosely coherent approach, Classical Quantum
Gravity 27, 205017 (2010).

[55] M. Shaltev, Optimizing the StackSlide setup and data
selection for continuous-gravitational-wave searches in
realistic detector data, Phys. Rev. D 93, 044058 (2016).

[56] R. Prix, Template-based searches for gravitational waves:
Efficient lattice covering of flat parameter spaces, Classical
Quantum Gravity 24, S481 (2007).

[57] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J.
Goodman, emcee: The MCMC Hammer, Publ. Astron.
Soc. Pac. 125, 306 (2013).

[58] W. D. Vousden, W.M. Farr, and I. Mandel, Dynamic
temperature selection for parallel tempering in Markov
chain Monte Carlo simulations, Mon. Not. R. Astron. Soc.
455, 1919 (2016).

[59] G. Ashton, D. Keitel, R. Prix, and R. Tenorio, Pyfstat/
pyfstat: v1.11.3, https://doi.org/10.5281/zenodo.4542822
(2021).

[60] K. Wette and R. Prix, Flat parameter-space metric for all-
sky searches for gravitational-wave pulsars, Phys. Rev. D
88, 123005 (2013).

[61] K. Wette, Parameter-space metric for all-sky semicoherent
searches for gravitational-wave pulsars, Phys. Rev. D 92,
082003 (2015).

[62] H. J. Pletsch, Parameter-space metric of semicoherent
searches for continuous gravitational waves, Phys. Rev.
D 82, 042002 (2010).

[63] J. Abadie et al. (LIGO Scientific Collaboration), First
search for gravitational waves from the youngest known
neutron star, Astrophys. J. 722, 1504 (2010).

[64] M. A. Papa, J. Ming, E. V. Gotthelf, B. Allen, R.
Prix, V. Dergachev, H.-B. Eggenstein, A. Singh, and
S. J. Zhu, Search for continuous gravitational waves from
the central compact objects in supernova remnants cassio-
peia A, Vela Jr., and G347.3–0.5, Astrophys. J. 897, 22
(2020).

[65] K. W. Wette, Gravitational waves from accreting neutron
stars and Cassiopeia A, Ph.D. thesis, Australian National
University, Canberra, 2009.

[66] K. Wette, L. Dunn, P. Clearwater, and A. Melatos,
Deep exploration for continuous gravitational waves at
171–172 Hz in LIGO second observing run data, Phys.
Rev. D 103, 083020 (2021).

[67] M. Leadbetter, G. Lindgren, and H. Rootzen, Extremes and
Related Properties of Random Sequences and Processes,
Springer Series in Statistics (Springer, New York, 1983).

[68] J. Beirlant, Y. Goegebeur, J. Segers, J. Teugels, D. De
Waal, and C. Ferro, Statistics of Extremes: Theory and
Applications, Wiley Series in Probability and Statistics
(Wiley, New York, 2004).

[69] L. de Haan and A. Ferreira, Extreme Value Theory: An
Introduction, Springer Series in Operations Research and
Financial Engineering (Springer, New York, 2006).

[70] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling
Extremal Events: For Insurance and Finance, Stochastic
Modelling and Applied Probability (Springer, Berlin,
Heidelberg, 2013).

[71] S. Suvorova, P. Clearwater, A. Melatos, L. Sun, W. Moran,
and R. J. Evans, Hidden Markov model tracking of
continuous gravitational waves from a binary neutron star
with wandering spin. II. Binary orbital phase tracking,
Phys. Rev. D 96, 102006 (2017).

[72] A. Mathai and S. Provost, Quadratic Forms in Random
Variables, Statistics: A Series of Textbooks and Mono-
graphs (Taylor & Francis, London, 1992).

[73] A. Gasull, J. López-Salcedo, and F. Utzet, Maxima of
Gamma random variables and other Weibull-like distribu-
tions and the Lambert W function, Test 24, 714 (2015).

APPLICATION OF A HIERARCHICAL MCMC FOLLOW-UP TO … PHYS. REV. D 104, 084012 (2021)

084012-21

https://doi.org/10.1103/PhysRevD.58.063001
https://doi.org/10.1103/PhysRevD.58.063001
https://doi.org/10.1088/0264-9381/26/20/204013
https://doi.org/10.1088/0264-9381/31/6/065002
https://doi.org/10.1088/0264-9381/31/6/065002
https://doi.org/10.1103/PhysRevD.72.063006
https://doi.org/10.1103/PhysRevD.72.063006
https://doi.org/10.1103/PhysRevD.91.102003
https://doi.org/10.1103/PhysRevD.91.102003
https://doi.org/10.1103/PhysRevD.89.064023
https://doi.org/10.1103/PhysRevD.89.064023
https://doi.org/10.1103/PhysRevD.93.084024
https://doi.org/10.1103/PhysRevD.93.084024
https://doi.org/10.1103/PhysRevD.85.084010
https://doi.org/10.1103/PhysRevD.75.023004
https://doi.org/10.1103/PhysRevD.75.023004
https://doi.org/10.1103/PhysRevD.75.069901
https://doi.org/10.1103/PhysRevD.94.122002
https://doi.org/10.1103/PhysRevD.100.124004
https://doi.org/10.1103/PhysRevD.104.042005
https://doi.org/10.1103/PhysRevD.104.042005
https://doi.org/10.1103/PhysRevD.90.122010
https://doi.org/10.1103/PhysRevD.90.122010
https://doi.org/10.1103/PhysRevD.85.042003
https://doi.org/10.1103/PhysRevD.85.042003
https://doi.org/10.1103/PhysRevD.98.084058
https://doi.org/10.1088/0264-9381/27/20/205017
https://doi.org/10.1088/0264-9381/27/20/205017
https://doi.org/10.1103/PhysRevD.93.044058
https://doi.org/10.1088/0264-9381/24/19/S11
https://doi.org/10.1088/0264-9381/24/19/S11
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.1093/mnras/stv2422
https://doi.org/10.1093/mnras/stv2422
https://doi.org/10.5281/zenodo.4542822
https://doi.org/10.5281/zenodo.4542822
https://doi.org/10.1103/PhysRevD.88.123005
https://doi.org/10.1103/PhysRevD.88.123005
https://doi.org/10.1103/PhysRevD.92.082003
https://doi.org/10.1103/PhysRevD.92.082003
https://doi.org/10.1103/PhysRevD.82.042002
https://doi.org/10.1103/PhysRevD.82.042002
https://doi.org/10.1088/0004-637X/722/2/1504
https://doi.org/10.3847/1538-4357/ab92a6
https://doi.org/10.3847/1538-4357/ab92a6
https://doi.org/10.1103/PhysRevD.103.083020
https://doi.org/10.1103/PhysRevD.103.083020
https://doi.org/10.1103/PhysRevD.96.102006
https://doi.org/10.1007/s11749-015-0431-9


[74] R. Tenorio, L. M. Modafferi, D. Keitel, and A. M. Sintes
(LIGO Scientific Collaboration), Technical Report
No. LIGO-P2100277, 2021 (to be published).

[75] M. Isi, S. Mastrogiovanni, M. Pitkin, and O. J. Piccinni,
Establishing the significance of continuous gravitational-
wave detections from known pulsars, Phys. Rev. D 102,
123027 (2020).

[76] R. Muirhead, Aspects of Multivariate Statistical
Theory, Wiley Series in Probability and Statistics (Wiley,
New York, 2005).

[77] D. Horgan and C. C. Murphy, On the convergence
of the chi square and noncentral chi square distributions
to the normal distribution, IEEE Commun. Lett. 17, 2233
(2013).

[78] V. Dergachev and M. A. Papa, Results from high-
frequency all-sky search for continuous gravitational
waves from small-ellipticity sources, Phys. Rev. D 103,
063019 (2021).

[79] V. Dergachev and M. A. Papa, Results from the First All-
Sky Search for Continuous Gravitational Waves from
Small-Ellipticity Sources, Phys. Rev. Lett. 125, 171101
(2020).

[80] D. Jones and L. Sun, Search for continuous gravitational
waves from Fomalhaut b in the second Advanced LIGO
observing run with a hidden Markov model, Phys. Rev. D
103, 023020 (2021).

[81] D. Beniwal, P. Clearwater, L. Dunn, A. Melatos, and D.
Ottaway, Search for continuous gravitational waves from
ten H.E.S.S. sources using a hidden Markov model, Phys.
Rev. D 103, 083009 (2021).

[82] V. Dergachev, Loosely coherent searches for sets of well-
modeled signals, Phys. Rev. D 85, 062003 (2012).

[83] V. Dergachev, Loosely coherent searches for medium scale
coherence lengths, arXiv:1807.02351.

[84] V. Dergachev and M. A. Papa, The search for continuous
gravitational waves from small-ellipticity sources at low
frequencies, Phys. Rev. D 104, 043003 (2021).

[85] D. P. Anderson, BOINC: A platform for volunteer com-
puting, arXiv:1903.01699.

[86] H. J. Pletsch, Parameter-space correlations of the optimal
statistic for continuous gravitational-wave detection, Phys.
Rev. D 78, 102005 (2008).

[87] H. J. Pletsch and B. Allen, Exploiting Global Correlations
to Detect Continuous Gravitational Waves, Phys. Rev. Lett.
103, 181102 (2009).

[88] S. Walsh, K. Wette, M. A. Papa, and R. Prix, Optimizing
the choice of analysis method for all-sky searches for
continuous gravitational waves with Einstein@Home,
Phys. Rev. D 99, 082004 (2019).

[89] E. Pfeffermann and B. Aschenbach, Rosat observation of a
new supernova remnant in the constellation scorpius., in
Röntgenstrahlung from the Universe (1996), pp. 267–268,
https://ui.adsabs.harvard.edu/abs/1996rftu.proc..267P/
abstract.

[90] S. Suvorova, L. Sun, A. Melatos, W. Moran, and R. J.
Evans, Hidden Markov model tracking of continuous
gravitational waves from a neutron star with wandering
spin, Phys. Rev. D 93, 123009 (2016).

[91] L. Sun, A. Melatos, S. Suvorova, W. Moran, and R. J.
Evans, Hidden Markov model tracking of continuous

gravitational waves from young supernova remnants, Phys.
Rev. D 97, 043013 (2018).

[92] J. Bayley, C. Messenger, and G. Woan, Generalized
application of the Viterbi algorithm to searches for con-
tinuous gravitational-wave signals, Phys. Rev. D 100,
023006 (2019).

[93] A. Mukherjee, C. Messenger, and K. Riles, Accretion-
induced spin-wandering effects on the neutron star in
Scorpius X-1: Implications for continuous gravitational
wave searches, Phys. Rev. D 97, 043016 (2018).

[94] P. Kalas, J. R. Graham, E. Chiang, M. P. Fitzgerald, M.
Clampin, E. S. Kite, K. Stapelfeldt, C. Marois, and J. Krist,
Optical images of an exosolar planet 25 light years from
earth, Science 322, 1345 (2008).

[95] T. Currie, J. Debes, T. J. Rodigas, A. Burrows, Y. Itoh, M.
Fukagawa, S. J. Kenyon, M. Kuchner, and S. Matsumura,
Direct imaging confirmation and characterization of a dust-
enshrouded candidate exoplanet orbiting fomalhaut,
Astrophys. J. Lett. 760, L32 (2012).

[96] R. Neuhäuser, M. M. Hohle, C. Ginski, J. G. Schmidt, V. V.
Hambaryan, and T. O. B. Schmidt, The companion candi-
date near Fomalhaut—a background neutron star?, Mon.
Not. R. Astron. Soc. 448, 376 (2015).

[97] A. Gaspar and G. Rieke, New HST data and modeling
reveal a massive planetesimal collision around Fomalhaut,
Proc. Natl. Acad. Sci. U.S.A. 117, 9712 (2020).

[98] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Searches for continuous gravita-
tional waves from 15 supernova remnants and fomalhaut
b with Advanced LIGO, Astrophys. J. 875, 122 (2019).

[99] R. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Open data from the first and second
observing runs of advanced ligo and advanced virgo,
SoftwareX 13, 100658 (2021).

[100] LIGO Scientic Collaboration and Virgo Collaboration,
Gravitational Wave Open Science Center—Advanced
LIGO O2 Data Release, https://www.gw-openscience
.org (2019).

[101] E. Goetz (LIGO Scientific Collaboration and Virgo Col-
laboration), Segments used for creating standard SFTs in
O2 data, https://dcc.ligo.org/LIGO-T1900085/public.

[102] G. Ashton, R. Prix, and D. I. Jones, Statistical characteri-
zation of pulsar glitches and their potential impact on
searches for continuous gravitational waves, Phys. Rev. D
96, 063004 (2017).

[103] R. Prix and Y. Itoh, Global parameter-space correlations of
coherent searches for continuous gravitational waves,
Classical Quantum Gravity 22, S1003 (2005).

[104] LIGO Scientific Collaboration, LIGO Algorithm Library
—LALSuite, free software (GPL), https://doi.org/10.7935/
GT1W-FZ16 (2018).

[105] J. T. Whelan, S. Sundaresan, Y. Zhang, and P. Peiris,
Model-based cross-correlation search for gravitational
waves from scorpius X-1, Phys. Rev. D 91, 102005 (2015).

[106] S. Walsh, M. Pitkin, M. Oliver, S. D’Antonio, V. Derga-
chev, A. Królak et al., Comparison of methods for the
detection of gravitational waves from unknown neutron
stars, Phys. Rev. D 94, 124010 (2016).

[107] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy, D. Cournapeau et al., SciPy 1.0: Fundamental

TENORIO, KEITEL, and SINTES PHYS. REV. D 104, 084012 (2021)

084012-22

https://doi.org/10.1103/PhysRevD.102.123027
https://doi.org/10.1103/PhysRevD.102.123027
https://doi.org/10.1109/LCOMM.2013.111113.131879
https://doi.org/10.1109/LCOMM.2013.111113.131879
https://doi.org/10.1103/PhysRevD.103.063019
https://doi.org/10.1103/PhysRevD.103.063019
https://doi.org/10.1103/PhysRevLett.125.171101
https://doi.org/10.1103/PhysRevLett.125.171101
https://doi.org/10.1103/PhysRevD.103.023020
https://doi.org/10.1103/PhysRevD.103.023020
https://doi.org/10.1103/PhysRevD.103.083009
https://doi.org/10.1103/PhysRevD.103.083009
https://doi.org/10.1103/PhysRevD.85.062003
https://arXiv.org/abs/1807.02351
https://doi.org/10.1103/PhysRevD.104.043003
https://arXiv.org/abs/1903.01699
https://doi.org/10.1103/PhysRevD.78.102005
https://doi.org/10.1103/PhysRevD.78.102005
https://doi.org/10.1103/PhysRevLett.103.181102
https://doi.org/10.1103/PhysRevLett.103.181102
https://doi.org/10.1103/PhysRevD.99.082004
https://ui.adsabs.harvard.edu/abs/1996rftu.proc..267P/abstract
https://ui.adsabs.harvard.edu/abs/1996rftu.proc..267P/abstract
https://ui.adsabs.harvard.edu/abs/1996rftu.proc..267P/abstract
https://ui.adsabs.harvard.edu/abs/1996rftu.proc..267P/abstract
https://ui.adsabs.harvard.edu/abs/1996rftu.proc..267P/abstract
https://ui.adsabs.harvard.edu/abs/1996rftu.proc..267P/abstract
https://ui.adsabs.harvard.edu/abs/1996rftu.proc..267P/abstract
https://ui.adsabs.harvard.edu/abs/1996rftu.proc..267P/abstract
https://doi.org/10.1103/PhysRevD.93.123009
https://doi.org/10.1103/PhysRevD.97.043013
https://doi.org/10.1103/PhysRevD.97.043013
https://doi.org/10.1103/PhysRevD.100.023006
https://doi.org/10.1103/PhysRevD.100.023006
https://doi.org/10.1103/PhysRevD.97.043016
https://doi.org/10.1126/science.1166609
https://doi.org/10.1088/2041-8205/760/2/L32
https://doi.org/10.1093/mnras/stu2751
https://doi.org/10.1093/mnras/stu2751
https://doi.org/10.1073/pnas.1912506117
https://doi.org/10.3847/1538-4357/ab113b
https://doi.org/10.1016/j.softx.2021.100658
https://www.gw-openscience.org
https://www.gw-openscience.org
https://www.gw-openscience.org
https://dcc.ligo.org/LIGO-T1900085/public
https://dcc.ligo.org/LIGO-T1900085/public
https://dcc.ligo.org/LIGO-T1900085/public
https://doi.org/10.1103/PhysRevD.96.063004
https://doi.org/10.1103/PhysRevD.96.063004
https://doi.org/10.1088/0264-9381/22/18/S14
https://doi.org/10.7935/GT1W-FZ16
https://doi.org/10.7935/GT1W-FZ16
https://doi.org/10.1103/PhysRevD.91.102005
https://doi.org/10.1103/PhysRevD.94.124010


algorithms for scientific computing in Python, Nat. Meth-
ods 17, 261 (2020).

[108] C. Messenger, R. Prix, and M. A. Papa, Random template
banks and relaxed lattice coverings, Phys. Rev. D 79,
104017 (2009).

[109] B. Allen and A. A. Shoom, Template banks based on Zn

and A�
n lattices, arXiv:2102.11631.

[110] P. B. Covas et al., Identification and mitigation of narrow
spectral artifacts that degrade searches for persistent
gravitational waves in the first two observing runs of
Advanced LIGO, Phys. Rev. D 97, 082002 (2018).

[111] C. Biwer, D. Barker, J. C. Batch, J. Betzwieser, R. P.
Fisher, E. Goetz et al., Validating gravitational-wave
detections: The Advanced LIGO hardware injection sys-
tem, Phys. Rev. D 95, 062002 (2017).

[112] J. Aasi et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Directed search for continuous

gravitational waves from the Galactic center, Phys. Rev.
D 88, 102002 (2013).

[113] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), First low-frequency Einstein@-
Home all-sky search for continuous gravitational waves
in Advanced LIGO data, Phys. Rev. D 96, 122004 (2017).

[114] O. J. Piccinni, P. Astone, S. D’Antonio, S. Frasca, G. Intini,
I. La Rosa, P. Leaci, S. Mastrogiovanni, A. Miller, and C.
Palomba, Directed search for continuous gravitational-wave
signals from the Galactic Center in the Advanced LIGO
second observing run, Phys. Rev. D 101, 082004 (2020).

[115] J. Ming, M. A. Papa, H.-B. Eggenstein, B. Machenschalk,
B. Steltner, R. Prix, B. Allen, and O. Behnke, Results from
an Einstein@Home search for continuous gravitational
waves from G347.3 at low frequencies in LIGO O2 data,
arXiv:2108.02808.

[116] https://www.gw-openscience.org/.

APPLICATION OF A HIERARCHICAL MCMC FOLLOW-UP TO … PHYS. REV. D 104, 084012 (2021)

084012-23

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1103/PhysRevD.79.104017
https://doi.org/10.1103/PhysRevD.79.104017
https://arXiv.org/abs/2102.11631
https://doi.org/10.1103/PhysRevD.97.082002
https://doi.org/10.1103/PhysRevD.95.062002
https://doi.org/10.1103/PhysRevD.88.102002
https://doi.org/10.1103/PhysRevD.88.102002
https://doi.org/10.1103/PhysRevD.96.122004
https://doi.org/10.1103/PhysRevD.101.082004
https://arXiv.org/abs/2108.02808
https://www.gw-openscience.org/
https://www.gw-openscience.org/
https://www.gw-openscience.org/

