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The gravitational Faraday and its dual spin-Hall effects of light arise in space-times of nonzero angular
momentum. These effects were studied in stationary, asymptotically flat space-times. Here we study these
effects in arbitrary, nonstationary, asymptotically flat space-times. These effects arise from the interaction
between light polarization and space-time angular momentum. As a result of such interaction, the phase
velocity of left- and right-handed circularly polarized light becomes different, that results in the
gravitational Faraday effect. This difference implies different dynamics of these components, that begin
to propagate along different paths—the gravitational spin-Hall effect of light. Due to this effect, the
gravitational field splits a multicomponent beam of unpolarized light and produces polarized gravitational
rainbow. The component separation is an accumulative effect observed in long range asymptotics. To study
this effect, we construct uniform eikonal expansion and derive dynamical equation describing this effect.
To analyze the dynamical equation, we present it in the local space and time decomposition form. The
spatial part of the equation presented in the related optical metric is analogous to the dynamical equation of

a charged particle moving in magnetic field under the influence of the Coriolis force.
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I. INTRODUCTION

Gravitational field affects propagation of electromag-
netic waves, in particular light, in different ways. For
example, electromagnetic radiation emitted by hot accre-
tion disk around a black hole into the external space gets
gravitationally redshifted. Light rays passing by a strongly
gravitating massive object, e.g., a star or a black hole, get
deflected due to the space-time curvature in the vicinity of a
massive object. The rays deflection depends on the object’s
mass and angular momentum. There is also the gravita-
tional Faraday effect, analogical to the magneto-optical
Faraday effect—a rotation of the polarization plane of a
linearly polarized light propagating in a transparent
material in the presence of a magnetic field along propa-
gation of the light [1]. The gravitational Faraday effect is a
rotation of the plane of polarization of an electromagnetic
wave propagating in a stationary gravitational field, for
example, near a stationary rotating black hole. The study
and observation of this effect have quite long history
(see, e.g., [2-15]). However, despite the clear analysis
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done in [3,5], in some works rotation of the polarization
vector around direction of light propagation, which is due
to its coupling to the space-time angular momentum, is
mixed with change of its direction due to deflection of the
light rays.

It is known that in optics there is an effect dual to the
Faraday effect—the optical Magnus effect—that results in
the action of light polarization on its trajectory, causing its
transverse polarization-dependent displacement. Due to
this effect, a linearly polarized light splits into left- and
right-handed circularly polarized components propagating
along different paths. This splitting effect is known as the
spin-Hall effect of light [16-20]. Spin-Hall effects became
quite ubiquitous in modern physics. They are observed in
condensed matter [21], optical [22], and high-energy
systems [23]. Classical and quantum spin-Hall optical
effects of light are described and analyzed in many works
(see, e.g., [16-20,24-27].) The underlying nature of these
effects is the spin-orbit interaction between the spin of a
photon, an electron, or an atom, and its extrinsic angular
momentum.

We may expect a dual to the gravitational Faraday
effect—the gravitational spin-Hall effect of light. The
gravitational Faraday and spin-Hall optical effects may
not be surprising phenomena if one takes a certain point of
view on the gravitational field. Namely, one can observe
that the source-free Maxwell equations in curved space-
time, i.e., in the presence of gravity, can formally be
considered as equations in flat space-time in the presence
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of a bianisotropic moving medium whose optical properties
are defined by dielectric permittivity and magnetic per-
meability tensors expressed though the space-time metric
tensor components. This point of view was proposed and
developed already more than half-century ago by several
authors [2,3,28]. There is also a dual point of view on
propagation of light in the so-called metamaterials, whose
optical properties can be synthesized on a subwavelength
scale that allows us to control propagation of light in a
nearly arbitrary way [29]. In this new field of trans-
formation optics a metric approach can be used to calculate
dielectric permittivity and magnetic permeability tensors of
a metamaterial [30]. Another example is the gravitational
analog of the linear magnetoelectric effect that was studied
in [31].

Taking into account the analogy between a gravitational
field and a bianisotropic moving medium, polarization of
light was considered to describe its propagation in a sta-
tionary gravitational field. For example, by using the weak
field approximation, it was shown that left- and right-handed
circularly polarized light propagating near a rotating gravi-
tational body get scattered in a different way [32-35]. To
consider this effect in a strong stationary gravitational field,
the so-called modified geometric optics formalism was
introduced [36]. This formalism was applied to describe
scattering of a polarized light propagating in the stationary
space-time of a rotating (Kerr) black hole [37]. Later this
approach was reformulated to some extent [38] and in a
different context [39] in a four-dimensional covariant form.

There are different approaches have been taken to
describe dynamics of polarized light in a curved space-time
background (for a review see [40]). For instance, approach
based on dynamics of massless spinning particle was
proposed and developed in [41-44] for Riemannian and
pseudo-Riemannian manifolds. A semiclassical approach to
describe photon dynamics in a curved space-time back-
ground based on the Bargmann-Wigner equations was taken
in [45], and helicity-dependent photon’s evolution was
predicted for the Schwarzschild space-time. Spin-Hall effect
of light for the Schwarzschild spacetime was also predicted
in [46]. However, in these works the proper orientation and
propagation of the basis representing optic axes is not
discussed. Thus it remains unclear how to measure properly
the evolution of the light polarization along a null ray. As a
result, the proposed effect is questionable. Such prediction is
also contradictory to the analysis presented in, e.g.,
[3,32,36,37,47], where it was shown that left- and right-
handed polarization modes evolve differently due to the
space-time angular momentum only, and in static space-
times there is no distinction between propagation of these
modes. In other words, absence of the gravitational Faraday
effect in static space-times implies that these modes evolve
in the same fashion.

To support a possibility of the spin-Hall effect of light in
static space-times, one may appeal to the theoretical and

experimental studies of the polarization-dependent deflec-
tion of light in a smoothly inhomogeneous isotropic
medium, where such an effect was observed for light
propagating through a planar (without torsion) optical fiber
(see, e.g., [16,48]). Note, however, that according to [49]
(and also the references therein) these polarization-
dependent effects observed in planar curved optical fibers
are of the higher order. It is also stated in [17] that there is
no polarization-dependent ray shift can be observed in a
planar waveguide, where the Rytov-Vladimirski-Berry
phase [50-53], which determines rotation of the polariza-
tion plane, vanishes identically. We would also like to note
that a gravitational field is analogical to a special kind of
bianisotropic moving optical medium, such that there is no
birefringence and its index of refraction is different for
electromagnetic waves propagating in opposite directions
[28]." In other words, a gravitational field is essentially
different from a material optical anisotropic medium.
Finally, we note that motion of the medium also makes
significant contribution to observed optical phenomena and
often gives rise to new effects, see, e.g., [55-58]. Detailed
investigation of analogy between a material optical medium
and a gravitational field in context of the related optical
effects goes beyond the scope of this paper.

In this paper, to describe the gravitational Faraday and
spin-Hall effects of light, we shall take the modified
geometric optics approach [36] and extend it to arbitrary
nonstationary asymptotically flat space-times of nonzero
angular momentum [59]. In addition to stationary rotating
black holes and stars, such space-times correspond to
dynamical gravitational fields due to a gravitational col-
lapse, black holes and neutron stars coalescence, and
gravitational waves. They can also represent some cosmo-
logical models. Thus, these gravitational optical effects can
be widely present. To describe properly these effects, the
key property of a stationary space-time—existence of a
timelike Killing vector field, was exploited. Here we extend
these results by considering a field of static observers. The
key property of such observers is that in their frame, at the
spatial infinity i°, the space-time total Arnowitt-Deser-
Misner (ADM) 3-momentum vanishes. The field of static
observers naturally generalizes the field of Killing observ-
ers and coincides with it in stationary space-times.

This paper is organized as follows. In Sec. II we briefly
review the laws of (canonical) geometric optics in a curved
space-time. In the next section we study the gravitational
Faraday effect of light in arbitrary (nonstationary) space-
time. In Sec. IV we define the field of static observers that
can properly detect and measure the gravitational Faraday
effect. In Sec. V we construct the uniform eikonal
expansion that takes into account contribution of light

'One may try to describe this phenomenon in the language of
Finsler geometry, using properties of the Randers metrics. For a
nice review of the Finsler geometry and related problems see [54].
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polarization to its propagation and present dynamical
equations that describe the gravitational spin-Hall effect
of light, which is dual to the gravitational Faraday effect.
The gravitational spin-Hall effect of light is presented in the
local space and time decomposition form in Sec. VI. The
last Sec. VII contains discussion of the derived results.

Here we shall use geometrized units ¢ = G =1 and
conventions adopted in the book [60].

II. GEOMETRIC OPTICS

Finding an exact electromagnetic wave solution to the
Maxwell equations in a curved space-time background is a
formidable problem. Moreover, often such solutions cannot
be presented in a closed analytic form. However, for waves
that are highly monochromatic over some space-time
regions, an asymptotic short-wave (geometric optics)
approximation can be used [60]. Such an approximation
allows us to capture basic characteristics of light propaga-
tion in a curved space-time background defined by metric
9ap Of the most general form.

The source-free Maxwell wave equation for the vector
potential A% in the Lorenz gauge

A%y =0 (1)
reads
_Aa;/f;ﬁ + R};Aﬂ — 0’ (2)

where the semicolon stands for the covariant derivative
associated with the space-time metric g,; and R%; is the
four-dimensional Ricci tensor. The geometric optics
approach is based on splitting of the vector potential into
a rapidly changing real phase, the eikonal 8, and a slowly
changing complex amplitude in the following way:

el (3)

where ¢ < 1 is a dummy expansion parameter that helps to
track order of terms: a term with ", for some integer n, varies
as (3/lnn)", where A/, < 1. Here % is the reduced
wavelength (wavelength/2z) and [, is the minimal of the
two characteristic scales—the curvature radius of the wave
front, or the length of a wave packet, and the local curvature
radius of the space-time. Substituting the vector potential into
the Lorentz gauge condition (1) and the wave equation (2)
and collecting the leading terms of order > and ™! we
derive the fundamental laws of geometric optics:

A% =R{(a* + eb”* + - -

Kk, =0, Kke, =0, (4)
k*f, =0, kﬁfa;ﬁ =0, (5)
(@k¥),, = 0. (6)

Here k* = dx®/dJ is the wave vector metrically related to the
gradient k, = 6., and tangent to the light ray I": x* = x*(24),
where A is affine parameter of the ray, a = (a%a};)'/? is the
scalar amplitude, and f* = a“/a is a unit complex polari-
zation vector, such that f*f, = O and f*f;, = 1. Here and in
what follows the superscript * stands for complex conjuga-
tion. These laws imply that light rays are the space-time null
geodesics (4), the polarization vector is orthogonal to the
light ray and parallel-propagated along it (5), and the vector
a?k® is a conserved current, which defines the adiabatically
conserved number of light rays, or in quantum language, the
number of photons (6). The laws of geometric optics (4)—(6)
reflect only an approximate picture of light propagation in a
curved space-time. In this description polarization of light
does not affect its path.

III. GRAVITATIONAL FARADAY EFFECT
OF LIGHT

To measure angle of rotation of the polarization plane in
the magneto-optical Faraday effect, we have to align
properly optic axes of a polarizer and an analyzer. For
example, we can align the polarizer and the analyzer at the
polarizer’s location and then parallel transport the analyzer
along the ray trajectory. In a curved space-time this
procedure is not so simple.

Let2 us present the polarization vector f* in the following
form:

fa — ei(pma’ (7)
where m? is a unit complex vector, such that

a

m®m, = 0, mm;, =1,

m%k, = 0, (8)

1 1
(e +ives).  mt=—— (et —ioes).  (9)

V2 V2

where ef, are real orthonormal space-like vectors. The
local complex basis {m®, m**} plays a role of optic axes.
To specify the polarization of a given wave we use the
parameter ¢ = %1, with “4” for the right- and “—" for the
left-handed circularly polarized light [60]. This definition
means that the polarization vector of the (left)right-handed
circularly polarized light rotates in the (anti)clockwise
direction, when viewed from the source.

To define a change in the rotation of the polarization
vector along the light ray we introduce polarization phase
@. For example, in a vacuum and flat space-time ¢ has a
constant value in the basis {m®, m**} parallel transported
along the ray. As we shall see, this polarization phase

ma

*The polarization vector is defined modulo the wave vector k%.
This gauge freedom does not affect the results that follow. We
shall fix this gauge, as well as the rotation gauge transformation
m®* — m®exp(iy), later.

084007-3



ANDREY A. SHOOM

PHYS. REV. D 104, 084007 (2021)

defines an additional angular shift of the polarization vector
due to a gravitational field of nonzero angular momentum.
Using the propagation equation for the polarization
vector (5) and the expression (7), we derive the propagation
equation for the polarization phase along the null ray,

K*p.q = imskPm® 4. (10)

In a space-time decomposition, spatial part of this expres-
sion, corresponding to propagation of the polarization phase
along the null ray trajectory, written in momentum para-
metrization, is the Rytov-Vladimirski-Berry phase [50-53].
This phase of light propagating in a helical optical fiber was
experimentally measured and discussed in [61,62].

To compute the polarization phase for a given null ray,
we have to define a propagation law for m® along the ray.
This can be done by an observer-defined local decom-
position of the space-time into space and time. This is the
so-called space-time threading approach, in contrast to the
space-time slicing, which is known as the ADM approach.’

Consider a family of observers filling a three-dimensional
space like a continuous medium. Each of the observers
defines the local frame of reference. World lines of these
observers form a congruence of integral curves of the
timelike future directed unit vector field u® = u®(x%),
u®u, = —1. The local rest space X, orthogonal to u® is a
three-dimensional subspace of the tangent space defined at
every event on an observer’s world line. A vector from the
tangent space can be projected into the subspace X, by
means of the projection operator P = 0 + uup, and
Pap = Gap + Ugtty defines the induced metric on ZX,.
Applying the projection operator to k* we construct the
unit spacelike vector n* that defines the spatial direction of a
light ray. Accordingly, we have

k* = w(u* 4+ n%), (11)

where w = —k,u” is the angular frequency of light measured
by the local observer. This decomposition allows us to
express propagation of m® along k* by defining its propa-
gation along the vectors u* and n%,

Km®, = o(u'm, + nmy). (12)

We require that the basis vectors m* and m** belong to X,
and thus, according to (8) and (11), are orthogonal to n®.
Because the polarization vector f* is defined modulo k“, this
requirement can be fulfilled at some event on the null ray.
Then, as it is shown below, this orthogonality condition is
preserved along the ray.

The threading point of view was originally developed by
Mgller, Zelmanov, and Cattaneo, and discussed in detail in
[63-65]. It is used in [66].

Next we construct a right-handed, observer-adapted
orthonormal frame {e§,e%, a =1,2,3}, where e} = u®,
ef , are defined in (9), and e§ = n®. For such frame we have

saﬂy(gegeﬁj ehe§ = +1, where g,4,; is the Levi-Civita
(pseudo) tensor. Using (11), this gives

Eappst®KPm ' m® = icw, (13)

which implies
EqppsTm® = g(kauﬂ — ugkp). (14)

We shall also need the following property of the Levi-Civita
tensor:

uyse P = ~2(655) — 8361, (15)
where &5 is the four-dimensional Kronecker tensor.

To measure properly the polarization phase, we require
first that the basis {m®, m**} does not rotate with respect to
a reference basis fixed at the spatial infinity, when it is
spatially transported along a ray trajectory,4 and second that
its initial orientation does not change when it is transported
along the observer congruence. The first requirement is
ensured by the vanishing spatial Fermi-Walker derivative of
m® along n¢,

VEWVma = nbm”'b — (a*n® — a®n)m, = 0.  (16)

b

Here a” = n’n® |;, and the stroke | stands for the covariant

derivative associated with the spatial metric p,;, = egeg Pap>
such that p . = 0. This derivative is related to the covariant
derivative associated with the space-time metric g,z as
follows: eZn’m¢, = pgn’m’ 5. The orthogonality condi-
tion m*n, = m*n, = 0 is preserved by the Fermi-Walker
derivative. To fulfill the second requirement, we impose that
the basis {m®, m**} is corotating with the congruence. This
implies that the basis has no relative temporal rotation with
respect to nearby observers and, as a result, with respect to
the reference basis fixed at the spatial infinity. This require-
ment is ensured by the vanishing temporal corotating Fermi-
Walker derivative of m*® along u® (see, e.g., [63]),

VIWVmr=um® 5+ (w*u? —wPu®)my— 0®sm? =0.  (17)

Here w* = u/u® is 4-acceleration and wuy = pipju,) is
the vorticity tensor. The first three terms represent the
temporal Fermi-Walker derivative. The orthogonality con-
dition m“u, = 0 is preserved by the corotating Fermi-
Walker derivative. The conditions (16) and (17) fix the

*For description of optical measurements in curved space-time
see, e.g., [67].
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scalar function y = y(x*) in the gauge transformation
m* — m®exp(iy).

Using the decomposition of the null vector k* (11), the
expressions (12), (14), (15), and the transport laws (16) and
(17), we can calculate the right-hand side of (10) as follows,

imykPm® 5 = iom**wzmP = 6wk, (18)
where

a)(l

1 1
= 58"/”7514/,»0)},5 = 58”/’7’514/;%;5 (19)
is the vorticity of the observers congruence.5

By using this result, we can now compute the polariza-
tion phase ¢ for a given null ray I':x* = x%(4),

@ = 6/ 0k, dA = 6/ W, dx*. (20)
r r

Finally, we can consider a linearly polarized light,
viewed as a superposition of its left- and right-handed
circularly polarized components. The linear polarization
real unit vector f¢ = (f* + f**)/+/2 rotates with respect to
the basis {m“, m**} and the angle of rotation ¢; measured
along the light ray I' is

or —/a)adx“. (21)
r

This rotation is known as the gravitational Faraday effect
of light.

IV. FIELD OF OBSERVERS

So far we have not specified the field of observers u®. As
it follows from the expressions (20) and (21), the gravi-
tational Faraday rotation depends on vorticity of the
observers congruence. For example, freely falling (inertial)
observers do not feel the gravitational field and their
congruence has zero vorticity. The same situation happens
for the zero angular momentum observers. Thus, such
observers do not detect the gravitational Faraday rotation.
Alternatively, we can consider a congruence of arbitrarily
moving (noninertial) observers whose congruence has
nonzero vorticity. Such observers would claim to detect
the gravitational Faraday rotation in a flat space-time. What
kind of observers one has to consider in order to measure
properly the gravitational Faraday effect?

The polarization-dependent gravitational optical effects
were studied in stationary space-times. Such space-times
posses timelike Killing vector field 5((1[)’ where ¢ is the

>For a hypersurface-orthogonal vector field u* vorticity is
identically zero. In the next section we define a field of static
observers whose vorticity is not identically zero.

Killing time, a parameter along Killing vector field orbits.
Naturally, in such space-times the field of Killing observers
was taken, u% « g%. Here we consider asymptotically flat

nonstationary space-times (see, e.g., [68]). Such space-
times do not possess timelike Killing vector field. In this
case we use the following construction. Take an inertial
frame in the asymptotically flat region and construct
connected to the frame Cartesian coordinate latticework.
Such a latticework is assumed to be absolutely rigid and
extends to other regions of the space-time as far as
possible.6 Place identical clocks in every point of the
latticework and synchronize them modulo the redshift
factor, i.e., (proper time of a point on the latticework) =
(redshift factor at that point) x (proper time on the
latticework at the asymptotically flat region). This con-
struction represents a field of observers that are situated
at every point of the latticework, i.e., they have fixed
spatial coordinate position defined by asymptotically
Cartesian coordinates: (x'=const,i=1,2,3). Accordingly,
in these coordinates the observers field is

1
u* = \/_E 58 (22)

Here h > 0 is the squared redshift factor and x° = ¢ is the
timelike coordinate that measures proper time of observers
sitting on the latticework in the asymptotically flat region.
Using a timelike threading approach [66] we can present
the space-time metric in the coordinates (x* = ¢, x') in the
following form:

ds? = —h(dt — g;dx")* + hy,;dx'dx’. (23)
Here hy;; is the three-dimensional metric that defines

spatial distance and the metric functions h, g;, and y;;

depend on ¢ and x’. Accordingly, the covariant form of the
observers field (22) reads

U, = —vVh(89 — g:5). (24)

Let us now compute the vorticity (19) of the observers field
(24) in the metric (23),

' = ;_h{(g,curlg)css +(lg x )"+ (curlg))5r}.  (29)

Here g’ is the covariant form g; of the vector g living in a
three-dimensional space endowed with the metric y;;, and

6Note, however, that such a latticework cannot be extended
into certain space-time regions, for example into a rotating black
hole’s ergosphere or into a black hole interior.
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(a,b):aibjyij, [a Xb]i:eijkajbk,
- ijk
ik :eﬁ, (26)

(curlg)’ = kg, ;. e =/7€ijx-

where y = det(y;;), €13 =€'2 =1 is the Levi-Civita
symbol, and the indices are raised and lowered by y;;.
The expressions (...), and (...); mean partial derivatives
of (...) with respect to ¢ and x'. Using (25) we can calculate
the gravitational Faraday rotation (21).

The problem is that the observers field u#* is not unique.
One can consider another field of observers i that have
fixed spatial coordinate position on the related latticework
(x",i" = 1/,2/,3'). This new lattice work and the proper
time x = ' of such observers located at the asymptotically
flat infinity are related to the former ones by the Lorentz
transformation, x% = A”/,ux/’/ (see, e.g., [60], p. 69), and the
above expressions (22)—(24) have the same form in the
primed frame. To understand how the gravitational Faraday
rotation depends on the observers field, one has to find how
the vorticity expressions corresponding to u® and #® are
related to each other. To do this, let us first derive a relation
between the observers vector fields u® and #® in the frame
x%, which is

~a yg {(l Ui (1}
=10 Ly Vel 27
g.v) Vh 27)

where

Yo= . ¥ (28)

v
1—(v,.v,) I 1= (v,g)’

and v is the 3-velocity with the constant contravariant
components (v' = const, i = 1,2, 3), which are parameters
of the Lorentz transformation.’ Accordingly, the covariant
form of the new observers field (27) reads

ﬁa = _yg\/ﬁ(ég - gi&x)? (29)
where
g=g+v, (30)

Now we can compute the vorticity (19) of the observers
field (29) in the metric (23),

2
~a }/ o o (04 o o l o l (¢4
@ :ﬁ{(g,curlg)% + ([g x &) + (curlg)’)57}.  (31)

A comparison between the expressions (25) and (31) shows
that @* # . This implies that the gravitational Faraday
effect (20), (21) is observer-dependent. In particular, in a

7 . . .
In a curved space-time region v; = y;;v/ # const.

static space-time, such that in the frame x* we have g; = 0,
one can find an observers field of nonzero vorticity. Such
observers would claim to detect the gravitational Faraday
effect proportional to ', i.e., to the parameters of the
Lorentz transformation. In the next section we study the
gravitational spin-Hall effect of light, which is dual to
the gravitational Faraday effect. This dual effect is, in turn,
also proportional to »'. However, in a static space-time, for
v' = 0 both the effects vanish. Note that this phenomenon
is analogical to the relativistic Hall effect resulting in a
transverse shift of the relativistic center of inertia of a
dynamical system [69]. The shift is proportional to the
intrinsic angular momentum of the system and to the
velocity v’ of the relativistic frame, which is moving with
respect to the rest frame of the system. The key issue behind
the relativistic Hall effect is that components of the three-
dimensional vector of the relativistic center of inertia
are not spatial components of a four-dimensional vector.
Thus, they do not transform in covariant way, which makes
the location of the relativistic center of inertia frame
dependent [66]. In our case, the analogical vector is the
three-dimensional vector g, which transforms according
to (30).

Thus, in the case of a nonstatic gravitational field
(g; #0), the general field of observers (27) can detect
the gravitational Faraday rotation due to both the gravita-
tional field and their own motion, i.e., via the values of '.
This observer-dependent problem is resolved in stationary
space-times by selecting the preferred field of Killing
observers. Our goal is to find a field of observers that is
analogical to the Killing observers in an arbitrary, nonsta-
tionary space-time. In other words, we have to fix the
kinematic gauge freedom o', that brings us back to the
question raised in the first paragraph of this section.

To answer the question, we note first that an asymptoti-
cally flat stationary space-time has vanishing total
3-momentum, as defined with respect to the observers
field that coincides with the field of Killing observers. We
can take this property as the property that allows us to fix
the kinematic gauge and thus to define the observers field in
nonstationary space-times. To begin, we recall that asymp-
totic flatness structure allows the space-time energy-
momentum 4-vector P* = (E, P') to be well defined at
the spatial infinity i° as follows (for more details see [68],
Ch. 11 and the references therein). We consider globally
hyperbolic space-times. A globally hyperbolic space-time
can be foliated by Cauchy hypersurfaces %, parametrized
by a global time function ¢. Consider a unit, timelike,
future-directed vector field N,  t.,. Then, the space-time
metric g,z induces a three-dimensional spatial metric

Haﬂ = Yop + NaNﬂ (32)

on each X,. Let ¥, be such that this metric at i* in the
asymptotically Cartesian coordinates (x',i = 1,2,3) has
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the form &;; + O(1/r), where §;; is the three-dimensional

Kronecker tensor and r = \/x'x;. Then, the space-time
total energy E and 3-momentum P; are defined as follows:

1 .
=_——lim ¢ (H,;;; — H;;)SdA, (33)
ﬂ r—00 S
1 . .
— : ]
Pi=gzim ¢, (KijS' = K3S;)dA, (34)

where summation over repeated indices is assumed. The
integrals are taken over a 2-sphere S: 7 = const, S is a unit,
outward-directed, spacelike vector orthogonal to S, dA is
the area element on S, which in the limit » - oo and
in spherical coordinates (r,0,¢) takes the form dA =
r?sin? OdOd¢p, and

R = N —

K;; (CNH)ij

(N*Hj i+ Hi N i + Hy N ), (35)

is the hypersurface extrinsic curvature. In this construction,
the so-called ADM energy-momentum 4-vector

Pa = _EN(I + Piéfl (36)

is independent of the choice of ;. As a result, the space-
time total energy E and total 3-momentum P depend only
on the asymptotic behavior of a spacelike hypersurface %,
at i® and transform under Lorentz boost as the components
of a 4-vector. Thus, by an appropriate choice of the ¢
function, that is, by taking a proper boost at the asymptotic
spatial infinity i, one can make the space-time total
3-momentum P vanish. This choice of ¢ fixes the kinematic
gauge and defines the corresponding field of observers,
which we shall call static observers. The field of static
observers naturally generalizes the field of Killing observ-
ers, which is hypersurface orthogonal at asymptotic infin-
ity. Static observers coincide with Killing observers in
stationary space-times.

In what follows, to discuss the gravitational Faraday
effect and its dual gravitational spin-Hall effect, we shall
always consider the field of static observers. According to
the conditions (16) and (17), these observers possess an
unidirectional basis {m® m**}, adjusted to a reference
basis fixed at the spatial infinity, that allows them to
measure properly these optical effects.

V. GRAVITATIONAL SPIN-HALL
EFFECT OF LIGHT

As we already noted, in the geometric optics approach
polarization does not affect light rays. A similar situation
occurs when one applies the Wentzel-Kramers-Brillouin
(WKB) method to the Dirac equation: electric and magnetic

particle’s moments and spin do not affect its trajectory
[70,71]. However, the WKB expansion is not uniformly
valid in its domain. At finite fixed distances from inho-
mogeneous field regions, effects of the particle’s moments
on its trajectory are of order # and they vanish in the
classical limit 7 — 0. In this case, the WKB method gives
correct result. But for distances of order 77!, the effects
become of order unity and do not vanish in the limit 2 — 0.
In this case, the WKB method fails. As it was explained in
[71], to obtain an expansion which is uniformly valid
everywhere, including the neighborhood of infinity, one has
to include effects of the particle’s moments and spin on its
trajectory [49,72,73]. Analogously, to have an eikonal
expansion uniformly valid everywhere, one has to take
into account contribution of internal degrees of freedom
(polarization) to propagation of light [36]. Such a contri-
bution is of order ¢ for short distances of propagation.
However, it accumulates along light ray trajectory and for
sufficiently large distances (of order £7!) it becomes of
order €.

To construct such an expansion we have to include
polarization phase into the eikonal. As we already found, in
the geometric optics approximation,

A%~ R{a%e/¢}, a* =am®e". (37)

Here the polarization phase ¢ changes along light ray
trajectory in accordance with (20), but this change does not
affect the trajectory. Our goal is to modify the light
trajectory in accordance with the polarization phase change.
Let us rewrite this expression in the following form:

A% = R{amee'Oren)/e) (38)

This form suggests us to define the modified eikonal:

0=0+ep, (39)

where ¢ is the modified polarization phase that corresponds
to the modified eikonal 6.
With these modifications the expression (38) reads:

A% x R{a%e?/e}. (40)
Here the amplitude a* corresponds to the modified eikonal
(39). Substituting this approximation into the Lorenz gauge
condition (1) and the wave equation (2) we derive the
following leading order equations:
k%, =0, . k* = 0. (41)
They imply that the wave vector

Ko =0, =0.,—epy, (42)
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is null and electromagnetic waves are transverse. These
conditions hold along null ray defined by the wave vector.
The term ., is the gradient of the polarization component
of the modified eikonal. For a particular null ray
[:%% = ¥(4), with the wave vector k% = di%/dJ, the
polarization phase is [cf. (20)],

¢ = 0'[ W dX* = 6[ @K, dA. (43)
r r
The gradient of the polarization component is
§.q = 0w, (44)

To construct the propagation equation for the wave
vector, we use the same method which is used in the
geometric optics (see [60], p. 576). Namely, taking the
covariant derivative of the first expression in (41) we derive
k’kg,, = 0, while the expression (42) and the equality
é;ﬁ(l = é;aﬁ giVe

kﬁ;a = ka;/} - SG(I)O,ﬁ, (45)
where we defined
q)aﬂ = a)ﬂ;a - wa;ﬁ“ (46)
The expression (45) gives us the null rays equation
Kk, = eo® gkl (47)

Note that this equation looks like the Lorentz force law.®

Now we shall construct propagation equation for the
amplitude a®. We begin with the transversality condition
[the second expression in (41)]. This condition should hold
along a null ray, k”(@,k*); = 0. Expanding this expres-
sion and using (47) we derive

KK gy = 0Pk . (48)

The right-hand side of this expression is of order e. The
corresponding order complement comes from the sublead-
ing order £~! wave equation (2),

1
Ka,;=— Eaakﬂ;ﬂ — i,k .4 (49)

8Equation (47) can formally be derived by taking the ultra-
relativistic limit m — O of the Lorentz force law, where m is the
rest mass of a charged particle and its proper time is defined as
7 = mA [37]. In this analogy the product of the particle’s charge
and the electromagnetic field tensor F,; corresponds t0 eo®,y
and w, plays the role of an electromagnetic vector potential. Note
that in analogy with the action for a charged particle moving in an
electromagnetic field, Eq. (47) can also be derived from the
generalized Fermat’s principle [74-77].

Combining these expressions we derive the propagation
equation for the complex amplitude a%,

1
Kat, = ec® il — 551“]{/’;,; —ia"% . (50)

Now we multiply this equation by the complex conjugate
amplitude a** and add to it its complex conjugate form
multiplied by a“ As a result, we derive

(a*k™)., =0, (51)
where @ = (a%a)'/? is the scalar amplitude. The derived
equation implies adiabatic conservation of photons propa-
gating along null curves defined by (47). To complete the
construction of equations corresponding to the modified
eikonal (39) we introduce the unit complex polarization
vector £*=a%/a, such that £*f, =0 and f£%f} = 1.

Then, the second expression in (41) and the expression
(50) give

kef, =0, (52)
K £ = 0@yl — if %Py (53)

The expressions (41), (47), (51), (52), and (53) represent
the modified geometric optics corresponding to the modi-
fied eikonal (39). The last step is to show that in the limit
e — 0 polarization phase of f* does not change along the
modified null rays. To begin with we present the polari-
zation vector £% in the form [cf. (7)]

f% = e¥m?, (54)

Here y is measured with respect to the complex basis
{m* m**}, which is analogical to the previously considered
basis {m®, m“} (see Sec. III). Accordingly, one can repeat
the steps in Sec. III and derive [cf. (18)]

impk/mé = o'k, (55)

Then, from the relations (44), (53), (54), and (55), it follows
that

€
k”‘l/;a = % Sa/}yﬁuakﬁq)yrs' (56)

Thus, as we already noted, the change of the polarization
phase along the modified light ray is of order . This implies
that the internal degree of freedom, the order £° polarization
phase ¢, was indeed included into the modified eikonal.

Using the modified eikonal (42), we can compute phase
velocity of each polarization component defined with
respect to its geometric optics null ray,
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a
_ kau B (1))

Uph =

(57)

k,n* o — ecwn®’

This expression implies that the phase velocity of left- and
right-handed circularly polarized light is different. This
difference results in the gravitational Faraday effect dis-
cussed in Sec. III.

Let us now consider the dynamical equation for light
rays (47). Its right-hand side depends on light polarization
o = %1 and represents the force of interaction between the
light polarization and space-time angular momentum. This
force is orthogonal to the wave vector k® This type of
polarization-dependent force is a manifestation of the
gravitational spin-Hall effect of light: the back-reaction
of the changing polarization phase onto light trajectory
results in its transverse, polarization-dependent displace-
ment. As a result of such displacement, a linearly polarized
beam of light propagating in a gravitational field of nonzero
angular momentum along the space-time null geodesic will
split into components of left- and right-hand circular
polarizations and each component will propagate along a
different null world line. These world lines get gradually
displaced away in the opposite directions from the null
geodesic. The group velocity of these components, which is
the locally measured Poynting vector divided by the
electromagnetic energy density, is equal to speed of light
in vacuum. According to the generalized Fermat’s principle
[74-77], the expression (67) in the next section, integrated
along a light ray trajectory, is stationary for null geodesics
with respect to null variations. Thus, the propagation time ¢
for these components is greater than that of the correspond-
ing null geodesic.

In the next section we shall discuss the gravitational spin-
Hall effect in local space and time decomposition. To
conclude, we recall that source-free Maxwell equations in a
four-dimensional space-time are conformally invariant.
Accordingly, the expressions above are invariant with
respect to the conformal transformation of the metric
Jup = Q?Gyp accompanied by the following conformal
transformations:

K =Q72k, 4t =Q e, (58)

a* = Q72a2, £ = Q71EY + kQ72k*,  (59)
where the scalar function x solves equation

k% 4 + ikkP., + £7°Q., = 0, (60)

while w, and ®,; are conformally invariant, and the local

angular frequency of light transforms as w = Q™' @.

VI. LOCAL SPACE AND TIME
DECOMPOSITION

Let us now present the dynamical equation (47) in a local
decomposition defined by a static observer’s 4-velocity u®.
To simplify our computations, we will work in the metric
Jap conformally related to the space-time metric (23) via
the conformal factor Q> = h. In what follows, we shall drop
the bar signs. Because of the conformal invariance of the
dynamical equation, our final expressions will be valid
in the original space-time metric g,s, assuming that all
dynamical quantities are transformed accordingly, as
shown in the end of the previous section.

To compute the expression (46) we need the covariant
form of the vorticity vector [see (25) and the text below],

w, = LA, A :%([gxg'f,] +curlg). (61)
Now we can calculate @,
Dy = =&, q)ij = eijkBk’ (62)
where we defined
E=-A,, B = curlA. (63)

The three-dimensional fields £ and B can be considered as
“electric” and “magnetic” components of @.

The next step is to apply the projection operators —u®uy
and pj = 65+ u“uy to the dynamical equation. These
operators project four-dimensional objects onto u* and
its local orthogonal three-dimensional hypersurface X,
which gives their local space and time decomposition.
However, it is more convenient to use the decomposition of
the wave vector k* = w(u® 4+ n®) [cf. (11)], where the light
ray frequency w = —k%u, is measured by a local static
observer and the unit spacelike vector n?, orthogonal to u%,
defines spatial direction of the light ray. Then, we contract
the expression (45) with u” and n” separately and apply the
projection operators. Contraction with u” gives us an
expression lying entirely in %, and involving time deriv-
atives of the frequency and the unit spacelike vector.
Contraction with n” followed by projection onto u® gives
us (naturally) the same expression contracted with n%,

(14+gn"o +n'w; +§(2nlgi,r +n'nly;;,)=ecEm'. (64)

Finally, projecting the expression (45) contracted with n”
onto X, and using a local triad e defined on X, gives us the
light ray dynamical equation on X,

EO0

b.a 0)7;, ab a a
=—201% 42 A4 + B4, 65
n’n, . [nxA| w[nx ) (65)

B,=B+[Exg (66)
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Here n’n® » 1s the covariant derivative defined in the metric
Yab = e;eiyij along a light ray trajectory with the unit
tangent vector n® = dx%/dl = e%n“, where dl = wdJ is the
proper distance in the three-dimensional hyperspace X,
and 1% = y? —nn? is the three-dimensional projection
operator onto a local two-dimensional subspace orthogonal
to n® The proper distance dl is related to the time
coordinate ¢ as follows:

dt ,
1= 1+ gn', (67)
where the scalar product is defined in the metric y,;,. The
expressions (64), (65), and (67) represent the local space
and time decomposition of the dynamical equation (47).
Let us now analyse the derived result. Our main object is
the dynamical ray equation (65). To understand better its
physical meaning, we introduce the optical metric z,;, and
the three-dimensional wave vector k, as follows

Tap = a)zyab’ ka = wn,. (68)

Then, the dynamical ray equation (65) takes the following
form:

Dk &o
df_z[kXA]+w[kXBg]' (69)
Here Dk/d¢ is the covariant derivative of the wave vector
defined in the optical metric, d¢ = wdl is the optical
length, and the vector products are defined in the optical
metric. This equation is similar to the dynamical equation
of a charged particle moving in a noninertial rotating frame
in the presence of a magnetic field, i.e., the term 2[k x A] is
the Coriolis force and the next term is the Lorentz force.
This last term is the transverse, polarization-dependent
force that gives rise to the gravitational spin-Hall effect of
light. This force depends on light frequency. Thus, the
resultant splitting of a nonmonochromatic beam of light
onto left- and right-handed circularly polarized components
is frequency dependent. Namely, the low frequency part of
the beam gets more deflected in the transversal direction, as
compared to the high frequency part. As a result of such
deflection, we have a polarized gravitational rainbow.

To conclude, we remark that in the case of a stationary
space-time, our static observers are Killing observers and
the results above reduce to those derived in [36].

VII. DISCUSSION

Here we presented the study of the gravitational Faraday
and spin-Hall effects of light in arbitrary, nonstationary,
asymptotically flat space-time of nonzero angular momen-
tum. This is a generalization of the modified geometric
optics formalism developed in [36] and applied to propa-
gation of polarized light in the stationary space-time of a
rotating (Kerr) black hole [37]. The key concept of this
generalization is the field of static observers defined in
Sec. IV. In a stationary space-time, this field of observers
naturally reduces to the field of Killing observers. The field
of observers is uniquely defined in accordance with
vanishing space-time ADM 3-momentum. The gravita-
tional Faraday and spin-Hall effects are described properly
by such static observers. One may try to explore the
formalism developed here in the language of Finsler
geometry and the related Randers metric applied to sta-
tionary spacetimes in [78].

The natural limitation of our formalism is breakdown of
the geometric optics applicability and the concept of the
static observers field. As we already pointed out in Sec. [V
(see footnote 6), such observers cannot exist in space-time
regions where a rigid static latticework spreading out of
asymptotically flat region cannot be defined, for example
in ergoregions or black hole interior. Let us also note that
detection of the gravitational Faraday and spin-Hall effects
of light requires measurements of a very high sensitivity.
These effects are due to strong nonstatic gravitational
fields and they accumulate during light propagation. The
angular split of left- and right-handed circularly polarized
light components is proportional to the space-time angular
momentum [32-35,37], whereas spatial separation of
these components is an accumulative effect and propor-
tional to the propagation distance. Thus, the effect may not
easily be observable in weak gravitational fields and
relatively small spatial regions, e.g., within the Solar
System [34], but it could potentially be detected in the
light emerged from strongly gravitating systems, such as
the vicinity of a black hole, and propagated sufficiently
large distance.

ACKNOWLEDGMENTS

The author would like to thank the anonymous referee
for bringing paper [65] to his attention.

[1] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continu-
ous Media: Course of Theoretical Physics, Volume 8 (Perga-
mon Press, Ltd., Headington Hill Hall, Oxford, England, 1975).

[2] G. V. Skrotskii, On the influence of gravity on the light
propagation, Akad. Nauk SSR, Dokl. 114, 73 (1957) [Sov.
Phys. Dokl. 2, 226 (1957)].

084007-10



GRAVITATIONAL FARADAY AND SPIN-HALL EFFECTS OF LIGHT

PHYS. REV. D 104, 084007 (2021)

[3] J. Plebanski, Electromagnetic waves in gravitational fields,
Phys. Rev. 118, 1396 (1960).

[4] B. B. Godfrey, Mach’s principle, the Kerr metric, and black-
hole physics, Phys. Rev. D 1, 2721 (1970).

[5] S. Pineault and R. C. Roeder, Applications of geometrical
optics to the Kerr metric. I. Analytical results, Astrophys. J.
212, 541 (1977).

[6] P.A. Connors and R.F. Stark, Observable gravitational
effects on polarised radiation coming from near a black
hole, Nature (London) 269, 128 (1977).

[7] P.A. Connors, T. Piran, and R.F. Stark, Polarization
features of X-ray radiation emitted near black holes,
Astrophys. J. 235, 224 (1980).

[8] F. Fayos and J. Llosa, Gravitational effects on the polari-
zation plane, Gen. Relativ. Gravit. 14, 865 (1982).

[9] H. Ishihara, M. Takahashi, and A. Tomimatsu, Gravitational
Faraday rotation induced by a Kerr black hole, Phys. Rev. D
38, 472 (1988).

[10] P. Carini, L. L. Feng, and M. Li, R. Ruffini, Phase evolution
of the photon in Kerr spacetime, Phys. Rev. D 46, 5407
(1992).

[11] M. Nouri-Zonoz, Gravitoelectromagnetic approach to the
gravitational Faraday rotation in stationary space-times,
Phys. Rev. D 60, 024013 (1999).

[12] M. Sereno, Gravitational Faraday rotation in a weak
gravitational field, Phys. Rev. D 69, 087501 (2004).

[13] M. Sereno, Detecting gravitomagnetism with rotation of
polarization by a gravitational lens, Mon. Not. R. Astron.
Soc. 356, 381 (2005).

[14] A. Brodutch, T.F. Demarie, and D.R. Terno, Photon
polarization and geometric phase in general relativity, Phys.
Rev. D 84, 104043 (2011).

[15] T. Ghosh and A. K. Sen, The effect of gravitation on the
polarization state of a light ray, Astrophys. J. 833, 82 (2016).

[16] V.S. Liberman and B. Y. Zel’dovich, Spin-orbit interaction
of a photon in an inhomogeneous medium, Phys. Rev. A 46,
5199 (1992).

[17] K.Y. Bliokh and Y. P. Bliokh, Modified geometrical optics
of a smoothly inhomogeneous isotropic medium: The
anisotropy, Berry phase, and the optical Magnus effect,
Phys. Rev. E 70, 026605 (2004).

[18] K.Y. Bliokh and Y. P. Bliokh, Topological spin transport of
photons: The optical magnus effect and Berry phase, Phys.
Lett. A 333, 181 (2004).

[19] K. Y. Bliokh and Y.P. Bliokh, Conservation of Angular
Momentum, Transverse Shift, and Spin Hall Effect in
Reflection and Refraction of Electromagnetic Wave Packet,
Phys. Rev. Lett. 96, 073903 (2006).

[20] K.Y. Bliokh, Geometrodynamics of polarized light: Berry
phase and spin Hall effect in a gradient-index medium, J.
Opt. A: Pure Appl. Opt. 11, 094009 (2009).

[21] D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[22] M. Onoda, S. Murakami, and N. Nagaosa, Hall Effect of
Light, Phys. Rev. Lett. 93, 083901 (2004).

[23] A. Berard and H. Mohrbach, Spin Hall effect and Berry
phase of spinning particles, Phys. Lett. A 352, 190 (2006).

[24] K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, Geo-
metrodynamics of spinning light, Nat. Photonics 2, 748
(2008).

[25] K. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman,
Spin-Orbit Interaction in Optics: Coriolis Effect and
Unified Geometric Phase, Phys. Rev. Lett. 101, 030404
(2008).

[26] K.Y. Bliokh, F.J. Rodriguez-Fortuiio, F. Nori, and A. V.
Zayats, Spin-orbit interactions of light, Nat. Photonics 9,
796 (2015).

[27] K.Y. Bliokh, D. Smirnova, and F. Nori, Quantum spin Hall
effect of light, Science 348, 1448 (2015).

[28] A.M. Volkov, A.A. Izmestev, and G.V. Skrotskii, The
propagation of electromagnetic waves in a Riemannian
space, Zh. Eksp. Teor. Fiz. 59, 1254 (1970) [Sov. Phys.
JETP 32, 686 (1971)].

[29] V.M. Shalaev, Transforming light, Science 322, 384
(2008).

[30] R. A. Crudo and J. G. O’Brien, Metric approach to trans-
formation optics, Phys. Rev. A 80, 033824 (2009).

[31] G. W. Gibbons and M. C. Werner, The gravitational mag-
netoelectric effect, Universe 5, 88 (2019).

[32] B. Mashhoon, Scattering of electromagnetic radiation from
a black hole, Phys. Rev. D 7, 2807 (1973).

[33] B. Mashhoon, Electromagnetic scattering from a black hole
and the glory effect, Phys. Rev. D 10, 1059 (1974).

[34] B. Mashhoon, Can Einstein’s theory of gravitation be tested
beyond the geometrical optics limit?, Nature (London) 250,
316 (1974).

[35] B. Mashhoon, Influence of gravitation on the propagation
of electromagnetic radiation, Phys. Rev. D 11, 2679
(1975).

[36] V.P. Frolov and A. A. Shoom, Spinoptics in a stationary
space-time, Phys. Rev. D 84, 044026 (2011).

[37] V.P. Frolov and A.A. Shoom, Scattering of circularly
polarized light by a rotating black hole, Phys. Rev. D 86,
024010 (2012).

[38] C. M. Yoo, Notes on spinoptics in a stationary spacetime,
Phys. Rev. D 86, 084005 (2012).

[39] S.R. Dolan, Higher-order geometrical optics for electro-
magnetic waves on a curved spacetime, arXiv:1801.02273.

[40] M. A. Oancea, C. F. Paganini, J. Joudioux, and L. Andersson,
An overview of the gravitational spin Hall effect, arXiv:
1904.09963.

[41] C. Duval, Z. Horvath, and P. A. Horvéthy, Fermat principle
for spinning light, Phys. Rev. D 74, 021701(R) (2006).

[42] C. Duval, Z. Horvath, and P. A. Horvathy, Geometrical
spinoptics and the optical Hall effect, J. Geom. Phys. 57,
925 (2007).

[43] C. Duval, Polarized spinoptics and symplectic physics,
arXiv:1312.4486.

[44] C. Duval and T. Schucker, Gravitational birefringence of
light in Robertson-Walker cosmologies, Phys. Rev. D 96,
043517 (2017).

[45] P. Gosselin, A. Bérard, and H. Mohrbach, Spin Hall effect of
photons in a static gravitational field, Phys. Rev. D 75,
084035 (2007).

[46] M. A. Oancea, J. Joudioux, I. Dodin, D. Ruiz, C. F. Paganini,
and L. Andersson, The gravitational spin Hall effect of light,
Phys. Rev. D 102, 024075 (2020).

[47] L.C.S. Leite, S.R. Dolan, and L. C. B. Crispino, Absorp-
tion of electromagnetic and gravitational waves by Kerr
black holes, Phys. Lett. B 774, 130 (2017).

084007-11


https://doi.org/10.1103/PhysRev.118.1396
https://doi.org/10.1103/PhysRevD.1.2721
https://doi.org/10.1086/155073
https://doi.org/10.1086/155073
https://doi.org/10.1038/269128a0
https://doi.org/10.1086/157627
https://doi.org/10.1007/BF00756802
https://doi.org/10.1103/PhysRevD.38.472
https://doi.org/10.1103/PhysRevD.38.472
https://doi.org/10.1103/PhysRevD.46.5407
https://doi.org/10.1103/PhysRevD.46.5407
https://doi.org/10.1103/PhysRevD.60.024013
https://doi.org/10.1103/PhysRevD.69.087501
https://doi.org/10.1111/j.1365-2966.2004.08456.x
https://doi.org/10.1111/j.1365-2966.2004.08456.x
https://doi.org/10.1103/PhysRevD.84.104043
https://doi.org/10.1103/PhysRevD.84.104043
https://doi.org/10.3847/1538-4357/833/1/82
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1103/PhysRevE.70.026605
https://doi.org/10.1016/j.physleta.2004.10.035
https://doi.org/10.1016/j.physleta.2004.10.035
https://doi.org/10.1103/PhysRevLett.96.073903
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1016/j.physleta.2005.11.071
https://doi.org/10.1038/nphoton.2008.229
https://doi.org/10.1038/nphoton.2008.229
https://doi.org/10.1103/PhysRevLett.101.030404
https://doi.org/10.1103/PhysRevLett.101.030404
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1126/science.aaa9519
https://doi.org/10.1126/science.1166079
https://doi.org/10.1126/science.1166079
https://doi.org/10.1103/PhysRevA.80.033824
https://doi.org/10.3390/universe5040088
https://doi.org/10.1103/PhysRevD.7.2807
https://doi.org/10.1103/PhysRevD.10.1059
https://doi.org/10.1038/250316a0
https://doi.org/10.1038/250316a0
https://doi.org/10.1103/PhysRevD.11.2679
https://doi.org/10.1103/PhysRevD.11.2679
https://doi.org/10.1103/PhysRevD.84.044026
https://doi.org/10.1103/PhysRevD.86.024010
https://doi.org/10.1103/PhysRevD.86.024010
https://doi.org/10.1103/PhysRevD.86.084005
https://arXiv.org/abs/1801.02273
https://arXiv.org/abs/1904.09963
https://arXiv.org/abs/1904.09963
https://doi.org/10.1103/PhysRevD.74.021701
https://doi.org/10.1016/j.geomphys.2006.07.003
https://doi.org/10.1016/j.geomphys.2006.07.003
https://arXiv.org/abs/1312.4486
https://doi.org/10.1103/PhysRevD.96.043517
https://doi.org/10.1103/PhysRevD.96.043517
https://doi.org/10.1103/PhysRevD.75.084035
https://doi.org/10.1103/PhysRevD.75.084035
https://doi.org/10.1103/PhysRevD.102.024075
https://doi.org/10.1016/j.physletb.2017.09.048

ANDREY A. SHOOM

PHYS. REV. D 104, 084007 (2021)

[48] A.V. Dooghin, N.D. Kundikova, V.S. Liberman, and B.
Ya. Zel’dovich, Optical Magnus effect, Phys. Rev. A 45,
8204 (1992).

[49] Yu. A. Kravtsov, O.N. Naida, and A.A. Fuki, Waves in
weakly anisotropic 3D inhomogeneous media: Quasi-
isotropic approximation of geometrical optics, Sov. Phys.
Usp. 39, 129 (1996).

[50] S.M. Rytov, Dokl. Akad. Nauk SSSR 18, 263 (1938);
reprinted in Topological Phases in Quantum Theory, edited
by B. Markovski and S.I. Vinitski (World Scientific,
Singapore, 1989).

[51] V. V. Vladimirski, Dokl. Akad. Nauk SSSR 31, 222 (1941);
reprinted in Topological Phases in Quantum Theory, edited
by B. Markovski and S.I. Vinitski (World Scientific,
Singapore, 1989).

[52] M. V. Berry, Quantal phase factors accompanying adiabatic
changes, Proc. R. Soc. Lond. A 392, 45 (1984).

[53] S. 1. Vinitskii, V. L. Derbov, V. M. Dubovik, B. L. Markovski,
and Yu.P. Stepanovskii, Topological phases in quantum
mechanics and polarization optics, Sov. Phys. Usp. 33, 403
(1990).

[54] G. W. Gibbons and C. M. Warnick, The Geometry of sound
rays in a wind, Contemp. Phys. 52, 197 (2011).

[55] A.M. Khromykh, Ring generator in a rotating reference
system, Zh. Eksp. Teor. Fiz. 50, 281 (1966) [Sov. Phys.
JETP 23, 185 (1966)].

[56] A.M. Volkov and V. A. Kiselev, Proper frequencies of a
rotating ring resonator, Zh. Eksp. Teor. Fiz. 57, 1353 (1969)
[Sov. Phys. JETP 30, 733 (1970)].

[57] V.E. Privalov and Yu. V. Filatov, Investigation of the output
characteristic of a rotating ring gas laser, Kvanotvaya
Elektron. (Moscow) 4, 1418 (1977); Sov. J. Quantum
Electron. 7, 802 (1977).

[58] B. M. Bolotovskii and S. N. Stolyarov, Current status of the
electrodynamics of moving media (infinite media), Sov.
Phys. Usp. 17, 875 (1975).

[59] A. Ashtekar, Asymptotic structure of the gravitational field
at spatial infinity, in General Relativity and Gravitation,
edited by A. Held (Plenum, New York, 1980), Vol. 2, p. 37.

[60] C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman and Co., San Francisco, 1973).

[61] R.Y. Chiao and Y.S. Wu, Manifestations of Berry’s
Topological Phase for the Photon, Phys. Rev. Lett. 57,
933 (1986).

[62] A. Tomita and R.Y. Chiao, Observation of Berry’s Topo-
logical Phase by Use of an Optical Fiber, Phys. Rev. Lett.
57, 937 (1986); Erratum, Phys. Rev. Lett. 57, 2471 (1986).

[63] R.T. Jantzen, P. Carini, and D. Bini, The many faces of
gravitoelectromagnetism, Ann. Phys. (N.Y.) 215, 1 (1992).

[64] P. Carini and R. T. Jantzen, Gravitoelectro-magnetism and
the single gyro, in Relativistic Gravitational Experiments in
Space, edited by M. Demianski and C. W. F. Everitt (World
Scientific Publishing Co. Pte. Ltd., Singapore, 1993),
p- 135.

[65] S. Boersma and T. Dray, Slicing, threading and parametric
manifolds, Gen. Relativ. Gravit. 27, 319 (1995).

[66] L.D. Landau and E. M. Lifshitz, The Classical Theory of
Fields: Course of Theoretical Physics Volume 2 (Pergamon
Press, Ltd., Headington Hill Hall, Oxford, England, 1975).

[67] J.L. Synge, Optical observations in general relativity,
Seminario Mat. Fis. di Milano 30, 271 (1960).

[68] R.M. Wald, in General Relativity (The University of
Chicago Press, Ltd., London, 1984), p. 293.

[69] K. Y. Bliokh and F. Nori, Relativistic Hall Effect, Phys. Rev.
Lett. 108, 120403 (2012).

[70] W. Pauli, Diracs Wellengleichung des Elektrons und geo-
metrische Optik, Helv. Phys. Acta 5, 179 (1932).

[71] S.I. Rubinow and J. B. Keller, Asymptotic solution of the
Dirac equation, Phys. Rev. 131, 2789 (1963).

[72] R. Schiller, Quasi-classical theory of the spinning electron,
Phys. Rev. 125, 1116 (1962).

[73] R. Schiller, Quasi-classical theory of a relativistic spinning
electron, Phys. Rev. 128, 1402 (1962).

[74] V. Perlick, On Fermat’s principle in general relativity. L
The general case, Classical Quantum Gravity 7, 1319
(1990).

[75] V. Perlick, On Fermat’s principle in general relativity. II.
The conformally stationary case, Classical Quantum Grav-
ity 7, 1849 (1990).

[76] R. Nityananda and J. Samuel, Fermat’s principle in general
relativity, Phys. Rev. D 45, 3862 (1992).

[77] V.P. Frolov, Generalized Fermat’s principle and action for
light rays in a curved spacetime, Phys. Rev. D 88, 064039
(2013).

[78] G. W. Gibbons, C.A.R. Herdeiro, C. M. Warnick, and
M. C. Werner, Stationary metrics and optical Zermelo-
Randers-Finsler geometry, Phys. Rev. D 79, 044022
(2009).

084007-12


https://doi.org/10.1103/PhysRevA.45.8204
https://doi.org/10.1103/PhysRevA.45.8204
https://doi.org/10.1070/PU1996v039n02ABEH000131
https://doi.org/10.1070/PU1996v039n02ABEH000131
https://doi.org/10.1070/PU1990v033n06ABEH002598
https://doi.org/10.1070/PU1990v033n06ABEH002598
https://doi.org/10.1080/00107514.2011.563515
https://doi.org/10.1070/QE1977v007n07ABEH012652
https://doi.org/10.1070/QE1977v007n07ABEH012652
https://doi.org/10.1070/PU1975v017n06ABEH004403
https://doi.org/10.1070/PU1975v017n06ABEH004403
https://doi.org/10.1103/PhysRevLett.57.933
https://doi.org/10.1103/PhysRevLett.57.933
https://doi.org/10.1103/PhysRevLett.57.937
https://doi.org/10.1103/PhysRevLett.57.937
https://doi.org/10.1103/PhysRevLett.57.2471
https://doi.org/10.1016/0003-4916(92)90297-Y
https://doi.org/10.1007/BF02109128
https://doi.org/10.1103/PhysRevLett.108.120403
https://doi.org/10.1103/PhysRevLett.108.120403
https://doi.org/10.1103/PhysRev.131.2789
https://doi.org/10.1103/PhysRev.125.1116
https://doi.org/10.1103/PhysRev.128.1402
https://doi.org/10.1088/0264-9381/7/8/011
https://doi.org/10.1088/0264-9381/7/8/011
https://doi.org/10.1088/0264-9381/7/10/016
https://doi.org/10.1088/0264-9381/7/10/016
https://doi.org/10.1103/PhysRevD.45.3862
https://doi.org/10.1103/PhysRevD.88.064039
https://doi.org/10.1103/PhysRevD.88.064039
https://doi.org/10.1103/PhysRevD.79.044022
https://doi.org/10.1103/PhysRevD.79.044022

