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We investigate vacuum static black hole solutions of Einstein-Gauss-Bonnet gravity with a negative
cosmological constant in five dimensions. These are solutions with horizons of nontrivial topologies. The
first one possesses a horizon with the topology S1 ×H2, and a varying Gauss-Bonnet coupling constant α.
By looking into its thermodynamic properties, we find that its specific heat capacity with fixed volume is
negative; therefore, it is thermodynamically unstable. The second one is equipped with a so-called “Sol
manifold” as its horizon, and interestingly, the product of the Gauss-Bonnet coupling constant α and the
cosmological constant Λ is fixed. For the second solution, the total energy is a constant and the entropy
vanishes. These results expand our knowledge of both topological black holes in higher dimensions and the
property of higher curvature corrections of gravitational theories.
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I. INTRODUCTION

Black holes are both simple and complicated objects in
nature. The smooth event horizon of a stationary black hole
can only have spherical topology; therefore, they are
simple. However, this simplicity is ensured only when
the spacetime dimension is four and the dominant energy
condition (DEC) is satisfied—this is the topology theorem
by Hawking in 1972 [1]. In the year 1994 Chruściel and
Wald [2] proposed a topology theorem without the con-
dition of smoothness. Black hole horizons can be compli-
cated while those two conditions are violated, i.e., one can
consider higher dimensions or break the DEC.
In five dimensions, there are not only the famous

“Myers-Perry” black holes [3] with spherical topology
S3 but also “black rings” found by Emparan and Reall [4]
with topology S1 × S2. Actually, these two topologies are
the only possibilities for five-dimensional asymptotically
flat stationary black hole horizons according to the
generalization [5] to higher dimensions of Hawking’s
topology theorem. In dimensions D > 5 there are much
more complicated black hole horizons, including SD−2 and
S1 × SD−3 topologies [6,7].
The DEC can be broken by introducing the negative

cosmological constant Λ. The asymptotically anti–de
Sitter (AdS, the maximally symmetric space with negative
curvature) black holes are solutions with negative Λ and
they can have horizons of three types: spherical with
positive curvature, torus with flat geometry, and hyper-
bolic space with negative curvature [8–10]. These three

types appear in arbitrary dimensions. If one considers
generic black holes that are not asymptotically AdS, with
negative Λ, there are even black hole horizons with
arbitrary genus g > 1 [11]. These are spacetimes locally
equal to pure AdS spacetimes. Moreover, some static,
plane symmetric solutions and cylindrically symmetric
solutions of Einstein-Maxwell equations with a negative
cosmological constant are investigated by Cai and
Zhang [12].
It is interesting to explore the possibility of certain

nontrivial horizon types in the presence of a negative Λ. If
certain types were proven to be forbidden, this might help
establishing new topology theorems; if certain types
turned out to exist, these would be novel discoveries
worth noticing. There is an important example, Ref. [13],
which obtained nontrivial black holes in five dimensions.
These black holes have three-dimensional horizons of
different types. These types all belong to the eight three-
dimensional “model geometries” classified by Thurston
[14]. They are Euclidean E3, spherical S3, hyperbolic H3,
S1 × S2, S1 ×H2, and the so-called “Sol,” “Nil,” and
“SL2R” geometries. They all admit homogeneous metrics.
For more details of these eight manifolds one can refer to
[13–15]. These manifolds should be compact if one uses
them to construct black hole horizons, and the topologies
and the compactification of these eight manifolds are also
described in [13]. The main results are Einsteinian
solutions of black holes with Sol and Nil horizons.1
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1According to [13], there had already been black hole horizons
for the first five geometries except S1 × S2, while “SL2R”
horizons are still unknown.
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What we do is explore the effect of higher curvature
corrections on horizon topology. To be exact, we consider
five-dimensional Einstein-Gauss-Bonnet (EGB) gravity
theory, a special case of the Lovelock gravity theory
[16], the general second-order covariant gravity theory in
dimensions higher than four, with a negative Λ. Moreover,
the Gauss-Bonnet term can be regarded as corrections from
the heterotic string theory [17,18]. There had already been
spherical, Euclidean, and hyperbolic black hole horizons in
this theory, shown by Cai [19]. What we found is a black
hole with a S1 ×H2 horizon and one with a Sol-manifold
horizon. These are static vacuum black holes. We then
discuss the thermodynamic properties of these solutions,
and interestingly, the Sol-manifold solution has zero
entropy and constant mass. This may be caused by the
fact that in the Sol-manifold solution the Gauss-Bonnet
coupling constant has a fixed value. We include some
discussion at the end of this paper. We hope our results may
help further the understanding of black holes in higher
curvature gravity theories and help explore possible top-
ology theorems in generic cases.

II. THE TOPOLOGICAL BLACK HOLE
SOLUTIONS

The action of EGB gravity theory with a negative
cosmological constant reads

S ¼ 1

16πG

Z
ddþ1x

ffiffiffiffiffiffi
−g

p ½R − 2Λ

þ αðR2 − 4RμνRμν þ RμνρσRμνρσÞ�; ð2:1Þ

where G is the Newton constant and the cosmological
constant Λ, the Gauss-Bonnet coupling denoted by α. The
equations of motion are

Rμν −
1

2
Rgμν þ Λgμν

− α

�
4RμρRρ

ν − 2RRμν þ 4RρσRμρνσ − 2Rμ
ρστRνρστ

þ 1

2
gμνðR2 − 4RρσRρσ þ RρστπRρστπÞ

�

¼ 0: ð2:2Þ

A. The first solution with a constant curvature subspace

As we will see, the horizon topology of the first black
hole solution is S1 ×H2. The metric of the first solution is
assumed to be a warped product of a three-dimensional
static black hole BH3 and a two-dimensional hyperbolic
space Σ2 with constant negative curvature,

ds2 ¼ −VðrÞdt2 þ 1

VðrÞ dr
2 þ r2dξ2 þ adΣ2

2; ð2:3Þ

with VðrÞ an unknown function of coordinate r, a a positive
constant, and dΣ2

2 the line element of the 2D hyperbolic
space,

dΣ2
2 ¼ dθ2 þ sinh2 θdϕ2: ð2:4Þ

The new black hole solution in five dimensions has

VðrÞ ¼ −
Λr2

3
−M; a ¼ 3

−2Λ
− 2α; ð2:5Þ

where α is the Gauss-Bonnet parameter and Λ is the
negative cosmological constant. The constant M is related
to the total energy of the black hole and is related to the
horizon radius rh by the relation

M ¼ −
Λr2h
3

: ð2:6Þ

The solution above with α → 0 gives the Eq. (II.18)
in Ref. [13].

B. The second solution with nontrivial horizon topology

The horizon of the second black hole solution is the
so-called Sol manifold [13–15]. The Sol manifold is
described by

ds2 ¼ e2zdx2 þ e−2zdy2 þ dz2: ð2:7Þ

The ansatz metric of the whole spacetime is

ds2 ¼ −VðrÞdt2 þ 1

VðrÞ dr
2 þ fðrÞe2zdx2

þ gðrÞe−2zdy2 þ hðrÞdz2; ð2:8Þ

which gives the metric on a constant ft; rg surface up to
some constant. Here VðrÞ, fðrÞ, gðrÞ, and hðrÞ are
functions of r to be determined.
After putting the ansatz into the equations of motion, we

obtain a solution as follows:

VðrÞ¼−
Λr2

3
−M; gðrÞ¼ r2; hðrÞ¼ r2

M
: ð2:9Þ

The metric is then

ds2 ¼ −
�
−
Λr2

3
−M

�
dt2 þ 1

− Λr2
3
−M

dr2

þ fðrÞe2zdx2 þ r2e−2zdy2 þ r2

M
dz2: ð2:10Þ

For the solution to possess a regular limit whenM → 0, one
can rescale the coordinate z →

ffiffiffiffiffi
M

p
z and get the metric
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ds2 ¼ −
�
−
Λr2

3
−M

�
dt2 þ 1

− Λr2
3
−M

dr2

þ fðrÞe2
ffiffiffiffi
M

p
zdx2 þ r2e−2

ffiffiffiffi
M

p
zdy2 þ r2dz2: ð2:11Þ

Here the coupling constant α is fixed to satisfy

α ¼ −
3

4Λ
; ð2:12Þ

M is an integration constant, and fðrÞ an unfixed function2

even when the equations of motion are satisfied. The
horizon radius rh also satisfies Eq. (2.6).
This solution is quite different from the Sol-manifold

solution of Einstein gravity in [13]. Interestingly, when
fðrÞ and gðrÞ are both set to be r2, the horizon manifold can
be arbitrary as shown in Ref. [20].

III. THERMODYNAMICS OF THE NONTRIVIAL
SOLUTIONS

In this section we study the thermodynamics of the black
hole solutions given above.

A. The first solution

For the first solution (2.5), we can identify the cosmo-
logical constant with the thermodynamic pressure
P ¼ −Λ=ð8πGÞ. This identification had been applied to
explore the extended phase space of asymptotically AdS
black holes [21].
The temperature can be obtained by the semiclassical

method of removing the conical singularity of the near-
horizon geometry

T ¼ V 0ðrÞ
4π

����
r→rh

¼ −
Λrh
6π

¼ 4GPrh
3

; ð3:1Þ

and the entropy can be obtained by applying the Wald
entropy formula [22,23]

S ¼ −2π
Z
horizon

ffiffiffî
g

p
dd−1x

∂L
∂Rabcd

ϵabϵcd

¼ −
3rhΩð1þ 4αΛÞ

8GΛ

¼ 3rhΩð1 − 32παGPÞ
64πG2P

; ð3:2Þ

where all the hatted quantities are intrinsic quantities on the
horizon cross section on which the integral is defined and
ϵab is the natural volume element on the tangent space
orthogonal to the cross section. The constant Ω is the
volume of the hyperbolic subspace.

If we consider the first law of thermodynamics dE ¼
TdS without including Λ or P as a variable, we will obtain
the expression for the total energy

E ¼ r2hΩð1þ 4αΛÞ
32πG

: ð3:3Þ

However, when Λ or P is a thermodynamic variable, this
quantity should be interpreted as the total enthalphy

H ¼ r2hΩð1þ 4αΛÞ
32πG

¼ 3rhΩð1 − 32παGPÞ
64πG2P

: ð3:4Þ

After rewriting Hðrh; PÞ as the function of S and P, we
arrive at

HðS; PÞ ¼ 128πG3P2S2

9Ω − 288παGPΩ
; ð3:5Þ

and the first law of thermodynamics becomes

dH ¼ TdSþ VdP; ð3:6Þ

with V being the thermodynamic volume

V ¼ 256πG3PS2ð1 − 16παGPÞ
9Ωð1 − 32παGPÞ2

¼ 1

16
r2hΩ

�
1

πGP
− 16α

�

¼ 9T2Ωð1 − 16παGPÞ
256πG3P3

: ð3:7Þ

The last equation above gives the equation of state of the
black hole. One can see that the derivative of V with respect
to P is always negative,

�∂V
∂P

�
T
¼ 9T2Ωð32παGP − 3Þ

256πG3P4
< 0; ð3:8Þ

for all T, since 1 − 32παGP > 0 must be satisfied
in Eq. (3.2).
The specific heat capacity Cp with fixed pressure is

Cp ¼ T

�∂S
∂T

�
P

¼ 9TΩð1 − 32παGPÞ
256πG3P2

> 0; ð3:9Þ

and the specific heat capacity Cv with volume fixed is
2One can also set fðrÞ ¼ r2 and leave gðrÞ undetermined.

These are the same solutions with different signs of z.
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Cv ¼ Cp − T

�∂P
∂T

�
V

�∂V
∂T

�
P

¼ 9TΩ
256πG3P2ð32παGP − 3Þ < 0; ð3:10Þ

since 1 − 32παGP > 0. So this system is thermodynami-
cally unstable in the sense of specific heat capacity with
fixed volume, Cv.

B. The second solution

After applying the Wald entropy (3.2) formula to the
second solution (2.11), we found that the entropy vanishes,
since the integrand

∂L
∂Rabcd

ϵabϵcd ∝
ð3M þ Λr2Þf0ðrÞ

2ΛrfðrÞ ð3:11Þ

vanishes on the horizon, i.e., at the point r ¼ rh. According
to the first law of thermodynamics dE ¼ TdS, the total
energy3 (i.e., the mass) of this solution is just a constant,

S ¼ 0; E ¼ const: ð3:12Þ

This implies that the integration constantM in this solution
does not stand for the total energy or mass.

IV. CONCLUSION AND DISCUSSION

In this paper we present two novel five-dimensional
black hole solutions in Einstein-Gauss-Bonnet theory
with a negative cosmological constant. They are simple
vacuum static black holes with nontrivial horizons. Their
horizons correspond to two of the eight types of three-
dimensional “Thurston model geometries” in the liter-
ature [14,15].
The horizon topology of the first black hole solution is

S1 ×H2, and it allows an extended phase interpretation of
thermodynamics by including the cosmological constant as
the thermodynamic pressure. We derive the heat capacities
of this solution and find that it is thermodynamically
unstable. This solution has the form of the so-called
“warped product,” the perturbations of which can be
studied in the formalism provided by Cai and Cao [24].
In this formalism, the hyperbolicity and causality of this
solution can be investigated in the sameway as Cao andWu
[25]. In that paper they analyzed various spacetimes,
including dynamical spacetimes.
The second black hole has the “Sol manifold” as its

horizon. The Gauss-Bonnet coupling constant α of this
solution is fixed as α ¼ −3=ð4ΛÞ. Curiously, there is an
unfixed function fðrÞ in the metric in Eq. (2.8). It seems

that there may be redundant degrees of freedom in this
solution. Moreover, by applying the Wald entropy for-
mula we find that its entropy vanishes, so its total energy
is a constant due to the first law of thermodynamics. This
phenomenon is thought provoking. In Ref. [26] some
black hole solutions with zero mass and entropy have
been presented in the context of Lovelock gravity theory.
The authors fix the coupling constant to such a critical
value that the kinetic fluctuations around the background
spacetime vanish, so there are no excitations of the
background. Since the entropy is related to the quantum
degrees of freedom of the black hole, if the fluctuations
are forbidden, the entropy is expected to vanish. This is
why the entropy vanishes in their case. This is closely
related to the fact that the effective gravitational constant
Geff → ∞ [27]. Our case is similar: the coupling constant
α is fixed, and the entropy is zero. However, our
coefficient choice is different from that paper. This is
an intriguing fact, implying that there might be more than
one critical value. Our coefficient choice (2.12) is the
same as the paper on dimensionally continued gravity
[28,29] where they found the critical value of the
coupling constant actually forbids kinetic fluctuations
around the AdS backgrounds. The connection of the
entropy and the kinetic fluctuations is quite interesting
and deserves further investigation.
Among the eight model geometries [14,15] in three

dimensions, the black holes with S3, H3, and R3 horizons
already exist in both Einstein and Gauss-Bonnet gravity.
However, with the exception of the S1 ×H2 and the Sol-
geometry horizons, we have not found static black holes
with S1 × S2, Nil-geometry, or SL2R horizons in Gauss-
Bonnet gravity yet, although such black holes (except
SL2R) have been found in Einstein gravity. To try to find
or to rule out these solutions are important future
directions. To generalize our results to charged cases is
also interesting.
Another interesting direction is about the connection

between quantum information and gravity. The concept of
quantum complexity denotes the computation cost of
reaching a certain quantum state, its holographic dual
[30–33] as well as its precise definition (still unclear) on
the quantum theory side had received much attention in
recent years [34–57]. The late-time growth rate of com-
plexity C is proportional to the product of the temperature
and entropy _C ¼ TS. It will be interesting to look into the
solutions with vanishing entropy and see the behavior of
the complexity.
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