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Advances in upcoming weak lensing surveys pose new challenges for an accurate modeling of the
lensing observables. The wide sky coverage of Euclid makes angular scales down to lmin ¼ 10 accessible.
At such large angular scales, general relativistic effects manifest themselves, and the lensing magnification
cannot be correctly described by the standard lensing convergence only. The impact of line-of-sight
velocities on the magnification angular power spectrum, referred to as the Doppler magnification, is already
well recognized in literature. In particular, it was suggested that the Doppler magnification could be
extracted by measurements of both cosmic shear and magnification. In this work, we point out two
previously neglected aspects with respect to this method. First, the impact of the Doppler magnification is
reduced through nonvanishing cross terms with the standard lensing convergence. This is particularly
relevant when the sources are averaged over a bin of width Δz ≈ 0.1, such as in Euclid’s tomographic weak
lensing survey. Second, general relativistic potential terms slightly enhance the signal. We present
numerical calculations of all relativistic effects in the weak lensing angular power spectra on large scales.
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I. INTRODUCTION

Upcoming weak lensing surveys such as LSST, WFIRST
or Euclid [1–3] will provide us with an exciting opportunity
to learn more about cosmology and fundamental physics.
In addition to a drastic improvement in measurement
precision compared to the current generation, these surveys
will lead to an impressive increase in the covered survey-
area: for instance, Euclid will in total cover 15,000 square
degrees on the sky, ten times more than KiDS [4] which is
one of the most important weak lensing surveys conducted
so far. However, these advances in measurements might
also lead to potentially biased conclusions if not all
observational and theoretical challenges are adequately
addressed. From an observational point of view, a number
of well-known systematics needs to be properly accounted
for (see e.g., [5] for a review). At the same time, these
advances also require a more precise theoretical modeling
of weak lensing observables, as approximations that have
previously been sufficient need to be reconsidered.
With its large survey area, Euclid will be able to measure

previously inaccessible large scales with lmin ¼ 10 [6],
thereby probing a regime where additional general relativ-
istic effects manifest themselves. As pointed out in [7], the
standard formalism for the calculation of weak lensing
observables suffers from gauge-dependencies, indicating

that it does not accurately account for all physical effects.
To resolve this issue, fully gauge-invariant weak lensing
formalisms have been presented in [7–9]. In particular,
lensing magnification effects are not properly described by
the standard lensing convergence alone. The correct
description is given by the distortion in the angular
diameter distance which, apart from angular distortions
leading to the standard lensing convergence, also accounts
for distortions in the radial direction and the observed
redshift on the light cone.
Indeed, the impact of peculiar line-of-sight velocities on

the observed radial coordinate and redshift, referred to as
the Doppler magnification or Doppler lensing, is well
known in literature. It was first derived in [10], and further
work studied the implications for cosmological observables
[11–17]. As concluded in [15], the Doppler magnification
dominates over the standard convergence for small red-
shifts z≲ 0.3 and hence can be measured directly through
the magnification of sizes (see [18–20]). For larger red-
shifts, however, the standard convergence is more signifi-
cant. In [16], it was proposed to measure the Doppler
magnification via the dipole in the cross-correlation of
galaxy sizes and number counts. Here, they concluded that
it dominates up to z ≈ 0.5, but also noted that for larger
redshifts the standard convergence is not negligible and
these effects thus need to be modeled together.
To disentangle the standard convergence and Doppler

magnification, another method was noted in [15] and
proposed in [11] with respect to the Euclid survey.
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While the magnification has a contribution from the line-of-
sight velocities, cosmic shear is to linear order related to the
standard convergence only. Hence, measuring the magni-
fication in addition to the cosmic shear angular power
spectrum would provide a novel way of measuring peculiar
velocities, making it an important complementary probe.
More specifically, [11] concluded that the Doppler mag-
nification would be measurable up to a redshift of z ¼ 0.6 if
Euclid reaches a precision of 10%, and up to z ¼ 1 if a
precision of 1% can be achieved.
However, several issues complicate the measurement.

First of all, the width of the bin smears out the Doppler
magnification. Second, nonvanishing cross terms between
the Doppler magnification and the standard lensing con-
vergence lead to a further reduction of the signal. While
these cross terms have been previously neglected
[10,11,15], we show in Sec. IV that they lead to a large
reduction of the velocity signal for bins corresponding to
Euclid’s tomographic weak lensing survey. We also dem-
onstrate, by applying a unique source redshift at z ¼ 0.6,
that this reduction still remains significant even for the
idealized case of an infinitely thin redshift bin.
General relativistic corrections to the standard lensing

convergence consist not only of the Doppler magnification,
but also of additional potential terms evaluated at the source
position and along the line of sight. The existence of these
additional GR potential terms is recognized in literature
[7–9,13,15,16,21,22]. In principle, they lead to general
relativistic corrections in the angular power spectra of cosmic
shear and the lensing magnification along with the velocity
terms. However, their contribution was assumed to be
negligible in [11,15]. Here, additionally to investigating the
impact of Doppler-convergence cross terms, we also quantify
themagnitudeofGRpotential terms forEuclid’s tomographic
weak lensing survey. In such a setting with redshift bins of
non-negligible width, GR potential terms are relevant com-
pared to the Doppler magnification, although the combined
signal is indeed small compared to cosmic variance.
This paper is structured as follows: in Sec. II, we revise

the necessary preliminaries for our work, including the
fully relativistic expressions for the weak lensing observ-
ables (Sec. II A) and expressions for scalar perturbations
and their growth functions (Sec. II B). In Sec. III, we
present the analytical results for the fully relativistic weak
lensing angular power spectra and explain the relation
between them. Then, in Sec. IV, we present our numerical
evaluations for the magnification angular power spectrum
(Sec. IVA) and the cross angular power spectrum between
the magnification and shear E-modes (Sec. IV B). We
summarize and conclude on our results in Sec. V. In the
Appendix A, we present some basic vector calculus
identities in spherical coordinates that are used throughout
this work, and in Appendixes B and C, we present details
for the analytical calculations of weak lensing angular
power spectra that are referred to where appropriate.

II. PRELIMINARIES

In Sec. II A, we review the theoretical expressions for the
weak lensing observables and their general relativistic
corrections. In particular, we use the linear-order expres-
sions derived in [7,8], which are gauge-invariant and
include all general-relativistic effects (see also [9]).
Together with the relations for perturbation variables and
their power spectra in Sec. II B, they will serve as a basis for
the analytical and numerical investigation of the fully
relativistic weak lensing angular power spectra presented
in the subsequent sections.

A. Weak lensing observables in general relativity

Weak gravitational lensing effects are commonly
described via the distortion of the angular source positions
on the sky (see e.g., [23]). In this simple treatment, which
we refer to as the standard formalism, the shape and size
distortion of an infinitesimal image observed at a two-
dimensional angle n ¼ ðθ;ϕÞ and redshift zs is described
by the Jacobian matrix:

Aij≡ δij−
∂αi
∂nj≡

�
1 0

0 1

�
−
�
κstþ γ1st γ2st

γ2st κst − γ1st

�
; ð1Þ

where α is the two-dimensional deflection angle. The
Jacobian matrix Aij is usually referred to as amplification
or distortion matrix. The trace κst is called the convergence
and describes the magnification of images, while γ1st and
γ2st are the shear components and describe the shape
distortions.1 The deflection angle α is given by the gradient
of the projected lensing potential ψ ,

αi ¼
∂ψ
∂ni ; ψ ¼

Z
r̄s

0

dr̄

�
r̄s − r̄
r̄sr̄

�
2Ψðr̄Þ; ð2Þ

where Ψðr̄Þ is the Newtonian potential and r̄s is the
comoving distance to the source associated to the observed
source redshift zs,

r̄s ¼
Z

zs

0

dz
HðzÞ : ð3Þ

However, as discussed in detail in [7], the standard
formalism faces several problems and in particular leads to
gauge dependencies. In essence, these gauge dependencies
arise from the fact that the standard formalism relies on a
description of light propagation in global FLRW coordi-
nates. Observables described in global coordinates would
require a global observer looking at the universe as a whole

1Note that all these weak lensing observables depend on
the observed line-of-sight direction n, and redshift zs, e.g.,
κst ≡ κstðn; zsÞ. This is typically omitted in our notation through-
out this paper, although the dependence on n is sometimes
written explicitly as a way of emphasizing it.
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and are thus not physically meaningful. To correctly
describe weak lensing quantities, observables need to be
described in the observer rest frame and compared to the
intrinsic size and shape in the source rest frame. Such a
gauge-invariant description of all weak lensing observables
including all general relativistic effects was given in [7–9].
Furthermore, relativistic corrections to the magnification
were also described in [10,21,22].
For the fully general linear-order results for the weak

lensing observables, i.e., including scalar, vector and tensor
modes and without choosing a certain gauge, we refer the
reader to these papers. Here, we state the results adopting
the Newtonian gauge and ignoring vector and tensor
perturbations. We consider the perturbed FLRW metric

ds2¼−a2ðηÞð1þ2ΨÞdη2þa2ðηÞð1−2ΨÞδαβdxαdxβ; ð4Þ

where η is the conformal time and aðηÞ is the expansion
scale factor. Additionally, we consider the fact that the
observer’s motion is perturbed. While the timelike
(uμuμ ¼ −1) four-velocity of any comoving observer is
given in an unperturbed FLRW universe by ūμ ¼ ð1=a; 0Þ,
its perturbed value is given by

uμ ¼ 1

a
ð1 −Ψ; VαÞ; ð5Þ

where Vα is the observer’s peculiar velocity. To quantify
magnification effects, the standard convergence κst is
replaced by the distortion in the angular diameter distance,

δD ¼ −κst þ δzþ δr
r̄z

−Ψs: ð6Þ

Here, the standard convergence that is generalized to
account for the observer’s motion (see [7]) is given by

κst ¼ −Vko þ
nαδxαo
r̄s

þ
Z

r̄s

0

dr̄

�
r̄s − r̄
r̄sr̄

�
∇̂2Ψ; ð7Þ

where nα is the line-of-sight direction, ∇̂α is the angular
gradient for which we give explicit expressions in
Appendix A, and δxαo is the spatial coordinate lapse at
the observer position. The additional contributions to δD
arise from the distortion of the redshift,

δz ¼ ðHδηÞo þ ðVk −ΨÞso − 2

Z
r̄s

0

dr̄Ψ0; ð8Þ

the distortion of the radial coordinate of the source,

δr ¼ nαδxαo þ δηo −
δz
Hs

þ 2

Z
r̄s

0

dr̄Ψ; ð9Þ

and an additional perturbation −Ψs at the source position
arising from correctly relating global coordinates to the rest

frame of the source galaxy. Again, we want to emphasize
that κst is neither observable nor gauge-invariant. Only the
full quantity δD correctly quantifies measurable magnifi-
cation effects. Hence, we will refer to the distortion in
the angular diameter distance δD as the magnification
hereafter.2

Summing up all contributions, we can rewrite Eq. (6)
into

δD ¼ AsΨo þ
�
HoAs þ

1

r̄s

�
δηo þ

Vko
r̄sHs

−
Z

r̄s

0

dr̄

�
r̄s − r̄
r̄sr̄

�
∇̂2ΨþAsVks − ðAs þ 1ÞΨs

− 2As

Z
r̄s

0

dr̄Ψ0 þ 2

r̄s

Z
r̄s

0

dr̄Ψ; ð10Þ

where we defined the dimensionless quantity As ≡
1 − ðHsr̄sÞ−1 for ease of notation. The first line of this
expression consists of observer terms that ensure the gauge-
invariance of the expression, but will only appear in the
monopole and the dipole of the magnification angular
power spectrum. The first term in the second line corre-
sponds to the standard convergence, while the line-of-sight
velocity term is a relativistic correction referred to as the
Doppler magnification (see e.g., [12,15]). The remaining
terms of this expression are additional potential terms
evaluated at the source position and along the line of sight
which we call the GR potential terms.3

Note that the contribution of the spatial coordinate lapse
δxαo cancels out in the observable δD. However, the
contribution of the time coordinate lapse δηo given by

δηo ¼ −vo; v;α ≡ −Vα; ð11Þ

where v is the velocity potential, is not vanishing. In
literature, both the spatial and the temporal lapses δxαo
and δηo are typically set to zero. However, this would
correspond to a specific gauge-choice—the comoving-
synchronous gauge—which is incompatible with e.g.,
the Newtonian gauge chosen in this work, where all gauge
degrees of freedom are already fixed. Hence, while the
contributions of δxαo from κst and δr cancel out, the
nonvanishing contribution of δηo needs to be considered,
as omitting observer terms can break the gauge-invariance

2The lensing magnification δD is degenerate with the intrinsic
source brightness if the latter is unknown. This degeneracy in
lensing is unrelated to gauge-invariance. A measurement of δD is
possible given sufficient knowledge of the intrinsic distribution of
sizes or magnitudes [18], while a measurement of the gauge-
dependent quantity κst is never possible.

3With the expression GR potential terms, we will refer only to
the additional terms without the standard convergence, even
though it is technically a general relativistic potential term itself.
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and further lead to unphysical artifacts such as infrared
divergences [24].
The expressions for the shear components in the fully

general relativistic description are given by

γi ¼ Φαβ
i

Z
r̄s

0

dr̄

�
r̄s − r̄
r̄sr̄

�
∇̂α∇̂βΨ; ð12Þ

where Φαβ
i is defined as

Φαβ
1 ¼ θαθβ − ϕαϕβ; Φαβ

2 ¼ θαϕβ þ ϕαθβ: ð13Þ

Here, θα and ϕα are two vectors orthogonal to the line-of-
sight direction nα, with their explicit expressions given in
Appendix A. Hereafter the subscript i, appearing in
quantities related to the shear components, will always
refer to i ¼ 1, 2. Unlike the magnification, the shear
components take the same expressions as in the standard
formalism for the scalar modes in the Newtonian gauge.
Relativistic effects arise only for higher-order calculations
[25], or when taking vector and tensor modes into account
[7–9,26].

B. Perturbation variables and their power spectra

The effect of weak lensing on observed images is
determined by the perturbations of the FLRW metric and
the peculiar motion. To numerically compute the power
spectra of weak lensing observables, we thus need precise
knowledge of the power spectra of these perturbation
variables. For our work we apply the power spectrum
Pm;oðkÞ, describing the matter inhomogeneities δoðkÞ at
ao ¼ 1, produced by CLASS [27] for a flat ΛCDM universe.
Given today’s matter power spectrum Pm;oðkÞ, its past
evolution in a ΛCDM universe can be described by a scale-
independent growth function DðaÞ,

δðk;aÞ ¼DðaÞδoðkÞ; Pmðk;aÞ ¼D2ðaÞPm;oðkÞ; ð14Þ

given by the ordinary hypergeometric function 2F1 (see
e.g., [28]),

DðaÞ ¼ D̃ðaÞ
D̃ð1Þ ;

D̃ðaÞ ¼ a2F1

�
1

3
; 1;

11

6
;
a3ðΩm − 1Þ

Ωm

�
; ð15Þ

where we assumed w ¼ −1 for the dark energy equation of
state and normalized the growth function to unity at ao ¼ 1
today. To compute the weak lensing angular power spectra,
we further need to know the growth functions of the
velocity potential and the scalar potential Ψ. This is, in
essence, achieved by applying the ADM equations (see
e.g., [29,30]) in the comoving gauge to obtain the curvature
power spectrum PζðkÞ and the growth function of the

metric perturbations in that gauge, and then apply the
transformation to the Newtonian gauge used in this work.
We refer to [24,31] for the details, and only state the
results here.
The time-independent curvature perturbation ζðxÞ≡

ζðx; ηÞ is related to the density perturbation δoðxÞ today as

ζðxÞ ¼ CΔ−1δoðxÞ; C ¼ −H2fΣD; ð16Þ

where C is a constant, and we defined

f ≡ d lnD
d ln a

; Σ≡ 1þ 3

2

Ωm

f
: ð17Þ

The scalar potential Ψ and line-of-sight velocity Vk ¼
Vαnα are related to the curvature perturbation ζ as

Ψðx;ηÞ¼DΨðηÞζðxÞ; Vkðx;ηÞ¼DVðηÞ∂kζðxÞ; ð18Þ

where the solutions for DΨðηÞ and DVðηÞ are given by

DV ¼ 1

HΣ
; DΨ ¼ HDV − 1 ¼ −

1

2
ðD0

V þ 1Þ: ð19Þ

III. ANALYTICAL EXPRESSIONS FOR THE
FULLY RELATIVISTIC ANGULAR

POWER SPECTRA

Upcoming surveys such as Euclid will cover a large
survey area, and thus make large angular scales available.
Therefore, a precise modeling of weak lensing observables
over the whole celestial sphere is necessary, which has been
studied in various literature (see e.g., [9,13,32–34]). In
particular, [9] and [13] have considered general relativistic
effects, including potential terms, in their full-sky calcu-
lation of the magnification angular power spectrum. Here,
we revise the theoretical formalism based on (spin-
weighted) spherical harmonics, and state the results for
the magnification angular power spectrum (Sec. III A) and
the shear E-mode angular power spectrum as well as the
magnification E-mode cross angular power spectrum
(Sec. III B).
A signal AðnÞ observed on the whole sky can be

decomposed using the spherical harmonics decomposition,

AðnÞ¼
X

aAlmYlmðnÞ; aAlm ¼
Z

dΩAðnÞY�
lmðnÞ; ð20Þ

where we choose the convention

Ylmðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

ðl −mÞ!
ðlþmÞ!

s
Pm
l ðcos θÞeimϕ;

Pm
l ðxÞ ¼ ð−1Þmð1 − x2Þm=2 dm

dxm
PlðxÞ; ð21Þ
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for the spherical harmonics Ylmðθ;ϕÞ and the associated
Legendre polynomials Pm

l ðxÞ. The angular power spectrum
CAðlÞ is related to the spherical harmonics coefficients
aAlm as

haAlmaA�l0m0 i ¼ δll0δmm0CAðlÞ: ð22Þ

We will work with the quantities Aðn;kÞ and aAlmðkÞ
denoting the contribution of a single Fourier mode,

AðnÞ≡
Z

d3k
ð2πÞ3 Aðk;nÞ; aAlm ¼

Z
d3k
ð2πÞ3 a

A
lmðkÞ;

aAlmðkÞ≡
Z

dΩAðk;nÞY�
lmðnÞ: ð23Þ

Throughout this section, the coordinate r̄ in expressions
such as Ψðk; r̄Þ will be used to denote the conformal time
coordinate ηðr̄Þ ¼ ηo − r̄.

A. Fully relativistic angular power spectrum
of the magnification

To obtain the angular power spectrum of the magnifi-
cation given in Eq. (10), we first compute the contribution
from a single Fourier mode. Splitting δDðk;nÞ into
observer terms (o) and nonobserver contributions from
the standard convergence (κ), the Doppler magnification
(v) and GR potential terms (p),

δDðk;nÞ≡ ðδDo þ δDκ þ δDv þ δDpÞðk;nÞ; ð24Þ

we obtain

δDoðk;nÞ ¼ AsΨðk; 0Þ þ
�
HoAs þ

1

r̄s

�
δηðk; 0Þ

þ Vkðk;n; 0Þ
r̄sHs

;

δDκðk;nÞ ¼ −
Z

r̄s

0

dr̄

�
r̄s − r̄
r̄sr̄

�
∇̂2ðΨðk; r̄ÞeixμÞ;

δDvðk;nÞ ¼ AsVkðk;n; r̄sÞeixsμ;
δDpðk;nÞ ¼ −ðAs þ 1ÞΨðk; r̄sÞeixsμ

þ 2

r̄s

Z
r̄s

0

dr̄Ψðk; r̄Þeixμ

− 2As

Z
r̄s

0

dr̄Ψ0ðk; r̄Þeixμ; ð25Þ

where we chose k to be aligned with the z-axis, k ¼ kez,
and defined x ¼ kr̄ and μ ¼ cos θ ¼ n · k̂. Now, note that
from the definition of spherical harmonics in Eq. (21) and
the plane wave expansion along with the orthogonality
condition the Legendre polynomials, it follows that

Z
dΩY�

lme
ixμ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
iljlðxÞδm0: ð26Þ

We use this equation to obtain the spherical harmonic
coefficient

aδDlm ðkÞ ¼ il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
ζðkÞδm0SδD

l ðkÞ; ð27Þ

where SδD
l ðkÞ is the sum of:

So
l ðkÞ ¼ AsDΨð0Þδl0 þ

�
HoAs þ

1

r̄s

�
DVð0Þδl0

þ 1

3

DVð0Þk
r̄sHs

δl1;

Sκ
l ðkÞ ¼ lðlþ 1Þ

Z
r̄s

0

dr̄

�
r̄s − r̄
r̄sr̄

�
DΨðr̄ÞjlðxÞ;

Sv
l ðkÞ ¼ AsDVðr̄sÞkj0lðxsÞ;

Sp
l ðkÞ ¼ −ðAs þ 1ÞDΨðr̄sÞjlðxsÞ þ

2

r̄s

Z
r̄s

0

dr̄ DΨðr̄ÞjlðxÞ

− 2As

Z
r̄s

0

dr̄ D0
Ψðr̄ÞjlðxÞ: ð28Þ

Note that the factor δm0 in Eq. (27) is a result of choosing k
to be aligned with the z-axis. Furthermore, note that the
term ∝ j0lðxzÞ occurs since multiplications with iμ can be
transformed into partial derivatives ∂x. To deal with the
term ∝ Vkð0;k;nÞ, we used the relation

Z
dΩ μY�

lm ¼ 2

ffiffiffi
π

3

r Z
dΩY10Y�

lm ¼ 2

ffiffiffi
π

3

r
δl1δm0: ð29Þ

We also applied the fundamental property ∇̂2Ylm ¼
−lðlþ 1ÞYlm of spherical harmonics.
Finally, we compute the scalar contribution CδDðlÞ to the

magnification angular power spectrum,

CδDðlÞ ¼
ZZ

d3k
ð2πÞ3

d3k0

ð2πÞ3 ha
δD
lm ðkÞaδD�

lm ðk0Þi: ð30Þ

Hence, CδDðlÞ is given by an integral over all k, k0 ∈ R3,
while we have only computed aδDlm ðkÞ for a wave vector
aligned with the z-axis. However, as explained in
Appendix B, a summation over all m allows us to replace
the general k with kez, which leads to the result

CδDðlÞ ¼ 2

π

Z
dk k2PζðkÞSδD

l ðkÞ2: ð31Þ

As we have not assumed any approximation to derive
this expression, it is valid on all scales at the linear order.
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Our result is mostly consistent with the result of [13],4

although we additionally considered the terms evaluated at
the observer position. Indeed, observer terms do not
contribute to any multipoles apart from the monopole
l ¼ 0 (potential terms) and the dipole l ¼ 1 (line-of-sight
velocity). Nevertheless, they are important to obtain a
nondivergent monopole (cf. [24], where the importance
of observer terms has been discussed in the context of
infrared divergences in the luminosity distance).
Note that the velocity contributes to the total magnifi-

cation angular power spectrum via two different terms: a
velocity-velocity term ∝ Sv

l ðkÞ2 and a velocity-conver-
gence cross term ∝ Sκ

l ðkÞSv
l ðkÞ. In previous work, the

cross term was considered to be negligible [10,11]. In
particular, [10] has provided the explanation that the
Doppler magnification collects Fourier modes along the
line of sight, and the standard convergence those
perpendicular to it. However, the product Sκ

l ðkÞSv
l ðkÞ is

in fact nonvanishing. While the argument involving Fourier
modes perpendicular and along the line of sight is valid in a
flat sky approximation, such a separation cannot be made
on large angular scales, as no unique line of sight can be
defined. Indeed, in our numerical result Sec. IV we will
show that for the bins of Euclid’s weak lensing survey the
velocity-convergence cross term significantly reduces the
overall velocity effect in the magnification angular power
spectrum.
The GR potential terms contribute to the magnification

angular power spectrum via the cross-term ∝ Sκ
l ðkÞSp

l ðkÞ.
The pure GR potential term ∝ Sp

l ðkÞ2 as well as cross-
correlations between the Doppler magnification and the GR
potential terms, ∝ Sv

l ðkÞSp
l ðkÞ, are completely negligible.

B. Shear E-modes and their cross angular power
spectrum with the magnification

Unlike the magnification, the shear components depend
on the choice of an arbitrary basis ðθ;ϕÞ orthonormal to n
on the sky. For example, rotating the basis by 45° trans-
forms γ1 into γ2 and vice versa. This behavior is math-
ematically better described by replacing the shear
components γ1 and γ2 with the spin-2 quantities

�2γ ≡ γ1 � iγ2. They are given by

�2γ ≡mα∓mβ∓
Z

r̄s

0

dr̄
2ðr̄s − r̄Þ

r̄sr̄
∇̂α∇̂βΨ; ð32Þ

where mα
� describes a spin-1 basis on the sky,

mα
� ≡ 1ffiffiffi

2
p ðθα ∓ iϕαÞ: ð33Þ

The spin-2 quantities �2γðk;nÞ are decomposed as

aγ�lm ðkÞ≡
Z

dΩ �2γðk;nÞ�2Y
�
lmðnÞ: ð34Þ

For all l ≥ 2, this yields the expression

aγ�lm ðkÞ ¼ δm0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þðlþ 2Þ!

ðl − 2Þ!

s
il

×
Z

r̄s

0

dr̄

�
r̄s − r̄
r̄sr̄

�
Ψðk; r̄ÞjlðxÞ; ð35Þ

where details of the calculation are stated in Appendix C,
along with the expressions for the spin-weighted spherical
harmonics and the spin-raising and lowering operators. The
quantities aγþlm ðkÞ and aγ−lmðkÞ are identical, which implies
that the shear components result only in an E-mode,

aElmðkÞ≡ 1

2
ðaγþlm ðkÞ þ aγ−lmðkÞÞ ¼ aγ�lm ðkÞ; ð36Þ

while the shear B-mode is vanishing,

aBlmðkÞ ¼
1

2i
ðaγþlm ðkÞ − aγ−lmðkÞÞ ¼ 0: ð37Þ

A nonvanishing B-mode, distinguishable from the E-mode
via its behavior under parity transformation, cannot be
caused by scalar mode perturbations at linear order.
Including tensor modes arising from primordial gravita-
tional waves into the weak lensing formalism leads to a
nonvanishing B-mode, which is however far too low to be
measured [26].
Having obtained the expression for aElmðkÞ, we can

rederive the well-known expression (see e.g., [34]) for
the shear E-mode angular power spectrum,

CEðlÞ ¼ 1

2lþ 1

Xl

m¼−l

ZZ
d3k
ð2πÞ3

d3k0

ð2πÞ3 ha
E
lmðkÞaE�lmðk0Þi

¼ 2

π

ðlþ 2Þ!
ðl − 2Þ!

Z
dk k2PζðkÞðSE

l ðkÞÞ2; ð38Þ

where

SE
l ðkÞ ¼ δl≥2

Z
r̄s

0

dr̄

�
r̄s − r̄
r̄sr̄

�
DΨðr̄ÞjlðxÞ: ð39Þ

Furthermore, together with the expression for aδDlm ðkÞ given
in Eq. (27), we immediately obtain the expression for the
cross power spectrum CδDEðlÞ,

4Note that their quantity μ−1 is given by −2δD, and that they
have chosen an opposite sign convention for Vk. Their opposite
sign for the integral or ∝ Ψ0 remains unexplained, although this
term is small compared to the other general relativistic corrections.
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CδDEðlÞ ¼ 1

2lþ 1

Xl

m¼−l

ZZ
d3k
ð2πÞ3

d3k0

ð2πÞ3 ha
δD
lm ðkÞaE�lmðk0Þi

¼ 2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s Z
dk k2PζðkÞSδDE

l ðkÞ; ð40Þ

where

SδDE
l ðkÞ≡ SδD

l ðkÞSEl ðkÞ: ð41Þ

While the shear E-mode angular power spectrum CEðlÞ is,
to linear order, unaffected by general relativistic effects, the
cross angular power spectrum CδDEðlÞ is affected by the
line-of-sight velocity and the additional GR potential terms
in the magnification. In particular, for the same reason as
discussed at the end of Sec. III A, the contribution of the
line-of-sight velocity is nonvanishing. We discuss the
implications in Sec. IV B.
Note that when taking into account only the standard

convergence term determined by Sκ
l ðkÞ2, we recover the

relation [34]

CEðlÞ ¼ ðlþ 2Þðl − 1Þ
ðlþ 1Þl CκðlÞ

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðl − 1Þ

ðlþ 1Þl

s
CκEðlÞ: ð42Þ

In [11], it was suggested to measure the magnification in
addition to the shear E-mode angular power spectrum, and
then use the above relation to extract the contribution of the
Doppler magnification ∝ Svl ðkÞ2. However, as we point out
in the next section, the velocity-convergence cross term
significantly reduces the signal arising from the Doppler
magnification for the redshift bins of Euclid’s weak lensing
survey. Furthermore, corrections to the magnification
angular power spectrum as well as the magnification-shear
cross angular power spectrum arise not only from the
Doppler magnification, but also from the additional GR
potential terms.
The pure Doppler lensing term ∝ Svl ðkÞ2 can, in theory,

be isolated by considering the cross spectrum CδDEðkÞ in
addition to the auto spectra CδDðlÞ and CEðlÞ. The cosmic
shear angular power spectrum CEðlÞ is determined by the
standard term ∝ Sκl ðkÞ2 only, while the cross spectrum
CδDEðlÞ is additionally affected by the cross terms ∝
Sκl ðkÞðSvl ðkÞ þ Spl ðkÞÞ which could thus be isolated.
Then, the terms ∝ Sκl ðkÞ2 and ∝ 2Sκl ðkÞðSvl ðkÞ þ Spl ðkÞÞ
in the magnification angular power spectrum CδDðlÞ would
already be determined, providing a way of measuring the
only remaining non-negligible term ∝ Svl ðkÞ2. However,
the impact of the terms ∝ Sκl ðkÞðSvl ðkÞ þ Spl ðkÞÞ on the
cross spectrum CδDEðlÞ is reduced by a factor of 2

compared to their impact on the auto spectrum CδDðlÞ,
leading to an overall small signal as illustrated in the next
section. This complicates the possibility of an individual
measurement.
Finally, we want to point out that in order to extract the

impact of general relativistic contributions using Eq. (42),
the same redshift distribution needs to be applied for both
magnification and shear measurements. Therefore, in the
next section we apply the distribution and binning of
Euclid’s tomographic weak lensing survey to compute
both the angular power spectrum of the magnification
and its cross angular power spectrum with shear E-modes.

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the general
relativistic effects for the magnification angular power
spectrum (Sec. IVA) and the cross angular power spectrum
between the magnification and shear E-modes (Sec. IV B).
For these evaluations, we apply a Euclid-like redshift
distribution function [11],

nzðzÞ ¼
3

2z�

�
z
z�

�
2

expð−ðz=z�Þ3=2Þ; ð43Þ

where z� is related to the median zm as z� ¼ zm=1.412, and
zm ¼ 0.9. As specified in [6], Euclid’s weak lensing survey
will be split into 10 equipopulated redshift bins with
boundaries {0.001, 0.42, 0.56, 0.68, 0.79, 0.90, 1.01,
1.15, 1.32, 1.58, 2.50}. We will only show results for
the lowest five of these redshift bins, as general relativistic
effects are insignificant for the higher bins compared to the
standard convergence. All quantities are evaluated for
the angular multipoles l ¼ 10; 11;…; 50, as lmin ¼ 10 is
the relevant lower boundary for the Euclid survey [6]
and the total contribution of general relativistic effects is
below 1% at l ¼ 50 for all bins.
We apply the relations for the growth functions given in

Sec. II B, along with the matter power spectrum Pm;0 at
ao ¼ 1 evaluated by CLASS [27]. We assume H0 ¼
67.4 km=s=Mpc for the Hubble constant, Ωbh2 ¼ 0.0224
andΩcdmh2 ¼ 0.12 for the baryonic and darkmatter density,
ns ¼ 0.966 for the scalar spectral index andAs ¼ 2.1 × 10−9

for the scalar amplitude at the pivot scale k0 ¼ 0.05=Mpc,
consistent with the Planck 2018 results [35].

A. Angular power spectrum of the magnification

In Fig. 1, we show the different contributions to the total
magnification angular power spectrum for the first five
Euclid redshift bins. The contributions of the standard
convergence and the GR potential terms are shown in
panels (a) and (d), respectively. The Doppler magnification
is split into its two different ways bywhich it affects the total
magnification angular power spectrum: panel (b) shows
the velocity-velocity contribution, i.e., the angular power
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spectrum of the Doppler magnification. While this contri-
bution is in principle larger for low redshifts due to the pre-
factor As ¼ 1 − ðHsr̄sÞ−1, the width of the redshift bin is
also highly important. In particular, the large width of the
first bin leads to a drastic reduction of the signal. Panel
(c) shows the second non-negligible contribution of the
Doppler magnification, which is the velocity-convergence
cross term (i.e., the cross angular power spectrum between
the Doppler magnification and standard convergence). This
contribution, again determined by both the width and depth
of the redshift bin, has a negative value and reduces the
overall velocity signal.
In Fig. 2, we see that the velocity-convergence cross term

indeed significantly reduces the overall velocity contribu-
tion, making it even negative at l≳ 35. For bin 4 the overall
velocity contribution is already below 5%, and for bin 5
below 2% at all observable angular multipoles. Since the
width of the redshift bin washes out the velocity contri-
bution, thinner bins would increase the signal. In panel (f),
we provide a comparison to the idealized case of an

infinitely thin redshift bin at z ¼ 0.6. Here, the Doppler
magnification still leads to a correction of 15% at l ¼ 50

compared to the standard convergence. Nevertheless, even
in this idealized case we see that the reduction from the
Doppler-convergence cross term is still significant (the
amplitude of the term ∝ Sκl ðkÞSvl ðkÞ is about 13.4% of the
∝ Svl ðkÞ2 term at l ¼ 10, and 7.5% at l ¼ 50). Hence, this
term should not be neglected when comparing the magni-
fication angular power spectrum CδDðlÞ to the shear E-
mode angular power spectrum CEðlÞ, contrary to [11]
where only the standard term ∝ Sκl ðkÞ2 and the velocity-
velocity term ∝ Svl ðkÞ2 had been studied.
For the GR potential terms (blue lines in Fig. 2), the

fractional contribution to CδDðlÞ does not vary significantly
between the redshift bins 2–5: It is at 2–3% for lmin ¼ 10,
and quickly falls below 1% at l ¼ 20. Only for bin 1, the
contribution is larger, leading to a deviation of about 7% at
lmin ¼ 10. The reason is the behavior of the different
GR potential terms at low and high redshifts. As seen in

(a) (b)

(c) (d)

FIG. 1. Contribution to the total magnification angular power spectrum of the first five redshift bins of Euclid’s weak lensing survey
caused by (a) the standard convergence, (b) the velocity-velocity contribution, (c) the velocity-convergence cross term and (d) the
additional GR potential terms. Note that for the negative velocity-convergence contribution, we plot the absolute value.
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Eq. (25), δDp consists of a Ψs term (with the potential
evaluated at the source position), a

R
Ψ=r̄s term and a

R
Ψ0

term (with the potential and, respectively, its time variation
integrated along the line of sight). In Fig. 3, the

contributions of the Ψs and
R
Ψ0 terms to the magnification

angular power spectrum are compared to the contribution
of the

R
Ψ=r̄s term. We see that for the redshift bins 2–5, theR

Ψ=r̄s term indeed constitutes the major GR potential

FIG. 2. Impact of different relativistic corrections on the magnification angular power spectrum for the first five bins of Euclid’s weak
lensing survey [panel (a)-(e)], and for a unique source redshift at z ¼ 0.6 [panel (f)]. For panel (a)-(e), gray vertical lines mark the first l
for which the total deviation caused by general relativistic effects (black curve) drops below 2% and 1%.
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contribution. For bin 1, however, the Ψs term enhances
it by more than 120%. This is due to the prefactor
−ðAs þ 1Þ ¼ ðHsr̄sÞ−1 − 2, which is large at low redshift,
but turns negative at z ≈ 0.682 and slowly converges to −2.
For the negative contribution of the

R
Ψ0 term, we see that it

gets smaller for higher redshift bins. This is because Ψ0 is
equal to zero in a matter-only universe. Thus, the integral
involving Ψ0 gets its major contribution from low z, and
does not grow with a larger source redshift as much as theR
Ψ=r̄s term.
While the contribution of GR potential terms alone

would be a rather low correction, it enhances the signal
arising from the velocity. Indeed, as seen in panel (e), the
contribution of the GR potential terms is similarly large as
the contribution of the Doppler magnification in the
depicted range of l, although the combined signal is low
compared to cosmic variance in this regime. Moreover,
panel (b) shows that even for bin 2 they still enhance the

FIG. 3. Contribution of the Ψs term (solid) and the
R
Ψ0 term

(dashed lines), in comparison to the
R
Ψ=r̄s term at each bin. The

different colors correspond to the five redshift bins as in Fig. 1.

(a) (b)

(c) (d)

FIG. 4. Impact of velocity terms (i.e., the Doppler magnification) and additional GR potential terms on the cross angular power
spectrum of the magnification and shear E-modes, for the first three Euclid redshift bins and a unique source redshift z ¼ 0.60. Gray
vertical lines mark the first l for which the absolute value of the total deviation caused by general relativistic effects (black curve) drops
below 2% and 1% (unless it is already below that value at lmin ¼ 10).
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signal by more than 10%, partly counteracting the reduc-
tion from the convergence-velocity cross term.
In Figs. 1–2, we only show the results for the lower five

Euclid redshift bins. For the higher bins, the additional GR
potential terms lead to a practically identical fractional
contribution as for bin 5, i.e., it is at 2% at lmin ¼ 10 and
below1%at l ¼ 20. TheDopplermagnification, diminished
at high redshift due to the pre-factor As ¼ 1 − ðHsr̄sÞ−1, is
even smaller. Hence, general relativistic corrections play an
insignificant role for the upper half of redshift bins.

B. Cross angular power spectrum between the
magnification and shear E-modes

We have demonstrated that the Doppler magnification
alters themagnification angular power spectrum not only via
its auto correlation, but also via the velocity-convergence
cross term. Likewise, the Doppler magnification along with
the GR potential terms also affect the cross angular power
spectrumCδDEðlÞ, as illustrated in Fig. 4. As explained at the
end of Sec. II A, measuring the corresponding terms ∝
Sκl ðkÞðSvl ðkÞ þ Spl ðkÞÞ in the cross spectrum CδDEðlÞ by
comparing to the shear auto spectrum CEðlÞ would provide
us a way to isolate the pure Doppler lensing term∝ Svl ðkÞ2 in
themagnification auto spectrumCκðlÞ. However, in the cross
power spectrum CδDEðlÞ the contribution of the terms ∝
Sκl ðkÞðSvl ðkÞ þ Spl ðkÞÞ is reduced by a factor of 2 compared
to their contribution to the auto power spectrum CδDðlÞ,
further complicating their measurement. For bin 3, the
resulting signal is already below 2% at all scales. At higher
redshifts, the velocity contribution will eventually become
irrelevant. The total contribution is then fully determined by
the GR potential terms, leading to a correction of 1% or less.
In panel 4(d), we provide a comparison for an infinitely

thin redshift bin at z ¼ 0.60, showing that the signal of the
terms ∝ Sκl ðkÞðSvl ðkÞ þ Spl ðkÞÞ is still low in this idealized
case, making an individual measurement unlikely.

V. SUMMARY AND CONCLUSION

In this paper, we have numerically investigated the
impact of all general relativistic effects on the weak lensing
power spectra on large scales measurable in a survey like
Euclid. We have shown that the width of the redshift bins
along with the negative velocity-convergence cross term
drastically reduce the Doppler magnification signal. For the
magnification angular power spectrum, the total impact of
general relativistic effects is still large at lmin ¼ 10 (4–30%,
depending on the considered redshift bin), but falls off fast
and is below 1% at l ¼ 38 even for the lowest redshift bin.
For the shear-magnification cross angular power spectrum,
general relativistic effects lead to a rather low correction
already at lmin ¼ 10 (with an absolute value of 7.5% for the
lowest bin), and is below 1% at l ¼ 42 for all bins. Taking
into account the large cosmic variance at large angular
scales, ΔCðlÞ=CðlÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð2lþ 1Þp
, this could pose a

serious challenge in measuring the relativistic corrections.
For further illustration, we show in Fig. 5 the deviation of
the full observable CδDðlÞ from the standard prediction
CκðlÞ for the lowest Euclid redshift bin (where the deviation
is larger compared to the other bins) as well as a unique
source redshift z ¼ 0.6. For the latter case, the impact of
general relativistic effects is above cosmic variance.
However, for Bin 1, it reaches a comparable level only
at the lowest multipole lmin ¼ 10.
One obvious solution to enhance the Doppler magnifi-

cation signal would be to reduce the width of the redshift.
However, several obstacles for doing so need to be pointed
out. Indeed, in [15] only averages over galaxy pairs
separated by no more than Δz ¼ 0.02 are applied, but
the direct measurement of the Doppler magnification via
galaxy sizes is only possible up to z ≈ 0.3 (or z ≈ 0.5 when
using the dipole of the cross-correlation between galaxy
sizes and number counts [16]) as the standard convergence
becomes significant for higher redshifts. For the method
proposed in [11] with respect to the Euclid survey, both the
magnification and cosmic shear need to be measured in
order to extract general relativistic effects by applying
Eq. (42). This assumes that the same source redshift
distribution is applied for both measurements. Hence,
reducing the width of the magnification measurement
requires that we do the same for the cosmic shear
measurement. This is however challenging due to the
various systematic uncertainties in cosmic shear measure-
ments, including photometric redshifts as well as difficul-
ties in shape measurements (see e.g., [5]). Moreover,
measurements of magnification itself are also limited by
systematics, and in particular require sufficient knowledge
of intrinsic sizes and magnitudes [20]. We also emphasize
that even for thinner bins the velocity-convergence cross
term ∝ Sκl ðkÞSvl ðkÞ still needs to be taken into account, as

FIG. 5. Angular power spectra of the standard convergence κ
and the full magnification observable δD for the lowest Euclid
bin (z ¼ 0.001–0.42; solid) and a unique source redshift at z ¼
0.60 (dashed). The gray regions indicate cosmic variance.
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illustrated by the idealized case of an infinitely thin redshift
bin at z ¼ 0.60 in Fig. 2(f).
Despite the difficulties, a reduced width for the redshift

distribution in weak lensing measurements certainly seems
to be the best approach for increasing the observability of
the Doppler magnification by measuring both magnifica-
tion and shear as proposed in [11]. Another theoretical
possibility would be to extend to an all-sky survey,
measuring even the lowest l < 10. As seen especially in
Fig. 2, the impact of general relativistic effects increases
fast when approaching lmin ¼ 10, and their even larger
contribution at l < 10 could compensate for the high
variance at such large angular scales. However, such a
weak lensing survey will not be realized in the near future.
Quantifying detectability of the relativistic effects in the
lensing power spectra will require a careful Fisher matrix
analysis in a given survey geometry, which is beyond our
current scope to investigate the impact of the relativistic
effects on the weak lensing power spectra.
Finally, we want to point out that general relativistic

effects should not only be seen as corrections to standard
effects, but also as an important cosmological probe
themselves. In particular, as pointed out in [11], the
standard lensing convergence is determined by the sum
of the Bardeen potentials ΦþΨ, but the additional general
relativistic corrections break the degeneracy between them.
While we did not distinguish between these two potentials
in this work, as general relativity with no anisotropic stress
component predicts Φ ¼ Ψ, modified gravity theories can
lead to deviations from this assumption. Therefore, it can
lead to a modified signal at low l.
We conclude that, while measuring general relativistic

effects in weak lensing angular power spectra is difficult, it
is certainly not impossible. These general relativistic effects
at large angular scales provide a test for theories of gravity,
and therefore deserve the attention from both the theoretical
and observational community.
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APPENDIX A: VECTOR CALCULUS IDENTITIES
IN SPHERICAL COORDINATES

Observed source positions on the sky are usually
described by spherical coordinates—a radial coordinate
r̄ðzÞ associated to the observed redshift z, and observed
angular coordinates ðθ;ϕÞ. Here, we review some vector
calculus identities in spherical coordinates that are
fundamental for this work. First of all, the line-of-sight

direction nα specified by the observed angles θ and ϕ is
given by

n ¼ nαðθ;ϕÞ ¼

0
B@

sin θ cosϕ

sin θ sinϕ

cos θ

1
CA: ðA1Þ

Introducing two vectors orthonormal to nα,

θαðθ;ϕÞ¼

0
B@
cosθcosϕ

cosθsinϕ

−sinθ

1
CA; ϕαðθ;ϕÞ¼

0
B@
−sinϕ
cosϕ

0

1
CA; ðA2Þ

we can write the gradient as

∂
∂xα ¼ nα∂ r̄ þ

1

r̄
∇̂α; ∇̂α ≡ θα∂θ þϕαsin−1θ∂ϕ; ðA3Þ

where we refer to ∇̂α as the angular gradient. Furthermore,
we define the angular Laplacian operator,

∇̂2 ¼ ∇̂α∇̂α ¼ ∂2
θ þ cot θ∂θ þ sin−2θ∂2

ϕ: ðA4Þ

Using the angular derivatives of the basis vectors,

∂θn¼ θ; ∂θθ¼−n; ∂θϕ¼ 0; sin−1θ∂ϕn¼ϕ;

sin−1θ∂ϕθ¼ cotθϕ; sin−1θ∂ϕϕ¼−n−cotθθ; ðA5Þ

we can derive the following relations that are used for the
calculations in this work. First of all, applying the angular
gradient and angular Laplacian to nα yields

∇̂βnα¼ θβθ
αþϕβϕ

α ¼−nβnαþδαβ; ∇̂2n¼−2n: ðA6Þ

We emphasize that the observed angular direction n and
the two orthonormal directions θ and ϕ are defined in the
observer rest frame only. Thus, the definitions presented
here are independent of any FRW coordinates in the space-
time manifold.

APPENDIX B: CONTRIBUTION OF DIFFERENT
k-VECTORS TO THE ANGULAR

POWER SPECTRUM

Given a spin-0 quantity AðnÞ, such as the magnification
or the spin-raised and -lowered shear components, the
resulting angular power spectrum is given by

CAðlÞ ¼ haAlmaA�lmi ¼
ZZ

d3k
ð2πÞ3

d3k0

ð2πÞ3 ha
A
lmðkÞaA�lmðk0Þi

¼
Z

d3k
ð2πÞ3 jã

A
lmðkÞj2PζðkÞ; ðB1Þ
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where aAlmðkÞ is defined in Eq. (23), and we additionally
introduced ãAlmðkÞ as aAlmðkÞ≡ ãAlmðkÞζðkÞ. Thus, CAðlÞ
needs to be calculated from the contribution of all k at all
angular directions. However, in our calculations in Sec. III
for the shear components and the magnification, we have
only calculated almðkÞ for a k-vector aligned with the
z-axis, k ¼ kez, and assumed that this is sufficient to
evaluate the resulting angular power spectra. Here, we
justify this assumption.
Let k be some arbitrary wave-vector, and let n1 and n2

specify two angular directions. First, note that for any
rotation matrix R, the relation

Ãðk;n1ÞÃ�ðk;n2Þ ¼ ÃðRk;Rn1ÞÃ�ðRk;Rn2Þ; ðB2Þ

applies, where Aðk;nÞ≡ Ãðk;nÞζðkÞ. This is based on the
fact that the dependence of Ãðk;nÞ can be expressed as a
dependence on k and the angle k · n, which stays invariant
when applying the same rotation to both vectors. Now,
defining k≡Rkez, n1 ≡Rkn0

1 and n2 ≡Rkn0
2, we obtainZZ

dΩ1dΩ2 Ãðk;n1ÞÃ�ðk;n2ÞYlmðn1ÞY�
lmðn2Þ

¼
ZZ

dΩ0
1dΩ0

2 Ãðkez;n0
1ÞÃ�ðkez;n0

2ÞYlmðn1ÞY�
lmðn2Þ

¼ jãAlmðkÞj2; ðB3Þ

where we have performed a change of variables and used
Eq. (B2). By applying the addition theorem of spherical
harmonics,

X
m

Ylmðn1ÞY�
lmðn2Þ ¼

2lþ 1

4π
Plðn1 · n2Þ

¼
X
m

YlmðRn1ÞY�
lmðRn2Þ; ðB4Þ

it follows thatX
m

jãAlmðkÞj2 ¼
X
m

jãAlmðkezÞj2: ðB5Þ

Finally, noting that CAðlÞ is independent of m, we can
rewrite Eq. (B1) as

CAðlÞ ¼ 1

2lþ 1

Z
d3k
ð2πÞ3

X
m

jãAlmðkÞj2PζðkÞ

¼ 1

2lþ 1

Z
d3k
ð2πÞ3

X
m

jãAlmðkezÞj2PζðkÞ; ðB6Þ

proving that, indeed, we can calculate CAðlÞ from the
contribution of k-vectors aligned with the z-axis only. Note
that, while haAlmaA�lmi is equal for all m due to statistical
isotropy, this does not apply for the contribution of a single

k-mode. In particular, a k-mode aligned with the z-axis
contributes only to m ¼ 0, while this would not be true for
a general k-mode since aAlmðkÞ ≠ aAlmðkezÞ in general.
Indeed, the summation over m is vital in our calculation,
as it allows us to apply the addition theorem in Eq. (B4) to
obtain Eq. (B5). Only after replacing the general k-mode
with one aligned with the line of sight, k ¼ kez, the
summation over m can be dropped and replaced by the
contribution of m ¼ 0.

APPENDIX C: DETAILED CALCULATION
OF aγ�lm ðkÞ

Here, we describe how the expression for aγ�lm ðkÞ given
in Eq. (35) is calculated. To decompose the shear signal on
the sky, we replace the spherical harmonics YlmðnÞwith the
more general spin-weighted spherical harmonics,

sYlm ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffi
ðl−sÞ!
ðlþsÞ!

q
ðsYlm; 0 ≤ s ≤ l;ffiffiffiffiffiffiffiffiffi

ðlþsÞ!
ðl−sÞ!

q
ð̄−sYlm; 0 ≤ −s ≤ l;

0; l < jsj;

ðC1Þ

where ð and ð̄ are spin-raising and, respectively, -lowering
operators defined through

ðsf ¼ −sinsθð∂θ þ isin−1θ∂ϕÞsin−sθf;
ð̄sf ¼ −sin−sθð∂θ þ isin−1θ∂ϕÞsinsθf: ðC2Þ

For ease of notation, we also define spin-1 differential
operators ∇̂�,

∇̂� ≡mα∓∇̂α ¼
1ffiffiffi
2

p ð∂θ � isin−1θ∂ϕÞ: ðC3Þ

Assuming that the Fourier mode k is aligned with the
positive z-direction and applying Eq. (A5), we obtain

m� · k ¼ −
k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
ffiffiffi
2

p ; ∇̂�n ¼ m�;

∇̂�m� ¼ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − μ2Þ

p m�; ðC4Þ

which we use to calculate

∇̂�eir̄k·n ¼ ir̄m� · keir̄k·n ¼ −i
kr̄

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
ffiffiffi
2

p eir̄k·n;

mα
�m

β
�∇̂α∇̂β ¼ ∇̂2

� −
μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − μ2Þ
p ∇̂�;

∇̂2
�eir̄k·n ¼ −

iμkr̄þ k2r̄2ð1 − μ2Þ
2

eir̄k·n: ðC5Þ

From this, it further follows that
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mα
�m

β
�∇̂α∇̂βeir̄k·n ¼ −

k2r̄2ð1 − μ2Þ
2

eir̄k·n: ðC6Þ

Writing Ψðn; r̄Þ as the Fourier transform of Ψðk; r̄Þ,
changing the order of integration and using Eq. (C6), we
obtain

�2γðk;nÞ ¼ −
Z

r̄s

0

dr̄
ðr̄s − r̄Þr̄

r̄s
k2ð1 − μ2ÞΨðk; r̄Þeir̄k·n;

ðC7Þ

from Eq. (32) for �2γ.
Now, by applying the definitions of the spin-weighted

spherical harmonics and partial integration, we can rewrite
the expression for aγ�lm ðkÞ given in Eq. (34) into the
alternative expressions

aγþlm ðkÞ ¼ δl≥2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl− 2Þ!
ðlþ 2Þ!

s Z
dΩ ð̄22γðk;nÞY�

lmðn̂Þ;

aγ−lmðkÞ ¼ δl≥2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl− 2Þ!
ðlþ 2Þ!

s Z
dΩð2−2γðk;nÞY�

lmðn̂Þ: ðC8Þ

Note that the definition of spin-weighted spherical har-
monics implies that aγ�lm is vanishing for l ¼ 0 and l ¼ 1,
which we express with the symbol δl≥2.
Applying the spin-lowering and -raising operator twice

to �2γðk;nÞ, and turning powers of μ into powers of −i∂x
acting on expðixμÞ, we further obtain

ð̄22γðk;nÞ ¼ ð2−2γðk;nÞ ¼
Z

r̄s

0

dr̄

�
r̄s − r̄
r̄sr̄

�
ŜðxÞ; ðC9Þ

where we have defined the operator

ŜðxÞ≡ 4x2 þ x4 þ 8x3∂x þ ð12x2 þ 2x4Þ∂2
x

þ 8x3∂3
x þ x4∂4

x: ðC10Þ

Finally, using the differential and recursion relations of
the spherical Bessel functions to calculate

ŜðxÞjlðxÞ ¼
ðlþ 2Þ!
ðl − 2Þ! jlðxÞ; ðC11Þ

we can compute aγ�lm ðkÞ from Eq. (C8) by applying
Eq. (26), which yields Eq. (35).
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