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Extreme-mass-ratio inspirals (EMRIs), compact binaries with small mass-ratios ϵ ≪ 1, will be important
sources for low-frequency gravitational wave detectors. Almost all EMRIs will evolve through important
transient orbital rθ resonances, which will enhance or diminish their gravitational wave flux, thereby
affecting the phase evolution of the waveforms at Oðϵ1=2Þ relative to leading order. While modeling the
local gravitational self-force (GSF) during resonances is essential for generating accurate EMRI wave-
forms, so far the full GSF has not been calculated for an rθ-resonant orbit owing to computational demands
of the problem. As a first step we employ a simpler model, calculating the scalar self-force (SSF) along
rθ-resonant geodesics in Kerr spacetime. We demonstrate two ways of calculating the rθ-resonant SSF
(and likely GSF), with one method leaving the radial and polar motions initially independent as if the
geodesic is nonresonant. We illustrate results by calculating the SSF along geodesics defined by three
rθ-resonant ratios (1∶3, 1:2, 2∶3). We show how the SSF and averaged evolution of the orbital constants
vary with the initial phase at which an EMRI enters resonance. We then use our SSF data to test a
previously proposed integrability conjecture, which argues that conservative effects vanish at adiabatic
order during resonances. We find prominent contributions from the conservative SSF to the secular

evolution of the Carter constant h _Qi, but these nonvanishing contributions are on the order of, or less than,
the estimated uncertainties of our self-force results. The uncertainties come from residual incomplete
removal of the singular field in the regularization process. Higher order regularization parameters, once
available, will allow definitive tests of the integrability conjecture.
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I. INTRODUCTION

The future LISA space mission [1,2] will build upon the
success of current ground-based detectors by observing new
gravitational wave sources in the milli-Hertz band [3–5].
Among these new sources are extreme-mass-ratio inspirals
(EMRIs): binaries composed of a stellar-mass compact
object (μ ∼ 10 M⊙) in bound orbit about a massive black
hole (M ∼ 106 M⊙). With their small mass ratios (ϵ≡
μ=M ≪ 1), EMRIs evolve adiabatically due to orbit-
averaged gravitational wave fluxes, with the smaller secon-
dary body completing ∼105 orbits around the more massive
primary as the binary emits gravitational waves visible to
low-frequency detectors. As a result of their long durations,
EMRI signals are expected to have cumulative signal-to-
noise ratios (SNRs) of several tens to several hundreds,
allowing high-precision measurements that exceed the
capabilities of current ground-based gravitational wave
observatories [5,6]. Such high SNR measurements will still

require accurate waveform models to assist in detecting
events and in measuring physical source parameters [7].
EMRIs are naturally modeled within the framework of

black hole perturbation theory (BHPT), in which the small
compact object is treated as a perturbing body in the
stationary background spacetime associatedwith the primary
black hole [8,9]. On the orbital timescale Torb ∼M, the
dynamics of the small body closely approximates a geodesic
with a trio of fundamental frequencies (the radial frequency
Ωr, polar frequency Ωθ, and azimuthal frequency Ωφ)
[10–12]. However, as the system evolves the small body
is gradually pushed away from this geodesic as it interacts
with its own gravitational perturbation. This behavior is
typically described in terms of a local gravitational self-force
(GSF) [13,14] that acts on the secondary and, at leading
perturbative-order, makes an OðϵÞ correction to its motion.
The dissipative piece of the GSF drives the adiabatic inspiral
of the secondary, while the conservative piece provides
nonsecular perturbations to the motion. The secular effect
of the averaged dissipative GSF dominates the phase evolu-
tion of the orbit, which accumulates like ∼ϵ−1 at leading*zachary.nasipak@nasa.gov
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adiabatic order. This defines the inspiral or radiation timescale
Trr ∼Mϵ−1, over which the orbital frequencies undergo
order-unity fractional changes. Furthermore, at a more subtle
level, perturbations due to the oscillatory part of the dis-
sipative and conservative GSF produce small shifts in the
orbital frequencies that affect the orbit and cumulative phase
at a levelOðϵÞ relative to the leading-order adiabatic inspiral
[15]. This correction is the post-1 adiabatic order effect.
In almost all astrophysically-relevant EMRIs, the evo-

lution of the orbital frequencies due to the GSF will cause
these systems to pass through one or more consequential
orbital resonances at some point in their observed inspirals
[16,17]. An orbital resonance occurs when at least two
frequencies of orbital motion, Ω1 and Ω2, form a rational
ratio, i.e., Ω2=Ω1 ¼ β2=β1 with coprime β1, β2 ∈ Z. The
smaller that the integers β1 and β2 are, the stronger the
resonance. In the solar system, orbital resonances com-
monly occur among satellites sharing the same primary,
such as the 2∶3 resonance of Neptune and Pluto and the 1∶2
resonance of the Galilean satellites Io and Europa.
For EMRIs, resonances can form between any two of the

three frequencies of the smaller body’s orbital motion, with
different resonant combinations leading to different physi-
cal effects.1 For instance, rφ [22] and θφ resonances [23]
can lead to anisotropic radiation of gravitational waves,
resulting in resonant “kicks” to the velocity of an EMRI’s
center-of-mass. Such effects are expected to contribute to
an EMRI’s phase evolution and waveform at Oðϵ3=2Þ
relative to adiabatic order (i.e., post-3

2
adiabatic order)

[22]. Because LISA waveforms require a phase accuracy
of ∼0.1 radians, rφ and θφ resonances are presumably safe
to neglect at present in EMRI models. On the other hand,
rθ resonances, which only arise in EMRIs with Kerr
primaries, will enhance or diminish the time-averaged
gravitational wave flux, thereby influencing the evolution
of the frequencies Ωr, Ωθ, and Ωφ (and similarly the
orbital energy, angular momentum, and Carter constant)
[17,24,25]. The strongest resonances will have frequency
ratios such as 1∶3, 1:2, or 2∶3 [16,26] and will ordinarily
persist for a resonant period Tres ∼Mϵ−1=2 [24]. Because
these orbital resonances are expected to be transient,2 their
effect is at post-1

2
adiabatic order [24].3

Incorporating this new resonant timescale into evolu-
tionary models poses difficulties with, for example, near-
identity transformations [30] and multiscale expansions

[20,21]. In effect, on a timescale just larger than Tres, an
EMRI’s orbital parameters appear to experience Oðϵ1=2Þ
shifts or jumps in their values, as shown in [17,24]. These
jumps, which are sensitive to the orbital phase of the EMRI
as it enters resonance [25], lead to an overallOðϵ−1=2Þ shift in
the cumulative phase of the system. Failing to account for
these resonant phase shifts may only slightly degrade EMRI
detection rates [17], but it will introduce significant sys-
tematic biases to EMRI parameter estimation that will
dominate over standard statistical errors [31]. Because
nearly all EMRIs will encounter either a 1∶3, 1:2, or 2:3
rθ resonance as they emit gravitational wave signals in the
LISA passband [16], properly modeling transient rθ reso-
nances is essential to producing subradian phase-accurate
waveforms for the detection and characterization of EMRIs
by LISA.
To date, numerical investigations of transient rθ resonan-

ces have not incorporated local strong-field conservative
perturbations [17,24,25,31]. While conservative perturba-
tions vanish at adiabatic order for nonresonant motion, it is
not yet known if they may contribute to the adiabatic
evolution of EMRIs during rθ resonances. Flanagan and
Hinderer [24] argue that conservative effects will not
contribute at leading order during resonances based on their
integrability conjecture.4 The validity of this conjecture
remains unclear. Isoyama et al. [32,33] have found the
presence of potential conservative contributions to the
evolution of the orbit-averaged Carter constant through their
Hamiltonian formulation of EMRI dynamics. For the inte-
grability conjecture to hold, these termswould have to vanish
when integrated over an entire orbit, which has not been
demonstrated analytically.
The integrability conjecture can potentially be tested

through numerical calculations of conservative quantities,
such as a computation of the local GSF in Kerr spacetime
during an rθ resonance. First-order GSF calculations for
generic bound orbits about a Schwarzschild black hole are
well advanced, to the point of allowing long-term evolu-
tionary computations [30,34–36]. Indeed, even second-order
GSF calculations for restricted orbits in Schwarzschild are
now emerging [37]. Recent work by van de Meent provided
the first GSF results for generic orbits in a Kerr EMRI [38].
However, these calculations are much more computationally
demanding than their Schwarzschild counterparts, and long-
term self-forced evolutions of Kerr EMRIs have not yet been
produced. Not even snapshots of the GSF in Kerr EMRIs
during rθ resonances have been attempted.
Thus, as a first step in exploring local radiation-reaction

effects driven by resonances, we consider a scalar field
analogue and calculate the scalar self-force (SSF) that
arises due to a bound particle with scalar charge q in an rθ
resonance about a Kerr black hole. This work builds off of a

1See Refs. [18–20] for comprehensive lists of research focused
on orbital resonances in Kerr spacetime and [18,21] for more
general discussions of EMRI resonances.

2It may be possible for certain EMRIs to be caught in a
sustained rθ resonance, but a system must meet stringent (if even
possible) conditions for this to occur [19].

3While not the focus of this work, tidal resonances, which may
occur for EMRIs that are perturbed by one or more external
bodies, can experience similar post-1

2
adiabatic corrections to the

phase evolution [27–29].
4We follow [25] in referring to Flanagan and Hinderer’s

argument as the integrability conjecture.
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previous paper [39], in which we presented the first
calculation of the SSF for nonresonant inclined eccentric
orbits in Kerr spacetime. By treating q2=ðμMÞ as a small
parameter, this SSF model mimics the GSF problem. As is
common for adiabatic and osculating geodesic evolutions,
we assume the motion of the particle to be exactly geodesic
and calculate the resulting geodesic scalar self-force. This
assumption produces an error that is on the order of the
time-averaged dissipative part of the second-order self-
force. In this work we are not yet concerned with applying
the self-force and calculating a portion of the evolution
based on the backreaction.
To set notation, in Sec. II we review nonresonant and

resonant geodesics in Kerr spacetime, along with various
parametrizations of geodesic functions. In Sec. III we
review the scalar self-force model presented in [39]. In
Sec. IV, we extend our previous methods for calculating the
SSF along nonresonant orbits to the case of rθ resonances
by making use of a simple shifting relation based on
symmetries (Killing vectors) of the Kerr spacetime. In
Sec. V, we numerically calculate the SSF experienced by a
scalar-charged particle for six different rθ-resonant geo-
desics. We use these results in Sec. VI to compute the
secular evolution (orbit-averaged time rate-of-change) of
the orbital constants (e.g., h _Ei, h _Lzi, h _Qi). We demonstrate
that the conservative components of the SSF do not
contribute to the evolution of the orbital energy and angular
momentum h _Ei and h _Lzi, respectively, as expected from
flux-balance arguments. We do find nonzero contributions
from the conservative SSF to the secular evolution of the
Carter constant h _Qi, though these contributions are con-
sistent with the level of systematic numerical errors
produced by our regularization scheme. We conclude with

a discussion of these results in Sec. VII. Because we only
focus on rθ resonances in this work, henceforth we will
occasionally refer to these as simply resonances. For this
paper we use units such that c ¼ G ¼ 1, use metric
signature ð−þþþÞ, and sign conventions, where appli-
cable, of Misner, Thorne, and Wheeler [40].

II. GEODESICS AND RESONANT MOTION
IN KERR SPACETIME

The instantaneous motion of a small mass orbiting a
much more massive rotating black hole is approximated
by that of a bound timelike geodesic in Kerr spacetime.
This is the zeroth-order motion in BHPT. Bound Kerr
geodesics librate at different frequencies in the radial and
polar directions, as shown in the left panel of Fig. 1.
Generally, the instantaneous periods of a Kerr EMRI’s
radial and polar motions are incommensurate. In these
circumstances, the geodesic is ergodic: given an infinite
time, the motion passes through every point in a finite
bounded region in r and θ. For certain orbital parameters,
however, these radial and polar periods will be in a rational-
number ratio, giving rise to a resonance. In these cases the
motion is not ergodic. Instead, it loops back on itself, and it
does not fill the corresponding bounded region in r and θ
[41] (see the right panel of Fig. 1).
To better understand these different behaviors, and to

establish notation, we review the analytic framework for
studying bound geodesics in the Kerr spacetime, primarily
following the work of [10,11,25,40,42,43], though we have
consolidated and adapted notation for consistency. We also
discuss various prescriptions for parametrizing geodesics
and how those parametrizations must be handled when
describing resonances.

FIG. 1. Inclined eccentric geodesics around a Kerr black hole with spin a=M ¼ 0.9 and mass M ¼ 1. The plot on the left is a
nonresonant geodesic with orbital parameters ðp; e; xÞ ¼ ð4.700; 0.5; cos π=4Þ. The plot on the right, in contrast, is a 1:2 rθ-resonant
geodesic with orbital parameters ðp; e; xÞ ≃ ð4.607; 0.5; cos π=4Þ. The semilatus rectum p is truncated at four significant digits and
specifically chosen so that the particle undergoes one radial libration for every two polar librations. The solid (blue) curves trace out the
three-dimensional motion of the two geodesics in Boyer-Lindquist coordinates ðr; θ;φÞ. The solid (grey) curves show various two-
dimensional projections of the three-dimensional orbit.
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A. Separation of the geodesic equations

Consider a point particle with mass μ on a bound
geodesic xμpðτÞ with four-velocity uα ≡ dxμp=dτ, where τ
is the particle’s proper time. The background spacetime,
described by the metric gαβ, is parametrized by the black
hole spin a and mass M. Adopting Boyer-Lindquist
coordinates ðt; r; θ;φÞ, the Kerr line element reads

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 −

4Mar sin2θ
Σ

dtdφ

þ Σdθ2 þ sin2θ
Σ

ðϖ4 − a2Δsin2θÞdφ2; ð2:1Þ

where Σ≡ r2 þ a2 cos2 θ, Δ≡ r2 − 2Mrþ a2, and
ϖ2 ≡ r2 þ a2.
Geodesic motion in Kerr spacetime is completely inte-

grable, leading to three constants of motion—the specific
energy E, the z component of the specific angular momen-
tum Lz, and the (scaled) Carter constant Q [42]—all of
which can be related to the Killing symmetries of Kerr. The
specific energy and angular momentum correspond to the
Killing vectors ξμðtÞ and ξμðφÞ,

E ≡ −ξμðtÞuμ ¼ −ut; ð2:2Þ

Lz ≡þξμðφÞuμ ¼ þuφ; ð2:3Þ

while the Carter constant is associated with the Killing
tensor Kμν [44],

Q≡ Kμνuμuν − ðLz − aEÞ2; ð2:4Þ

which is discussed further in Appendix C 3.
Introducing the (Carter-)Mino time parameter λ

[8,11,40,42], defined by dλ≡ Σ−1
p dτ, the geodesic equa-

tions separate

dtp
dλ

¼ VtrðrpÞ þ VtθðθpÞ; ð2:5Þ

drp
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VrðrpÞ

q
; ð2:6Þ

dθp
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VθðθpÞ

q
; ð2:7Þ

dφp

dλ
¼ VφrðrpÞ þ VφθðθpÞ; ð2:8Þ

where the various V functions are defined in [11,39], and
the subscript p denotes that a function is evaluated on the
particle’s worldline xμp.
Rather than specifying a geodesic by directly choosing

values for E, Lz, and Q, we use relativistic definitions of

semilatus rectum p and orbital eccentricity e that are
analogous to those of Keplerian orbits,

p≡ 2rminrmax

Mðrmax þ rminÞ
; e≡ rmax − rmin

rmax þ rmin
: ð2:9Þ

We add to that the projection of the orbital inclination

x≡ cos
�
π

2
− θmin

�
; ð2:10Þ

to round out the parametrization of the orbits. Here, rmin
and rmax are the minimum and maximum radii reached
by the point mass, and θmin ¼ π − θmax is its minimum
polar angle. These are the turning points of the geodesic,
where VrðrminÞ¼VrðrmaxÞ¼VθðθminÞ¼Vθðπ−θminÞ¼0.
Once p, e, and x are specified for an orbit, it is straightfor-
ward to determine the corresponding E, Lz, and Q [10,45].
One can then solve (2.5)–(2.8) using spectral integration
methods [39,46] or analytic special functions [12,45]. In
this work we use a hybrid scheme: we sample the analytic
geodesics solutions presented in [12], then construct
their discrete Fourier representations, which provide an
exponentially-convergent numerical approximation of the
geodesics.

B. Frequencies of generic bound motion

For inclined eccentric (bound) geodesics the point mass
librates in r and θ with radial and polar Mino time periods

Λr ≡ 2

Z
rmax

rmin

drffiffiffiffiffiffiffiffiffiffiffi
VrðrÞ

p ; ð2:11Þ

Λθ ≡ 2

Z
π−θmin

θmin

dθffiffiffiffiffiffiffiffiffiffiffiffi
VθðθÞ

p ; ð2:12Þ

and corresponding Mino time frequencies

ϒr ≡ 2π

Λr
; ϒθ ≡ 2π

Λθ
: ð2:13Þ

In Kerr spacetime, ϒθ is always greater than ϒr for bound
motion. The time and azimuthal locations, which depend
on the radial and polar motions [see (2.5) and (2.8)],
accumulate at average rates in λ denoted by Γ and ϒφ and
are given by

Γ ¼ 1

Λr

Z
Λr

0

VtrðrpÞdλþ
1

Λθ

Z
Λθ

0

VtθðθpÞdλ; ð2:14Þ

ϒφ ¼ 1

Λr

Z
Λr

0

VφrðrpÞdλþ
1

Λθ

Z
Λθ

0

VφθðθpÞdλ; ð2:15Þ

where rp and θp are understood to be functions of λ.
Together, these form the complete set of Mino time
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frequencies ϒα ¼ ðΓ;ϒr;ϒθ;ϒφÞ. They are related to the
fundamental coordinate-time frequencies by

Ωr ¼
ϒr

Γ
; Ωθ ¼

ϒθ

Γ
; Ωθ ¼

ϒφ

Γ
; ð2:16Þ

which then define the discrete frequencies

ωmkn ≡mΩφ þ kΩθ þ nΩr; ð2:17Þ

in the multiperiodic Fourier spectrum of any variable made
time dependent by the geodesic motion. Note that these
coordinate-time frequencies Ωα do not uniquely define a
geodesic due to the existence of isofrequency pairings [47],
though it is well argued that (up to initial conditions)
geodesics are uniquely defined by their Mino time frequen-
cies ϒα [19].

C. Analytic structure of geodesic solutions and
their dependence on initial conditions

We consider next families of geodesics and their
dependence on initial conditions. Let an inclined eccentric
geodesic be parametrized by λ, x̂μ ¼ x̂μpðλÞ, and have the
following initial conditions:

x̂μpð0Þ ¼ ð0; rmin; θmin; 0Þ; ð2:18Þ

ûrð0Þ ¼ ûθð0Þ ¼ 0: ð2:19Þ

Following the nomenclature of [11], we refer to a trajectory
with these initial conditions as a fiducial geodesic and
distinguish it with a hat. Integrating (2.5)–(2.8) and
enforcing these fiducial initial conditions, the periodicity
in the motion gives rise to solutions that have the form

t̂pðλÞ ¼ Γλþ Δt̂ðrÞðϒrλÞ þ Δt̂ðθÞðϒθλÞ; ð2:20Þ

r̂pðλÞ ¼ rmin þ Δr̂ðrÞðϒrλÞ; ð2:21Þ

θ̂pðλÞ ¼ θmin þ Δθ̂ðθÞðϒθλÞ; ð2:22Þ

φ̂pðλÞ ¼ ϒφλþ Δφ̂ðrÞðϒrλÞ þ Δφ̂ðθÞðϒθλÞ; ð2:23Þ

where the various Δx̂ terms are oscillatory periodic
functions. Here we use Δx̂ to represent Δt̂, Δr̂, Δθ̂, and
Δφ̂, which have the following properties:

Δx̂ðrÞð2π þϒrλÞ ¼ Δx̂ðrÞðϒrλÞ; Δx̂ðrÞð0Þ ¼ 0; ð2:24Þ

Δx̂ðθÞð2π þϒθλÞ ¼ Δx̂ðθÞðϒθλÞ; Δx̂ðθÞð0Þ ¼ 0: ð2:25Þ

Furthermore, from the way a fiducial geodesic is defined,
all of these periodic functions are either even or odd
with respect to λ ¼ 0, with Δt̂ and Δφ̂ being odd

(antisymmetric) and Δr̂ðrÞ and Δθ̂ðθÞ being even (symmet-
ric). Exact definitions of these geodesic functions are
provided in [11,12,39].
Next, we consider an inclined eccentric geodesic xμpðλÞ

with arbitrary initial conditions

xμpð0Þ ¼ ðt0; r0; θ0;φ0Þ; ð2:26Þ

urð0Þ ¼ ur0; uθð0Þ ¼ uθ0: ð2:27Þ

An arbitrary geodesic can be expressed in terms of the
fiducial solutions by shifting the arguments of the periodic
functions,

tpðλ; t0; λðrÞ0 ; λðθÞ0 Þ ¼ t0 − Δt̂ðϒrλ
ðrÞ
0 ;ϒθλ

ðθÞ
0 Þ þ Γλ

þ Δt̂ðϒrðλþ λðrÞ0 Þ;ϒθðλþ λðθÞ0 ÞÞ;
ð2:28Þ

rpðλ; λðrÞ0 Þ ¼ rmin þ Δr̂ðrÞðϒrλþϒrλ
ðrÞ
0 Þ; ð2:29Þ

θpðλ; λðθÞ0 Þ ¼ θmin þ Δθ̂ðθÞðϒθλþϒθλ
ðθÞ
0 Þ; ð2:30Þ

φpðλ;φ0; λ
ðrÞ
0 ; λðθÞ0 Þ ¼ φ0 − Δφ̂ðϒrλ

ðrÞ
0 ;ϒθλ

ðθÞ
0 Þ þϒφλ

þ Δφ̂ðϒrðλþ λðrÞ0 Þ;ϒθðλþ λðθÞ0 ÞÞ:
ð2:31Þ

In the above expressions, we introduced the compact
notation,

Δt̂ðϒrλ;ϒθλ̃Þ≡ Δt̂ðrÞðϒrλÞ þ Δt̂ðθÞðϒθλ̃Þ; ð2:32Þ

Δφ̂ðϒrλ;ϒθλ̃Þ≡ Δφ̂ðrÞðϒrλÞ þ Δφ̂ðθÞðϒθλ̃Þ; ð2:33Þ

for the sums of the radial and polar dependencies of the
time and azimuthal components. The initial orbital offsets,

λðrÞ0 and λðθÞ0 , are defined in terms of the initial radial and
polar positions and velocities by

Δr̂ðrÞðϒrλ
ðrÞ
0 Þ ¼ r0 − rmin; sgnðsinϒrλ

ðrÞ
0 Þ ¼ sgnur0;

Δθ̂ðθÞðϒθλ
ðθÞ
0 Þ ¼ θ0 − θmin; sgnðsinϒθλ

ðθÞ
0 Þ ¼ sgnuθ0:

Here, sgn represents the sign function. The fiducial case is

recovered by setting t0 ¼ φ0 ¼ λðrÞ0 ¼ λðθÞ0 ¼ 0.
All bound geodesics can be described by (2.28)–(2.31),

though any geodesic that passes through a simultaneous
minimum in the radial and polar motion (i.e., rp ¼ rmin and
θp ¼ θmin) can be mapped to a fiducial geodesic via trivial
offsets in t0 and φ0. As long as there exist integers k0 and n0
such that
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λðθÞ0 − λðrÞ0 ¼ n0Λr − k0Λθ; ð2:34Þ

is satisfied, then a simultaneous turning point at these
minimum positions will occur.5 Because nonresonant eccen-
tric inclined geodesics are ergodic, this simultaneous turning
point always exists (i.e., on a long enough timescale) and,
therefore, nonresonant geodesics can be described by the
fiducial expressions in (2.20)–(2.23),without loss of general-
ity up to a trivial shifting of Mino time λ.

D. Special case of rθ-resonant geodesics

We classify rθ resonances in terms of the (relatively
prime) integers βr and βθ that define the ratio between the
radial and polar frequencies, i.e.,

Ωr

Ωθ
¼ βr

βθ
: ð2:35Þ

Low-integer ratios (i.e., ones with small integers like
βr:βθ ¼ 1∶2; 2∶3) are referred to as strong resonances,
while high-integer ratios (e.g., 10∶11, 1∶20) are weak
resonances. Because the radial and polar frequencies are
commensurate during an rθ resonance, the discrete fre-
quency spectrum of resonant geodesics reduces to

ωmN ≡mΩφ þ NΩ; ð2:36Þ

where Ω≡Ωr=βr ¼ Ωθ=βθ and N ≡ kβθ þ nβr ∈ Z. In
other words, for an rθ resonance the normally separate sets
of harmonics of the radial and polar fundamental frequen-
cies merge into one set of harmonics N, of a new lower net
frequency Ω.
Resonant geodesics can also be described by (2.28)–

(2.31). However, unlike nonresonant geodesics which are
ergodic, rθ resonances follow restricted paths through the
poloidal plane—as shown in Fig. 2—and these paths are

sensitive to the initial conditions λðrÞ0 and λðθÞ0 . For a
resonance, the radial and polar motions oscillate with the
shared (net) Mino time frequency and period

ϒ≡ϒr

βr
¼ ϒθ

βθ
; Λ≡ βrΛr ¼ βθΛθ: ð2:37Þ

For simultaneous minimum turning points to occur during a
resonance, (2.34) reduces to the more stringent restriction

that λðθÞ0 − λðrÞ0 ¼ N0Λ, for some integer N0, which will not

hold true for most choices of λðrÞ0 and λðθÞ0 . Therefore, most
resonant orbits cannot be mapped to the fiducial geodesic
with the same frequencies.
Nevertheless, the symmetries of Kerr spacetime allow

the same functions describing the fiducial orbit to be
applied more broadly to the general resonant case. This
process starts with defining the initial resonant offset

λ0 ≡ λðθÞ0 − λðrÞ0 . Any two rθ resonances that share the

FIG. 2. Projected motion for two 1∶2 rθ-resonant geodesics around a Kerr black hole with spin a=M ¼ 0.9 and massM ¼ 1. The left
plot suppresses the azimuthal motion and depicts the radial and polar motion of both geodesics in the poloidal plane. Three-dimensional
projections of these two geodesics are mapped separately in the center and right plots. Both geodesics share the orbital parameters
ðp; e; xÞ ≈ ð4.607; 0.5; cos π=4Þ and the same rθ-resonant frequencies. While they both start at rpð0Þ ¼ rmin, they differ in their initial
polar positions and polar velocities. The solid (blue) line in the left plot and the center plot trace out a geodesic with the initial offset

λðθÞ0 ¼ 0 (qθ0 ¼ q̄0 ¼ 0), while the dashed (green) line in the left plot and the far right plot represent a geodesic with the initial offset

λðθÞ0 ¼ −3Λθ=8 (qθ0 ¼ βθq̄0 ¼ −3π=4). The motion for each plot is shown from λ ¼ 0 to λ ¼ 47.

5A similar symmetry also exists for other simultaneous turning
points [e.g., ðrmin; θmaxÞ, ðrmax; θmaxÞ], which leads to the alter-
nate constraint of Eq. (4.9) in [11]. For simplicity we only focus
on the case of a simultaneous minimum turning point ðrmin; θminÞ,
which is sufficient for our discussion.
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same value of λ0 (modulo Λ) can be mapped onto one
another. Taking advantage of this mapping, one can

simplify the description of geodesic orbits by setting λðrÞ0

or λðθÞ0 to 0. In this work, we choose λðrÞ0 ¼ 0 so that

λ0 ¼ λðθÞ0 , without loss of generality. The parametrization of
the resonant motion in terms of the offset λ0 is then

tpðλ; λ0Þ ¼ Γλ − Δt̂ð0; βθϒλ0Þ
þ Δt̂ðβrϒλ; βθϒðλþ λ0ÞÞ; ð2:38Þ

rpðλ; λ0Þ ¼ rmin þ Δr̂ðrÞðβrϒλÞ; ð2:39Þ

θpðλ; λ0Þ ¼ θmin þ Δθ̂ðθÞðβθϒðλþ λ0ÞÞ; ð2:40Þ

φpðλ; λ0Þ ¼ ϒφλ − Δφ̂ð0; βθϒλ0Þ
þ Δφ̂ðβrϒλ; βθϒðλþ λ0ÞÞ: ð2:41Þ

By varying the value of the offset in the range 0 ≤ λ0 < Λ,
we can generate all resonant paths through the poloidal
plane that are characterized by the same orbital para-
meters and frequencies but have different initial positions
(see Fig. 2).

E. Parametrizing geodesics with angle variables

The integrability of geodesic motion in Kerr spacetime
also leads to a natural representation of the motion in terms
of action-angle variables. This formalism forms the basis of

the two-timescale description of EMRI dynamics [15] and
provides a characteristic parametrization for functions that
depend on the librating radial and polar motions. The angle
variable parametrization is also used for presenting gravi-
tational self-force results [38], which we adopt in similar
fashion.
The angle variables are related to λ by the Mino

frequencies,

qr ¼ ϒrλ; qθ ¼ ϒθλ: ð2:42Þ

We similarly define the initial orbital phases

qðαÞ0 ¼ fqt0; qr0; qθ0; qφ0g ¼ ft0;ϒrλ
ðrÞ
0 ;ϒθλ

ðθÞ
0 ;φ0g:

ð2:43Þ

(Technically, for qt0 to represent a dimensionless phase it
should be rescaled, i.e., Ωt0, but the distinction is unim-
portant for our present purposes.) Functions that are
periodic with respect to the Mino time periods, Λr and
Λθ, can then be parametrized in terms of the corresponding
angle variables qr and qθ, e.g.,

Δr̂ðrÞðϒrðλþ λðrÞ0 ÞÞ → Δr̂ðrÞðqr þ qr0Þ;
Δθ̂ðθÞðϒθðλþ λðθÞ0 ÞÞ → Δθ̂ðθÞðqθ þ qθ0Þ:

Upon parametrizing functions in terms of the angle
variables, it is straightforward to project function values

FIG. 3. Poloidal motion depicted on the torus for orbits with parameters ða=M;p; e; xÞ ¼ ð0.9; 6; 0.5; cos π=4Þ (left panel) and
ða=M; p; e; xÞ ¼ ð0.9; 4.607; 0.5; cos π=4Þ (right panel). In the right plot parameters are chosen to generate a 1∶2 rθ resonance. The
orbit in the left panel is nonresonant. There the solid (blue) line follows the path of a geodesic with fiducial initial conditions
qðaÞ0 ¼ ðt0; qr0; qθ0;φ0Þ ¼ ð0; 0; 0; 0Þ, while the dashed (red) line has initial conditions qðaÞ0 ¼ ð0; π; π=2; 0Þ. (Both paths are plotted
over the Mino time interval λ ∈ ½0; 4�, withM ¼ 1.) Given sufficient time, both paths will fill the entire torus and completely overlap. In
the right panel the solid (blue) line follows the path of a geodesic with the initial resonant phase q̄0 ¼ 0 on the Mino time interval
λ ∈ ½0;Λ�, where Λ ≃ 4.494 is the (net) resonant Mino time period. The dashed (red) line follows a geodesic with initial phase q̄0 ¼ π=2
(θpðλ ¼ 0Þ ¼ π − θmin) on the same time interval. Unlike the nonresonant paths, the resonant geodesic flows in the right panel will never
overlap with one another.
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on the two-torus spanned by the two angle variables, such
as the tori depicted in Fig. 3. Each (invariant) two-torus
forms a section of configuration space for the radial and
polar motion of the small body. The geodesic flow on the
torus then describes the evolution of the motion through
this configuration space, as discussed in [48]. For a
nonresonant orbit, starting these paths at different points
on the torus is equivalent to choosing different initial
conditions. The effect of initial conditions on possible
paths is shown in the top panel of Fig. 3. Given an infinite
amount of Mino time, a system following a nonresonant
geodesic will sample every point on the torus.
In the case of a resonance, the system executes a closed

repeating motion through the domain, as seen in the bottom
panel of Fig. 3. Choosing different initial positions on the
torus can generate unique paths. The only way to sample all
of the points on the torus is to consider an infinite number
of resonant orbits that share the same frequencies ϒα but
different initial offsets λ0.
To distinguish resonant geodesics, we define a single

angle variable q̄ for resonant motion and then a single angle
parameter q̄0 for the initial resonant phase,6

q̄≡ϒλ ¼ qr
βr

¼ qθ
βθ

; q̄0 ≡ϒλ0 ¼
qθ0
βθ

−
qr0
βr

: ð2:44Þ

In this mapping, q̄0 is a constant as the system evolves.
In terms of these resonant angles, we denote reparame-

trized functions with an overbar, such that

Δr̄ðrÞðq̄Þ≡ Δr̂ðrÞðβrq̄Þ; ð2:45Þ

Δθ̄ðθÞðq̄; q̄0Þ≡ Δθ̂ðθÞðβθq̄þ βθq̄0Þ; ð2:46Þ

Δt̄ðq̄; q̄0Þ≡ Δt̂ðβrq̄; βθq̄þ βθq̄0Þ; ð2:47Þ

Δφ̄ðq̄; q̄0Þ≡ Δφ̂ðβrq̄; βθq̄þ βθq̄0Þ: ð2:48Þ

This description is particularly useful for calculating and
visualizing the SSF in later sections.

III. SCALAR SELF-FORCE PROBLEM

A. Overview

We use the same scalar model and resulting SSF
formalism as outlined in our previous paper [39]. We give
a brief summary here to establish notation. The small body
is treated as a point particle with mass μ following an
(arbitrary) geodesic about a Kerr black hole with mass M
and spin a, but with the particle endowed with a scalar
charge q ∼ μ ≪ M. We neglect gravitational perturbations
and the GSF due to the mass μ. The motion of the charge

sources a radiative scalar field Φ, which satisfies the
curved-space Klein-Gordon equation [49]

gαβ∇α∇βΦ ¼ −4πρ; ð3:1Þ

where ρ is the scalar charge density, and the covariant
derivative ∇α is taken with respect to the stationary Kerr
background gαβ. The charge density takes the form

ρ¼ q
δðr− rpðtÞÞδðcosθ− cosθpðtÞÞδðφ−φpðtÞÞ

VtrðrÞþVtθðθÞ
: ð3:2Þ

The scalar field produces a backreaction on the scalar
charge in the form of a SSF Fα (per unit charge) that drives
its motion off of a background geodesic [50],

uβ∇βðμuαÞ ¼ q2Fα: ð3:3Þ

Unlike the gravitational case, the SSF is not orthogonal to
the four-velocity and contributes to a variation in the rest
mass

dμ
dτ

¼ −q2uαFα; ð3:4Þ

requiring all four components of the SSF to be computed.
The contribution of Φ to the SSF can be completely

encoded in the Detweiler-Whiting regular field ΦR [50,51]

q2Fα ¼ lim
xμ→xμp

qgαβ∇βΦR: ð3:5Þ

The regular field ΦR ¼ Φret −ΦS is defined as the differ-
ence between the retarded field Φret, which satisfies
Eq. (3.1) with causal boundary conditions, and the singular
field ΦS, which also satisfies Eq. (3.1) (but with different
boundary conditions) and which captures the local singular
behavior.
This makes both Φret and ΦS divergent along the point-

particle worldline, and their subtraction from one another
requires a careful regularization procedure. We make use of
mode-sum regularization [52,53]

Fα ¼ lim
xμ→�xμp

X∞
l¼0

ðFret;l
α� − FS;l

α�Þ; ð3:6Þ

where Fret;l
α� and FS;l

α� are the finite spherical harmonic
moments of the full divergent quantities q2Fret

α ≡ q∇αΦret

and q2FS
α ≡ q∇αΦS. The � notation accounts for the fact

that the moments for some vector components are discon-
tinuous at the point source, with their value depending upon
the direction in r in which the limit is taken.
In the following subsections we outline how Fret;l

α and
FS;l
α are constructed for a point source following an

arbitrary geodesic. We calculate the geodesic SSF, finding
6Our resonant angle q̄ differs from the resonant variable q⊥ ¼

βθqr − βrqθ used by other authors (e.g., [19]).
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the force along a background geodesic, and not the self-
consistent SSF that would result from applying the back-
reaction continuously.

B. The retarded field Φret

In the Kerr background Eq. (3.1) is amenable to
separation of variables if we both decompose Φret in
azimuthal m modes and transform to the frequency domain
[49,54]. The discrete spectrum of the bound source motion
reduces the frequency-domain representation of the field to
a set of discrete sums

Φret ¼ q
X
l̂mkn

Rl̂mknðrÞSl̂mknðθÞeimφe−iωmknt; ð3:7Þ

where the discrete frequency spectrum ωmkn is defined in
Eq. (2.17), and the sum

X
l̂mkn

≡Xþ∞

l̂¼0

Xl̂

m¼−l̂

Xþ∞

k¼−∞

Xþ∞

n¼−∞
ð3:8Þ

is a compact notation for the sums over l̂ and m and the
harmonics of the polar and radial motions.
In the decomposition, Sl̂mknðθÞ is the scalar spheroidal

harmonic (spin weight 0) with spheroidicity σ2 ¼ −a2ω2
mkn,

and Rl̂mknðrÞ is the solution to the (scalar) radial inhomo-
geneous Teukolsky equation [49]. We distinguish between
spheroidal and spherical harmonic indices using l̂ and l,
respectively. In our calculations, we construct Sl̂mkn as a sum
over spherical harmonics

Sl̂mknðθÞeimφ ¼
X∞
l¼jmj

bl
l̂mkn

Ylmðθ;φÞ; ð3:9Þ

where the coefficients bl
l̂mkn

satisfy a three-term recurrence
relation described in [39].

C. Radial mode functions and extended
homogeneous solutions

The radial mode functions Rl̂mkn are solved in a way that
allows us to apply the method of extended homogeneous
solutions [55–59]. This technique circumvents the appear-
ance of Gibbs ringing in the time-domain retarded field
(3.7) when the source terms are pointlike distributions. The
method starts with calculating the radial mode functions in
the frequency domain. We first transform to the tortoise
coordinate r� by integrating

dr�
dr

¼ ϖ2

Δ
; ð3:10Þ

and then introduce scaled radial functions

Xl̂mkn ¼ ϖRl̂mkn: ð3:11Þ

The new radial functions satisfy a radial wave equation

�
d2

dr2�
−Ul̂mknðrÞ

�
Xl̂mknðrÞ ¼ Zl̂mknðrÞ; ð3:12Þ

where the radial potential Ul̂mkn and source term Zl̂mkn
are defined in Sec. II C of [39] and Appendix A of
this paper.
We then construct (unit-normalized) homogeneous sol-

utions X̃�
l̂mkn

that satisfy downgoing (−) and outgoing (þ)
wave boundary conditions at the horizon and infinity,
respectively (also referred to as the in-wave and up-wave
[60]). In practice, rather than numerically constructing
solutions by solving (3.12), we directly compute the homo-
geneous radial Teukolsky solutions R̃�

l̂mkn
, using the Mano-

Suzuki-Takasugi function expansions [61,62], and then
obtain X̃�

l̂mkn
from (3.11).

Through variation of parameters, we calculate the
normalization coefficients (or Teukolsky amplitudes)
C�
l̂mkn

that relate the homogeneous and inhomogeneous
solutions in the source-free regions

Xl̂mknðr < rminÞ ¼ C−
l̂mkn

X̃−
l̂mkn

ðrÞ; ð3:13Þ

Xl̂mknðr > rmaxÞ ¼ Cþ
l̂mkn

X̃þ
l̂mkn

ðrÞ: ð3:14Þ

The calculation of C�
l̂mkn

is described in Appendix A and
[39]. As noted previously [11,25], varying the initial con-
ditions of the source changes C�

l̂mkn
by a phase factor [11]

C�
l̂mkn

ðqðαÞ0Þ ¼ eiξmknðqðαÞ0ÞĈ�
l̂mkn

; ð3:15Þ

where the set of initial conditions qðαÞ0 is defined in (2.43).
The phase offset takes the form

ξmknðqðαÞ0Þ≡mðΔφ̂ðqr0; qθ0Þ − φ0Þ
− ωmknðΔt̂ðqr0; qθ0Þ − t0Þ − kqθ0 − nqr0;

ð3:16Þ

and hatted normalization constants Ĉ�
l̂mkn

are calculated
assuming the fiducial orbit. We provide a derivation of this
relationship in Appendix A. Equation (3.15) also holds true
for the Teukolsky amplitudes calculated for gravitational
perturbations [25].
With these normalized homogeneous solutions, we

define the following extended homogeneous functions

ϕ�
lmðt; rÞ≡

Xþ∞

l̂¼jmj

Xþ∞

k¼−∞

Xþ∞

n¼−∞
ϕ�
ll̂mkn

ðrÞe−iωmknt; ð3:17Þ

RESONANT SELF-FORCE EFFECTS IN EXTREME-MASS-RATIO … PHYS. REV. D 104, 084011 (2021)

084011-9



ϕ�
ll̂mkn

ðrÞ≡ 1

ϖ
bl
l̂mkn

C�
l̂mkn

X̃�
l̂mkn

ðrÞ; ð3:18Þ

for each spherical harmonic Ylmðθ;φÞ. We refer to ϕ�
lmðt; rÞ

as extended homogeneous functions, not extended homo-
geneous solutions, since by construction there are no time
domain wave equations that they satisfy (the Teukolsky
equationdoes not separatewith ordinary spherical harmonics).
These functions do however have the advantage that the
sums in (3.17) converge exponentially, unlike those in (3.7).
Furthermore, even though the individual ll̂mkn modes of
(3.18) are not valid solutions of the inhomogeneousTeukolsky
equation in the source region rmin ≤ r ≤ rmax, once the full
field is reconstructed in the time domain by summing over all
modes, we are left with extended homogeneous solutions that
provide an accurate and convergent representation of the
retarded field up to the location of the point charge

Φretðt; r; θ;φÞ ¼ Φ−ðt; r; θ;φÞΘðrpðtÞ − rÞ
þ Φ̂þðt; r; θ;φÞΘðr − rpðtÞÞ; ð3:19Þ

Φ�ðt; r; θ;φÞ ¼ q
X
lm

ϕ�
lmðt; rÞYlmðθ;φÞ: ð3:20Þ

D. Retarded and singular contributions to the SSF

Using (3.19) and (3.20), we construct the l modes of the
force Fret;l

α� , along the particle worldline

Fret;l
α� ðλÞ ¼

Xl

m¼−l
ðDlm

α ϕ�
lmÞðtp; rpÞYlmðθp;φpÞ; ð3:21Þ

where the coordinate positions of the particle are under-
stood to be functions of Mino time [e.g., tp ¼ tpðλÞ], and
the operator Dlm

α performs the following operations on the
extended homogeneous functions:

Dlm
t ϕ�

lm ≡ ∂tϕ
�
lm; ð3:22Þ

Dlm
r ϕ�

lm ≡ ∂rϕ
�
lm; ð3:23Þ

Dlm
θ ϕ�

lm ≡ βð−3Þlþ3;mϕ
�
lþ3;m þ βð−1Þlþ1;mϕ

�
lþ1;m

þ βðþ1Þ
l−1;mϕ

�
l−1;m þ βðþ3Þ

l−3;mϕ
�
l−3;m; ð3:24Þ

Dlm
φ ϕ�

lm ≡ imϕ�
lm: ð3:25Þ

The coefficients βð�iÞ
lm are defined in Appendix A of [39]7 and

are obtained by first applying the window function proposed

by Warburton [59] and then reprojecting the derivatives
∂θYlm onto the Ylm basis. Details of this operation can be
found in [59], with a correction added in [39].
The singular contribution is obtained through a local

analytic expansion in the neighborhood of the source
worldline [52,53,63]

FS;l
α� ¼ A�

α Lþ Bα þ
Xþ∞

n¼1

Dα;2nQ
n
k¼1ð2L − 2kÞð2Lþ 2kÞ ;

ð3:26Þ
where L≡ lþ 1=2, and the regularization parameters Aα�,
Bα, and Dα;2n are independent of l but functions of rp, θp,
ur, uθ, E, Lz, andQ (as well as a andM). Only Aα� and Bα

are known analytically for generic bound orbits in Kerr
spacetime [53], while Dα;2 is known analytically for
equatorial orbits in Kerr [64].
The terms with higher-order parameters Dα;2n have the

useful property that their l-dependent weights vanish upon
summing over all l,

Xþ∞

l¼0

�Yn
k¼1

ð2L − 2kÞð2Lþ 2kÞ
�−1

¼ 0: ð3:27Þ

Only Aα� and Bα are needed for convergent results, but if
we neglect the Dα;2n terms upon combining Eqs. (3.6) and
(3.26), Fα converges at a rate ∼l−2. Each Dα;2n term
reintroduced to the regularization procedure improves
the convergence rate by another factor of l−2. Since we
truncate the sum over l modes around lmax ∼ 20, we must
numerically fit for the higher-order regularization param-
eters to improve the convergence of the mode-sum regu-
larization. Our fitting procedure is described in [39]. The
uncertainties associated with this fitting procedure often
dominate other numerical errors in the calculation. We use
this to obtain uncertainty estimates for our SSF results.

IV. CONSTRUCTING THE SSF FOR RESONANT
AND NONRESONANT SOURCES

A. Nonresonant sources

With a generic nonresonant orbit, the SSF is multiply
periodic and never repeats over the entire interval
−∞ < λ < ∞. Rather than sampling the SSF over this
infinite domain in λ, we map the SSF to the angle variables
introduced in Sec. II E,

F̂ret;l
α� ðqr; qθÞ ¼

Xl

m¼−l
ðDlm

α ϕ̂�
lmÞðqr; qθÞŶlmðqr; qθÞ: ð4:1Þ

Note that we have placed hats on all functions that are
evaluated using the fiducial geodesic solutions of (2.20)–
(2.23). The evolution of φ is dependent on the motion of
both r and θ, so in a slight abuse of notation we
reparametrize functions to have the following meaning:

7A minor error exists in Eq. (A4) of [39]. The coefficients βð�3Þ
lm

are missing a minus sign in front of the parentheses on the
righthand side of Eq. (A4).
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Ŷlmðqr; qθÞ≡ Ylmðθ̂pðqθÞ;Δφ̂ðqr; qθÞÞ; ð4:2Þ

and

ϕ̂�
lmðqr; qθÞ≡

X
l̂kn

ϕ̂�
ll̂mknðqrÞe−iðωmknΔt̂ðqr;qθÞþkqθþnqrÞ;

ϕ̂�
ll̂mknðqrÞ≡ ϖ̂−1

p ðqrÞbll̂mkn
Ĉ�
l̂mkn

X̃�
l̂mkn

ðr̂pðqrÞÞ: ð4:3Þ

Here ϖ̂pðqrÞ ¼ ðr̂2pðqrÞ þ a2Þ1=2 and the operator Dlm
α

performs the same function as before. Because the regu-
larization parameters only vary with respect to rp, θp, ur,
and uθ (assuming the orbital constants are fixed), the
singular field can also be translated into this angle variable
parametrization, ultimately providing a description of the
SSF in terms of qr and qθ,

F̂αðqr; qθÞ ¼
X∞
l¼0

ðF̂ret;l
α� ðqr; qθÞ − F̂S;l

α�ðqr; qθÞÞ: ð4:4Þ

The angle variable parametrization maps the entire self-
force history onto the finite domain of the invariant two-
torus visualized in Fig. 3. The SSF, projected onto this
torus, can then also be represented by the (double) Fourier
series

Fαðqr; qθÞ ¼
Xþ∞

k¼−∞

Xþ∞

n¼−∞
gknα e−iðkqθþnqrÞ;

gknα ¼ 1

4π2

Z
2π

0

dqr

Z
2π

0

dqθFαðqr; qθÞeiðkqθþnqrÞ:

ð4:5Þ

By densely sampling values of qr and qθ over the torus at
evenly-spaced points, qr;i ¼ 2πi=Nr and qθ;j ¼ 2πj=Nθ

(where Nr, Nθ ∈ Z), we can construct a discrete Fourier
representation of the SSF

Fαðqr; qθÞ ≃
XNθ−1

k¼0

XNr−1

n¼0

fknα e−iðkqθþnqrÞ;

fknα ¼ 1

NrNθ

XNθ−1

i¼0

XNr−1

j¼0

Fαðqr;i; qθ;jÞeiðkqθ;jþnqr;iÞ:

ð4:6Þ

Given Nr and Nθ that are large enough such that
max jfknα − gknα j < ϵFS, where ϵFS is some predefined accu-
racy goal, the discrete representation will provide an
accurate approximation of Eq. (4.5) [39,46]. We found
that sample numbers of Nr ¼ Nθ ¼ 28 were typically
sufficient for constructing a discrete representation that
was accurate to about ϵFS ∼ 10−8 − 10−10. The discrete

Fourier series provides an efficient method for storing and
interpolating SSF data.
We can easily generalize our results to geodesics with

arbitrary initial conditions by applying the following
shifting relation,

Fαðqr; qθ; qa0Þ ¼ F̂αðqr þ qr0; qθ þ qθ0Þ: ð4:7Þ

A proof of Eq. (4.7), which applies for both the SSF and
GSF, is provided in Appendix B. While this result seems
almost trivial for the nonresonant case, it surprisingly plays
a role in improving the efficiency of SSF calculations for
resonant orbits as well, as discussed in Sec. IV B.

B. Resonant sources

The SSF experienced by a charge following an rθ-
resonant geodesic requires a different treatment. The
worldline of the charge is described by (2.38)–(2.41).
In contrast to the SSF for a nonresonant orbit [e.g.,
F̂αðqr; qθÞ], we construct the resonant SSF F̄α to be a
function of the single resonant angle variable q̄ and the
initial resonant phase q̄0 [defined in Eq. (2.44)]. We
describe here two methods of calculating F̄res

α ðq̄; q̄0Þ:
the first uses the reduced mode spectrum ωmN defined in
(2.36) to construct the SSF on an ll̂mN basis, while the
second uses the generic mode spectrum ωmkn to construct
the SSF on the ll̂mkn basis, just as we outlined in the
previous section for nonresonant orbits. These two
approaches are similar to the two approaches for calculat-
ing gravitational wave fluxes discussed in [25].

1. Constructing the resonant SSF on an ll̂mN basis

The retarded SSF sourced by an rθ-resonant geodesic,
when parametrized in terms of the resonant angle variable
and resonant phase, takes the form

F̄ret;l
α� ðq̄; q̄0Þ ¼

Xl

m¼−l
ðDlm

α ϕ̄�
p;lmÞðq̄; q̄0ÞȲlmðq̄; q̄0Þ; ð4:8Þ

where, in contrast to Eqs. (4.2) and (4.3),

Ȳlmðq̄; q̄0Þ≡ Ylmðθ̄pðq̄; q̄0Þ;Δφ̄ðq̄; q̄0Þ − Δφ̄ð0; q̄0ÞÞ;
ð4:9Þ

and

ϕ̄�
lmðq̄; q̄0Þ≡

Xþ∞

l̂¼jmj

Xþ∞

N¼−∞
ϕ̄�
ll̂mN

ðq̄; q̄0Þ

× e−iωmNðΔt̄ðq̄;q̄0Þ−Δt̄ð0;q̄0ÞþNq̄Þ;

ϕ̄�
ll̂mN

ðq̄; q̄0Þ≡ ϖ̄−1
p ðq̄Þbl

l̂mN
C̄�
l̂mN

ðq̄0ÞX̃�
l̂mN

ðr̄pðq̄ÞÞ: ð4:10Þ
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All functions and coefficients with an overbar are evalu-
ated using the resonant geodesic solutions described by
(2.38)–(2.41). The C̄�

l̂mN
are defined in Appendix A

and vary with the resonant phase parameter q̄0. Unlike
C�
l̂mkn

ðq̄0Þ, C̄�
l̂mN

ðq̄0Þ is not related to the fiducial case

C̄�
l̂mN

ð0Þ by a simple phase factor. Each time we calculate
the SSF for a new value of q̄0, the source term must be
integrated over a new resonant orbit. Since source integra-
tion is a computationally-intensive aspect of the SSF
calculation, needing to repeat this operation is not ideal.
Thus, the advantage of reduced dimensionality in the mode
spectrum must be weighed against the disadvantage of
repeated source integration.

2. Constructing the resonant SSF on an ll̂mkn basis

Alternatively, we first construct the fiducial SSF
F̂αðqr; qθÞ using the methods outlined in Sec. IVA.
Combining (4.4) and (4.7), we can then relate the resonant
SSF F̄res

α ðq̄; q̄0Þ to the fiducial result by fixing the relation-
ship between qr and qθ,

F̄res
α ðq̄; q̄0Þ ¼ F̂αðβrq̄; βθq̄þ βθq̄0Þ: ð4:11Þ

In this way, we simply construct the fiducial SSF
F̂αðqr; qθÞ on an ll̂mkn basis by relating the l̂mN-mode
functions and constants to their l̂mkn-mode counterparts

ωmN ¼ ωmðknÞN ; ð4:12Þ

X̃l̂mN ¼ X̃l̂mðknÞN ; bl
l̂mN

¼ bl
l̂mðknÞN

; ð4:13Þ

where one must be careful to understand that ðk; nÞN
represents the set of all k and n values that produce the
same value N that satisfies N ¼ kβθ þ nβr. Significant
computational time is saved by recycling values of the
homogeneous radial functions for different values of k and
n, provided they share the same frequency and spheroidal
mode numbers ðl̂; mÞ.
The normalization coefficients are related by a coherent

sum over all k and n modes that share the same frequency
(given by N)

C̄�
l̂mN

ðq̄0Þ ¼
X
ðk;nÞN

eiξ̃mknðq̄0ÞĈ�
l̂mkn

; ð4:14Þ

as demonstrated in Appendix A of [25] and Sec. III D
of [65]. In this way, each C̄�

l̂mN
ðq̄0Þ is a superposition of

many amplitudes Ĉ�
l̂mkn

that would have been regarded
as independent in the nonresonant case. In a com-
plex square, this superposition leads to constructive or
destructive interference terms in the fluxes. Note that
ξ̃mknðq̄0Þ≡ ξmknð0; 0; βθqθ0; 0Þ. Substituting Eqs. (4.12)–
(4.14) into Eqs. (4.8)–(4.10), brings them into the same

form as Eqs. (4.1)–(4.3). Unlike X̃l̂mkn, each Cl̂mkn must be
calculated independently, even if they share the same
frequencies and spheroidal harmonic mode numbers.
Essentially, by introducing the more generic mode spec-
trum ωmkn, we circumvent the need to repeatedly evaluate
each lmN mode at different initial phases, but at the
expense of summing over an additional mode number.
The advantage of this approach is that, once a code has
already been built to calculate the fiducial SSF for
nonresonant orbits, it can be easily modified to produce
the SSF for resonant sources and avoids the need to
construct an entirely separate code.

3. Discrete Fourier representation of the resonant SSF

The resonant SSF is periodic with respect to q̄ and q̄0,
and therefore can be expressed as a multiple Fourier series.
By sampling the resonant SSF on an evenly spaced two-
dimensional grid in q̄ and q̄0, the discrete Fourier repre-
sentation of F̄res

α is

F̄res
α ðq̄; q̄0Þ ≃

XN0−1

K¼0

XNres−1

N¼0

ḡKNα e−iNq̄e−iKq̄0 ; ð4:15Þ

ḡKNα ¼ 1

N0Nres

XN0−1

|¼0

XNres−1

{¼0

F̄res
α ðq̄{; q̄0|ÞeiNq̄{eiKq̄0| ; ð4:16Þ

where q̄i ¼ 2πi=Nres and q̄0;j ¼ 2πj=N0, with Nres,
N0 ∈ Z. By comparing (4.15) with (4.6) and (4.11), we
can relate f̂knα and ḡKNα by

ḡKNα ¼ f̂K=βθ ;ðN−KÞ=βr
α : ð4:17Þ

From this relation, we see that ḡKNα ¼ 0 unless K is a
multiple of βθ and N − K is a multiple of βr. Thus, while
the resonant angle variable and the initial resonant phase
more naturally capture both the coupled nature of the radial
and polar motion and the sensitivity of the source to initial
conditions, this parametrization is less efficient at capturing
the behavior of the self-force. For example, if one wants to
calculate f̂knα for 0 ≤ k < Nθ, 0 ≤ n < Nr, then one would
need to sample Nr × Nθ points in the qr − qθ domain, but
βrNr × ðβθNθ þ βrNrÞ points in the q̄ − q̄0 domain. This
oversampling occurs because the resonant parametrization
does not take full advantage of the symmetries of the orbit,
which are better captured by the separation of the radial and
polar motion in the qr − qθ angle parametrization.

C. Dissipative and conservative SSF

Irrespective of the type of orbit, the self-force can be
decomposed into conservative and dissipative parts, Fcons

α

and Fdiss
α . These parts impact the evolution of EMRIs in

different ways [8,15,66,67] and computationally converge
at different rates in the mode-sum regularization procedure.
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The dissipative part Fdiss
α does not require regularization

and converges exponentially. The conservative part Fcons
α

requires regularization and converges as a power law in a
number of l modes.
Summarizing our previous discussion [39] of this

decomposition, the split depends on both the retarded
force and the advanced force Fadv

α , which depends on
the advanced scalar field solution. The decomposition is
made in terms of spherical harmonic elements, e.g., Fadv;l

α

and is given by

Fdiss
α ¼

Xþ∞

l¼0

1

2
ðFret;l

α� − Fadv;l
α� Þ; ð4:18Þ

Fcons
α ¼

Xþ∞

l¼0

�
1

2
ðFret;l

α� þ Fadv;l
α� Þ − FS;l

α�

�
: ð4:19Þ

The inconvenience of calculating the advanced scalar field
solution is avoided by using symmetries of Kerr geodesics
[8,15,66] (summarized also in [39]), which lead to con-
venient relationships between spacetime components of
Fret;l
α and Fadv;l

α ,

Fadv;l
α ðqr; qθÞ ¼ ϵðαÞF

ret;l
α ð2π − qr; 2π − qθÞ; ð4:20Þ

where ϵðαÞ ¼ ð−1; 1; 1;−1Þ. Thus, Fdiss
t , Fcons

r , Fcons
θ , and

Fdiss
φ are symmetric (even) functions on the qr − qθ two-

torus, while Fcons
t , Fdiss

r , Fdiss
θ , and Fcons

φ are antisymmetric
(odd). These relationships between advanced and retarded
solutions have been previously discussed [58,59,68] in the
context of restricted orbits but, in fact, Eq. (4.20) holds for
arbitrary geodesic motion.

V. RESONANT SSF RESULTS

Using the methods outlined in the prior sections, we
generated new results for the SSF on six different resonant
orbits, the orbital parameters of which are listed in Table I.
These calculations were made with a MATHEMATICA

code first described in [39]. These calculations also
made use of software from the Black Hole Perturba-
tion Toolkit [69], specifically the KERRGEODESICS and
SPINWEIGHTEDSPHEROIDALHARMONICS packages.
In generating numerical results we set M ¼ 1, which is

assumed for the remainder of this work. Each resonant orbit
had primary spin a ¼ 0.9. We focused on 1∶3, 1∶2, and
2∶3 rθ resonances, the three resonances an EMRI is most
likely to encounter during its final years of evolution
when its signal falls within the LISA passband [16,17].
To pick orbital parameters ðp; e; xÞ that produce rθ-reso-
nant frequencies, we follow the approach of Brink, Geyer,
and Hinderer [48,70]. Specified values of e and x are
chosen first, and then p is numerically calculated using the
root-finding method described in Sec. V E of [48]. In our

work all of the orbits share the same inclination,
x ¼ cosðπ=4Þ, while two different eccentricities, e ¼ 0.2
and e ¼ 0.5, are considered. The resulting values of p (to
four places) for each resonant orbit are listed in Table I.
As discussed in Sec. IV, for resonant orbits we express

the SSF as a function of the resonant angle variable q̄ and
the resonant phase parameter q̄0, i.e., F̄res

α ðq̄; q̄0Þ, or (as
convenient) as a function of the more general angle
variables qr and qθ and the initial phases qr0 and qθ0,
i.e., F̂αðβrq̄; βθq̄þ βθq̄0Þ ¼ F̂αðqr; qθ þ qθ0Þ. Plotting the
SSF as a function of q̄, as shown in Sec. V B, highlights the
periodicity of the SSF during resonances and is qualita-
tively representative of the Mino or coordinate time
dependence of the SSF. On the other hand, plotting the
SSF as a function of qr and qθ, as shown in Sec. V C,
separates the dependence of the SSF on the radial and polar
motion of the orbit. This way of depicting the SSF mirrors
the parametrizations used for nonresonant orbits, as seen in
[38,39]. To better analyze the impact of different orbital
parameters and types of resonances, we present each
spacetime component of the self-force separately.

A. Regularization and convergence of results

The SSF is constructed by mode-sum regularization and
the numerical fitting procedures discussed in Sec. III D.
The convergence of the mode-sum regularization procedure
is well understood: subtracting the analytically known
regularization parameters, Aα and Bα, produces residuals
that fall off as ∼l−2 for large l. There is no fundamental
difference when an orbit is on resonance. In Fig. 4 we plot
the mode-sum convergence of F̄res

φ at the point ðq̄ ¼
5π=16; βθq̄0 ¼ 5π=32Þ for all six resonant configurations.
Points refer to the l-mode residuals that result from
subtracting the analytically known and numerically fitted
regularization parameters, while the lines depict expected
power-law convergence rates for large l. In each resonance
that we consider, the residuals approach their expected
asymptotic rates of convergence.
While all of the models have the same asymptotic

behavior at large l, Fig. 4 demonstrates that for low l
modes the e ¼ 0.2 sources converge faster than those with

TABLE I. Summary of the resonant orbits considered in Sec. V.
In all cases the primary spin is a ¼ 0.9 (with M ¼ 1). The real
number values are truncated in the table to four significant figures
for brevity.

Model p e xinc βr∶βθ
e02.13 3.622 0.2 cosðπ=4Þ 1∶3
e02.12 4.508 0.2 cosðπ=4Þ 1∶2
e02.23 6.643 0.2 cosðπ=4Þ 2∶3
e05.13 3.804 0.5 cosðπ=4Þ 1∶3
e05.12 4.607 0.5 cosðπ=4Þ 1∶2
e05.23 6.707 0.5 cosðπ=4Þ 2∶3
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e ¼ 0.5, the 2∶3 resonances converge faster than the 1∶2
resonances, and the 1∶2 resonances converge faster than the
1∶3 ones. Higher eccentricities require a broader frequency
spectrum to capture the radial motion. Additionally, sources
that orbit farther into the strong field excite larger pertur-
bations and require higher frequency modes to capture the
behavior of the self-force. The 1∶3 resonances have the
smallest pericentric separations, the 1∶2 resonances have
the next smallest, and the 2∶3 resonances have the largest,
which is reflected in varying rates of convergence at low l.
Given these factors, the e05.13 orbit presents the greatest

challenge. For this model it takes thousands of additional
modes to capture the behavior of the SSF compared to other
resonant configurations. Because of the slow convergence

at low multipoles, truncating mode summations at the
same value of lmax as the other orbits will introduce larger
numerical errors in the retarded SSF contributions. While
these numerical errors are still relatively small, they are
significant enough that they make it much more difficult to
fit for higher-order regularization parameters. The accuracy
of the conservative component of the SSF suffers because
of this. In consequence, the conservative SSF is only
known to ≳2 digits of accuracy for the e05.13 orbit, with
the numerical error greatest when a component of the
SSF is in the vicinity of passing through zero. Fortunately,
the dissipative component typically dominates over the
conservative contribution in regions of the orbit where the
conservative contribution is known less accurately.

FIG. 4. Convergence of the SSF l modes for resonant models listed in Table I. The dashed and dotted lines depict comparative power-
law rates of convergence for F̄res

φ ðq̄ ¼ 5π=16; q̄0 ¼ 5π=32=βθÞ as more regularization terms are incorporated. The (black) squares
represent individual l modes of the unregularized SSF, the sum of which clearly diverges. The (red) triangles are the residuals from
subtracting Aφ and Bφ. The (blue) diamonds represent the residuals after subtracting Dφ;2, obtained through numerical fitting. The
(purple) circles represent the inclusion of Dφ;4, also approximated via a numerical fit.
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B. Scalar self-force as a function of q̄

For a resonant orbit we can present the SSF in a simple
line plot as a function of the net angle variable q̄, as
depicted in Figs. 5–8. In these plots the SSF has been
weighted by the cube of the pericentric radius of the
orbit (i.e., r3minF̄

res
α ), which more tightly bounds the varia-

tions in the SSF and facilitates comparisons across dif-
ferent models. Each plot shows the SSF variation with q̄
for two different initial conditions (i.e., values of q̄0).
The dot-dashed (black) curves show the SSF when the
initial polar phase is βθq̄0 ¼ qθ0 ¼ 0 (i.e., initial conditions
xμpðλ ¼ 0Þ ¼ ð0; rmin; θmin; 0Þ and urð0Þ ¼ uθð0Þ ¼ 0),
while the solid (red) curves show the SSF when
βθq̄0 ¼ qθ0 ¼ −π=2 (i.e., initial conditions xμpðλ ¼ 0Þ ¼
ð0; rmin; π=2; 0Þ, urð0Þ ¼ 0, and uθð0Þ < 0).8 The shaded
grey regions depict the range of SSF values that result from
varying the initial phases—either qθ0 or q̄0—through their
entire range.
The SSF is, of course, periodic with respect to q̄, but

interestingly for the 2∶3 resonances F̄res
t , F̄res

r , and F̄res
φ are

additionally periodic on the half interval ½0; π�. This
behavior arises in the Kerr background because the time,
radial, and azimuthal components of the SSF are invariant

under parity transformations (i.e., reflections θp → π − θp),
while the polar component flips sign [59] (equally true of
the gravitational self-force [38]). For a 2∶3 resonance, the
radial motion of the orbit is identical on the intervals ½0; π�
and ½π; 2π�, while the polar motion is related by the parity
transformation. From this fact follows the repetition in F̄res

t ,
F̄res
r , and F̄res

φ , while also giving the reflection behav-
ior F̄res

θ ðq̄; q̄0Þ ¼ −F̄res
θ ðq̄þ π; q̄0Þ.

These symmetries in the geodesic motion also manifest
themselves in the number of low-frequency oscillations
that appear in the SSF components, particularly in the low-
eccentricity orbits. Focusing on F̄res

r in Fig. 5, the SSF
locally peaks 6 times for the e02.13 and e02.23models and
4 times in the e02.12 case. The peaks closely align with the
epochs at which each orbit passes through its polar extrema.
A similar behavior is also seen for F̄res

t , F̄res
φ , and the higher

eccentricity models, though for e ¼ 0.5 it is more difficult
to identify local peaks, particularly as the orbit approaches
apocenter. For F̄res

θ in Fig. 7, the peaks align with the
passage of the source through θmin, while the troughs align
with its passages through π − θmin.
The degree to which the SSF varies with respect to

changes in initial phase depends primarily on which
component of the SSF vector we consider. The time
component, F̄res

t (Fig. 6), displays the least effect of varying
the initial conditions. The azimuthal component, F̄res

φ

(Fig. 8), shows slightly greater variations with respect to

FIG. 5. Radial component of the SSF as a function of the resonant angle variable q̄, i.e., F̄res
r ðq̄; q̄0Þ, for the six resonant geodesics

listed in Table I. The SSF is weighted by the cube of the pericentric radius r3min, so that all six orbits are of comparable magnitude. The
dot-dashed (black) line represents the SSF for a resonant geodesic with an initial resonant phase of βθq̄0 ¼ qθ0 ¼ 0, while the solid (red)
line represents the SSF for a resonance with the same orbital parameters but an initial resonant phase of βθq̄0 ¼ qθ0 ¼ −π=2. The shaded
grey region represents all of the SSF values produced by varying the initial phase parameter q̄0 from 0 to 2π.

8Note that qθ0 is held constant rather than q̄0, because the same
value of q̄0 will generate different initial conditions for reso-
nances with different values of βθ.
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FIG. 6. Time component of the SSF as a function of the resonant angle variable q̄, i.e., F̄res
t ðq̄; q̄0Þ, for the six resonant geodesics listed

in Table I. The dot-dashed (black) line represents the SSF for a resonant geodesic with an initial resonant phase of βθq̄0 ¼ qθ0 ¼ 0, the
solid (red) line represents an initial resonant phase of βθq̄0 ¼ qθ0 ¼ −π=2, and the shaded grey region represents all of the SSF values
produced by varying q̄0 from 0 to 2π.

FIG. 7. Polar component of the SSF as a function of the resonant angle variable q̄, i.e., F̄res
θ ðq̄; q̄0Þ, for the six resonant geodesics listed

in Table I. The dot-dashed (black) line represents the SSF for a resonant geodesic with an initial resonant phase of βθq̄0 ¼ qθ0 ¼ 0, the
solid (red) line represents an initial resonant phase of βθq̄0 ¼ qθ0 ¼ −π=2, and the shaded grey region represents all of the SSF values
produced by varying q̄0 from 0 to 2π.
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initial conditions. The radial component, F̄res
r (Fig. 5), is

still more affected. Finally, the polar angular component,
F̄res
θ (Fig. 7), displays the most significant variations. To

understand these variations, recall that the radial and polar
position of the resonant source, r̄p and θ̄p, depend on the
angle variables according to

r̄p ¼ r̂pðqrÞ ¼ r̂ðβrq̄Þ; ð5:1Þ

θ̄p ¼ θ̂pðqθ þ qθ0Þ ¼ θ̂ðβθq̄þ βθq̄0Þ: ð5:2Þ

Consequently, a broader grey band indicates a stronger
dependence on the polar motion. Thus, F̄res

t primarily
depends on the radial motion of the source, while F̄res

r is
sensitive to both polar and radial motions. In behavior
opposite of F̄res

t , F̄res
θ is primarily dependent on the polar

motion of the orbit. Finally, F̄res
φ depends mostly on radial

motion of the source, though the polar position becomes
important near pericenter.

C. Scalar self-force as a function of qr and qθ
An alternative way to visualize the dependence of

the SSF on the radial and polar motion of resonant orbits
is to project the SSF components onto the two-torus span-
ned by qr þ qr0 and qθ þ qθ0. This projection is depicted in
Figs. 9–12. We again weight the SSF components by the

cube of the pericentric radius of the orbit. The dot-dashed
(black) lines trace the motion of an orbit with initial
conditions βθq̄0 ¼ qθ0 ¼ 0. Sampling the SSF as the source
moves along these tracks reproduces the black dot-dashed
curves in Figs. 5, 6, 7, and 8. Maintaining previous
notation, we refer to the SSF parametrized by qr þ qr0
and qθ þ qθ0 as F̂α.
As observed in Sec. V B, F̂t (shown in Fig. 9) primarily

depends on the radial motion, with little variation as the
orbit advances along the qθ axis. As the contours show in
Figs. 10 and 12, the radial and azimuthal components, F̂r

and F̂φ are sensitive to both the radial and polar motion,
especially near pericenter. Finally, the contours of the SSF
seen in Fig. 11 clearly demonstrate the antisymmetry across
the equatorial plane of F̂θ, as discussed in the previous
section.
In agreement with previous investigations [39,57–59] of

the SSF, we see that F̂t is strictly positive. This contrasts
with the gravitational self-force case where the time
component can become negative in both radiation and
Lorenz gauge [38,71].9 On the other hand, F̂r is predomi-
nantly negative across the entire torus, though it becomes
slightly positive near apocenter. This behavior is consistent

FIG. 8. Azimuthal component of the SSF as a function of the resonant angle variable q̄, i.e., F̄res
φ ðq̄; q̄0Þ, for the six resonant geodesics

listed in Table I. The dot-dashed (black) line represents the SSF for a resonant geodesic with an initial resonant phase of βθq̄0 ¼ qθ0 ¼ 0,
the solid (red) line represents an initial resonant phase of βθq̄0 ¼ qθ0 ¼ −π=2, and the shaded grey region represents all of the SSF
values produced by varying q̄0 from 0 to 2π.

9We do not try to draw any physical interpretation from this
behavior since the SSF and gravitational self-force are coordinate
and (in the GSF case) gauge-dependent results.
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FIG. 9. Time component of the SSF F̂t projected on the poloidal motion two-torus for the six sources listed in Table I. The SSF is
normalized by the cube of each source’s pericenter distance. Colors correspond to values of the self-force (see colorbar). The self-force is
constant along each (solid) contour line with tic labels in the colorbar giving the values on those contours. The dot-dashed lines depict
the resonant motion for fiducial initial conditions (q̄0 ¼ 0).

FIG. 10. Radial component of the scalar self-force F̂r for the six orbits listed in Table I.
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with the observation [57] that higher black hole spin leads
to an attractive radial SSF. Large inclinations, on the other
hand, lead predominantly to positive values of the SSF, as

seen in SSF results for spherical orbits [59]. However, those
prior observations involved inclinations x≳ 0.5, which we
did not consider here.

FIG. 11. Polar component of the scalar self-force F̂θ for the six orbits listed in Table I.

FIG. 12. Azimuthal component of the scalar self-force F̂φ for the six orbits listed in Table I.
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Interestingly, while all of the SSF components peak in
magnitude following pericenter passage, the magnitude of
these peaks grows for F̂t and F̂r as rmin decreases, while the
peaks grow for F̂θ and F̂φ as rmin increases. The latter
behavior is actually due to the factor of r3min. If one removes
this weighting, then closer pericenter passages excite larger
peaks in the SSF for all components. This suggests that the
leading-order behavior of F̂θ and F̂φ is closer to 1=r2,
which one might expect based on dimensional analy-
sis (½Fθ;φ=Ft;r�dim ∼ ½M�dim).

VI. EVOLUTION OF THE ORBITAL
CONSTANTS

A. Overview

In the presence of radiative losses and the self-force, the
ordinarily constant quantities E, Lz, and Q are perturbed
and gradually evolve according to

_E ¼ −
q2

ut
at; _Lz ¼

q2

ut
aφ; ð6:1Þ

_Q ¼ 2

ut
½q2Kμνuμaν − ðLz − aEÞð _Lz − a _EÞ�; ð6:2Þ

where an overdot represents a derivative with respect to
Boyer-Lindquist time, and the self-acceleration aμ is given
by μaν ¼ ðgμν þ uμuνÞFμ ¼ Fν − q−2uνdμ=dτ. Note that
the lack of orthogonality between Fν and uν drives changes
in the mass μ (see C 1).
The changes _E, _Lz, and _Q consist of both secularly

growing and oscillating parts, with the secular piece found
by orbit-averaging (6.1) and (6.2) with respect to t. For a
nonresonant orbit, the averaging is over a long timescale,

h _Xi≡ lim
T→∞

1

T

Z
T

0

_Xdt; X ¼ E;Lz;Q: ð6:3Þ

These averages produce the leading-order adiabatic evo-
lution of the system [15]. The time integrals can be
reexpressed in terms of the angle variables that are used
to parametrize the self-force. Then the averaging is done
over the motion on the torus [45,65]. For nonresonant
orbits, _E, _Lz, and _Q are averaged over the entire two-torus
by integrating with equal weight over all qr and qθ. For
resonances, these orbit-averages are carried out over a
single one-dimensional closed track on the torus, reducing
(6.3) to a single integral over the resonant phase variable q̄,

μh _Ei ¼ −
q2

Γ

Z
2π

0

dq̄
2π

Σ̄pF̄res
t ¼ q2W; ð6:4Þ

μh _Lzi ¼
q2

Γ

Z
2π

0

dq̄
2π

Σ̄pF̄res
φ ¼ q2T ; ð6:5Þ

μh _Qi ¼ 2q2
�
−ðLz − aEÞð _T − a _WÞ

þ 1

Γ

Z
2π

0

dq̄
2π

Σ̄pK̄
μν
p ūμF̄res

ν

�
: ð6:6Þ

In the expressions above, all quantities with an overbar are
understood to be functions of q̄ and parametrized by q̄0
[e.g., Σ̄p ¼ Σ̄ðq̄; q̄0Þ ¼ r̄2pðq̄Þ þ a2 cos2 θ̄pðq̄þ q̄0Þ]. The

changes h _Ei and h _Lzi are directly related to the average
rate of workW and torque T done on the small body by the
SSF (per charge squared) and incorporate the fact that the
average change in μ vanishes (see C 1).
For nonresonant orbits the conservative components of

the self-force vanish when averaged over the entire torus.
This fact can be seen from the symmetries of (4.18) and
(4.20), combined with the expressions for _E, _Lz, and _Q.
Only the dissipative self-force contributes to the leading-
order adiabatic evolution of the system when it is off
resonance. When on resonance, we cannot make use of
these same symmetries to discard the conservative compo-
nent of the self-force in (6.4), (6.5), and (6.6). However,
flux-balance conditions do confirm that conservative con-
tributions to h _Ei and h _Lzi continue to vanish, as we further
discuss in Sec. VI B. Additionally, the averages over an rθ
resonance retain their dependence on q̄0, meaning that they
vary according to the initial phase at which the system
enters a resonance, as demonstrated previously [17,25].
Thus different initial conditions can either diminish or
enhance the averaged evolution of E, Lz, and Q during a
resonance. The following subsections detail this behavior
in the scalar case and provide numerical data on how the
conservative and dissipative components of the SSF con-
tribute to h _Ei, h _Lzi, and h _Qi.

B. Energy and angular momentum changes
for a resonant orbit

Flux-balance equates the average changes in the orbital
energy and angular momentum, h _Ei and h _Lzi, to the
average radiative fluxes [8,60,72]. For energy, the average
work W done by the SSF balances the total flux h _Eitot
radiated by the scalar field to infinity and down the horizon,
with the on-resonance fluxes having slightly modified
expressions

−W ¼ h _Eitot ≡ h _EiH þ h _Ei∞; ð6:7Þ

h _EiH ¼ 1

4π

X∞
l̂¼0

Xl̂

m¼−l̂

X∞
N¼−∞

ωmNγmNjC̄−
l̂mN

j2; ð6:8Þ

h _Ei∞ ¼ 1

4π

X∞
l̂¼0

Xl̂

m¼−l̂

X∞
N¼−∞

ω2
mNjC̄þ

l̂mN
j2: ð6:9Þ
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Here h _EiH is the energy flux (per charge squared) through
the horizon, and h _Ei∞ is the energy flux (per charge
squared) at infinity, with γmN ≡ ωmN −ma=ð2MrþÞ being
the spatial frequency of the radial modes at the horizon and
rþ ≡M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
denoting the radius of the outer

horizon. In the resonant case, the fluxes include a single
sum over the net harmonic number N of the net amplitudes
C̄�
l̂mN

. The net amplitudes are themselves sums (4.14) over

amplitudes Ĉ�
l̂mkn

with individual radial and polar harmonic
numbers n and k. These underlying sums reflect the
coherence between all harmonics of the radial and polar
librations that contribute to a given N. In this way,
interference terms appear in the flux that would otherwise
average to zero in the off-resonance case.
In a similar way the average torque T applied by the SSF

balances the sum of the angular momentum flux at the
horizon h _LziH and at infinity h _Lzi∞,

−T ¼ h _Lxitot ≡ h _LziH þ h _Lzi∞; ð6:10Þ

h _LziH ¼ 1

4π

X∞
l̂¼0

Xl̂

m¼−l̂

X∞
N¼−∞

mγmN jC̄−
l̂mN

j2; ð6:11Þ

h _Lzi∞ ¼ 1

4π

X∞
l̂¼0

Xl̂

m¼−l̂

X∞
N¼−∞

mωmNjC̄þ
l̂mN

j2: ð6:12Þ

Recall from (4.14) that the net amplitude C̄�
l̂mN

¼ C̄�
l̂mN

ðq̄0Þ
is a function of q̄0, which captures the effect on the fluxes
of the phase of the resonant orbit.
In a numerical calculation the fluxes tend to converge

exponentially with increasing numbers of modes and only
require calculation of the matching coefficients C̄�

l̂mN
, not

the full SSF. The effect is that the fluxes can usually be
computed to high accuracy. In Table II we report numerical
values for the total fluxes (at infinity and the horizon) for
two different phase parameters, qθ0 ¼ βθq̄0 ¼ 0 and −π=2,
and for each of the models outlined in Table I. Consistent
with calculations of gravitational fluxes [73], most of the
horizon fluxes are negative due to superradiant scattering
(each model has primary spin of a=M ¼ 0.9). As expected,
orbits with smaller pericentric distances rmin tend to
produce larger fluxes, while eccentricity has a smaller
effect.
In Table II we also list the computed average over q̄0 of

the resonant-orbit fluxes,

TABLE II. Energy and angular momentum fluxes for the resonant-orbit models listed in Table I. Fluxes through the horizon, h _EiH and
h _LziH, and infinity, h _Ei∞ and h _Lzi∞, are included. Each model contains a row of fluxes for an orbit with initial phase qθ0 ¼ βθq̄0 ¼ 0
and a row of fluxes for an orbit with qθ0 ¼ βθq̄0 ¼ −π=2. A third row in each case shows the q̄0 averages of the fluxes as defined by
(6.13), which ignores constructive and destructive interference terms. The reported precision in each flux indicates the accuracy of each
calculation (though we truncate more accurate results at nine decimal places). The total fluxes are also compared to the local work and
torque due to the SSF,W and T , to illustrate the (orbit-averaged) fractional errors in the flux balance relations. These errors range from
∼10−11 to ∼10−5, reflecting the numerical accuracy of our SSF results.

Model βθq̄0 h _EiH × 105 h _LziH × 104 h _Ei∞ × 103 h _Lzi∞ × 103 j1þ h _Eitot
W j j1þ h _Lzitot

T j
e02.13 0 −4.411457095 −7.017966266 1.301535 7.677846 9 × 10−7 8 × 10−7

−π=2 −4.411497781 −7.017992874 1.301534 7.677831 7 × 10−7 6 × 10−7

avg −4.411477437 −7.017979570 1.301535 7.677838 � � � � � �
e02.12 0 −2.021123696 −3.395925026 0.5737075 4.843929 2 × 10−8 2 × 10−8

−π=2 −2.021127357 −3.396083610 0.5736988 4.843824 2 × 10−8 2 × 10−8

avg −2.021125529 −3.396004318 0.5737031 4.483877 � � � � � �
e02.23 0 −0.324830139 −0.877896699 0.134964247 1.762343845 6 × 10−9 3 × 10−11

−π=2 −0.325170299 −0.877675562 0.134984611 1.762586419 6 × 10−9 3 × 10−11

avg −0.325000220 −0.877786129 0.134974429 1.762465132 � � � � � �
e05.13 0 −0.482340196 −6.445882073 1.45739 7.28846 9 × 10−5 8 × 10−5

−π=2 −0.480744834 −6.448440589 1.45724 7.28681 9 × 10−5 8 × 10−5

avg −0.481543289 −6.447161427 1.45731 7.28763 � � � � � �
e05.12 0 −0.364726314 −2.915401042 0.590229 3.85672 3 × 10−5 2 × 10−5

−π=2 −0.361475840 −2.919310921 0.589990 3.85408 3 × 10−5 2 × 10−5

avg −0.363102237 −2.917355986 0.590110 3.85540 � � � � � �
e05.23 0 0.092800200 −0.713304108 0.12832694 1.3990094 3 × 10−7 2 × 10−7

−π=2 0.090053088 −0.710893569 0.12855813 1.4017751 3 × 10−7 2 × 10−7

avg 0.091426409 −0.712098512 0.12844253 1.4003923 � � � � � �
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⟪ _X⟫q̄0 ≡
1

2π

Z
2π

0

h _Xidq̄0; ð6:13Þ

where X ¼ E;Lz. This average over q̄0 (i.e., a double
averaging) gives the flux that would be seen in a system
with nearly the same orbital parameters but infinitesimally
off resonance so that its motion ergodically fills the torus. It
is equivalent to computing the fluxes with the normal
incoherent sum of terms with jĈ�

l̂mkn
j2 over all n and k. With

(6.13) giving a background average, we can define the
residual variation (enhancement or diminishment) in the
fluxes that arise on resonance,

hδ _Xi≡ h _Xi − ⟪ _X⟫q̄0 : ð6:14Þ

We plot hδ _Eitot and hδ _Lzitot for the e02.12 (solid black
lines), e02.23 (dashed red lines), and e05.23 (dot-dashed
lines) orbits in Fig. 13. By comparing these figures to the
values in Table II, we see that the residual variations are
relatively small compared to the magnitudes of the total
fluxes, but they are still greater than the ∼10−8 fractional
error in our numerical calculations.

In the case of the 2∶3 resonances plotted as dashed (red)
and dot-dashed (blue) curves in Fig. 13, the energy and
angular momentum fluxes are minimized when the motion
possesses simultaneous turning points in r and θ (i.e.,
βθq̄0 ¼ 0; π). While not plotted here, the other 2∶3 reso-
nance (e05.23) shares this behavior. On the other hand, for
the 1∶2 resonance in Fig. 13, the energy and angular
momentum fluxes are maximized when the motion pos-
sesses simultaneous turning points, a feature which is
shared by the other 1∶2- and 1∶3-resonant orbits.
Evidence of this behavior can also be found in Table II.
Following the work of [25], we also report in Appendix D
the total fractional variations Δ _E and Δ _Lz as defined by
(4.5) in [25].
Additionally, we can make use of the flux-balance laws

to test the accuracy of our SSF data. The fractional errors
between the fluxes and the work W and torque T ,
computed via (6.7) and (6.10), are given in the last two
columns of Table II. We find good agreement, with frac-
tional errors of ∼10−11 − 10−5. Recalling the numerical
convergence of the SSF displayed in Fig. 4, these fractional
errors are in line with the predicted numerical accuracy of
our SSF data.
The good agreement between our flux and SSF results is

a further way of seeing that the conservative component of
the SSF does not contribute to h _Ei and h _Lzi. The fluxes are
purely dissipative quantities, and for the flux-balance laws
to hold, only the dissipative component of the SSF can
contribute to the averages h _Ei and h _Lzi, even during
resonances [33].
To verify this, we calculate separately the contributions

of the dissipative and conservative SSF to the residual
variations hδ _Ei and hδ _Lzi by replacing F̄res

α with F̄diss
α and

F̄cons
α in (6.4) and (6.5). In Fig. 14 we plot the residual

variations for the e02.12 (left), e02.23 (middle), and e05.23
(right) orbits. The solid (black) curves correspond to the
dissipative contributions, which share the same varying
behavior as seen in Fig. 13 [note the opposite sign in (6.7)
and (6.10)]. The dashed (red) curves correspond to the
conservative contributions, and the filled (grey) regions plot
the estimated uncertainty of the conservative contributions
due to truncation of the regularization procedure, which
affects the conservative SSF.
The uncertainty in the conservative contributions

originates in our mode-sum regularization of the SSF.
As summarized in Sec. III D [and discussed with addi-
tional detail in [39], Sec. IV A, the paragraph following
Eq. (4.11)], we regularize our SSF data via mode-sum
regularization, but must numerically fit for higher-order
regularization parameters in order to improve the numerical
convergence of our l-mode sum. Without extrapolating
these higher-order terms, our regularized results would be
dominated by truncation errors of Oðl−1maxÞ. Our extrapola-
tion procedure typically enhances truncation error scaling

FIG. 13. Residual variations in the energy (top panel) and
angular momentum (bottom panel) fluxes as a function of the
initial phase qθ0 ¼ βθq̄0 for the e02.23 (solid black curves),
e05.23 (dot-dashed blue curves), and e05.12 (dotted red curves)
orbits in in Table I.
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to Oðl−7maxÞ but it also introduces systematic uncertainties
since our extrapolated results depend on how many terms
we include in our numerical fits and which multipole SSF
modes we use to produce those fits. These systematic
uncertainties tend to be much larger than what the improved
truncation error scaling would naively suggest, and thus
become the dominant form of error in our numerical
conservative SSF results.10 Therefore, any quantity that
depends on the conservative self-force will also have an
estimated uncertainty associated with the fitting. We
estimate the uncertainty of the newly calculated quantity
by propagating uncertainties in additive terms, i.e.,

σ2f ¼
				 ∂f∂x0

				
2

σ2x0 þ
				 ∂f∂x1

				
2

σ2x1 þ � � � þ
				 ∂f∂xn

				
2

σ2xn ; ð6:15Þ

where σf is the propagated uncertainty of a quantity f due
to its dependence on n (assumed independent) parameters

ðx0; x1;…; xnÞ with (assumed uncorrelated) errors
ðσx0 ; σx1 ;…; σxnÞ. For example, hδ _Eicons and its uncertainty
are explicitly computed via the sums

hδ _Eiconsðq̄0Þ ¼
q2

N

XN−1

n¼0

Σ̄p

�
2πin
N

; q̄0

�
F̄cons
t

�
2πin
N

; q̄0

�
;

σ2consðq̄0Þ ¼
q4

N2

XN−1

n¼0

Σ̄2
p

�
2πin
N

; q̄0

�
σ2t

�
2πin
N

; q̄0

�
;

ð6:16Þ

where σtðq̄; q̄0Þ is the estimated uncertainty of F̄cons
t ðq̄; q̄0Þ

from our fitting procedure. The first line of (6.16) is
obtained by replacing the integrand of (6.4) with its discrete
Fourier transform.11

No uncertainty estimates for the dissipative contributions
are included, as these are orders of magnitude smaller.

FIG. 14. Separate contributions from the dissipative and conservative components of the self-force to the residual variations hδ _Ei in
energy (top row) and hδ _Lzi in angular momentum (bottom row) for the e02.12 (left), e02.23 (middle), and e05.23 (right) orbits plotted
as functions of the resonant-orbit phase. Contributions from the dissipative self-force are given by the solid (black) curves, while
contributions from the conservative self-force are depicted by the dashed (red) curves. The (grey) shaded region represents the formal
uncertainty in our calculation of the conservative SSF, hδ _Qicons � σcons, due to fitting for higher-order regularization parameters. The
calculation of σcons is discussed below (in Sec. VI B). As expected, the residual variations in energy and angular momentum arising from
the conservative SSF (dashed/red curves) are consistent with zero.

10Recall that only the conservative component of the SSF
needs to be regularized.

11Recall that ⟪ _E⟫q̄0 vanishes exactly due to the symmetries of
Kerr geodesics and, thus, hδ _Eicons ¼ h _Eicons.

RESONANT SELF-FORCE EFFECTS IN EXTREME-MASS-RATIO … PHYS. REV. D 104, 084011 (2021)

084011-23



While the conservative part leaves behind a nonzero
numerical result, these variations fall well below our
estimated uncertainty and are thus consistent with zero,
as expected. The estimated uncertainty is much larger for
the e02.12model due to the slower convergence of the SSF
for orbits that lie deeper in the strong field (see Fig. 4). In
that model, our formal uncertainty far exceeds not only the
conservative contributions but even the dissipative varia-
tions, which may point to the formal uncertainties being too
conservative.

C. Carter constant and the
integrability conjecture

Unlike h _Ei and h _Lzi, h _Qi is not associated with a
radiation flux. Instead, we must directly calculate the
orbit-averaged rate of change of the Carter constant from
the self-force,

h _Qi ¼ 1

Γ



Σ
dQ
dτ

�
λ

: ð6:17Þ

Here hXiλ refers to an average over XðλÞ with respect to
Mino time λ, and the proper time derivative ofQ is given by

μ

2

dQ
dτ

¼ q2ðcsc2θLz − aEÞðFφ þ asin2θFtÞ
þ q2uθFθ − q2ðLz − aEÞðFφ þ aFtÞ
− q2ðQ − a2cos2θÞuαFα; ð6:18Þ

¼ q2Δ−1ðaLz −ϖ2EÞðaFφ þϖ2FtÞ
− q2ΔurFr − q2ðLz − aEÞðFφ þ aFtÞ
− q2ðQþ r2ÞuαFα: ð6:19Þ

(See Appendix C 3.)
For nonresonant orbits, the conservative contributions to

h _Qi vanish due to symmetries of the motion. This can be
seen by reexpressing (6.17) as a two-dimensional integral
over qr and qθ [45,65],

h _Qi ¼ 1

Γ

Z
2π

0

dqr
2π

Z
2π

0

dqθ
2π

�
Σ
dQ
dτ

�
: ð6:20Þ

Recall from (4.18) and (4.20) that the two components
Fcons
t;φ are antisymmetric on the qr − qθ torus, while the

other two components Fcons
r;θ are symmetric on the torus, so

that

Fcons
t;φ ð2π − qr; 2π − qθÞ ¼ −Fcons

t;φ ðqr; qθÞ; ð6:21Þ
Fcons
r;θ ð2π − qr; 2π − qθÞ ¼ þFcons

r;θ ðqr; qθÞ: ð6:22Þ

Hence, if we only make use of the conservative components
of the self-force in (6.18) or (6.19), then dQcons=dτ is also
antisymmetric. Because Σ is symmetric with respect to

the angle variables, the conservative contributions must
vanish when integrated over the entire torus in (6.20). By
disregarding these conservative perturbations and relating
h _Qi to the purely radiative (dissipative) piece of the
perturbing field [8,74], (6.17) reduces to a weighted mode
sum over the field’s asymptotic amplitudes [11,25,74], akin
to (6.7)–(6.12).
For rθ resonances, the Mino time average reduces to the

single integral over q̄ in (6.6),

h _Qi ¼ 1

Γ

Z
2π

0

dq̄
2π

�
Σ̄
dQ
dτ

�
: ð6:23Þ

While the integrand in the above expression is still
antisymmetric with respect to both qr and qθ, it is not,
for a general choice of the initial resonant phase q̄0,
antisymmetric with respect to just q̄ (though there may
be special values of q̄0 where it is). When integrated over a
single closed track on the torus, (6.23) is not guaranteed to
vanish, in contrast with the nonresonant case.
However, Flanagan and Hinderer [24] conjecture that

dynamics driven by the conservative piece of the self-force
are always integrable in Kerr spacetime12 and cannot
therefore drive secular evolution of the perturbed system
through a resonance. If this integrability conjecture for
conservative perturbations holds true, then rθ-resonant
dynamics will be driven purely by the dissipative self-
force (at adiabatic order), and h _Ei, h _Lzi, and h _Qi can be
computed via efficient mode-sum expressions [e.g., (6.7)–
(6.12)] during resonant (and nonresonant) motion, as
demonstrated in [25].13

On the other hand, Isoyama et al. [32,33] also derived
mode-sum expressions for h _Ei, h _Lzi, and h _Qi during
resonances using a Hamiltonian formulation, but they
found that their expression for h _Qi depends on the
conservative (or what they call the symmetric) component
of the perturbed Hamiltonian (for the scalar case, see
Eqs. (49)–(51) in [32] and for the gravitational case, see
Eqs. (63) and (75) in [33]). Unless this term vanishes upon
averaging, due to further symmetries, the integrability
conjecture must break down during resonances, and
conservative perturbations will also drive the adiabatic
evolution of Q.
This issue can in principle be tested using numerical

modeling. To date numerical calculations of h _Qi for rθ-
resonant orbits [16,17,25] have not incorporated the full

12Conservative perturbations are integrable in Schwarzschild
spacetime, but their integrability has not been fully demonstrated
for Kerr [75,76].

13Note that the authors of [25] made no claim about the
validity of the integrability conjecture, but instead adopted it
as a matter of practicality since calculations of the conser-
vative GSF were unavailable at that time (Hughes, private
communications).
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first-order self-force.14 Thus there is no numerical evidence
to support or negate the integrability conjecture. The scalar
self-force model can potentially provide some insight. We
test the conjecture by measuring the relative contributions
of the conservative and dissipative components of the SSF
to h _Qi. As we did in Sec. VI B, we replace F̄res

α in (6.6) with
a breakdown in terms of F̄cons

α and F̄diss
α to calculate

separately the conservative and dissipative contributions
to h _Qi. To compare these quantities, we then calculate their
residual variations hδ _Qicons and hδ _Qidiss as functions of the
resonant-orbit phase using (6.14).
In Fig. 15, we compare the variations hδ _Qidiss (solid

black curves) and hδ _Qicons (dashed red curves) for the
e02.12 (left), e02.23 (middle), and e05.23 (right) orbits,
along with our formal uncertainty estimate σcons due to
fitting for high-order regularization parameters in the
conservative component of the self-force. Across all three
orbits, the numerical calculation gives a smoothly varying
conservative contribution to hδ _Qi. The amplitudes of the
conservative contributions are slightly smaller but on the
same order as the dissipative variations. The smooth
variations of the conservative contributions and their
comparable magnitudes to the dissipative variations
strongly suggest that h _Qi does depend on conservative
scalar perturbations during a resonance. However, in each
case the conservative contributions from our SSF data fall

below or nearly within the formal uncertainty estimates.
Furthermore, for all three orbits, the estimated uncertainty
in our calculations of hδ _Qicons are significantly larger than
the estimated uncertainties in hδ _Eicons and hδ _Lzicons, as
seen from comparing Figs. 14 and 15. In fact, for the
e02.12 and e05.23 orbits, our estimated uncertainty is
typically large enough that even if the conservative con-
tribution dominated the variations in the dissipative con-
tributions, they could still be consistent with zero.
In the case of the e02.12 model, the truncation in the

regularization of the conservative part of the SSF suggests a
formal uncertainty that is an order of magnitude greater
than the numerically determined values of both the
conservative and dissipative contributions to hδ _Qi, and
the grey region engulfs the entire left panel of Fig. 15. The
size of the uncertainty in this model is similar to what was
seen in hδ _Ei and hδ _Lzi in Fig. 14. In the e05.23 orbit, the
calculated conservative contribution not only falls consis-
tently below the formal uncertainty but contains high-
frequency oscillations that are indicative of numerical
noise. This noise appears also in the formal uncertainty
estimate itself. In the e02.23 model, hδ _Qicons still primarily
falls within the formal uncertainty but is closest, in this
case, to being a significant nonzero result. The numerical
calculations, in this model at least, are close to providing
evidence of the integrability conjecture’s failure, but a
reduction in the regularization errors by an order of
magnitude or two would be required to be sure.
When compared to calculating hδ _Eicons and hδ _Lzicons,

the estimated uncertainty proves to be much higher when
analyzing the evolution of the Carter constant. In part,
this is because hδ _Qicons depends on Fθ, which tends to be
the most difficult component of the SSF to accurately

FIG. 15. Contributions from the dissipative and conservative components of the self-force to hδ _Qi for the e02.12 (left), e02.23
(middle), and e05.23 (right) orbits. Contributions from the dissipative self-force are given by the solid (black) curves, while
contributions from the conservative self-force are depicted by the dashed (red) curves. The (grey) shaded region represents the formal
uncertainty in our calculation of the conservative SSF, hδ _Qicons � σcons, due to fitting for higher-order regularization parameters. The
calculation of σcons is discussed in detail in Sec. VI B.

14Note that the results of Isoyama et al. [32,33] were purely
analytical. No one has made use of the formalisms outlined in
[32,33] to numerically evaluate h _Qi, and our methods differ
enough from the Hamiltonian formulation and Green’s function
methods of [32,33] that we cannot easily compare our numerical
results to these works.
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extrapolate with our numerical regularization procedure.
The θ component couples to even higher spheroidal modes
than the other SSF components as a result of the window
function described in Sec. III. If we truncate all mode
calculations at a particular lmax, then we can only calculate
the multipoles of Fθ up to lmax − 3, as seen from (3.21) and
(3.23). Since the higher l modes are beneficial for
extracting the higher-order regularization parameters, miss-
ing this higher-mode information for Fθ hampers our
ability to fit for its (regularized) conservative component.
We still are able to calculate Fθ to 3 or 4 significant digits,
which in the absence of resonances is accurate enough to
provide its contribution to EMRI evolutions that are phase
accurate to less than a radian. As this analysis indicates,
additional accuracywill be needed to quantifywith certainty
possible contributions from the conservative sector to the
secular evolution of the Carter constant. In principle, we
could calculate additional modes to improve the accuracy of
Fθ. In practice, this is difficult because higher l modes are
harder to calculate accurately due to rapid oscillatory
behavior of the integrands in the source integrations. This
behavior is mirrored in the gravitational case [71].
The plotted uncertainty regions in Fig. 15 provide an

estimate of how well we have fit for the higher-order
regularization parameters and regularized our self-force data.
Any nonvanishing, and potentially smooth, variations within
these uncertainty bounds could be a result of residual
contributions of the singular field that were not removed
during regularization. This issue is unique to averages
over rθ-resonant orbit. In the nonresonant case, the singular
field—much like the conservative contribution—vanishes
when averaged over the entire two-torus. Even if we do not
regularize the conservative component of the SSF, hδ _Qicons
will still exactly vanish for nonresonant orbits. On the other
hand, averages over the singular contributions, or any
antisymmetric function on the two-torus, are not guaranteed
to vanish for an arbitrary rθ resonance.
We conclude that our conservative SSF results are not yet

accurate enough to show a definitive conflict with the
integrability conjecture. That being said, our uncertainty
regions may overestimate residual contributions of the
singular field that were not properly regularized. If this
is the case, then the nondissipative variations that we
see in Fig. 15 may very well be physical. Further tests
of the integrability conjecture are necessary but will require
improved regularization of the self-force. This might come
from either more extensive numerical calculations and
regularization parameter fitting or from the added input
of analytically determined higher-order regularization
parameters.

VII. SUMMARY

We considered point scalar charges following rθ-resonant
geodesics in Kerr spacetime and calculated, for the first time,
the resulting strong-field SSF experienced by these charges.

This work serves as a first step in understanding the still
unquantified behavior of the gravitational self-force during
transient orbital rθ resonances. To calculate the SSFwe used
a MATHEMATICA code previously developed in [39]. In
constructing our SSF data, we derived a simple shifting
relation, (4.11), that allows us to calculate the self-force
during rθ resonances using self-force data that assumes the
geodesic sources are nonresonant. This mapping provides an
efficient method for analyzing the self-force as a function of
the initial phase at which a system enters resonance.
When calculating the SSF, we focused on six different

rθ-resonant orbits: each scalar charge followed a 1∶3, 1∶2,
or 2∶3 rθ-resonant geodesic and each orbit either had an
eccentricity of 0.2 or 0.5. The full set of source parameters
can be found in Table I. In Figs. 5–8, we demonstrated how
varying the initial phase of rθ-resonant orbits impacts the
evolution of the self-force. We then projected our SSF data
onto invariant two-tori in Figs. 9–12 to display the
dependence of the self-force on the radial and polar motion
of the source, regardless of initial conditions and phases.
We validated our SSF data by analyzing the convergence
properties of our regularized self-force multipoles, as
shown in Fig. 4, and by comparing the radiation fluxes
to the rate of work and torque done on each scalar-charge
source by the SSF via flux-balance laws, which are reported
in Table II.
With these novel self-force calculations we also analyzed

the impact of the conservative scalar self-force on the orbit-
averaged evolution of the orbital energy h _Ei, z component of
the angular momentum h _Lzi, and Carter constant h _Qi. As
expected from flux-balance arguments, the contributions to
h _Ei and h _Lzi from the conservative SSF are negligible and
consistent with zero, as shown in Fig. 14. On the other hand,
our conservative SSF data substantially contribute to h _Qi, as
displayed in Fig. 15, though these contributions are on the
order of, or much less than, our estimated uncertainty. This
uncertainty is a result of the numerical regularization of the
conservative SSF. Because these contributions fall within
these uncertainty bounds, we cannot distinguish whether
these nondissipative contributions are due to the residual
singular field or the regularized conservative self-force. If
these contributions are in fact from the conservative SSF,
then this would indicate that the integrability conjecture
proposed by Flanagan and Hinderer [24] breaks down
during rθ resonances, and conservative contributions will
need to be considered as predicted by Isoyama et al. [33].
The presence of these conservative contributionswould then
introduce a new numerical challenge for adiabatic calcu-
lations: to account for the evolution through resonances,
adiabatic codes would need to incorporate regularization
procedures to accurately quantify h _Qi. Furthermore, these
regularized contributions would need to be known to high
levels of precision, at least to Oðϵ−1=2Þ, which we have not
been able to achieve with our current numerical
implementations.
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In future work, we will determine whether or not these
nondissipative contributions to h _Qi in the scalar case are
physical, or merely systematic errors, by implementing
alternative improved regularization schemes and by deriv-
ing analytic expressions for the higher-order regularization
parameters. If the conservative SSF contributions that we
have observed are indeed physical, then we hypothesize
that during rθ resonances the conservative GSF will also
contribute to h _Qi, as first suggested in [33]. Therefore, we
are also constructing a code to calculate the GSF experi-
enced by EMRI systems as they encounter rθ resonances to
test this hypothesis.
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APPENDIX A: NORMALIZATION
COEFFICIENTS

We review the definitions of the normalization coeffi-
cients C�

l̂mkn
and C̄�

l̂mN
and their dependence on the initial

conditions of a geodesic source.

1. Nonresonant sources

We first look at nonresonant geodesic orbits and make
use of the angle variables introduced in Sec. II E. The
C�
l̂mkn

ðqðαÞ0Þ are defined by the integrals

C�
l̂mkn

ðqðαÞ0Þ ¼
Z

rmax

rmin

ϖ2X̃∓
l̂mkn

ðrÞZl̂mknðr; qðαÞ0Þ
Wl̂mknΔðrÞ

dr; ðA1Þ

where Zl̂mkn is the radial decomposition of the source in the
frequency domain

ρ¼−
ϖ3

4πΣΔ

X
l̂mkn

Zl̂mknðr;qðαÞ0ÞSl̂mknðθÞeimφe−iωmknt; ðA2Þ

and Wl̂mkn is the Wronskian

Wl̂mkn ¼
Δ
ϖ2

�
X̃−
l̂mkn

dX̃þ
l̂mkn

dr
− X̃þ

l̂mkn

dX̃−
l̂mkn

dr

�
: ðA3Þ

We have now explicitly included the dependence on
initial conditions, which we represent with the four-tuple
qðαÞ0 ≡ ðt0; qr0; qθ0;φ0Þ.
For the scalar point-particle source described by (3.2),

Zl̂mkn takes the form

Zl̂mknðr; qðαÞ0Þ ¼
1

4π2

Z
2π

0

dqr

Z
2π

0

dqθeiðkqθþnqrÞ

× Bmknðqr; qθ; qðαÞ0ÞSl̂mknðθpÞδðr − rpÞ;
ðA4Þ

where

Bmknðqr; qθ; qðαÞ0Þ≡ −
4πq
Γ

ΣpΔp

ϖ3
p

× eiωmknðΔtþt0Þ−imðΔφþφ0Þ; ðA5Þ

Σp ¼ r2p þ a2 cos2 θp, ϖ2
p ¼ r2p þ a2, Δp ¼ ϖ2

p − 2Mrp,
and the geodesic functions Δt, rp, θp, and Δφ are under-
stood to be functions of qr, qθ, qr0, and qθ0,

Δt ¼ Δt̂ðrÞðqr þ qr0Þ − Δt̂ðrÞðqr0Þ
þ Δt̂ðθÞðqθ þ qθ0Þ − Δt̂ðθÞðqθ0Þ; ðA6Þ

rp ¼ r̂pðqr þ qr0Þ; ðA7Þ

θp ¼ θ̂pðqθ þ qθ0Þ: ðA8Þ

Δφ ¼ Δφ̂ðrÞðqr þ qr0Þ − Δφ̂ðrÞðqr0Þ
þ Δφ̂ðθÞðqθ þ qθ0Þ − Δφ̂ðθÞðqθ0Þ: ðA9Þ

(A1) then simplifies to

C�
l̂mkn

ðqðαÞ0Þ ¼
Z

2π

0

dqr
2π

Z
2π

0

dqθ
2π

eiðkqθþnqrÞ

×D�
l̂mkn

ðqr; qθ; qðαÞ0Þ; ðA10Þ

where

D�
l̂mkn

ðqr; qθ; qðαÞ0Þ≡ −
4πq
Γ

X̃∓
l̂mkn

ðrpÞSl̂mknðθpÞ

×
Σp

Wl̂mknϖp
eiωmknðΔtþt0Þ−imðΔφþφ0Þ:

ðA11Þ

(A10) separates into four one-dimensional integrals IðiÞ
l̂mkn

C�
l̂mkn

ðqðαÞ0Þ ¼ Ið1Þ�
l̂mkn

ðt0; qr0ÞIð2Þl̂mkn
ðqθ0;φ0Þ

þ Ið3Þ�
l̂mkn

ðt0; qr0ÞIð4Þl̂mkn
ðqθ0;φ0Þ; ðA12Þ
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where the integrals IðiÞ
l̂mkn

are given in Sec. III C of [39], but
with the appropriate initial parameters retained. These
integrals are amenable to spectral integration techniques
that provide exponentially convergent discrete representa-
tions of these integrals. These techniques are outlined in
[39], and we make use of these spectral integration
techniques in this work as well.
Using (A10), we can relate the normalization coefficients

for an arbitrary orbit C�
l̂mkn

ðqðαÞ0Þ to the coefficients for a

fiducial geodesic Ĉ�
l̂mkn

≡C�
l̂mkn

ðt0 ¼ φ0 ¼ qr0 ¼ qθ0 ¼ 0Þ.
Transforming to the shifted angle variables wr ≡ qr þ qr0
and wθ ≡ qθ þ qθ0, (A10) becomes

C�
l̂mkn

ðqðαÞ0Þ ¼
Z

2πþqr0

qr0

dwr

2π

Z
2πþqθ0

qθ0

dwθ

2π
eiðkwθþnwrÞ

×D�
l̂mkn

ðwr − qr0; wθ − qθ0; qðαÞ0Þ
× e−iðkqθ0þnqr0Þ:

Because the integrand is periodic on the intervals
qr; qθ ∈ ½0; 2πÞ, we can shift the limits of integration, e.g.,

Z
2πþqr0

qr0

→
Z

2π

0

þ
Z

2πþqr0

2π
−
Z

qr0

0

→
Z

2π

0

:

Recalling (A11), we see then that D�
l̂mkn

can be rewritten as

D�
l̂mkn

ðwr − qr0; wθ − qθ0; qðαÞ0Þ
¼ eiξmknðqðαÞ0ÞD�

l̂mkn
ðwr; wθ; 0; 0; 0; 0Þ; ðA13Þ

where we have defined the phase factor ξmkn,

ξmknðqðαÞ0Þ≡ −kqθ0 − nqr0 − ωmknðΔt̂ðrÞðqr0Þ
þ Δt̂ðθÞðqθ0Þ − t0Þ
þmðΔφ̂ðrÞðqr0Þ þ Δφ̂ðθÞðqθ0Þ − φ0Þ: ðA14Þ

Combining these results, we see that different initial
conditions will only alter the normalization coefficients
by an overall phase,

C�
l̂mkn

ðqðαÞ0Þ ¼ eiξmknðqðαÞ0ÞĈ�
l̂mkn

: ðA15Þ

2. Resonant sources

We now look at rθ-resonant geodesics and make use of
the resonant angle variable q̄ and initial resonant phase q̄0
introduced in Sec. II E. The resonant normalization con-
stants C̄�

l̂mN
are defined by the integrals

C̄�
l̂mN

ðq̄0Þ ¼
Z

rmax

rmin

ϖ2X̃∓
l̂mN

ðrÞZ̄l̂mNðr; q̄0Þ
Wl̂mNΔ

dr; ðA16Þ

where Z̄l̂mN is the radial decomposition of the resonant
source in the frequency domain

ρ ¼ −
ϖ3

4πΣΔ

X
l̂mN

Z̄l̂mNðr; q0ÞSl̂mNðθÞeimφe−iωmNt;

and Wl̂mN is the Wronskian, defined similarly to (A3) with
l̂mkn → l̂mN. The radial dependence Z̄l̂mN takes the form

Z̄l̂mNðr; q̄0Þ ¼
1

2π

Z
2π

0

dq̄B̄mNðq̄; q̄0ÞeiNq̄

× Sl̂mNðθ̄pÞδðr − r̄pÞ; ðA17Þ

where

B̄mNðq̄; q̄0Þ≡ −
4πq
Γ

Σ̄pΔ̄p

ϖ̄3
p

eiωmNΔt̄−imΔφ̄; ðA18Þ

Σ̄p ¼ r̄2p þ a2 cos2 θ̄p, ϖ̄2 ¼ r̄2p þ a2, Δ̄p ¼ ϖ̄2 − 2Mr̄p,
and the geodesic functions Δt̄, r̄p, θ̄p, and Δφ̄ are under-
stood to be functions of q̄ and q̄0,

Δt̄≡ Δt̂ðrÞðq̄Þ þ Δt̂ðθÞðq̄þ q̄0Þ − Δt̂ðθÞðq̄0Þ; ðA19Þ

r̄p ≡ r̂pðq̄Þ; ðA20Þ

θ̄p ≡ θ̂pðq̄þ q̄0Þ: ðA21Þ

Δφ̄≡ Δφ̂ðrÞðq̄Þ þ Δφ̂ðθÞðq̄þ q̄0Þ − Δφ̂ðθÞðq̄0Þ: ðA22Þ

Equation (A16) simplifies to

C̄�
l̂mN

ðq̄0Þ ¼
1

2π

Z
2π

0

dq̄D̄�
l̂mN

ðq̄; q̄0ÞeiNq̄; ðA23Þ

where

D̄�
l̂mN

ðq̄; q̄0Þ≡ −
4πq
Γ

X̃∓
l̂mN

ðr̄pÞSl̂mNðθ̄pÞ

×
Σ̄p

ϖ̄pWl̂mN
eiωmNΔt̄−imΔφ̄: ðA24Þ

Equation (A23), like (A10) is amenable to spectral inte-
gration, though the dependence on q̄ and q̄0 does not
separate. Each value of q̄0 (modulus 2π) leads to a unique
source integral.

APPENDIX B: DEPENDENCE ON INITIAL
CONDITIONS FOR THE SELF-FORCE

We derive the shifting relation (4.7) for the SSF and the
GSF in outgoing radiation gauge (though we expect this
derivation can be extended to other gauges as well).
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1. Scalar self-force

We begin by generalizing our angle variable expression for the multipole moments of the retarded self-force given in (4.1)
by retaining all dependence on initial conditions qðαÞ0,

Fret;l
α� ðqr; qθ; qðαÞ0Þ ¼

Xl

m¼−l
ðDlm

α ϕ�
lmÞðqr; qθ; qðαÞ0Þ × Ylmðqr; qθ; qðαÞ0Þ; ðB1Þ

where the functions Ylm and ϕ�
lm can be expressed in terms of their fiducial forms Ŷlm and ϕ̂�

lm defined in (4.2) and (4.3),
respectively,

Ylmðqr; qθ; qðαÞ0Þ≡ Ŷlmðqr þ qr0; qθ þ qθ0Þ × e−imðΔφ̂ðqr0;qθ0Þ−φ0Þ; ðB2Þ

and

ϕ�
lmðqr; qθ; qðαÞ0Þ≡

X
l̂kn

ϕ̂�
ll̂mknðqr þ qr0Þe−iðkqθþnqrÞe−iωmknΔt̂ðqrþqr0;qθþqθ0ÞeiωmknðΔt̂ðqr0;qθ0Þ−t0ÞeiξmknðqðαÞ0Þ; ðB3Þ

¼
X
l̂kn

ϕ̂�
ll̂mknðqr þ qr0Þe−iðkqθþnqrÞe−iðkqθ0þnqr0ÞeimðΔφ̂ðqr0;qθ0Þ−φ0Þ; ðB4Þ

¼ ϕ̂�
lmðqr þ qr0; qθ þ qθ0ÞeimðΔφ̂ðqr0;qθ0Þ−φ0Þ; ðB5Þ

where the exponential factor of ξmknðqðαÞ0Þ comes from the
dependence of the normalization coefficient on initial
conditions in (A15).
We see that, upon combining our results for Ylm and ϕ�

lm,
the exponential dependence on the initial conditions will
cancel, leaving us with the shifting relation

Fret;l
α� ðqr; qθ; qμ0Þ ¼ F̂ret;l

α� ðqr þ qr0; qθ þ qθ0Þ: ðB6Þ

The same result also holds true for FS;l
α . The singular

contributions along the particle worldline are only func-
tions of rp, θp, ur, and uθ, and all of these functions are
related to their fiducial counterparts via

rpðqr; qr0Þ ¼ r̂pðqr þ qr0Þ; ðB7Þ

θpðqθ;qθ0Þ ¼ θ̂pðqθ þ qθ0Þ; ðB8Þ

urðqr; qθ; qr0; qθ0Þ ¼ ûrðqr þ qr0; qθ þ qθ0Þ; ðB9Þ

uθðqr; qθ; qr0; qθ0Þ ¼ ûθðqr þ qr0; qθ þ qθ0Þ: ðB10Þ

Consequently, (B6) also holds true for the regularized
SSF Fα.

2. Gravitational self-force

Using the results presented by van de Meent in his
calculation of the GSF [38], we find that (B6) also extends
to the gravitational case, at least for the form of the GSF in
the outgoing radiation gauge (ORG) presented in [38]. The
unregularized l-mode contributions to the GSF in the ORG
can be written in the form (see (44) in [38])15

Fμ;l�
Rad ðqr; qθ; qðαÞ0Þ ¼

X
mknsij
l1l2 l̂

Cμ
mknsijðr̂pðqr þ qr0Þ; θ̂pðqθ þ qθ0ÞÞΨ�

l̂mkn
ðqr0; qθ0Þ

× 2R
�;ðiÞ
l̂mkn

ðr̂pðqr þ qr0ÞÞ2bl1l̂mkn
m
sA

l2
l1
j
mBl

l2Ylmðθ̂pðqθ þ qθ0Þ; 0ÞeimΔφ̂ðrÞðqrþqr0ÞeimΔφ̂ðθÞðqθþqθ0Þ

× e−iωmknΔt̂ðrÞðqrþqr0Þe−iωmknΔt̂ðθÞðqθþqθ0Þe−ikðqθþqθ0Þe−inðqrþqr0Þe−iξmknðqðαÞ0Þ þ c:c:; ðB11Þ

15Our expression slightly differs from (44) of [38], which is missing a factor of Ylm. In our expression, we also reformatted indices to
more closely reflect the notation used in our SSF calculations.
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where the functions and coefficients are defined in
[38] and c.c. denotes complex conjugation of the
previous terms.
As van de Meent and Shah demonstrated in [77],

the asymptotic amplitudes of the ORG Hertz potential
Ψ�

l̂mkn
ðqr0; qθ0Þ are proportional to the normalization coef-

ficients for a gravitational source, also known as Teukolsky
amplitudes, Z�

l̂mkn
ðqr0; qθ0Þ. The Teukolsky amplitudes are

also related to their fiducial forms via (A15) [25].
Consequently, the ξmkn phase in the third line of (B11)
will cancel with the phase dependence that arises
from Ψ�

l̂mkn
ðqr0; qθ0Þ ¼ eiξmknΨ̂�

l̂mkn. The GSF in the ORG
can then be expressed in terms of the fiducial GSF
F̂μ;l�
Rad ðqr; qθÞ ≡ Fμ;l�

Rad ðqr; qθ; t0 ¼ qr0 ¼ qθ0 ¼ φ0 ¼ 0Þ
through the shifting relation

Fμ;l�
Rad ðqr; qθ; qr0; qθ0Þ ¼ F̂μ;l�

Rad ðqr þ qr0; qθ þ qθ0Þ: ðB12Þ

APPENDIX C: EVOLUTION OF THE
ORBITAL PARAMETERS

For completeness, we provide derivations of the orbit-
averaged time derivatives of the orbital parameters μ, E, Lz,
and Q due to perturbations from the SSF. Similar deriva-
tions can be found in [11,25].

1. Rest mass

Recall that the SSF is not purely orthogonal to the four-
velocity and thus contributes to the evolution of the
particle’s rest mass during its evolution,

dμ
dτ

¼ −q2uαFα: ðC1Þ

Because q2Fα ¼ q∇αΦR, we can directly integrate (C1),

μðτÞ ¼ μ0 − qΦRðxμpðτÞÞ; ðC2Þ

where the integration constant μ0 is commonly refereed to
as the bare mass. Note that the second term is of Oðq2=MÞ
so that μ=M is constant at leading order in q=M. After a full
orbital period, the value of the regular field will return to
itself. Thus, via the second fundamental theorem of
calculus, the orbit average of the time derivative of the
rest mass vanishes,

h _μi ¼ 0; ðC3Þ
where _x≡ dx=dt and the angle-bracket averages are
defined in (6.3).

2. Orbital energy and angular momentum

In Kerr spacetime, orbital quantities are typically calcu-
lated with respect to Mino time λ, rather than coordinate

time t. Therefore, we reexpress the orbit-averaged time
derivative of the orbital energy h _Ei as an average over Mino
time λ [11,45]

h _Ei ¼ 1

Γ



dE
dλ

�
λ

¼ 1

Γ



Σ
dE
dτ

�
λ

; ðC4Þ

where hXiλ refers to an orbit average of the quantity
XðλÞ with respect to λ. The right-hand side of (C4) can
be further expanded by taking the proper-time derivative
of (2.2),

dE
dτ

¼ uα∇αðgμνξμðtÞuνÞ; ðC5Þ

¼ gμνðuνuα∇αξ
μ
ðtÞ þ ξμðtÞu

α∇αuνÞ; ðC6Þ

¼ gμνξ
μ
ðtÞu

α∇αuν; ðC7Þ

where uνuα∇αξ
μ
ðtÞ vanishes due to ξμðtÞ satisfying

Killing’s equation. Defining the four-acceleration aμ and
perpendicular self-force fμ,

fμ ¼ μaμ ≡ ðgμν þ uμuνÞFν; ðC8Þ

(C5) then takes the compact form

μ
dE
dτ

¼ −q2ft: ðC9Þ

Combining (C9) and (C4), we find that

μh _Ei ¼ −
q2

Γ
hΣftiλ; ðC10Þ

¼ −
q2

Γ
hΣFtiλ; ðC11Þ

where in the second line, we have taken into account that

hΣftiλ ¼ hΣðFt þ utuαFαÞiλ; ðC12Þ

¼ hΣFtiλ þ q−2E


dμ
dλ

�
λ

; ðC13Þ

¼ hΣFtiλ: ðC14Þ

The orbit-averaged rate of change of the z component of the
orbital angular momentum h _Lzi can be derived in a similar
manner,

μh _Lzi ¼
q2

Γ
hΣFφiλ: ðC15Þ
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3. Carter constant

The orbit-averaged rate of change of the Carter constant
h _Qi can be derived using the process outlined in the
previous section C 2. Like h _Ei and h _Lzi, h _Qi can be
reexpressed in terms of an average over λ,

μh _Qi ¼ μ

Γ



Σ
dQ
dτ

�
λ

: ðC16Þ

Once again we can expand the right-hand side by taking
the proper time derivative of the Carter constant as defined
by (2.4),

dQ
dτ

¼ μuμuνuα∇αKμν þ 2uμKμνuα∇αuν

− 2ðLz − aEÞ
�
dLz

dτ
− a

dE
dτ

�
; ðC17Þ

which, after utilizing the properties of the Killing tensor
(i.e., ∇ðαKμνÞ ¼ 0) and recalling the equations of motion,
further reduces to

dQ
dτ

¼ 2Kμνuμaν − 2ðLz − aEÞ
�
dLz

dτ
− a

dE
dτ

�
: ðC18Þ

The Killing tensor Kμν can be expressed in terms of the
Kinnersley basis vectors

lμ ¼ 1

Δ
ðϖ2;Δ; 0; aÞ; ðC19Þ

nμ ¼ 1

2Σ
ðϖ2;−Δ; 0; aÞ; ðC20Þ

mμ ¼ 1ffiffiffi
2

p ðrþ ia cos θÞ ðia sin θ; 0; 1; i csc θÞ; ðC21Þ

giving

Kμν ¼ ΣðmμðmνÞ� þ ðmμÞ�mνÞ − a2 cos2 θgμν; ðC22Þ

¼ Σðlμnν þ nμlνÞ þ r2gμν; ðC23Þ

where the star denotes complex conjugation. The equiv-
alency of (C22) and (C23) is clearly demonstrated by
expressing the metric in terms of this new basis

gμν ¼ −ðlμnν þ nμlνÞ þ ðmμðmνÞ� þ ðmμÞ�mνÞ: ðC24Þ

Plugging (C22) into (C18) and multiplying by μ=2, we find
that

μ

2

dQ
dτ

¼ q2ðLzcsc2θ − aEÞðfφ þ asin2θftÞ
þ q2uθfθ − q2ðLz − aEÞðfφ þ aftÞ; ðC25Þ

¼ q2ðcsc2θLz − aEÞðFφ þ asin2θFtÞ
þ q2uθFθ − q2ðLz − aEÞðFφ þ aFtÞ
− q2ðQ − a2cos2θÞuαFα: ðC26Þ

Alternatively, plugging (C23) into (C18), we find that

μ

2

dQ
dτ

¼ q2Δ−1ðaLz −ϖ2EÞðafφ þϖ2ftÞ
− q2Δurfr − q2ðLz − aEÞðfφ þ aftÞ; ðC27Þ

¼ q2Δ−1ðaLz −ϖ2EÞðaFφ þϖ2FtÞ
− q2ΔurFr − q2ðLz − aEÞðFφ þ aFtÞ
− q2ðQþ r2ÞuαFα: ðC28Þ

Regardless of which expression we use, due to the time
variation of the rest mass (C1), all four components of the
SSF must be known to evaluate h _Qi, though the terms
proportional to uαFα will vanish after taking the orbit
average of (C26) and (C28). In this work, we evaluate h _Qi
using (C25)–(C28) and check for their consistency as one
way of validating our numerical results.

APPENDIX D: FRACTIONAL VARIATIONS
OF THE FLUXES

In Table III we report the total fractional variations Δ _E
and Δ _Lz, where

TABLE III. Fractional variation in the resonant fluxes for the scalar models listed in Table I. Fractional variations
are reported to four decimal places for brevity.

Source Δ _EH Δ _LH
z Δ _E∞ Δ _L∞

z Δ _Etot Δ _Ltot
z

e02.13 0.0011% 0.0004% 0.0001% 0.0002% 0.0001% 0.0003%
e02.12 0.0204% 0.0047% 0.0017% 0.0023% 0.0016% 0.0029%
e02.23 0.2008% 0.0252% 0.0156% 0.0138% 0.0129% 0.0158%
e05.13 1.1214% 0.0400% 0.0109% 0.0227% 0.0092% 0.0287%
e05.12 2.3850% 0.1352% 0.0427% 0.0684% 0.0352% 0.0849%
e05.23 5.8510% 0.3400% 0.1835% 0.1975% 0.1575% 0.2262%
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ΔX ≡ 2

				max ½hXi� −min ½hXi�
max ½hXi� þmin ½hXi�

				: ðD1Þ

The total fractional variations primarily increase as p and e
increase. In fact, the fractional flux variations for the e02.13
orbit are negligible compared to the other sources. This
suggests that the dependence of the fluxes on the initial

phase is dampened as a source moves closer to the more
massive primary. While e05.13 has a smaller pericenter
value than e02.13, the larger variation in the radial motion
could then be responsible for the larger variation in the
fluxes with respect to q̄0. The behavior of these flux
fluctuations and the magnitude their variations is consistent
with the gravitational fluxes of [25].
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