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We compute numerically the reheating temperature due to the gravitational production of conformally-
coupled superheavy particles during the phase transition from the end of inflation to the beginning of
kination in two different quintessential inflation (QI) scenarios, namely Lorentzian quintessential inflation
and α-attractors in the context of quintessential inflation (α-QI). Once these superheavy particles have been
created, they must decay into lighter ones to form a relativistic plasma, whose energy density will
eventually dominate the one of the inflaton field in order to reheat our Universe after its inflation period
with a very high temperature—in both cases greater than 107 GeV—contrary to the usual belief that heavy
masses suppress the particle production and, thus, lead to an inefficient reheating temperature. Finally, we
will show that the overproduction of gravitational waves during this phase transition, when one deals with
our models, does not disturb the big bang nucleosynthesis success.
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I. INTRODUCTION

Today, the inflationary paradigm is the most accepted
implementation to the big bang (BB) theory in order to
solve a number of shortcomings associated with the
standard BB cosmology, such as the horizon, the flatness
or the primordial monopole problems [1,2], and to explain
correctly the early Universe at background level. More
remarkable is the fact that inflation is also able to explain
the origin of inhomogeneities in the Universe as quantum
fluctuations [3–7], leading to theoretical results that match
well with the recent observational data provided by the
Planck team [8].
Once having a viable theory explaining the early

Universe, one can extend it in order to deal with the whole
evolution of the Universe, thus, unifying its early- and late-
time accelerated expansions (see [9–11] for a review of the
current dark energy models). One of the most attractive
scenarios able to do it is the so-called quintessential
inflation (QI), introduced for the first time by Peebles
and Vilenkin in their seminal paper [12] (see [13] for a
review of the Peebles-Vilenkin model), where the idea
behind their proposal comes through the introduction of a
single scalar field, also named inflaton, that at early times is
the responsible for inflation while at late times it allows the
current cosmic acceleration via quintessence.

Due to the simplicity of this proposal and since the
behavior of the slow-roll regime is the one of an attractor,
the dynamics of the model are simply obtained with the
initial value of the scalar field and its derivative at some
moment during this regime. Therefore, the models of QI
[14–16], which generally only depend on two parameters,
caught the attention of some researchers who wanted to
confront QI with the observational data [17–35], thus
becoming a popular topic in some reduced circles.
By dealing with QI in this way, it is well known that all

the scenarios containing a period of inflation need a
reheating mechanism to match the hot BB Universe [1]
because the particles existing before the beginning of this
period were completely diluted at the end of inflation
resulting in a very cold universe. Here, we will choose as a
reheating mechanism the so-called gravitational particle
production [36–43] of superheavy particles conformally
coupled with gravity, which was applied to standard
inflation (potentials with a deep well) in [44–48].
However, the gravitational reheating in QI is normally
applied to very light fields [12,17,49,50] and only in a few
papers, which deal with toy discontinuous models as the
Peebles-Vilenkin one, is it applied to massive particles
[22,24,26,51,52] (see also [53] where the authors also deals
with the gravitational production of dark matter). In fact,
regarding smooth QI potentials, particle creation and, in
particular, gravitational particle production are sometimes
associated to an overbarrier problem (see for instance
Sec. VII of [54]), which has to be analytically studied
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using the complex Wentzel-Kramers-Brillouin approxima-
tion, that is, the Stokes phenomenon [47], whose real
application is limited to the creation of particles by para-
bolic potentials [54].
For this reason, in the present work we deal numerically

with smooth QI potentials such as the ones provided by
Lorentzian quintessential inflation (LQI) [55–57] and
α-attractors in quintessential inflation (α-QI) [58]. Then,
in order to get the reheating temperature, we will calculate
numerically the energy density of the superheavy particles
produced during the phase transition from the end of
inflation to the beginning of kination (the period where
all the energy of the field becomes kinetic [59]). To do this,
we will use the well-known Hamiltonian diagonalization
method (see [60] for a review), showing that the time-
dependent β-Bogoliubov coefficient encodes the polariza-
tion effects associated to the creation and annihilation of the
so-called quasiparticles [60] and also the real particles
created during the phase transition. However, through a toy
model inspired in the Peebles-Vilenkin one, and presenting
a discontinuity of the first derivative of the potential at the
beginning of kination, we will show that these polarization
effects disappear when the Universe evolves adiabatically,
which happens soon after the beginning of kination. Thus,
in order to calculate the energy density of the produced
particles (the real particles), one can safely use the value of
the β-Bogoliubov coefficient after the beginning of kin-
ation. This is the key point of our investigation, and we
have numerically checked that this also happens for our QI
smooth potentials.
Another important point is the overproduction of gravi-

tational waves (GWs) in QI, which are also produced
during the phase transition from the end of inflation to the
beginning of kination. This overproduction in many QI
models may disturb the success of the big bang nucleo-
synthesis (BBN), but, as we will show, the reheating via
gravitational particle production of superheavy particles in
the QI scenarios studied in this work prevents the incom-
patibilities of the BBN with the overproduction of GWs.
The reason why this happens is because the gravitational
production of superheavy particles (contrary to the standard
belief that in analytic calculations only ultraviolet modes
are taken into account) is very efficient for long-wavelength
modes, leading to a high reheating temperature able to
overcome all the constraints ensuring the BBN success.
Finally, a few words about the viable values of the

reheating temperature are in order. A lower bound for the

reheating temperature comes from the fact that the radia-
tion-dominated era occurs before the BBN epoch, which
takes place in the 1 MeV regime [61], and thus, the
reheating temperature should naturally be greater than
1 MeV. On the contrary, the upper bound of this temper-
ature is dependent on the theory we are concerned with. In
fact, in some supergravity theories such as α-attractors
containing particles with only gravitational interactions, the
late-time decay of these relics may jeopardize the success
of the standard BBN [62]. To solve this problem one has to
consider a sufficiently low reheating temperature (of the
order of 109 GeV or less) [63].
The units used in the manuscript are ℏ ¼ c ¼ 1 and the

reduced Planck’s mass is denoted by Mpl ≡ 1ffiffiffiffiffiffi
8πG

p ≅
2.44 × 1018 GeV.

II. THE DIAGONALIZATION METHOD

This short section is a review of our previous work [64]
(see also the pioneering works [37–39,65] for a more
detailed vision of the topic). The idea of the method goes as
follows; given a quantum scalar field of superheavy
particles conformally coupled to gravity, namely χ, the
Klein-Gordon (KG) equation in the Fourier space, which is
satisfied by the modes in the flat Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime, is given by [66]

χ00kðτÞ þ ω2
kðτÞχkðτÞ ¼ 0; ð1Þ

where the prime denotes the derivative with respect to the

conformal time τ, and ωkðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χa2ðτÞ
q

is the time-

dependent frequency being mχ the mass of the quantum
field χ.
As usual, the modes that define the vacuum state at a

given initial time τi are the ones that minimize the energy
density, so they must satisfy the conditions

χkðτiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðτiÞ
p e−i

R
τi ωkðη̄Þdη̄;

χ0kðτiÞ ¼ −iωkðτiÞχkðτiÞ; ð2Þ

and thus, the vacuum expectation value of the energy
density will be given by [67]

hρðτÞi≡ h0jρ̂ðτÞj0i ¼ 1

4π2a4ðτÞ
Z

∞

0

k2dkðjχ0kðτÞj2 þ ω2
kðτÞjχkðτÞj2 − ωkðτÞÞ; ð3Þ

where, in order to obtain a finite energy density [60], we have subtracted the energy density of the zero-point oscillations of
the vacuum 1

ð2πÞ3a4ðτÞ
R
d3k 1

2
ωkðτÞ.
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Following the method developed in [65] (see also
Sec. 9.2 of [60]), we will write the modes as follows:

χkðτÞ ¼ αkðτÞ
e−i

R
τ
ωkðτ̄Þdτ̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðτÞ
p þ βkðτÞ

ei
R

τ
ωkðτ̄Þdτ̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðτÞ
p ; ð4Þ

where αkðτÞ and βkðτÞ are the time-dependent Bogoliubov
coefficients. Now, imposing that the modes satisfy the
condition

χ0kðτÞ ¼ −iωkðτÞ
�
αkðτÞ

e−i
R

τ
ωkðτ̄Þdτ̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðτÞ
p − βkðτÞ

ei
R

τ
ωkðτ̄Þdτ̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðτÞ
p �

;

ð5Þ

one can show that the Bogoliubov coefficients must satisfy
the system

(
α0kðτÞ ¼ ω0

kðτÞ
2ωkðτÞ e

2i
R

τ
ωkðτ̄Þdτ̄βkðτÞ

β0kðτÞ ¼ ω0
kðτÞ

2ωkðτÞ e
−2i

R
τ
ωkðτ̄Þdτ̄αkðτÞ;

ð6Þ

in order for Eq. (4) to be a solution of Eq. (1).
Finally, inserting (4) into the expression for the

vacuum energy density (3), and taking into account
that the Bogoliubov coefficients satisfy the equation
jαkðτÞj2 − jβkðτÞj2 ¼ 1, one finds that

hρðτÞi ¼ 1

2π2a4ðτÞ
Z

∞

0

k2ωkðτÞjβkðτÞj2dk; ð7Þ

where it is important to notice that jβkðτÞj2 encodes the
vacuum polarization effects and also the production of
particles, which only happens when the adiabatic evolution
breaks. In fact, the quantity

hNðτÞi ¼ 1

2π2a3ðτÞ
Z

∞

0

k2jβkðτÞj2dk ð8Þ

was named, in the Russian literature, as the number density
of quasiparticles [60], which, as we will see in next section
dealing with a toy model, is very different from the number
density of the produced particles because it also contains
the vacuum polarization effects, that is, the creation and
annihilation of pairs.

III. PARTICLE CREATION OF SUPERHEAVY
PARTICLES CONFORMALLY COUPLED

TO GRAVITY

This section is devoted to the numerical calculation of
the energy density of the gravitationally produced particles
in two different QI scenarios with smooth potentials,
namely:

(1) Lorentzian quintessential inflation;
Based on the well-known Lorentzian distribution,

the authors of [55,56] considered following the
ansatz

ϵðNÞ ¼ ξ

π

Γ=2
N2 þ Γ2=4

; ð9Þ

where ϵ is the main slow-roll parameter, N denotes
the number of e-folds, ξ is the amplitude of the
Lorentzian distribution, and Γ is its width. From this
ansatz, one can find the exact corresponding poten-
tial of the scalar field, namely

VðφÞ ¼ λM4
pl exp

�
−
2ξ

π
arctan ðsinh ðγφ=MplÞÞ

�

·

�
1 −

2γ2ξ2

3π3
1

cosh ðγφ=MplÞ
�
; ð10Þ

where λ is a dimensionless parameter and the
parameter γ is defined by

γ ≡
ffiffiffiffiffi
π

Γξ

r
:

Here, to simplify the structure of the potential
although without modifying its properties, we set

ξ ¼ γ and disregard the term ð1 − 2γ2ξ2

3π3
1

cosh ðγφ=MplÞÞ,
which has no influence on the dynamics. Hence, we
obtain the simplified version

VðφÞ ¼ λM4
pl exp

�
−
2γ

π
arctan ðsinh ðγφ=MplÞÞ

�
;

ð11Þ

plotted in Fig. 1, and where in order to match with
the current observational data one has to choose
λ ∼ 10−69 and γ ≅ 122 (see [57] for details).
Summing up, in this scenario kination starts when

H ∼Hkin ≅ 4 × 10−8Mpl with φkin ≅ −0.03Mpl,

FIG. 1. Plot of the Lorentzian quintessential inflation potential.
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inflation ends when φEND ≅ −0.078Mpl and the
pivot scale leaves the Hubble radius when
φ� ≅ −0.154Mpl. Finally, at very late times the
effective equation of state (EOS) parameter goes
to −1, which leads to an eternal acceleration.

(2) Exponential α-attractor in quintessential inflation;
The corresponding potential is obtained, com-

bined with a standard exponential potential, from the
following Lagrangian motivated by supergravity and
corresponding to a nontrivial Kähler manifold (see
for instance [27] and the references therein),

L ¼ 1

2

_ϕ2

ð1 − ϕ2

6αÞ2
M2

pl − λM4
ple

−κϕ; ð12Þ

where ϕ is a dimensionless scalar field, and κ and λ
are positive dimensionless constants.
In order that the kinetic term has the canonical

form, one can redefine the scalar field as follows:

ϕ ¼
ffiffiffiffiffiffi
6α

p
tanh

�
φffiffiffiffiffiffi

6α
p

Mpl

�
; ð13Þ

obtaining the following potential plotted in Fig. 2,

VðφÞ ¼ λM4
ple

−n tanhð φffiffiffi
6α

p
Mpl
Þ
; ð14Þ

where we have introduced the notation n≡ κ
ffiffiffiffiffiffi
6α

p
,

and by taking α ∼ 10−2 one has to choose n ∼ 102

and λ ∼ 10−66 in order to match with the observa-
tional data (see [58] for details).
Finally, it is interesting to note that for this case

kination starts later than in LQI; more precisely,
when φkin ≅ −0.5Mpl with Hkin ∼ 4 × 10−7Mpl.
However, the end of inflation and the horizon
crossing occurs earlier than in LQI, φEND ≅
−0.89Mpl and φ� ≅ −1.7Mpl, respectively.

A. A toy model

Before dealing with our models, and in order to better
understand the gravitational particle production, we warm
up by reviewing a toy potential inspired in the Peebles-
Vilenkin model [64],

VðφÞ ¼
( 1

2
m2ðφ2 −M2

pl þM2Þ for φ ≤ −Mpl

1
2
m2 M6

ðφþMplÞ4þM4 for φ ≥ −Mpl;
ð15Þ

where m ∼ 5 × 10−6Mpl is the mass of the inflaton field
andM ≅ 20 GeV is a very small mass needed to match the
theoretical results provided by the model with the current
cosmic acceleration [13].
The toy model contains a discontinuity of the first

derivative of the potential at the beginning of kination,
i.e., when φ ¼ 0. Then, according to the conservation
equation, the second temporal derivative of the scalar field
is discontinuous at the beginning of kination, as well as the
second temporal derivative of the Hubble parameter.
Consequently, the third derivative of the frequency ωkðτÞ
(which depends on the scale factor) is discontinuous at the
beginning of kination, namely τkin, which is the moment
when particles are gravitationally created because it is when
the adiabatic evolution is broken.
On the other hand, before performing analytic calcu-

lations with this toy model, the following remark, which
helps us to understand the more realistic ones, is needed;
we have to make some assumptions to be sure that the
polarization effects do not affect the evolution of the
inflaton field during the slow-roll period, that is, during
the slow-roll regime we will demand that the polarization
effects will be subdominant and do not affect the dynamics
of the inflaton field. Analytically, a condition that ensures
that polarization effects are subdominant is H=mχ ≪ 1,
which implies that ω0

k=ω
2
k ≪ 1, i.e., an adiabatic evolution,

and where once again mχ is the mass of superheavy field χ.
Taking into account that a classical picture of the Universe
(quantum gravitational effects could be neglected) appears
at grand unified theory (GUT) scales with HGUT ≅
5 × 10−5Mpl ≅ 1014 GeV, we have to choose superheavy
massive fields with a mass greater or equal than
mχ ∼ 5 × 10−4Mpl ≅ 1015 GeV, which is a mass of the
same order as those of the vector mesons responsible for
transforming quarks into leptons in simple theories with
SUð5Þ symmetry [68].
Therefore, once we have chosen the mass of the χ field,

in order to obtain the value of the β-Bogoliubov coefficient
we come back to Eq. (6) and, in the first approximation, we
take αkðτÞ ¼ 1, getting

βkðτÞ ¼
Z

τ ω0
kðηÞ

2ωkðηÞ
e−2i

R
η
ωkðη̄Þdη̄dη; ð16Þ

which, after integration by parts, yields before the begin-
ning of kinationFIG. 2. Plot of the exponential α-attractor potential.
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βkðτÞ ¼
�
−

ω0
kðτÞ

4iω2
kðτÞ

þ 1

8ωkðτÞ
�
ω0
kðτÞ

ω2
kðτÞ

�0
þ 1

16iωkðτÞ
�

1

ωkðτÞ
�
ω0
kðτÞ

ω2
kðτÞ

�0�0
þ � � �

�
e−2i

R
τ
ωkðη̄Þdη̄: ð17Þ

However, after the beginning of kination the β-Bogoliubov coefficient must be given by

βkðτÞ ¼
�
−

ω0
kðτÞ

4iω2
kðτÞ

þ 1

8ωkðτÞ
�
ω0
kðτÞ

ω2
kðτÞ

�0
þ 1

16iωkðτÞ
�

1

ωkðτÞ
�
ω0
kðτÞ

ω2
kðτÞ

�0�0
þ � � �

�
e−2i

R
τ
ωkðη̄Þdη̄ þ C; ð18Þ

where the constant C has to be chosen in order that the
β-Bogoliubov coefficient becomes continuous at τkin
because Eq. (6) is a first-order differential equation, and
mathematically it is necessary to demand the solution to be
continuous. Thus, after some cumbersome calculations (see
[64] for details) one has

C ¼
�

m2
χm3a5kin

16iω5
kðτkinÞ

þ � � �
�
e−2i

R
τkin ωkðη̄Þdη̄; ð19Þ

where we have introduced the definition akin ≡ aðτkinÞ.
The terms of the β-Bogoliubov coefficient different from

C lead to subleading geometric quantities in the energy

density. Effectively, the term − ω0
kðτÞ

4iω2
kðτÞ

leads to the following

contribution to the energy density, m
2
χH2

96π , which is negligible
compared with H2M2

pl. The same happens with
1

8ωkðτÞ ðω0
kðτÞ=ω2

kðτÞÞ0 leading to a term of order H4, which

satisfies H4 ≪ H2M2
pl. The product of the first and second

term generates in the right-hand side of the modified
semiclassical Friedmann equation a term of the order
H3mχ , which is also subleading compared with H2M2

pl.
Finally, the third term of (18) leads in the right-hand side of
the semiclassical Friedmann equation to the subleading
term H6

m2
χ
.

Fortunately, this does not happen with C, whose leading
term gives the main contribution of the vacuum-energy
density due to the gravitational particle production. In fact,
the time-dependent terms, which as we have already shown
are always subleading, are vacuum polarization effects, and
they rapidly disappear in the adiabatic regime, that is, soon
after the beginning of kination jβkðτÞj2 approaches jCj2,
obtaining

hρðτÞi ≅
�
0 when τ < τkin

10−5ðmmχ
Þ2m4ðakinaðτÞÞ3 when τ ≥ τkin;

ð20Þ

which at the beginning of kination is subdominant with
respect to the energy density of the inflaton—but it will
eventually dominate because the one of the inflatons
decreases during kination as a−6ðτÞ.
Finally, in order to understand these results better it is

useful to recall, that the authors of the diagonalization

method assume that during the whole evolution of the
Universe, quanta named quasiparticles are created and
annihilated due to the interaction of the quantum field
with gravity [60], i.e., this is a vacuum-polarization effect
where pairs are created and annihilated. And, following this
interpretation, the number density of the created quasipar-
ticles at time τ is given by hNðτÞi¼ 1

2π2a3ðτÞ
R
∞
0 k2jβkðτÞj2dk.

However, one has to be very careful with this interpretation
and especially keep in mind that, as we have already
pointed out in our toy model (15), real particles are
only created when the adiabatic regime breaks.
Effectively, before the beginning of kination, i.e., before
the break of the adiabatic evolution, the main term of the

β-Bogoliubov coefficient is given by − ω0
kðτÞ

4iω2
kðτÞ

, whose

contribution to the energy density is m2
χH2

96π , and to the

number density of the quasiparticles mχH2

512π , and thus, at
any time τ before the beginning of kination
hρðτÞi ≠ mχhNðτÞi, meaning that the quasiparticles do
not evolve as real massive particles. On the contrary,
during kination the polarization effects disappear and the
leading term of hNðτÞi is given by 10−5ðmmχ

Þ3m3ðakinaðτÞÞ3,
having hρðτÞi ¼ mχhNðτÞi and a decay of a−3ðτÞ, which
justifies the interpretation of massive particle production.

B. Gravitational particle creation in Lorentzian
quintessential inflation

Now we are ready to calculate the particle production for
our QI models. Coming back to the LQI potential (11), we
have first of all integrated numerically the conservation
equation for the inflaton field, namely

φ̈þ 3H _φþ Vφ ¼ 0; ð21Þ

whereH ¼ 1ffiffi
3

p
Mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_φ2

2
þ VðφÞ

q
, with initial conditions at the

horizon crossing, i.e., when the pivot scales leaves the
Hubble radius. Recall that in that moment the system is in
the slow-roll phase and (since this regime is an attractor)
one only has to take initial conditions in the basin of
attraction of the slow-roll solution, for example, φ� ¼
−0.154Mpl and _φ� ¼ − Vφðφ�Þ

3H�
(where the “star” denotes

that the quantities are evaluated at the horizon crossing).
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Once we have obtained the evolution of the background,
and in particular the evolution of the Hubble rate, we
compute the evolution of the scale factor, which is given by

aðtÞ ¼ a�e
R

t

t�
HðsÞds

; ð22Þ

where we have chosen as the value of the scale factor at the
horizon crossing a� ¼ 1.
From the evolution of the scale factor, we can see in

Fig. 3 that a spike appears in the plot of the quantity ω0
k=ω

2
k

during the phase transition from the end of inflation to the
beginning of kination, that is, at that moment when the

adiabatic evolution is broken and particles are gravitation-
ally produced.
Then, from the knowledge acquired studying our toy

model (15), we have numerically solved the equation (6),
with initial conditions αkðτ�Þ ¼ 1 and βkðτ�Þ ¼ 0 at the
horizon crossing (there were neither particles nor polari-
zation effects at that moment because during the slow-roll
regime the derivatives of the Hubble rate are negligible
compared with the powers of H, i.e., the system is in the
adiabatic regime).
In order to get rid of complex exponentials we have

transformed equation (6) into a second-order differential
equation, namely

8>><
>>:

α00kðτÞ ¼ α0kðτÞ
�

ω00
kðτÞ

ω0
kðτÞ −

ω0
kðτÞ

ωkðτÞ þ 2iωkðτÞ
�
þ
�

ω0
kðτÞ

2ωkðτÞ

�
2

αkðτÞ

β00kðτÞ ¼ β0kðτÞ
�

ω00
kðτÞ

ω0
kðτÞ −

ω0
kðτÞ

ωkðτÞ − 2iωkðτÞ
�
þ
�

ω0
kðτÞ

2ωkðτÞ

�
2

βkðτÞ
: ð23Þ

Given that αkðτ�Þ ¼ 1 and βkðτ�Þ ¼ 0 leads to α0kðτ�Þ ¼ 0, we are interested in solving the equation for αkðτÞ, which can
be split into the real and imaginary form in the following way,

8>><
>>:

α00k;ReðτÞ ¼ α0k;ReðτÞ
�

ω00
kðτÞ

ω0
kðτÞ −

ω0
kðτÞ

ωkðτÞ

�
− 2ωkðτÞα0k;ImðτÞ þ

�
ω0
kðτÞ

2ωkðτÞ

�
2

αk;ReðτÞ

α00k;ImðτÞ ¼ α0k;ImðτÞ
�

ω00
kðτÞ

ω0
kðτÞ −

ω0
kðτÞ

ωkðτÞ

�
þ 2ωkðτÞα0k;ReðτÞ þ

�
ω0
kðτÞ

2ωkðτÞ

�
2

αk;ImðτÞ
; ð24Þ

and then jβkðτÞj2 ¼ jαkðτÞj2 − 1 because of the well-known
conservation property of the Wronskian. For the value
k ¼ akinHkin, we obtain in Fig. 4 that jβkðτÞj2 soon
stabilizes to a nonzero value after the beginning of kination,
containing only particle-production effects. We have nu-
merically verified that this happens for the range
0.05≲ k

akinHkin
≲ 7 × 104, which leads to values of jβkj2

of the order of 10−10 and 10−11.

Then, introducing these values of the β-Bogoliubov
coefficient in energy density [Eq. (7)], we have obtained
a vacuum energy density of the order of 1044 GeV4. So, the
energy density of the produced particles evolves as

hρðτÞi ¼ hρ̄i
�

ā
aðτÞ

�
3

; ð25Þ

FIG. 3. Plot of the adiabatic evolution for a heavy field with mass mχ ≅ 1015 GeV, when the background is given by the Lorentzian
quintessential inflation potential. The value k ¼ akinHkin has been used for the quantities akin, Hkin of this model. On the left, with the
same scale as the one used in Fig. 1 and on the right with a wider range of values of the scalar field in order to appreciate the extent of the
nonadiabatic region.
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where hρ̄i ≅ 1044 GeV4 ≅ 3 × 10−30M4
pl and ā are, respec-

tively, the energy density of the produced particles and the
value of the scale factor at the end of the nonadiabatic phase
(φ ∼Mpl, which coincides with the stabilization of the
β-Bogoliubov coefficient). Finally, the energy density of
the background at this moment is given by ρ̄φ ¼
3H̄2M2

pl ≅ 2 × 1057 GeV4 ≅ 7 × 10−17M4
pl, showing that

the energy density of the produced particles is subleading
close to the beginning of kination, but will eventually be
dominant because, during the kination regime, the energy
density of the inflaton field decreases as a−6.
Remark 3.1 Note that the values of the wave number k,

that leads to significant values of the β-Bogoliubov
coefficient, are not in the ultraviolet regime. On the
contrary, analytic calculations only deal with the ultra-
violet spectrum leading to an insignificant value of the
β-Bogoliubov coefficient for heavy masses. For this reason,
without taking into account the long wavelengths, it is
usual to assume that the heavy masses suppress the particle
production, thus leading to an inefficient reheating temper-
ature. However, as we will see, this is not the case when one
performs the numerical calculations considering all the
spectrum of values of the wave number.
Remark 3.2 In the case of the α-attractors in the context

of quintessential inflation, we have numerically obtained

that the corresponding energy densities are of the order
hρ̄i ∼ 3 × 10−27M4

pl and ρ̄φ ∼ 6 × 10−17M4
pl (see Fig. 5).

We would like to finish this subsection showing more

details about the function
ω0
k

ω2
k
¼ m2

χa3H
ω3
k
. We have calculated

its temporal derivative, obtaining

d
dt

�
ω0
k

ω2
k

�
¼ 3H2a3m2

χ

ω3
k

�
1 − weff

2
−
m2

χa2

ω2
k

�
; ð26Þ

where weff denotes the effective EOS paramenter, i.e., the
ratio of the pressure to the energy density. We will easily
see that during kination, i.e., when weff ¼ 1, this is a
decreasing function, and is only an increasing function for
the modes satisfying

k >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ weff

1 − weff

s
mχa: ð27Þ

Then, for the relevant models in LQI that contribute to
the energy density of produced particles (0.05≲

k
akinHkin

≲ 7 × 104), the condition (27) is fulfilled during
all the inflationary regime (see Fig. 3 and recall that LQI
inflation ends when φEND ≅ −0.078), and thus one obtains
the spike given in Fig. 3.
In addition, for the relevant modes, at the horizon

crossing the quantity
ω0
k

ω2
k
is extremely small and, since it

is an increasing function during inflation, the quantity
ω0
k

ω2
k
is

negligible before the horizon crossing; that is, during this
period there is no particle production and the polarization
effects are negligible—for this reason we can ensure that
before the horizon crossing the relevant modes of the field χ
are in the vacuum. After the horizon crossing, polarization
effects appear and later, during the phase transition,
particles are created as we will see in Fig. 4. Finally, the
β-Bogoliubov coefficient stabilizes [at the same time that
the nonadiabatic regime finishes (right plot of Fig. 3)]

FIG. 5. Plot of the adiabatic evolution(left) and the β-Bogoliubov coefficient(right) for a heavy field with massmχ ≅ 1015 GeV, when
the background is given by the exponential α-attractor potential. Here we have used the value k ¼ akinHkin, since we have observed that
particle creation takes place for modes in the range 1≲ k

akinHkin
≲ 103.

FIG. 4. Evolution of jβkðτÞj2.
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during kination, that is, the polarization effects are negli-
gible and it only encodes the particle creation.
Note that exactly the same happens in the α-QI scenario.

IV. THE REHEATING PROCESS

After the production of the heavy massive particles with
masses around 1015 GeV, they have to decay into lighter
ones which, after the thermalization process, form a
relativistic plasma that depicts our hot Universe. Two
different situations may arise, as follows:
(1) The decay, which occurs at time τdec, is before the

end of the kination regime, when the energy density
of the inflaton becomes equal to the one of the
χ-field.

(2) The decay is after the end of the kination regime.

A. Decay before the end of kination

Let us begin the discussion with the LQI potential. In this
case, the energy density of the background, i.e., the one of
the inflaton field, and the one of the relativistic plasma,
when the decay is finished, when Γ ∼Hdec ¼ H̄ð ā

adec
Þ3 ≅

1010ð ā
adec

Þ3 GeV ∼ 5 × 10−9ð ā
adec

Þ3Mpl, will be

ρφ;dec ¼ 3Γ2M2
pl and

hρdeci ≅ 3 × 10−30
�

ā
adec

�
3

M4
pl ∼ 10−21ΓM3

pl: ð28Þ

Imposing that the end of the decay precedes the end of
kination means hρdeci ≤ ρφ;dec, and one gets Γ ≥ 10−21Mpl.
In addition, since the decay is after the beginning of the

kination, one has Γ ≤ Hkin ≅ 4 × 10−8Mpl. So, we have the
following bound for the decay rate,

10−21Mpl ≤ Γ ≤ 4 × 10−8Mpl: ð29Þ

Finally, the reheating temperature, i.e., the temperature
of the Universe when the relativistic plasma in thermal
equilibrium starts to dominate (which happens when
ρφ;reh ¼ hρrehi) can be calculated as follows: Since after
the decay the evolution of the respective energy densities is
given by

ρφ;reh ¼ ρφ;decðadec=arehÞ6;
hρrehi ¼ hρdeciðadec=arehÞ4; ð30Þ

we will have hρdeci
ρφ;dec

¼ ðadec=arehÞ2, and thus, the reheating

temperature will be

Treh ¼
�

30

π2greh

�
1=4

hρrehi14 ¼
�

30

π2greh

�
1=4

hρdeci14
ffiffiffiffiffiffiffiffiffiffiffi
hρdeci
ρφ;dec

s

∼ 4 × 10−17
�
Mpl

Γ

�
1=4

Mpl; ð31Þ

where greh ¼ 106.75 is the effective number of degrees of
freedom for the Standard Model. So, taking into account
the bound (29), the reheating temperature ranges between
7 × 103 GeV and 2 × 107 GeV.

B. Decay after the end of kination

In the case that the decay of the χ-field is after the end of
kination, one has to impose Γ ≤ HðτendÞ≡Hend, where we
have denoted by τend the time at which kination ends.
Taking this into account, one has

H2
end ¼

2ρφ;end
3M2

pl

and ρφ;end ¼ ρ̄φ

�
ā

aend

�
6

¼ hρ̄i2
ρ̄φ

; ð32Þ

where we have used that the kination ends when

hρðτendÞi ¼ ρφ;end, meaning ðā=aendÞ3 ¼ hρ̄i
ρ̄φ
. So, the con-

dition Γ ≤ Hend leads to the bound

Γ ≤ 10−23Mpl: ð33Þ

On the other hand, assuming once again instantaneous
thermalization, the reheating temperature (i.e., the temper-
ature of the universe when the thermalized plasma starts to
dominate) will be obtained when all the superheavy
particles decay, i.e., when H ∼ Γ, obtaining

Treh ¼
�

30

π2greh

�
1=4

hρdeci1=4 ¼
�

90

π2greh

�
1=4 ffiffiffiffiffiffiffiffiffiffiffi

ΓMpl

p
; ð34Þ

where we have used that, after the end of the kination
regime, the energy density of the produced particles
dominates the one of the inflaton field.
Consequently, since the BBN epoch occurs at the 1 MeV

regime and taking once again greh ¼ 106.75, one can find
that, in that case, the reheating temperature is bounded by

1 MeV ≤ Treh ≤ 5 × 106 GeV: ð35Þ

Remark 4.1 Since for α-attractors in QI the number of
produced particles is higher than in LQI, then the reheating
temperature also increases. In fact, following step by step
the same calculations that we have done above, we have
obtained a very high reheating temperature when the decay
is before the end of kination, between 107 GeV and
109 GeV. And, when the decay is after the end of kination,
the reheating temperature belongs in the range between
1 MeV and 109 GeV.

LLIBERT ARESTÉ SALÓ and JAUME DE HARO PHYS. REV. D 104, 083544 (2021)

083544-8



V. GRAVITATIONAL WAVES
AND THE BBN SUCCESS

A. The overproduction of gravitational waves

In the seminal paper [12], the authors pointed out that in
quintessential inflation a reheating due to the gravitational
production of light particles is incompatible with the
overproduction of gravitational waves. However, as we
will show in this subsection, for our LQI model, (and also
in α- QI, because in this scenario, as we have already
explained, the production of particles is greater than in
LQI), when the reheating is due to the gravitational creation
of superheavy particles, then the overproduction of GWs
does not disturb the BBN success.
To prove our statement, first of all we recall that the

energy density of the produced GWs during the phase
transition from the end of inflation to the beginning of
kination is given by [69]

hρGWðτÞi ≅
H4

kin

2π3

�
akin
aðτÞ

�
4

≅ 10−2H4
kin

�
akin
aðτÞ

�
4

: ð36Þ

Then, taking into account that the success of the BBN
demands that the ratio of the energy density of GWs to
the one of the produced particles at the reheating time
satisfies [70]

hρGW;rehi
hρrehi

≤ 10−2; ð37Þ

we will see that the constraint (37) is overcome when the
decay of the superheavy particles is before the end of
kination. Effectively, if the decay occurs before the end of
kination one has

hρGW;rehi
hρrehi

¼ hρGW;deci
hρdeci

; ð38Þ

because the energy density of light relativistic particles
evolves as the one of the GWs. Next, noting that during
kination the energy density of the background scales as a−6,
it yields that �

akin
adec

�
4

¼
�
ρφ;dec
ρφ;kin

�
2=3

; ð39Þ

and thus, using our previous results [see Eq. (28)] and
recalling that the value of the Hubble rate at the beginning
of kination is Hkin ≅ 4 × 10−8Mpl, we get

hρGW;rehi
hρrehi

≅ 10−1
�

Γ
Mpl

�
1=3

: ð40Þ

Therefore, the bound (37) is overcome when

Γ ≤ 7 × 10−4Mpl; ð41Þ

which is completely compatible with the bound (29).

On the other hand, when the decay is produced after the
end of kination, and assuming once again instantaneous
thermalization, the reheating time will coincide with the
decay one. Then, since hρdeci ¼ 3Γ2M2

pl and

Hdec ¼ Hend

�
aend
adec

�
3=2

⇒

�
aend
adec

�
3=2

¼
ffiffiffi
3

2

r
ΓMpl

ffiffiffiffiffi
ρ̄φ

p
hρ̄i ; ð42Þ

where we have used that Hend ¼
ffiffi
2
3

q
hρ̄i

Mpl

ffiffiffiffi
ρ̄φ

p .

Thus, we will have

hρGW;deci ¼ hρGW;endi
�
aend
adec

�
4

¼ hρGW;endi
� ffiffiffi

3

2

r
ΓMpl

ffiffiffiffiffi
ρ̄φ

p
hρ̄i

�8=3

; ð43Þ

and, using that

�
akin
aend

�
4

¼ ρφ;end
ρφ;kin

and ρφ;end ¼
hρ̄i2
ρ̄φ

; ð44Þ

we get

hρGW;deci ¼
�
2

16

�
1=3

�
Hkin

Mpl

�
2
�

ρ̄φ
hρ̄i2

�
1=3

ðΓMplÞ8=3

≅ 10−2Γ8=3M4=3
pl ; ð45Þ

and thus

hρGW;rehi
hρrehi

¼ hρGW;deci
hρdeci

≅ 3×10−3
�

Γ
Mpl

�
2=3

≤ 10−17; ð46Þ

where we have used the bound (33). So, the constraint (37)
is clearly overcome.

B. BBN constraints from the logarithmic
spectrum of GWs

As we have already explained, GWs are produced in the
postinflationary period, and its logarithmic spectrum of

GWs, namely ΩGW defined as ΩGW ≡ 1
ρc

dρGWðkÞ
d ln k [where

ρGWðkÞ is the energy density spectrum of the produced
GWs; ρc ¼ 3H2

0M
2
pl, where H0 is the present value of the

Hubble rate, is the so-called critical density] scales as k2

during kination [71], producing a spike in the spectrum of
GWs at high frequencies. Then, so that GWs do not
destabilize the BBN, the following bound must be imposed
(see Sec. 7.1 of [72]),
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I ≡ h20

Z
kend

kBBN

ΩGWðkÞd ln k ≤ 10−5; ð47Þ

where h0 ≅ 0.678 parametrizes the experimental uncer-
tainty to determine the current value of the Hubble constant
and kBBN , kend are the momenta associated to the horizon
scale at the BBN and at the end of inflation, respectively. As
has been shown in [73], the main contribution of the
integral (47) comes from the modes that leave the Hubble
radius before the end of the inflationary epoch and finally
reenter during kination, that means, for kend ≤ k ≤ kkin,
where kend ¼ aendHend and kkin ¼ akinHkin. For these
modes one can calculate the logarithmic spectrum of
GWs as in [43] (see also [71,74–76])

ΩGWðkÞ ¼ ϵ̃Ωγh2GW

�
k

kend

�
ln2

�
k
kkin

�
; ð48Þ

where h2GW ¼ 1
8π ðHkin

Mpl
Þ2 is the amplitude of the GWs; Ωγ ≅

2.6 × 10−5h−20 is the present density fraction of radiation,
and the quantity ϵ̃, which is approximately equal to 0.05 for
the Standard Model of particle physics, takes into account
the variation of massless degrees of freedom between
decoupling and thermalization (see [71,73] for more
details). As has been derived in [73], the specific form
of the expression above comes from the behavior of the
Hankel functions for small arguments. Now, plugging
Eq. (48) into Eq. (47) and disregarding the subleading
logarithmic terms, one finds

2ϵ̃h20Ωγh2GW

�
kkin
kend

�
≤ 10−5 ⇒ 10−2

�
Hkin

Mpl

�
2
�
kkin
kend

�
≤ 1

⇒ 10−17
�
kkin
kend

�
≤ 1; ð49Þ

because in our LQI model at the beginning of kination the
Hubble rate is Hkin ∼ 4 × 10−8Mpl, and the same happens
for our α-QI model.
So, we continue with the LQI, but taking into account

that all the reasoning is also valid for the other model. Then,
to calculate the ratio kkin=kend, we will have to study the
following two different situations:
(1) When the decay occurs before the end of kination.

In this case the reheating time coincides with the
end of kination, and thus, a simple calculation
leads to

kkin
kend

¼ kkin
kreh

: ð50Þ

Using the formulas

ρφ;reh ¼ ρφ;kin

�
akin
areh

�
6

and

hρrehi ¼ hρdeci
�
adec
areh

�
4

; ð51Þ

we get

akin
areh

¼
�hρdeci
ρφ;kin

�
1=6

�
adec
areh

�
2=3

¼
�hρdeci
ρφ;kin

�
1=6

�hρdeci
ρφ;dec

�
1=3

; ð52Þ

where we have used the relation ðadecareh
Þ2 ¼ hρdeci

ρφ;dec
. Then,

taking into account that Hreh ¼ Γðadecareh
Þ3, we obtain

kkin
kend

¼ kkin
kreh

¼ Hkinakin
Hrehareh

¼ Hkin

Γ
ρφ;dec
hρdeci

�
ρφ;dec
ρφ;kin

�
1=6

: ð53Þ

Finally, from our previous results (28)

ρφ;dec ¼ 3Γ2M2
pl; hρdeci ∼ 10−21ΓM3

pl and

ρφ;kin ¼ 3H2
kinM

2
pl; ð54Þ

we arrive at

kkin
kend

∼ 1015
�

Γ
Mpl

�
1=3

; ð55Þ

and consequently the constraint (49) becomes

�
Γ

Mpl

�
1=3

≤ 102; ð56Þ

which is obviously overcome for all the viable values
of Γ, i.e., for all values between 10−21Mpl and
10−8Mpl.

(2) When the decay occurs after the end of kination.
Now, since during kination we have Hend ¼

Hkinðakinaend
Þ3, one gets

kkin
kend

¼
�
Hkin

Hend

�
2=3

; ð57Þ

and taking into account that
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Hend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hρ̄i2
3M2

plρ̄φ

s
∼ 3 × 10−22Mpl and

Hkin ∼ 4 × 10−8Mpl; ð58Þ

the bound (49) is completely overcome.

VI. CONCLUSIONS

In the present work we numerically studied the gravi-
tational particle production of superheavy particles con-
formally coupled to gravity for two classes of QI scenarios;
namely LQI and α-QI. To calculate the energy density
of the produced particles we have used the well-
known diagonalization method, where the key point is
the calculation and interpretation of the time-dependent
β-Bogoliubov coefficient.
In fact, this coefficient encodes all the polarization

effects (creation and annihilation of pairs named, in the
Russian literature, quasiparticles) and the produced super-
heavy particles—the real ones which after decaying into
lighter ones form a relativistic plasma which reheats the
universe during the phase transition from the end of
inflation to the beginning of kination. However, and this
is the main observation of the present work, the polarization
effects disappear soon after the end of the phase transition
(during the kination regime), i.e., when the evolution of the
Universe gets adiabatic again. So, we have numerically
checked that effectively the value of the β-Bogoliubov
coefficient stabilizes during the kination, which allows us
to compute it numerically, and thus, to calculate numeri-
cally the energy density of the particles created during this
phase transition.

Once these superheavy particles have been created, they
must decay into lighter ones to form a relativistic plasma
which eventually becomes dominant and matches with the
hot big bang Universe. Then two different situations arise;
namely, when the decay occurs before the end of the
kination regime and when the decay occurs after the end of
the kination regime. Thus, since we have numerically
computed the energy density of the superheavy particles,
for both situations we have been able to calculate the
reheating temperature of the Universe, which depends on
the decay rate of these superheavy particles and whose
maximum value is quite big—more or less around 107 GeV
in LQI and around 109 GeV in α-QI—which demystifies
the belief, never checked numerically, that heavy masses
suppress the particle production thus leading to an abnor-
mally low reheating temperature. In fact, the main con-
tribution of particle production is to a long-wavelength
regime, which is impossible to quantify analytically
because only ultraviolet effects can be calculated with
analytic methods, and this is the reason why in many
papers the production of superheavy particles is simply
disregarded.
Finally, we have checked that the overproduction of

GWs does not disturb the BBN, because all the bounds
preserving its success are clearly overcome.
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