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We consider the circular motion of test particles in the gravitational field of a static and axially symmetric
compact object described by the ¢ metric. To this end, we calculate orbital parameters of test particles on
accretion disks such as angular velocity (), total energy (E), angular momentum (L), and radius of the
innermost stable circular orbit (rigco) as functions of the mass (m) and quadrupole (¢) parameters of the
source. The radiative flux, differential, and spectral luminosity of the accretion disk, which are quantities
that can be experimentally measured, are then explored in detail. The obtained results are compared with
the corresponding ones for the Schwarzschild and Kerr black holes in order to establish whether black holes

may be distinguished from the g metric via observations of the accretion disk’s spectrum.
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I. INTRODUCTION

The spectra of accretion disks surrounding massive
compact objects are routinely observed in astrophysics.
Such observations provide invaluable information about the
nature of the accreting central object, and for extremely
condensed sources one must necessarily use general
relativity to describe both the source as well as the accreting
matter. The accretion disk luminosity of compact objects
can be modeled for many solutions to Einstein’s field
equations. In particular, these solutions may describe the
gravitational field of neutral black holes [1] or they may
describe the field outside of massive compact objects, some
realistic like white dwarfs and neutron stars [2-5], and
others more exotic, such as for example boson stars [6-9]
or gravastars [10].

As of now, we cannot rule out the possible existence of
exotic compact objects in the Universe as most observa-
tions of black hole candidates are still not able to probe the
geometry in the vicinity of such astrophysical sources.
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Such observations include gravitational waves emitted
from the inspiral of binary black holes [11,12], the motion
of stars near the galactic center [13—15], the shadow of the
supermassive black hole candidate at the core of the galaxy
MS87 [16], spectra from x-ray binary systems [17], and light
spectra from accretion disks surrounding supermassive
black hole candidates at the core of galaxies [18,19].
The last two sets of observations are the most abundant
ones and both rely on the measurement of the accretion
disk’s spectra. As it is well known, some features of the
accretion disk depend on the space-time geometry [20] and
therefore can in principle be used to obtain constraints on
the geometry from observations [21].

Generally speaking, relativistic compact objects are
modeled by assuming a space-time metric fulfilling given
conditions of symmetry for the exterior and solving the
equations for hydrodynamic equilibrium for the matter
content in the interior [22-25]. Often “exotic’ matter can be
used to describe hypothetical objects that are massive,
compact, and stable. This speculation has proven helpful
to provide either black hole alternatives or dark matter
candidates, also leading to the suggestion that such massive
objects may be dark matter condensates [26-28].!

'For a different perspective on the nature of dark matter and
dark energy see e.g., [29].
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Nevertheless, we know that general relativity is an
incomplete theory and therefore the classical description
of the geometry and/or the matter models may fail when the
field becomes sufficiently strong [30-33]. The limits of the
theory are signaled by the appearance of singularities. For
example, vacuum, static, and axially symmetric solutions
(known as Weyl’s class [34,35]) generically exhibit
curvature singularities at the infinitely redshifted surface
which corresponds to the horizon in the black hole case
[36,37]. Such solutions may be considered as describing
the exterior field of static and axially symmetric exotic
compact objects whose boundary is located at a distance
outside the singularity.

In this paper, we consider one of such solutions
describing a static deformed compact object, the so-called
g metric [38,39]. In the literature, the metric is also known
as the Zipoy-Voorhees metric, 6 metric and y metric.
Despite the different nomenclature, it is practically the
same metric, which here we prefer to denote with ¢ metric
to stress the importance of the quadrupole parameter g [40].

The line element of the ¢ metric is particularly suitable to
study the exterior field of exotic compact objects and its
relation to the Schwarzschild space-time because it
involves only two parameters of clear physical interpreta-
tion: m, which is related to the mass of the source, and g,
which relates to the quadrupole and hence describes the
departure of the object from spherical symmetry [41].

It is worth noticing that relativistic matter sources for
metrics of Weyl’s class do exist [42,43]. In particular some
early attempts to develop interiors for the ¢ metric were
made in [44,45], and, more recently, a complete solution
has been proposed in [46] and an approximate solution in
[47], which satisfy all the conditions to be considered
physically meaningful. Furthermore, several studies of
the physical features of the g metric can be found in the
literature, e.g., shadows around the ¢ metric [48-50],
geodesics [40,51,52], quasinormal modes [53,54], motion
of charged particles [55] and spinning particles [56],
neutrino oscillations [57], particle’s collisions [58], etc.

However, in order to study how the features of the ¢
metric deviate from those of a black hole geometry, it is
important to consider quantities that can be measured via
observations. Assuming that the compact source is sur-
rounded by an accretion disk, the direct measurement of the
innermost stable circular orbit (ISCO) of the disk is
practically impossible. On the other hand, the accretion
spectrum of the disk, which does depend on the ISCO, is a
quantity that can be observed with modern telescopes.
Hence, we here investigate the luminosity of thin accretion
disks in the space-time described by the ¢ metric employ-
ing the widely consolidated model proposed by Novikov
and Thorne, Page, and Thorne [59,60]. In so doing, we first
calculate the orbital parameters of test particles and then
numerically construct the simulated radiative flux, spectral
and differential luminosities of the disk as functions of the

radial distance from the source and the frequency of the
emitted radiation.

To explore the role of the quadrupole, we compare the
spectra of the g metric and the Kerr space-time. We show
that the g space-time can mimic the spectrum of a Kerr
space-time for a particular value of the emitted frequency.
For other values of the frequency, however, the spectra
become different, and we argue that this difference could be
used to distinguish these space-times.

It is worth noticing that models of accretion disks’
spectra are commonly used to investigate the observational
properties of hypothetical compact objects (see for
example [27,61,62]).

The paper is organized as follows. In Sec. II, we describe
the main features of the ¢ metric and briefly review the
formalism for the motion of test particles on accretion disks,
while in Sec. III the same discussion is briefly reviewed for
the Kerr space-time. In Sec. IV, we review the thin accretion
disks formalism using the Novikov-Thorne and Page-Thorne
models and in Sec. [IVA we apply it to the g metric and
compare the results with the corresponding ones for the Kerr
space-time. Finally, in Sec. V we present the conclusions and
perspectives of our work. Throughout the paper we make use
of geometrized units setting G = ¢ = 1.

II. PARTICLE MOTION IN THE ¢ METRIC

It is well known that the most general axisymmetric and
static solution of the vacuum field equations is represented
by the Weyl line element [63] which describes an infinite
number of solutions. Among them the so-called ¢ metric is
considered to be the simplest generalization of the
Schwarzschild metric containing a quadrupole parameter
[64,65]. Other solutions that generalize the Schwarzschild
metric to include a quadrupole moment have also been
proposed [66—68]. Here we focus on the ¢ metric, which is
given by the line element

I+qg —q
ds? = (1—2—’") dﬂ—(l—z—m>
r r

m?sin?@ \ ~42+9) /' dr?
14+ —5—— 2do?
|0 ()
+ r2sin29d¢2} , (1)

where m and g are the mass and dimensionless quadrupole
parameters, respectively, and the allowed values for g are
1 + g > 0.lItis easy to notice that for vanishing ¢ one recovers
the Schwarzschild metric while values of ¢ > 0 (g <0)
describe the exterior field of an oblate (prolate) source.
Also it is well known that the ¢ metric exhibits a curvature
singularity at r = 2m for all values of ¢ # 0 implying that the
matter source must have a boundary r;, > 2m.
Furthermore, the total gravitational mass of the source,
as measured by faraway observers, can be easily obtained,
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for example from the evaluation of Komar’s integral, and it
is given by M = m(1 + g). It is therefore interesting to
model the exterior field of compact objects with this metric
and to check the effects that the quadrupole parameter g has
on the observable features such as accretion disks. To do so,
we need to first compute circular geodesics and the ISCO.

A. Circular orbits in the ¢ metric

We limit our attention to the equatorial plane, where
6 = /2, and consider particles on circular orbits. The main
orbital quantities for particles on a circular orbit at a radius
r are then given by

B _2ﬂ 1+2q (1 + q>m
o= (-0 G ®
B 2m\'"4 r— (24 q)m
B = <l_r) r—03+2q)m’ (3)
B 2m\~4 (14 q)mr?
e-(-0) e @

where Q = Q(r) is the orbital angular velocity, E = E(r)
is the energy per unit mass, and L = L(r) is the orbital
angular momentum per unit mass of the test particle. As
stressed above, these quantities reduce to the corresponding
values for the Schwarzschild metric as ¢ — 0. The orbital
parameters for particles in the ¢ metric have been studied
by several authors (see for example [51,69]).

The ISCO is the closest stable circular orbit that massive
test particles can have around a compact object. In astro-
physics it usually determines the inner edge of the accretion
disk and its value depends on the parameters characterizing
the source, namely the mass, angular momentum, and higher
mass multipoles. Its role in investigating astrophysical
compact objects turns out to be essential since, by observing
accretion disks, one can obtain an estimate of the ISCO and
consequently constrain the values of the corresponding
parameters for the source. For example, for a Kerr black
hole, if an independent measure of the mass is available, then
ameasurement of the ISCO allows us to estimate the value of
the angular momentum (in practice things are more com-
plicated, see for example [70]). Similarly for the g metric, in
principle, knowing the active gravitational mass of the
source, by measuring the ISCO one could obtain an estimate
of the mass quadrupole moment. It is important to notice that
different geometries may mimic each other. For example, a
static solution such as the ¢ metric with a given value of ¢
may produce the same ISCO as the Kerr metric for a given
value of the angular momentum thus requiring more than
one measurement in order to be able to distinguish the two
geometries.

The radius of the innermost stable circular orbit rigcq is
defined via the condition dL/dr = 0 [40]. So, for the ¢
metric, taking Eq. (4), we get the quadratic equation

r?2=2m(4 +3q)r+2m*(6 +7q9 +2¢*) =0, (5)

and thus two solutions for the ISCO given by

rljgco:m<4—|—3q:t\/5q2—|—10q—|—4), (6)

where + signs indicate the inner and outer radii, respec-
tively. The solution rj§, is the physical one corresponding
to the edge of the accretion disk and it is the solution
that we will consider hereafter. This solution exists for

g > 1/v/5—1. The inner solution rg-o is not physical
since for most values of ¢ it is situated either below
the singularity, i.e., rigcg < 2m or below the photon
capture radius, i.e., rgco < m(3 +2¢g). It is nevertheless
worth noticing that there exists a range of values of
g € [1/v/5—=1,-1/2] for which the inner ISCO may be
considered physical. In this case there exist two separate
regions outside the singularity where stable circular orbits
are allowed, one for r > rIcho and one for r < rgqq. For
g=1/V/5—1 the two solutions for the ISCO radius
coincide ri5eq = rigco While for ¢ < 1/v/5—1 Eq. (5)
has no real solutions and stable circular orbits exist all the
way from spatial infinity to the singularity (see [71]).
Notice that in order to compare the ISCO with that of the
Kerr space-time we must consider the two geometries
with the source of the same active gravitational mass.
The total mass of the g metric may be evaluated via
Komar’s integral and it is given by M; = m(1 + ¢) and
therefore the ISCO radius as a function of ¢ in units of total

mass My is given by
1
5-—, 7
V" (1+4q) 2

and it is shown in the left panel of Fig. 1. The right panel of
Fig. 1 shows the degeneracy between the ISCO radius in
the g metric as a function of g and that of the Kerr metric as
a function of the dimensionless angular momentum j.

I'1sco 1
=3+ —++
My 1+¢

III. PARTICLE MOTION IN THE KERR METRIC

The Kerr space-time [72] is a vacuum geometry describ-
ing a rotating uncharged axially symmetric black hole.
The line element for the Kerr metric in Boyer-Lindquist
coordinates is

2Mr z AdMra
2 _ _ 2_= 42 2
ds® = (1 > >dt Adr + S sin“Odepdt

Mra?

2
- >do* - (r2 + a* + sin26’> d¢?, (8)

where we have set £ =r>+a’cos’d and A =r>—
2Mr + a®. The total gravitational mass of the source is
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Left panel: the ISCO radii for the ¢ metric in units of total mass M7 as a function of the quadrupole parameter g as compared to

the ISCO for the Kerr space-time as a function of the dimensionless angular momentum j. Right panel: degeneracy for the value of the
ISCO between the g metric and the Kerr space-time. Namely for each allowed value of g there is a corresponding value of j for which the
two sources with the same active mass M7 produce the same ISCO.

given by M; =M and its dimensionless angular
momentum is j = a/M. Therefore, also the Kerr metric
is fully characterized by two parameters only and
Schwarzschild is obtained for vanishing angular momen-
tum, i.e., a = 0.

The Kerr space-time is the paradigm for describing the
exterior of astrophysical black hole candidates, however as
of now no precise measurement of the actual geometry of
such objects is available. For this reason it is important to
keep an open mind and allow for the possibility that such
objects may be described by more exotic solutions such as
the g metric. Therefore it is worth considering what kinds
of observations may allow to distinguish the two sources.
As mentioned earlier, most of the existing black hole
candidates are observed through the spectra of their
accretion disks and therefore in the following we shall
review circular orbits and ISCO for the Kerr solution with
the aim of comparing the results with the corresponding
ones in the g metric.

A. Circular orbits in the Kerr metric

The specific angular velocity, angular momentum and
energy of the particle moving on a circular orbit around a
Kerr black hole are derived, respectively, as

M
2:r3:I:2ar2 M/r—l—azM’ ©)
1o (JF(r=2M) + aV/Y o

B r2(r+2a\/M/r —3M)’

LZ_M(r2:F2a M/r+ a*)? (1)
r2(r+2a\/M/r=3M)

where the 4+ and — signs correspond to corotating and
counterrotating particles with respect to the direction of
rotation of the black hole.

Analogously to the ¢ metric, we write the radius of the
ISCO for the Kerr metric as [73]

%:(3+22:F\/(3_Z1)(3+Zl+222))’ (12)

where we have defined

Zy=1+ (=P + )+ (1=, (13a)

Z, = (32 + Z3). (13b)

Having obtained circular orbits and the ISCO in both
space-times (see Fig. 1 for details) we are now able to
consider the true observables that may be obtained from
astrophysical black hole candidates, namely the spectra of
light emitted from the accretion disks.

IV. SPECTRA OF THIN ACCRETION DISKS

In order to study the luminosity and spectrum of the
accretion disk in the g metric we follow the model proposed
by Novikov-Thorne and Page-Thorne in [59,60].

Accordingly, the radiative flux F (i.e., the energy
radiated per unit area per unit time) emitted by the accretion
disk is given by

Fr)=--12 L, / (E—QL)L,dF,  (14)

47\/g (E — QL)?

where m is the mass accretion rate of the disk, which is
assumed to be constant and ¢ is the determinant of the
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metric tensor of the three-dimensional subspace (z, r, @),
Le., \/g =\ 919rr9p¢p-

Furthermore, it must be noticed that F is not directly
observable since it is a local quantity that is measured in the
rest frame of the disk. Therefore a more interesting quantity
from the observational perspective is the differential lumi-
nosity (i.e., the energy per unit time that reaches an
observer at infinity) £, which can be estimated from
the flux F via the following relation [59,60]

dLl,

—= =4znr\/gEF(r).

1
dinr (15)

Both of these quantities describe the amount of radiation
emitted by the disk at a given radius ». However, what is
measured in practice is the spectrum of the light emitted as
a function of the frequency. Therefore, another character-
istic quantity of the accretion disk that is worth considering
is the spectral luminosity distribution observed at infinity
L, . Under the assumption of black body emission from
the accretion disk £, ., is given by [27]

(u'y)*
M3 exp [u'y/F* /4 -1

60 [ E
I/EI_A,OO = 3 \/g
T

dr,  (16)

risco

where ' is the covariant time component of the four
velocity, defined by

_ 1
\/gll + Q’Qgt(p + ngq)(p

u'(r) : (17)

and y = hw/kT,, h is the Planck constant, v is the
frequency of the emitted radiation, k is the Boltzmann
constant, 7, is the characteristic temperature as defined
from Stefan-Boltzmann law as T, = m/4zM>, with ¢
being Stefan-Boltzmann constant. Notice that to keep
the argument of the exponential dimensionless we have

0.07
R — a=0 0.0185
v,
0.06 W\ e q=0.25  0.0180
\\\;‘(“ ----- q=05 & 00175
N S
0.05 \Q\ - g=1 0.0170 N
AN =3 0.0165 ~ 3
C N 140 142 144 146 148 15.0]
c 0.04 \\\ ‘ »
R
0.03
0.02
0.0tk , | |
5 10 15 20

f/Mr

normalized the flux with respect to total mass My and
defined F*(r) = M2F(r).

Finally, another quantity of interest related to the
radiation emitted by the accretion disk is the net luminosity
that reaches observers at infinity £, which is given by the
integral of Eq. (15). This quantity represents the amount of
rest mass energy of the accreting matter that is converted
into radiation and can also be expressed as L, =
(1 = Eigco)m, or, in other words, the efficiency of the
source in converting infalling mass into emitted radiation.
For Schwarzschild, taking a unit mass accretion rate, it is
known that (1 — Eigco) = 0.0572, meaning that an accre-
tion disk around a Schwarzschild black hole converts
matter into radiation with an efficiency of 5.72% (see
for details page 662 of Ref. [74]).

A. Numerical results

In the limit of negligible rotation, the space-time in the
exterior of a compact object may be approximated as static.
At the same time the deformation effects on the source
would introduce some oblateness. Therefore, in the follow-
ing we have considered only oblate sources (i.e., ¢ > 0) as
they are more physically relevant in describing the shape of
a rotating object. Also, it must be mentioned that, in order
to carry out the numerical analysis, it is useful to introduce
dimensionless quantities defined as Q*(r) = M;Q(r),
L*(r) = L(r)/My, and E*(r) = E(r).

In Fig. 2 (left panel) we show the orbital angular velocity
Q*(r) of test particles as a function of the normalized
radial coordinate /My in the g metric. It can be seen
that the inclusion of the quadrupole moment for oblate
sources noticeably decreases Q*(r) with respect to the
Schwarzschild (g = 0) case. For comparison we plot Q*(r)
in the Kerr space-time [72] on the right panel of Fig. 2.
Notice that in the plots of particles on circular orbits in the
Kerr metric we have used the dimensionless angular
momentum or spin parameter defined by j = a/My, where

0.07f 7§

0.0505 <
o 0.0500F .. -~
0.06} 0.0495F >~ el .
. N . ~.
— j=0 & 0040 S o
X 0.0485 RS
j=0.2 0.0480 N
0.0475 2
7.30 7.35 7.40 7.45 7.50 7.55

C 0.04f e

0.05¢

0.03¢
0.02}

0.01¢t

f/MT

FIG. 2. Left panel: angular velocity of test particles versus radial distance » normalized in units of total mass M in the oblate g metric.
Right panel: angular velocity of test particles versus radial distance r normalized in units of total mass My in the Kerr space-time.
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FIG. 3.

riMr

Angular momentum L* of test particles versus radial distance r normalized in units of total mass M ;. Left panel: L* in the ¢

metric for oblate sources (¢ > 0). Right panel: in the Kerr space-time.

a is the rotation Kerr parameter and M is the total mass
of the Kerr metric as mentioned above. Obviously, for
vanishing j one recovers the Schwarzschild metric.

In Fig. 3 (left panel) we constructed the dimensionless
orbital angular momentum L*(r) of test particles as a
function of the normalized radial coordinate in the ¢ metric.
We see that, for different values of ¢, the angular momen-
tum is always larger than the Schwarzschild ¢ = 0 case and
a similar behavior is observed in the Kerr metric for
counterrotating particles, i.e., j < O (right panel).

In Fig. 4 (left panel) we constructed the energy per unit
mass E* of test particles as a function of the normalized
radial coordinate in the g metric. Here E* is always larger
than in the Schwarzschild case and again the behavior is
mimicked in the Kerr space-time by counterrotating par-
ticles (right panel).

It is easily noticed that the motion of counterrotating
(j < 0) particles on circular orbits in the Kerr metric is
mimicked by the effects of the oblateness (¢ > 0) of the

0.98f~ ‘ ‘ N

0.97}

tu 0.96}

0.95¢

=27 19.0 192 194 19.6 19.8 20.0
My

0.94t :
5 10 15 20

f/Mr

g metric. Similarly one could see that corotating particles
are mimicked by prolate sources of the g metric [71].

In general, the ¢ metric and Kerr metric possess different
geometry: the former describes the gravitational field of
static, axisymmetric, and deformed objects, whereas the
later depicts the field around a rotating black hole. As a
consequence the differences in geometry naturally appear
in the domain of the curves in Figs. 2—4 for different values
of ¢ and j, correspondingly.

Due to the differences in Q*, L*, and E* between the
oblate sources of the ¢ metric and the Kerr metric with
corotating disk, we expect that the radiative flux emitting
from the accretion disks will be different. However, we
expect accretion disks around the oblate ¢ metric to mimic
the counterrotating disk in the Kerr space-time. In order to
check this, we plotted the radiative flux versus normalized
radial coordinate in Fig. 5 (left panel) in the ¢ metric. Some
noticeable differences appear in the vicinity of the ISCO as
F* in the ¢ metric is larger than the Schwarzschild case for

.08 ]
0.97} -~ =02
— j=0
0.96f - j=0.2 1
----- j=04 __
4y 0.95}
0.94} “osmss ]
093 /’/ 1;.0 19.2 194 19.6 19.8 20.0
0.92t .
5 10 15 20
/'/Mr

FIG. 4. Energy E* of test particles versus radial distance r normalized in units of total mass M. Left panel: E* in the oblate ¢ metric.

Right panel: E* in the Kerr space-time.
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riMy

Radiative flux F* multiplied by 103 of the accretion disk versus radial distance r normalized in units of total mass M. Left

panel: 7™ in the oblate g metric. Right panel: 7* in the Kerr space-time. Notice that for the Kerr metric the change in j causes the flux to
increase or decrease everywhere, while for the oblate ¢ metric the flux increases at small radii and decreases at large radii with respect to

Schwarzschild.

small radii due to the fact that the ISCO radius is smaller,
while for the Kerr space-time we have smaller flux for
counterrotating disk at all radii (right panel).

On the other hand, as expected, for the corotating disk in
the Kerr metric (right panel) the flux is everywhere larger
than in the Schwarzschild metric. This suggests that
accretion flux may be able to distinguish disks surrounding
static oblate sources from corotating disks around a Kerr
black hole.

In Fig. 6 (left panel) we show the differential luminosity
versus normalized radial coordinate in the oblate ¢ metric
and compare it with the corresponding quantity in the Kerr
metric (right panel). Since the differential luminosity is
defined via the flux, we see that the behavior observed in
Fig. 5 translates into the differential luminosity. More
precisely, the differential luminosity for the oblate ¢ metric
is larger than that of Schwarzschild only for small radii and
becomes smaller at larger distances from the source, while

/'/MT

for the Kerr case the differential luminosity is everywhere
smaller (larger) than Schwarzschild’s for the counterrotat-
ing (corotating) case.

In Fig. 7 (left panel) we plotted the spectral luminosity
L, - as defined by Eq. (16) as a function of the frequency
of radiation emitted by the accretion disk in the ¢ metric.
For small frequencies the spectral luminosity is larger than
in the Schwarzschild case and vice versa. In the Kerr metric
(right panel) the spectral luminosity is always larger
(smaller) than in the Schwarzschild metric for corotating
(counterrotating) disks.

In Fig. 8, we show the spectral luminosity as a function
of the frequency of the light emitted from the accretion disk
around the oblate ¢ metric and the Kerr black hole with a
corotating disk (left panel) and counterrotating disk (right
panel). Here, in the left panel of Fig. 8 one can explicitly
see that at lower frequencies the g metric can mimic the
Kerr black hole, e.g., the ¢ = 3.5 curve almost overlaps

5 10 15 20
rIM T

FIG. 6. Differential luminosity multiplied by 102 of the accretion disk versus radial distance » normalized in units of total mass M.
Left panel: differential luminosity in the oblate ¢ metric. Right panel: differential luminosity in the Kerr space-time.
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FIG.7. Spectral luminosity versus frequency of the emitted radiation for blackbody emission of the accretion disk. Left panel: Spectral
luminosity in the oblate ¢ metric. Right panel: spectral luminosity in the Kerr space-time.
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Comparison of the spectral luminosities of the accretion disks for the oblate ¢ metric with Kerr black holes. Left panel: various

values of ¢ > 0 are compared with corotating disks j > 0. Right panel: the same values of g > 0 are compared with counterrotating

disks j < 0.

with the j = 0.04 curve and the g = 0.75 curve almost
overlaps with the j = 0.01 curve. At higher frequencies the
two space-times show different behavior. However for the
Kerr black hole with a counterrotating disk (right panel)
the situation is opposite. Here on the contrary at lower
frequencies the two space-times are different, but at higher
frequencies the g metric can mimic the Kerr black hole,
e.g., the g=3.5 curve almost overlaps with the
Jj = —0.075 curve and the ¢ = 0.5 curve almost overlaps
with the j = —0.045 curve.

Indeed, the mimicking occurs when the ¢ curves
intersect the j curves. Figure 8 proves that such cross
(intersection) points exist and in Tables I and II we show the
explicit values of the cross points for the g > 0 curves with
the j = 0.01 and j = —0.045 curves of the Kerr metric,
respectively. Consequently, other values of the frequency
can, in principle, be used to distinguish the ¢ space-time
from the Kerr black hole. Table I also shows that the
frequency and spectral luminosity increase as the value of

the quadrupole parameter g goes up, showing a fairly linear
dependence, which is also observed near the cross point.
Instead in Table II the frequency decreases and spectral
luminosity increases with increasing ¢. This means that, in
practice, the inaccuracy of a realistic measurement of the
luminosity would induce an imprecision in the determi-
nation of ¢. This, however, seems to be a situation that can
be maintained under control due to the linearity near the
Cross points.

TABLE 1. The intersection points of ¢ > 0 curves with j = 0.01
curve in the spectral luminosities of the accretion disks.

q logyo(hv/kT.) logo(VL, o)
0.50 —6.454 -17.313
0.75 -3.010 —7.019
2.00 —-1.751 —-3.351
3.50 —1.683 -3.170
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TABLE II. The intersection points of ¢ > 0 curves with j =
—0.045 curve in the spectral luminosities of the accretion disks.

q logo(hv/kT ) log g (VL))
0.50 —0.487 —2.080
0.75 -0.911 —1.648
2.00 ~1.012 —1.742
3.50 —1.074 -1.823

From Fig. 8, we can also see that the two geometries can
be distinguished from each other at higher frequencies (left
panel) and at lower frequencies (right panel). To illustrate
this possibility, we plot in Fig. 9 the spectral luminosity
difference between several oblate objects with different
values of the quadrupole parameter ¢ and a Kerr black hole
with j = 0.01 (left panel) and j = —0.045 (right panel).

0.006f" | | | ] |
— — j=0.01 curve minus q 0.5 curve
0.004f — j=0.01 curve minus q=0.75 curve
= —-— j=0.01 curve minus g=2 curve
Kj 0.002f --- =0.01 curve minus q=3.5 curve
7 _A
S = A
§ 0.000 = o
~0.002}" T
Pt B
-0.004t .2, . . . .
-8 -7 -6 -5 -4 -3 -2 -
logyo(hv/KT.,)

Notice that in all the plots the mass is the same since, as
explained above, the luminosity has been normalized with
respect to the Komar mass. We see from Fig. 9 that the
difference depends on the frequency, as expected, and
also on the value of g. The larger the value of g, the greater
is the difference. This shows that, in principle, it should
be possible to distinguish between a Kerr space-time and a
q space-time by observing the spectral luminosity of
accretion disks.

Finally, in Fig. 10, we calculate the efficiency of
accretion disks in the ¢ metric to convert mass into
radiation. We notice that oblate sources (g > 0) are less
efficient than Schwarzschild, while prolate sources (¢ < 0)
are more efficient (left panel). Also we can see that there
always exists a value of ¢ > 0 for which an oblate static
source can produce the same efficiency as that of a Kerr
black hole with counterrotating disk (right panel).

0.03F
— — @=0.5 curve minus j=-0.045 curve
0.02f — q=0.75 curve minus j=—0.045 curve
/'5 —-— Q=2 curve minus j=-0.045 curve
q\ 0.01} --- q=3.5curve minus j=-0.045 curve
> e —
S 0.00 E——
[=)) . N T
e} .
—_ N \\
-0.01} O\
\\ \\ \
-0.02%, . . N X
-2.0 -1.5 -1.0 -0.5 0.0
log1o(hv/KT,)

FIG. 9. Left panel: difference between spectral luminosities for accretion disks in the ¢ metric with ¢ > 0 and corotating Kerr metric
with j = 0.01. Right panel: difference between spectral luminosities for accretion disks in the ¢ metric with ¢ > 0 and counterrotating

Kerr metric with j = —0.045.

8.0¢
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q
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2.0
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0.3
~ 0.2
0.1
0.0

-0.1

-05 0.0 0.5

q

1.0 1.5 2.0

FIG. 10. Left panel: radiative efficiency for the oblate ¢ metric. Notice that the oblate g metric is less efficient in converting accreting
mass into radiation with respect to Schwarzschild. Right panel: degeneracy between the radiative efficiency in the ¢ metric and the Kerr
metric. For each value of the deformation parameter ¢ there exists a value of the angular momentum j in the Kerr space-time for which
the accretion disks in the two geometries have the same efficiency.
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V. FINAL OUTLOOKS AND PERSPECTIVES

We considered the g metric, a static and axially sym-
metric vacuum solution of FEinstein’s equations, as the
possible exterior field of an exotic compact object and
considered the eventuality that such a source may be
distinguished from a Kerr black hole from the observation
of the accretion disk’s spectrum.

To do so, we derived the orbital parameters of test particles
in the equatorial plane of the g metric for oblate (i.e., positive
q) sources, calculated rigco/My, and obtained the expres-
sions for measurable quantities such as the radiative flux,
differential luminosity, and efficiency of the accretion disk.

We showed that the spectrum of oblate sources may be
mimicked by Kerr space-times with counterrotating disks
(j < 0). However, the flux emitted by the ¢ metric appears
to be larger at very small radii (i.e., close to the ISCO)
with respect to Schwarzschild and Kerr with negative j.
This suggests the possibility that the spectral features of
the two kinds of accretion disks may be distinguished in
observations.

Further, under the assumption of black body emission
from the disk, we constructed the spectral luminosity as a
function of the frequency of emitted radiation in the ¢
metric and compared it with the one in the Kerr metric.
Whereas for the Kerr metric we see the luminosity
increasing (decreasing) with respect to Schwarzschild for
all the frequencies with j > 0 (j < 0), the ¢ metric shows a
different behavior with the Iuminosity being larger
(smaller) at smaller (larger) frequencies.

We calculated the luminosity difference between a
particular black hole and several objects described by
the g metric. The behavior of the luminosity difference
suggests the possibility that spectral features of accretion
disks around compact objects may be used to distinguish
the two geometries.

Moreover, we found that there exists a frequency at
which the spectrum generated by a Kerr space-time, with a
given value of the spin parameter j, can be mimicked by a
particular g space-time. This degeneracy should be taken
into account when observing accretion disks around com-
pact objects. It is important to keep in mind that real

astrophysical objects are rotating and therefore the analysis
presented here is necessarily qualitative since it does not
take into account angular momentum. The study of
accretion disk luminosity for a rotating extension of the
g metric will be developed in a future work.

Of course the features of the spectra emitted by real
accretion disks surrounding compact objects in the
Universe are much more complicated than the simple
toy models employed here.

In fact, modern models include more realistic situations
that take into account the effects due to the existence of
plasma distributions within thick disks in the presence of
magnetic fields (see for example [75—77] for old theoretical
models and [78-81] for recent numerical models) and to the
interaction with gray body radiation under the assumption
of local thermal equilibrium [82].

Additionally, the spectra of the accretion disks of
astrophysical compact objects contains extra components
such as coronal emission and reflection spectrum which
complicate the task of comparing the features of real
spectra with the mathematical models [83,84].

It would be interesting to explore the question of whether
the g metric could mimic Kerr accretion disks that consider
the physical generalizations mentioned above.

The simple models we investigated in this work cannot
be used to practically determine the actual geometry in the
proximity of astrophysical black hole candidates. However,
we believe that the general considerations obtained here do
indicate a road towards the possibility in the future of
experimentally constraining geometric quantities, such as
the mass quadrupole moment of compact sources and thus
answer the question whether astrophysical black holes are
indeed described by the Kerr metric.
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