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Atomic clocks can measure the gravitational redshift predicted by general relativity with great accuracy
and for height differences as little as 1 cm. All existing experiments, however, involve the comparison of
two independent clocks at different locations rather than a single clock in a delocalized quantum
superposition. Here we present an interferometry scheme employing group-II-type atoms, such as Sr or Yb,
capable of measuring the gravitational time dilation in a coherent superposition of atomic wave packets at
two different heights. In contrast to other recent proposals, there is no need for pulses that can efficiently
diffract both internal states. Instead, the scheme relies on very simple atom optics for which high diffraction
efficiencies can be achieved with rather mild requirements on laser power. Furthermore, the effects of
vibration noise are subtracted by employing a simultaneous Rb interferometer that acts as an inertial
reference. Remarkably, the recently commissioned VLBAI facility in Hannover, a 10-m atomic fountain
that can simultaneously operate Yb and Rb atoms and enables up to 2.8 s of free evolution time, meets all
the requirements for a successful experimental implementation.
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I. INTRODUCTION

Light-pulse atom interferometers [1,2] can create
quantum superpositions of atomic wave packets with
spatial separations reaching the half-meter scale [3],
and have shown a great potential as inertial sensors
[4,5] for both practical applications and highly sensitive
measurements in fundamental physics [6]. The latter
include the accurate determination of fundamental con-
stants [7–10] as well as high-precision tests of QED
[8–10], the universality of free fall (UFF) [11–14], and
certain dark-energy models [15–17].
On the other hand, the remarkable accuracy achieved by

atomic clocks [18–20], which has been exploited in
searches of ultralight dark-matter candidates [21] and of
tiny violations of Lorentz invariance [22,23], enables
measurements of the gravitational redshift that have con-
firmed the agreement with Einstein’s predictions to one part
in 105 [24,25] and for height differences as small as 1 cm

[26,27]. So far these experiments have always relied on the
comparison of several independent clocks. Nevertheless, in
order to investigate general relativistic effects in a truly
quantum regime, it would be of great interest to measure
the effects of gravitational time dilation for a single clock in
a quantum superposition of wave packets peaked at differ-
ent heights.
Contrary to initial claims [28], commonly employed

atom interferometers cannot be exploited to measure the
gravitational redshift [29,30]. In fact, even quantum-clock
interferometry experiments [31,32] where atoms are pre-
pared in a superposition of two internal states and then sent
through a light-pulse atom interferometer are insensitive to
gravitational time-dilation effects in a uniform gravitational
field [33,34]. As shown in Ref. [33], on the other hand, this
lack of sensitivity can be overcome by initializing the
quantum clock when the spatially separated superposition
of atomic wave packets has already been generated.
However, that scheme (and related ones [35]) involves
laser pulses capable of efficiently diffracting both internal
states. And such pulses entail very demanding requirements
on laser power or rather complex setups for implementing
new diffraction techniques that have not been demonstrated
yet and will need years of further development. Moreover,
some of these interferometer configurations [35] are also
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rather sensitive to vibration noise, so that long integration
times are necessary in order to average its effects out.
In contrast, we will present here an alternative interfer-

ometry scheme that is directly sensitive to the gravitational
redshift and relies on simple atom optics with very mild
requirements on laser power. Furthermore, the effects of
vibration noise can be subtracted by employing a simulta-
neous interferometer for a second atomic species that acts
as an inertial reference. The emphasis of this proposal is on
the feasibility and simplicity of its practical implementa-
tion. Indeed, we expect the requirements to be met by the
recently commissioned VLBAI facility in Hannover, a
10-m atomic fountain that will enable up to 2.8 s of free
evolution time and simultaneous operation of Yb and Rb
atoms [36,37].

II. QUANTUM-CLOCK MODEL

We will consider the group-II-type atoms typically
employed in optical atomic clocks, and for our purposes
it will be sufficient to focus just on the two clock states.
Therefore, as far as their internal state is concerned, the
atoms can be suitably modeled as a two-level system
involving the ground state jgi and an excited state jei with
an additional energy ΔE. Due to this energy difference, if
one prepares at some time τi a linear superposition ðjgi þ
jeiÞ= ffiffiffi

2
p

of the two energy eigenstates, the relative phase
between them will grow with time and encode the elapsed
proper time Δτ:

jΦðτÞi ∝ 1ffiffiffi
2

p ðjgi þ e−iΔEΔτ=ℏjeiÞ; ð1Þ

where Δτ ¼ τ − τi, and the left- and right-hand sides are
equal up to a global phase factor.
In addition, however, one needs to consider the atom’s

center-of-mass (c.m.) degree of freedom. The quantum
state of the atom is therefore an element of a Hilbert space
given by the tensor product of the internal space and the
Hilbert space associated with the c.m.:

jΨi ¼ jψ ð1Þi ⊗ jgi þ jψ ð2Þi ⊗ jei: ð2Þ

In the absence of laser pulses its time evolution is generated
by the following Hamiltonian operator:

Ĥ ¼ Ĥ1 ⊗ jgihgj þ Ĥ2 ⊗ jeihej; ð3Þ

where Ĥ1 and Ĥ2 are the Hamiltonians that govern the
dynamics of a relativistic particle with rest mass m1 and
m2 ¼ m1 þ Δm respectively. The additional rest mass
Δm ¼ ΔE=c2 accounts for the energy difference between
the two internal states.
As shown in Ref. [33], and generalizing previous results

in the nonrelativistic case [38–41], the propagation of an
atomic wave packet in curved spacetime can be described

in terms of a worldline XμðτÞ corresponding to its central
trajectory and the evolution of a centered wave packet
accounting for the wave packet’s expansion and shape
evolution. It is particularly useful to consider a comoving
frame where XμðτcÞ ¼ ðcτc; 0Þ and the comoving time
coordinate τc coincides with the proper time along the
worldline. In this frame the Hamiltonians Ĥ1 and Ĥ2 take a
simple form involving two contributions: a c-number
corresponding to the rest mass energy mnc2, and a second

contribution ĤðnÞ
c that governs the dynamics of the centered

wave packet jψ ðnÞ
c ðτcÞi and reduces to the Hamiltonian of a

nonrelativistic particle, provided that the wave-packet size
and its velocity spread are much smaller than the spacetime
curvature radius and the speed of light, respectively. The
evolution of the c.m. state associated with each internal
state can then be written as

jψ ðnÞðτcÞi ¼ eiSn=ℏjψ ðnÞ
c ðτcÞi; ð4Þ

where the index n ¼ 1; 2 labels the internal state and Sn is
the propagation phase, which is given for freely falling
atoms by the rest mass energy times the proper time along
the central trajectory:

Sn ¼ −mnc2
Z

τ

τ0

dτ0: ð5Þ

Further details can be found in Ref. [33], where a
relativistic description of atom interferometry in curved
spacetime applicable to a wide range of situations, includ-
ing also the effects of any external forces and guiding
potentials, has been developed.
In the interferometers that we will be considering the

evolution of the centered wave packets is the same along
the two arms, and it will be sufficient to focus on the central
spacetime trajectories, which can be conveniently dis-
played in simple spacetime diagrams, and the proper time
along those. Moreover, since they are invariant geometric
quantities, when calculating these proper times, one can
choose any particularly convenient coordinate system. In
this way, for weak gravitational fields and nonrelativistic
velocities the calculation reduces to evaluating the classical
action:

Sn ≈
Z

t

t0

dt0
�
−mnc2 þ

1

2
mn

_X2 −mnUðt0;XÞ
�
; ð6Þ

where the parametrization Xμðt0Þ ¼ ðct0;Xðt0ÞÞ in terms
of the usual coordinates in a post-Newtonian expansion
[42] has been employed for the central trajectory,
the overdot denotes a derivative with respect to t0, and
Uðt0;xÞ is the gravitational potential. In particular, for a
uniform gravitational field the potential is simply given
by Uðt0;xÞ ¼ U0 − g · ðx − x0Þ.

ROURA, SCHUBERT, SCHLIPPERT, and RASEL PHYS. REV. D 104, 084001 (2021)

084001-2



III. QUANTUM-CLOCK INTERFEROMETRY

A natural way of observing time-dilation effects in
delocalized quantum superpositions is by performing a
quantum-clock interferometry experiment [31] with the
same kind of atoms employed in optical atomic clocks,
such as Sr or Yb. In this case, one prepares an equal-
amplitude superposition of the two internal clock states
which is then used as the initial state of a light-pulse atom
interferometer, where the atomic wave packet is split,
redirected, and finally recombined by a series of laser
pulses acting as diffraction gratings. As emphasized in
Ref. [32], any differences in the time dilation along the two
arms lead to a contrast reduction of the interferometric
signal. However, this effect is far too small to be observable
within the parameter regimes accessible to current experi-
ments [33]. Furthermore, this kind of interferometer is
insensitive to gravitational time dilation in a uniform field.
This lack of sensitivity can be easily understood by
considering a freely falling frame [33], where the central
trajectories correspond to straight lines independent of the
gravitational acceleration g, and has also been explicitly
shown in a nonrelativistic calculation [34].
As recently proposed [33], these difficulties can be

circumvented by initializing the clock (i.e., generating
the superposition of internal states) after the superposition
of spatially separated wave packets has already been
created and then performing a state-selective measurement
of the exit ports in order to determine the interferometer
phase shift for each of the two internal states. The differ-
ential phase shift between the two states contains in that
case very valuable information. In fact, a doubly differential
measurement comparing the outcomes of the differential
measurements for two different initialization times ti and t0i,
as illustrated in Fig. 1, is directly related to the gravitational
redshift between the two arms. Indeed, the difference
between the two differential measurements corresponds
to the additional time spent in the excited state for the
earlier initialization (dashed segments) as well as the
different gravitational time dilation for the two arms during
that period due to the height difference.
An important aspect of the scheme of Fig. 1 is that the

phase shift for both internal states is simultaneously
measured in a single shot through state-selective detection.
This is because the differential phase-shift measurement
benefits from common-mode rejection of unwanted effects
acting commonly on both internal states, and the simulta-
neous measurement guarantees that such cancellation also
holds for effects that are not stable from shot to shot such as
vibration noise of the retroreflection mirror, which is
otherwise the typical dominant noise source for long
interferometer times. However, the main challenge of such
a scheme is that the diffraction pulses applied after the
initialization pulse should be capable of efficiently dif-
fracting atoms in either of the two internal states and should
actually have comparable Rabi frequencies in both cases.

A natural option for the simultaneous diffraction of both
internal states is Bragg diffraction [44] at the magic
wavelength [45], which guarantees that the optical poten-
tials, and hence the Rabi frequencies, are indeed the same
for jgi and jei. This wavelength is, however, far detuned
from any transition and requires rather large laser inten-
sities in order to achieve Rabi frequencies that are not too
low. Lower Rabi frequencies require longer pulses and lead
to reduced diffraction efficiencies due to higher velocity
selectivity [46], which becomes a serious limiting factor
even for atomic clouds with narrow momentum distribu-
tions. Furthermore, the spatial extent of atomic clouds
freely evolving for several seconds also constrains the
minimum beam size [47], which altogether places very
demanding requirements on laser power. Indeed, this is
clearly illustrated by the following quantitative example for
Yb atoms: 5 W of laser power and a 1-cm beam waist lead
to a Rabi frequencyΩ ≈ 2π × 11 Hz, and even for a narrow
momentum distribution with Teff ¼ 1 nK such a Rabi
frequency would imply a diffraction efficiency for a single
π=2 pulse of less than 3% compared to an ideal pulse.
An alternative diffraction mechanism proposed in

Ref. [33] involves a combination of simultaneous pairs
of pulses driving single-photon transitions between the
two clock states. The application of these single-photon

FIG. 1. Central trajectories for a reversed Ramsey-Bordé
interferometer [43], which involves two pairs of laser pulses
acting as diffraction gratings (gray dashed lines), in a uniform
gravitational field. A differential phase-shift measurement of the
ground (orange) and excited (purple) states is performed for
various initialization times (ti and t0i). Comparison of the out-
comes for the two different initialization times is directly related
to the proper-time difference between the dashed segments in
the two arms (a and b), which is a consequence of gravitational
time dilation.
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transitions to atom interferometry has already been dem-
onstrated for 88Sr atoms [48,49], but a large magnetic field
was necessary to turn the otherwise forbidden transition for
bosonic isotopes into a weakly allowed one. Since the use
of such magnetic fields does not seem viable for high-
precision measurements, fermionic isotopes, which are
harder to cool down to the required ultralow temperatures,
will need to be employed instead. Substantial efforts in this
direction are expected in the near future because several
large-scale projects [50,51] will rely on atom interferom-
eters based on such transitions. However, a number of years
of further development will still be necessary to reach the
required maturity level. Furthermore, using this kind of
pulse involves more sophisticated setups and frequency
stabilization methods. Instead, simpler diffraction tech-
niques available to any laboratory working on light-pulse
atom interferometry, such as standard Bragg diffraction,
would be desirable.

IV. ALTERNATIVE INTERFEROMETRY SCHEME

In order to address these challenges and look for
alternatives involving much simpler atom optics, let us
consider the possibility of measuring the phase shift
accumulated by the two internal states in separate shots
rather than simultaneously. This can be accomplished in
two shots as shown in Fig. 2. First, in one shot (A) the

initialization pulse (a π=2 pulse) at time ti is replaced with
an inversion pulse (a π pulse) that swaps the internal state
from jgi to jei instead of generating an equal-amplitude
superposition. Furthermore, at some later time tf in the
same shot one applies a second inversion pulse that swaps
the internal state back to jgi. Next, one repeats the
measurement in a subsequent shot (B) with no inversion
pulses but the same laser-pulse sequence otherwise. The
differential phase shift between the two shots is then given
by the proper time spent by the atoms in the excited state
and how it differs for the two arms (a and b) due to the
gravitational redshift:

δϕA − δϕB ¼ −Δmc2ðΔτb − ΔτaÞ=ℏ
¼ −ΔmgΔzðtf − tiÞ=ℏ; ð7Þ

where Δz is the vertical separation between the two arms,
and g is the gravitational acceleration along the z direction,
which coincides with the direction of the laser beams.
Interestingly, in contrast with the scheme depicted in Fig. 1,
this is achieved with a single differential measurement.
More importantly, the application of the second inver-

sion pulse implies that the second pair of diffraction
pulses also act on atoms in the ground state, which means
that all the diffraction pulses in both shots act on the same
internal state, and the challenge associated with the
diffraction of different internal states is entirely overcome.
In fact, an efficient diffraction mechanism for Sr and Yb
atoms in the ground state has already been demonstrated
in Refs. [52,53] and is readily available. It employs Bragg
diffraction based on the 1S0 − 3P1 intercombination tran-
sition, a two-photon process schematically indicated with
blue and green arrows in Figs. 3 and 4. Alternatively,
Bragg diffraction based on the 1S0 − 1P1 transition is also
possible [54]. Furthermore, large momentum transfer
(LMT), which allows reaching higher Δz with shorter
times T 0 and leaving more time available for ðtf − tiÞ, was
demonstrated in both cases too. Finally, as done in
Refs. [52–54], these diffraction pulses can also be used
with bosonic isotopes, which have a simpler spectroscopic
structure that makes them simpler to cool and can even
reach Bose-Einstein condensation [53,55].
Besides the diffraction pulses, the inversion pulses also

play a central role. They are based on the two-photon E1–
M1 transition between the two clock states investigated in
Ref. [56]. It is indicated with red arrows in Figs. 3 and 4,
and employs equal-frequency counterpropagating photons
whose frequencies equal half the frequency of the clock
transition. In contrast to the single-photon case, they can
drive the transition between the clock states for bosonic
atoms without the need for strong magnetic fields to be
applied, and have three important and closely related
properties. First, in the laboratory frame the transition
implies no momentum transfer to the atomic wave packet.
Second, this is a Doppler-free transition; i.e., corrections to

(a)

(b)

FIG. 2. Central trajectories for a reversed Ramsey-Bordé
interferometer in the laboratory frame. (a) In this frame the
inversion pulses applied at times ti and tf in shot A act
simultaneously on both arms. Nevertheless, the proper time spent
in the excited state (purple) is slightly different for the two arms
due to gravitational time dilation. (b) By repeating the measure-
ment without inversion pulses in shot B and subtracting the phase
shifts obtained in the two cases, one gets the same result as in the
quantum-clock interferometry scheme of Fig. 1.
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the resonance condition due to the initial velocity of the
atoms cancel out at linear order and only much smaller
terms quadratic in the velocity contribute. Finally, the
spatial dependence of the effective phase associated with
the two-photon process cancels out in the laboratory frame
and the hypersurfaces of constant phase correspond to
simultaneity hypersurfaces in this frame, which is crucial to
guarantee the proper synchronization of the inversion
pulses acting on the two interferometer arms. In fact,
due to the relativity of simultaneity for spatially separated
events, these pulses do not act simultaneously on both arms
in the freely falling frame [33], and this is actually how the
insensitivity to gravitational redshift for a uniform field is
circumvented in this case.
As shown by Eq. (7), the new interferometry scheme

displayed in Fig. 2 can successfully measure the difference
of gravitational time dilation between the two arms during
the free evolution between the two inversion pulses. In
order to confirm that these measurements can indeed be
interpreted as tests of the universality of gravitational
redshift (UGR) with macroscopically delocalized quan-
tum superpositions, we will follow the approach of
Ref. [33] and consider a dilaton model [57,58] as a
consistent framework for parametrizing violations of
the equivalence principle. For weak gravitational fields
the effect of the dilaton field amounts to replacing the
potential term in Eq. (6) with mnð1þ βnÞUðt0;XÞ, where
the parameters βn encode deviations from a metric theory
of gravity and are directly related to the Eötvös parameter
ηe-g characterizing the violations of UFF for the two
internal states: ηe-g ≈ ðβ2 − β1Þ. With this new propaga-
tion phase one can rederive the result for the differential
phase shift in Eq. (7) and find that the proper-time
difference Δτb − Δτa is replaced by

Δτ̄b − Δτ̄a ≈ ð1þ αe-gÞðgΔz=c2Þðtf − tiÞ; ð8Þ

where αe-g parametrizes the violations of UGR and is
given by

αe-g ¼
m1

Δm
ðβ2 − β1Þ; ð9Þ

which reveals the close connection between UGR and
UFF [59]. The result in Eqs. (8) and (9) coincides with
what is obtained for the comparison of two independent
clocks with a height difference Δz. In this case, however, a
single clock is in a quantum superposition of two spatially
separated wave packets.
It should be noted that in order to compare with the

expected general relativistic result in Eq. (7) and place
bounds on the parameter αe-g, both the gravitational
acceleration g and the energy difference ΔE ¼ Δmc2 as
well as Δz and ðtf − tiÞ should be measured independently.
The energy difference ΔE can be determined by standard

FIG. 4. Schematic diagram of the VLBAI facility, a 10-m
atomic fountain capable of simultaneously operating Rb and Yb
atom interferometers. The directions of the laser beams employed
for the inversion (red) and Bragg-diffraction (green and blue)
pulses are also displayed. The upward propagating beams
have been retroreflected by the vibrationally isolated mirror
at the bottom.

FIG. 3. Relevant energy levels and transitions for Yb atoms.
The two-photon E1–M1 transition (red arrows) employed for the
inversion pulses can be interpreted as the absorption of two
counterpropagating equal-frequency photons. On the other hand,
the Bragg transition (blue and green arrows) on which the
diffraction pulses are based involves the absorption and stimu-
lated emission of two counterpropagating photons with a slight
frequency difference Δω=2π that accounts for the change of the
atom’s kinetic energy. The two clock states are respectively
indicated with orange and purple color.
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atomic spectroscopy measurements and the local gravita-
tional acceleration g can be measured with classical
gravimeters, based for example on a freely falling corner
cube, or with single-species atom interferometers that are
directly sensitive to the free-fall acceleration of the atoms.
The latter include Mach-Zehnder interferometers or the
reversed Ramsey-Bordé geometry depicted in Fig. 2(b) and
can employ, for instance, Rb atoms or Yb atoms in the
ground state.
In practice, measuring αe-g at the percent level, as in the

practical implementation discussed in Sec. IV B below, will
only require accurate knowledge of g, ΔE, Δz, and ðtf − tiÞ
at that level, which is completely straightforward. This is
because the interferometric measurement given by Eq. (7)
is already proportional to the small proper-time difference
between the two arms due to the gravitational redshift.
Moreover, at this level (or even at the 10−5 level for the best
UGR tests to date) no effects due to possible UFF violations
are expected on the independent determination of g since all
UFF tests so far (comparing macroscopic masses [62],
different atomic species [11,14], or a combination of both
[4,63]) indicate that any UFF violations would only arise at
a much smaller level. Exactly the same considerations
apply to standard tests of UGR based on the comparison of
two independent atomic clocks at different heights.

A. Suppression of vibration noise

The alternative interferometry scheme of Fig. 2 can be
regarded as the result of splitting up the quantum-clock
interferometry measurement depicted in Fig. 1, so that the
phase shifts for the two internal states are separately
determined in two different shots. While having two
separate shots enables the use of a second inversion pulse
that eliminates the need for diffraction pulses that act
efficiently on both internal states, which is the key
advantage of the new scheme, it also implies losing the
common-mode rejection of unwanted effects that change
from shot to shot in the differential phase-shift measure-
ment. This is particularly relevant for vibration noise and
for small changes of the gravitational field from shot to
shot. Indeed, besides the propagation phase in Eq. (5) the
atomic wave packets acquire an additional phase �ðkeff ·
XðtjÞ þ φjÞwhen diffracted by a laser pulse, and this phase
depends on their central position XðtjÞ at that time as well
as the laser phase φj, which in turn depends on the position
of the retroreflection mirror. After adding up the phases for
all the laser pulses, the resulting phase-shift contribution for
the reversed Ramsey-Bordé interferometers of Figs. 2(a)
and 2(b) is given by

δϕlaser¼δφ̄þkeff ·gð1þβ1ÞT 0ðTþT 0Þ
þkeff ·ΔgT 0ðTþT 0Þ−

X

j

δkðjÞ
eff ·XmirrorðtjÞ; ð10Þ

where Δg accounts for small variations of the gravitational
field from shot to shot [64], δφ̄ includes the contributions of
the injected laser phases (before retroreflection),XmirrorðtjÞ
is the position of the retroreflection mirror when the jth

pulse is applied, and δkðjÞ
eff is the difference of momentum

transfer between both arms for that pulse. Note that we have
also included the parameter β1 introduced above, which
parametrizes violations of UFF, and have neglected terms
of order β1Δg.
In the absence of laser phase noise, the contribution of

the injected laser phases is given by δφ̄ ¼ −Δ _ωT 0ðT þ T 0Þ,
whereΔ _ω denotes the chirp rate of the frequency difference
Δω between the two counterpropagating beams, which is
employed to compensate the time-dependent Doppler
effect for freely falling atoms and guarantees that the
various Bragg pulses stay on resonance (for λ ¼ 556 nm
it amounts to Δ _ω=2π ≈ 35 MHz=s). In gravimetry mea-
surements this contribution is actually exploited to deter-
mine the gravitational acceleration g by scanning the value
of the chirp rate in different shots [65]. Furthermore,
matching the two phase-shift contributions in this way,
which corresponds to taking Δ _ω ¼ keff · g, relaxes the
accuracy requirement for the pulse timings T and T 0.
The second term on the right-hand side of Eq. (10) and

the stable part of δφ̄ remain the same for different shots
and cancel out in the differential phase shift δϕA − δϕB.
However, this is not the case for the last two terms, which
capture the effects of small changes of the gravitational
field from shot to shot and the effects of mirror vibrations
[66]. Fortunately, this drawback can be successfully
mitigated by simultaneously operating an atom interfer-
ometer for a second species that serves as an inertial
reference. As a concrete example, throughout the rest
of the paper we will focus on the particular case of Rb
atoms, which will be available for simultaneous operation
at VLBAI [37] and for which there is substantial heritage
as far as their use in 10-m atomic fountains is con-
cerned [3,14,67].
Indeed, by employing also a reversed Ramsey-Bordé

configuration with the same timings between the laser
pulses [68], its phase shift δϕRb will be dominated by a
contribution analogous to that in Eq. (10) but with kRb

eff and
βRb instead of keff and β1. After rescaling by ðkeff=kRbeffÞ, the
contributions of Δg and the mirror vibrations cancel out in
the differential phase shift ðδϕA − ðkeff=kRbeffÞδϕRbÞ. An
analogous cancellation holds for shot B, and the gravita-
tional time dilation can thus be directly obtained from the
following doubly differential phase shift:

�
δϕA −

�
keff
kRbeff

�
δϕRb

�
−
�
δϕB −

�
keff
kRbeff

�
δϕ0

Rb

�

¼ −Δmc2ðΔτ̄b − Δτ̄aÞ=ℏ
¼ −Δmð1þ αe-gÞgΔzðtf − tiÞ=ℏ; ð11Þ
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where we have used a prime in δϕ0
Rb for the second shot to

indicate that it varies from shot to shot due to Δg and the
mirror vibrations. The UFF violations from the terms
proportional to βRb and g, on the other hand, do cancel
out in the doubly differential measurement, which con-
stitutes a direct test of UGR with possible violations
parametrized by αe-g.
Note that ðkeff=kRbeffÞ ≠ 1 implies that only common

phase-shift contributions in the range ð−π; πÞ will properly
cancel out when subtracting the measured phase shift for
the Rb interferometer. This means that other methods, such
as vibration isolation or postcorrection with classical
inertial sensors, will still be necessary to keep within that
range the phase shifts induced by vibration noise and Δg.
However, the doubly differential measurement in Eq. (11)
helps to relax the requirements on the suppression level
attained by those methods by 3 orders of magnitude.
Moreover, one can guarantee that small fluctuations of

δφ̄ and δφ̄Rb cancel out in the differential measurement by
generating the chirp rates Δ _ω for both atomic species from
the same local oscillator but with a relative rescaling
factor ðkeff=kRbeffÞ.

B. Practical implementation

Remarkably, the scheme’s sensitivity is capable of
measuring the gravitational redshift for a delocalized
quantum superposition within a parameter regime acces-
sible to current experiments. Indeed, for Yb atoms (with the
clock transition at λ ¼ 578 nm) a vertical separation of
Δz ¼ 1 cm and a time ðtf − tiÞ ¼ 1 s lead to a differential
phase shift of 3.5 mrad, as given by Eq. (7). Hence, for
N ≈ 105 detected atoms and a precision close to the shot-
noise limit, the effect can be resolved in a few shots. And
even for a phase resolution of 50 mrad, it can be resolved in
a few hundred shots. With the third-order Bragg-diffraction
pulses employed in Ref. [53], corresponding to the blue and
green arrows in Fig. 3, this Δz can be reached in a time
T 0 ¼ 0.4 s. Larger momentum transfers can be achieved
with a sequence of several Bragg pulses [53], which
enables larger separations Δz, shorter times T 0, or both.
For example, just by doubling the total momentum transfer,
one can reduce this time to T 0 ¼ 0.2 s, so that for a total
interferometer time of 2 s, one would still be left with a time
T ¼ 1.6 s during which the inversion pulses can be applied.
This can be exploited to increase the range of values
available for ðtf − tiÞ, or to check for systematic effects by
varying ti and tf while keeping ðtf − tiÞ fixed.
Furthermore, this simpler atom optics can be applied to

bosonic isotopes, such as 170Yb and 174Yb, which can be
easily cooled down to ultralow temperatures and even reach
Bose-Einstein condensation [55,69–71]. Combined with
atomic lensing techniques [67,72], one can thus achieve
very low expansion rates for the atomic cloud, which
enable free evolution times of more than 2.8 s. The
resulting narrow momentum distribution also guarantees

high diffraction efficiencies for the Bragg pulses, even for
LMT sequences [3,53,73,74].
Finally, for several seconds of interferometer time the

effects of rotations and gravity gradients can be quite
detrimental. However, they can both be successfully
mitigated with compensation techniques which are respec-
tively based on the use of a tip-tilt mirror for retroreflection
[75,76] and suitable frequency changes of the intermediate
laser pulses [77–79].

V. DISCUSSION

We have proposed an experiment that will be able to
measure for the first time arm-dependent gravitational
time-dilation effects in a delocalized quantum superposi-
tion. Together with tests of UFF involving quantum
superpositions of internal states [13] or entangled states
of two different isotopes [80], the experiment will
push investigations of the equivalence principle [81]
further into the quantum regime. HITec’s VLBAI facility
in Hannover [82] constitutes an ideal candidate for
implementing the proposal. The 10-m atomic fountain
displayed in Fig. 4 will enable up to 2.8 s of free evolution
and simultaneous operation of Yb and Rb atom interfer-
ometers [36,37]. Furthermore, its vibration isolation and
mitigation system will keep vibration noise below the
10−9 g=

ffiffiffiffiffiffi
Hz

p
level, so that the phase shift induced by any

residual vibrations will stay well within the ð−π; πÞ range,
which guarantees its cancellation through the differential
measurement with the Rb interferometer. A key advantage
of the proposed scheme is the simplicity of the atom
optics, involving standard Bragg diffraction, which ena-
bles beam-splitter pulses and even LMT sequences with
high diffraction efficiencies and very mild requirements
on laser power as well as low complexity.
Before concluding, it is worth discussing the comparison

with a related proposal in Ref. [35] in order to highlight the
crucial advantages of the interferometry scheme introduced
here, especially concerning its practical implementation.
The measurement put forward there involves a variant of
the Ramsey-Bordé interferometer where the usual diffrac-
tion pulses are replaced by sets of pulses mimicking double
Raman diffraction [83] between the two clock states, and
each based on a sequence of Bragg pulses immediately
followed by an inversion pulse. By subtracting the out-
comes for pairs of interferometer shots where the initial
internal states are swapped but identical laser pulses are
employed, one can be sensitive to a combination of
possible violations of UFF and UGR with a single atomic
species. In order to disentangle both contributions, it is
therefore necessary to perform different sets of measure-
ments separately varying both T and T 0. Instead, the
differential measurement between shots A and B in
Fig. 2 provides a direct measurement of the gravitational
time dilation and possible violations of UGR.
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More importantly, in Ref. [35] all Bragg pulses must be
capable of efficiently diffracting both internal states. In
contrast, a decisive advantage of the new scheme presented
here is that no such pulses are needed and even LMT beam
splitters with no substantial atom losses can be easily
implemented.
Moreover, in contrast to the quantum-clock interferom-

eter in Fig. 1, the scheme of Ref. [35] is sensitive to
vibration noise, which requires long integration times to
average it out, and to small changes of the gravitational
field from shot to shot. Similarly, the differential meas-
urement of the two separate shots described in Fig. 2 is also
sensitive to those. Nevertheless, the new interferometry
scheme proposed here overcomes this limitation thanks to
the simultaneous operation of an interferometer with Rb
atoms that acts as an inertial reference.
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APPENDIX A: ATOM INTERFEROMETRY

The state at the first exit port (I) of the atom interfer-
ometer is a quantum superposition of atomic wave packets
that have followed the two different arms (a and b):

jψ Ii ¼
1

2
ðeiϕa þ eiϕbÞjψci; ðA1Þ

where ϕa and ϕb are the phases accumulated along each
arm. They include the propagation phase governed by
Eqs. (5) and (6), as well as the phases associated with the
diffraction pulses. The probability that an atom is detected
in the first port is given by

hψ Ijψ Ii ¼
1

2
ð1þ cos δϕÞ ðA2Þ

in terms of the phase shift δϕ ¼ ϕb − ϕa [84]. An analo-
gous result holds for the second exit port (II), but with the

opposite sign in front of the cosine. Hence, one can infer the
phase shift δϕ by measuring the fraction of atoms detected
in each port.
The phase shift δϕ involves contributions of the propa-

gation phases and the phases associated with the diffraction
pulses: δϕ ¼ δϕpropag þ δϕlaser. The term δϕpropag is
obtained by calculating the proper time along the central
trajectory for each arm using Eq. (6) and taking into account
the changes of internal state, which means that one needs to
use the rest massm1 þ Δm for those segments of the central
trajectory where the atoms are in the excited state.
On the other hand, δϕlaser results from adding

the phases associated with the diffraction pulses.
Neglecting the effects of finite pulse duration, the atomic
wave packets acquire a phase εjðkeff ·XðtjÞ þ φjÞ þ π=2,
with εj ¼ �1, whenever they are diffracted by a laser
pulse. The index j labels the pulse, XðtjÞ is the central
position of the diffracted atomic wave packet when the
pulse is applied, and φj is a specific phase for each pulse.
For a reversed Ramsey-Bordé interferometer ε1 ¼ ε3 ¼ 1
and ε2 ¼ ε4 ¼ −1. When considering the central trajecto-
ries for such an interferometer in a uniform gravitational
field, as depicted in Fig. 2, and adding the contributions
from all the laser pulses, the result for δϕlaser is given
by Eq. (10).

APPENDIX B: DERIVATION OF THE
DIFFERENTIAL PHASE SHIFT

In the absence of vibration noise, fluctuations of the
injected laser phases and small changes of the gravitational
acceleration from shot to shot, the phase-shift contribution
δϕlaser is identical for shots A and B in Fig. 2. Thus, it
cancels out in the differential phase shift δϕA − δϕB, which
is entirely determined by the contributions of the propa-
gation phases specified by Eq. (5). More precisely, there
will be a nonvanishing contribution from the time interval
between the inversion pulses:

δϕA − δϕB ¼ −ðm1 þ ΔmÞc2ðΔτb − ΔτaÞ=ℏ
þm1c2ðΔτb − ΔτaÞ=ℏ

¼ −Δmc2ðΔτb − ΔτaÞ=ℏ; ðB1Þ

where Δτa and Δτb are the proper times on both arms for
the segments of the central trajectories where the atoms are
in the excited state. The nonvanishing proper-time differ-
enceΔτb − Δτa is due to the gravitational time dilation, and
for nonrelativistic velocities and weak fields it can be
calculated through Eq. (6):

δϕA − δϕB ¼ −Δmc2ðΔτb − ΔτaÞ=ℏ
¼ −ΔmgΔzðtf − tiÞ=ℏ: ðB2Þ
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Although the atoms experience in the laboratory frame
no net momentum transfer from the inversion pulses, the
change of rest mass leads to a slight change of the central
velocityΔv ¼ −ðΔm=mÞv for atoms that are not initially at
rest. However, this residual recoil does not alter the result
for δϕA − δϕB. Indeed, the velocity change is the same for
both arms and the arm separation is still Δz. Hence, the net
contributions of the kinetic and potential terms to the phase
difference between the two arms before the last pair of
diffraction pulses remains unchanged. On the other hand,
the phase difference from the kinetic terms is slightly
modified between the last two diffraction pulses, but so is
the contribution to δϕlaser from those two pulses and both
changes exactly cancel out, as explained in Ref. [33].
In reality, vibration noise and small changes of the

gravitational acceleration from shot to shot prevent
δϕlaser from canceling out in the differential phase shift
δϕA − δϕB. Nevertheless, as explained in the main text, this
drawback can be overcome by simultaneously operating a
Rb interferometer that acts as an inertial reference.

APPENDIX C: MODIFICATIONS DUE TO
DILATON MODELS

Dilaton models provide a consistent framework for
parametrizing violations of the equivalence principle

[57,58]. In the regime of nonrelativistic velocities and weak
fields their effect on test particles amounts to replacing
the potential term in Eq. (6) with mnð1þ βnÞUðt0;XÞ.
For a uniform field this corresponds to the substitution g →
ð1þ βnÞg in the calculation of the differential phase shift:

δϕA − δϕB ¼ −ðm1 þ ΔmÞð1þ β2ÞgΔzðtf − tiÞ=ℏ
þm1ð1þ β1ÞgΔzðtf − tiÞ=ℏ

≈ −Δmð1þ αe−gÞgΔzðtf − tiÞ=ℏ; ðC1Þ

where a term proportional toΔmβ2 has been neglected in the
last equality and the parameter

αe−g ¼
m1

Δm
ðβ2 − β1Þ ðC2Þ

has been introduced.
Note that β2 ≠ β1 implies a slightly different acceleration

for the excited state, which leads to a small modification of
the central trajectories for shot A compared to shot B.
However, the deviation is the same for both arms and δϕA −
δϕB remains unchanged for the same reasons as for the
residual recoil discussed in Appendix B.
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