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Cubic Galileon massive gravity is a development of de Rham–Gabadadze-Tolley massive gravity theory in
which the space of the Stueckelberg field is broken. We consider the cubic Galileon term as a scalar field
coupled to the graviton field. We present a detailed study of the cosmological aspects of this theory of gravity.
We analyze self-accelerating solutions of the background equations of motion to explain the accelerated
expansion of the Universe. Exploiting the latest Union2 type Ia supernovae (SNIa) dataset, which consists of
557 SNIa, we show that cubic Galileon massive gravity theory is consistent with the observations. We also
examine the tensor perturbations within the framework of this model and find an expression for the dispersion
relation of gravitational waves and show that it is consistent with the observational results.
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I. INTRODUCTION

Although Einstein’s theory of general relativity has been
very successful in describing gravity at low energies and
explaining observations in solar system scales, this theory
faces fundamental problems in cosmology [1–5]. General
relativity cannot explain the origin of accelerated expansion
of the Universe and the cosmological constant problem [6–8].
There is strong observational evidence, such as cosmic
microwave background (CMB) radiation [9], type Ia super-
novae [10], and baryon acoustic oscillations [11], which
confirm the existence of these problems. The Universe can be
described by the standard models of particle physics and
cosmology in microscopic and large cosmological scales,
respectively. It is noticeable that many physicists would like
to unify these twomodels into a single comprehensive theory.

One tentative approach for solving the problems in gravity
and cosmology is studying a spin-2 massive graviton as a
propagator of gravity. Many models have been developed to
describe graviton and its interactions. Still, the main concern
is finding a theory that would be stable and consistent with
observations. It is interesting to note that the first attempt to
explain a massive spin-2 particle began by Fierz and Puali in
1939; they proposed a linear action for a massive spin-2
particle (i.e., massive graviton) in a flat spacetime [12].
Vainshtein proposed an idea to solve the van Dam–Veltman-
Zakharov (vDVZ) discontinuity found in the limit of the
graviton mass mg → 0 in the linear Fierz-Pauli action; see
Refs. [13–15]. Vainshtein argued that to avoid the vDVZ
discontinuity, Fierz and Pauli’s theory should be nonlinear
instead of linear. Moreover, in 1979, Boulware and Deser
claimed that the nonlinear theory of Fierz and Pauli has a
ghost instability which was later called the Boulware-Deser
ghost [16].
Eventually, in 2010, de Rham and Gabadadze showed that

it is possible to construct ghost-free nonlinear massive
gravity in a certain decoupling limit [17]. They presented
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a theory with nonlinear interactions which explains the
massive spin-2 field in a flat spacetime, which is known as a
ghost-free de Rham, Gabadadze, and Tolley (dRGT)massive
gravity theory [18]. However, the dRGT massive gravity
theory consists of instabilities in Friedmann-Lemaître-
Robertson-Walker (FLRW) homogeneous spacetime [19].
So, this issue has motivated people to propose alternative
theories [20–25]. One of the best solutions is using a
coupling background to a scalar field which is known as
quasidilaton massive gravity theory [26]. This is successful
in explaining the accelerated expansion of the Universe.
However, due to the instability of tensor perturbations in this
theory, extensions of it have been introduced to find an
improved solution [27,28].
In this paper, we consider the scalar field to be a cubic

Galileon which is coupled to the graviton field. Using the
Galileon model, we introduce a scalar field as a candidate
for dark energy. Thus, the Galileon model is one of
the generalizations of general relativity and can describe
the accelerated expansion of the Universe. In this model,
the scalar field is invariant under the Galileon trans-
formation ϕ → ϕþ bμxμ þ c where ϕ is the Galileon
field, and bμ and c are constants. The equations of motion
obtained from this model are quadratic, and screening
occurs via the Vainshtein mechanism. This symmetry was
initially proposed in the separation limit of the Dvali-
Gabadadze-Porrati (DGP) brane-world model, which is
inherited from Poincaré invariance in higher dimensions
[29,30]. This symmetry was later used in a more general
scalar field theory in which the equations of motion are
quadratic. Although Galileons were originally introduced
in the literature of the DGP brane-world model, they also
appear in other gravitational models such as massive
gravity [17,18,31].
In the recent literature, the word “Galileon” goes far

beyond models in which the action is invariant under a
symmetric translational transformation, and it is in a class of
theories that have derivatives of a coupled field and can
establish a consistent cosmological theory. It has been shown
in Refs. [32,33] that Galileons can properly explain dark
energy. Also, the results of Refs. [34,35] show that this
model provides an explanation for the origins of the density
perturbations in the inflationary era; hence, it could even be
an alternative to the inflationary models. There has been a
tendency toward studying cosmological aspects and pertur-
bation analysis in massive gravity theories and their exten-
sions, for instance, the investigation of the constraints on
quasidilaton massive gravity to find the bound on graviton
mass; see Ref. [36]. Also, dynamical equations, which lead
to the expansion history of the Universe throughout all eras
in extended quasidilaton massive gravity, have been studied
in Ref. [37], and in this paper, the effective mass of
gravitational waves has been found. Moreover, the new
extension of massive gravity theory has been introduced by
breaking the translation symmetry in the Stueckelberg

space [38]. The perturbation analysis and the propagation
of gravitational waves have been studied in the paper as well.
Furthermore, some aspects of Galileon in cosmology and
modified gravity have been studied [39–41]. It is interesting
to note that by considering gravitational radiation in binary
pulsars in the context of the cubic Galileon massive gravity,
a new bound of graviton mass has been obtained in Ref. [31].
Some other valuable studies are in Refs. [42–45].
The outline of this paper is as follows. In Sec. II, we

introduce the cubic Galilean massive gravity theory. Also,
we obtain the background equations of motion and self-
accelerating solutions. In Sec. III, we test the solutions of
cubic Galilean massive gravity theory with the latest
Union2 type Ia supernovae (SNIa) dataset, which consists
of 557 SNIa. In Sec. IV, we present a perturbation analysis
for determining the dispersion relation of gravitational
waves in this theory. In Sec. V, some concluding remarks
are given.

II. THE MODEL

In this section, we introduce a model in which the scalar
field is chosen from the cubic Galileon model. The action
of the theory can be written as

S ¼M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p fR½g�− 2Λþ 2m2
gðL2 þ α3L3 þ α4L4Þ

−
ω

M2
Pl

∂μσ∂μσð1þ β∂μ∂μσÞg; ð1Þ

where MPl is the reduced Planck mass, g is the determinant
of the metric, and R is the Ricci scalar. It is important to note
that the kinetic part of the action in Eq. (1) is a subclass of a
more general action known as the Horndeski action. There is
a linear expression in the action of the cubic Galileon [46]
that plays the role of the potential. Here, we discard this
linear term since the theory is invariant under a global
dilation of the spacetime coordinates accompanied by a shift
of σ. β is a cubic Galileon parameter; for β ¼ 0, the action in
Eq. (1) reduces to the standard quasidilaton action without
any potential term. We assume that mg is a constant
parameter, so this model can be considered as a generali-
zation of the quasidilaton theory. The part of the action that
creates the mass for the graviton can be expressed as

L2 ¼
1

2
ð½K�2 − ½K2�Þ;

L3 ¼
1

3!
ð½K�3 − 3½K�½K2� þ 2½K3�Þ;

L4 ¼
1

4!
ð½K�2 − 6½K�2½K2� þ 3½K2�2 þ 8½K�½K3� − 6½K4�Þ;

ð2Þ

where the square brackets denote a trace. While these
expressions are in a form similar to dRGT theory, in
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the quasidilaton case, the building block tensor K is
defined as

Kμ
ν ¼ δμν − e

σ
MPlð

ffiffiffiffiffiffiffiffiffi
g−1g̃

q
Þμν ; ð3Þ

where g̃ is a nondynamical fiducial metric. This symmetry
rules out a nontrivial potential for σ. Throughout the
paper, we adopt the units c ¼ ℏ ¼ 1 in which the reduced
Planck mass becomes MPl ¼ 1ffiffiffiffiffiffi

8πG
p . Furthermore, we

follow the “mostly plus” metric signature convention.
Some shortcut notations are used to denote the contrac-
tions of rank-2 tensors Kμ

μ ¼ ½K� and Kμ
νKν

μ ¼ ½K2�, etc.
Greek indices run from 0 to 3, while latin indices from 1
to 3. With the latin indices, we denote contractions in the
same way as for the greek indices hijhij ¼ ðhijÞ2,
AiAi ¼ ðAiÞ2, etc.
For the physical background metric, we use the flat

FLRW ansatz

gμν ¼ −NðtÞ2dt2 þ aðtÞ2δijdxidxj; ð4Þ

and the Minkowski metric is used for the nondynamical
fiducial metric denoted by g̃μν and expressed as

g̃μν ¼ −f0ðtÞ2dt2 þ δijdxidxj: ð5Þ

Notice that N shows the lapse function of the dynamical
metric, and it is similar to a gauge function. The scale factor
is represented by a, and the dot denotes the derivative with
respect to time. In addition, the lapse function N is related
to the coordinate time t and the proper time via τdτ ¼ Ndt
[47,48]. Also, fðtÞ is the Stueckelberg scalar function,
whereas ϕ0 ¼ fðtÞ and ∂ϕ0=∂t ¼ _fðtÞ [49], and the
unitary gauge corresponds to the choice fðtÞ ¼ t. To obtain
the equations of motion, it is better to write Eq. (1) as a
mini-super-space action

S
V
¼

Z
dt

�
M2

Pl

�
−3

a _a2

N
− Λa3N

�

þ ωa3

2N
_σ2
�
1 −

β

N

�
_N
N2

−H

�
_σ

�

þM2
Plm

2
g½Na3ðX − 1Þ½3ðX − 2Þ − ðX − 4ÞðX − 1Þα3

− ðX − 1Þ2α4� þ f0a4XððX − 1Þ½3 − 3ðX − 1Þα3
þ ðX − 1Þ2α4�Þ�

�
; ð6Þ

where V is the comoving volume, and we used the
following definition:

X ≡ e
σ

MPl

a
: ð7Þ

Note that X is the ratio of scale factors of the metrics
e2σ=MPl g̃μν and gμν. In addition, to further simplify the
expressions, we define

H ≡ _a
Na

; ð8Þ

where H is the Hubble parameter for the physical metric
and

r≡ a
N

ð9Þ

corresponding to the ratio of the speed of light on these two
metrics. Note that we use integration by parts to obtain
mini-super-space action (6), so that we convert the second
derivative terms to the first order derivatives as follows:

σ̈ → −
_a
a
þ

_N
N

_σ: ð10Þ

By varying the mini-super-space action (6) with respect to
f and applying unitary gauge condition fðtÞ ¼ t, we have

d
dt
fa4ðX−1ÞX½3þ3α3þα4− ð3α3þ2α4ÞXþα4X2�g ¼ 0:

ð11Þ

Integrating the above equation yields

ðX− 1ÞX½3þ 3α3þ α4 − ð3α3þ 2α4ÞXþ α4X2� ¼ 1

a4
×C0;

ð12Þ

where C0 is an integral constant. It is worth mentioning that
the constant solutions of X lead to the effective energy
density and show behavior similar to a cosmological
constant. In an expanding universe, the scale factor grows
as time passes, so the right-hand side of Eq. (12) decreases.
Therefore, after a long enough time, X leads to a constant
value XSA which makes the left-hand side of the equation
zero. One of the solutions for Eq. (12) is X ¼ 0 which
leads to σ → 0. Meanwhile, this solution multiplies to the
perturbations of the auxiliary scalars, which means that we
encounter strong coupling in the vector and scalar sectors.
Thus, to avoid strong coupling, we discard this solution
[26]. Therefore, we have

ðX− 1ÞX½3þ 3α3þα4− ð3α3þ 2α4ÞXþα4X2�jX¼XSA
¼ 0:

ð13Þ

Another solution is X ¼ 1, which leads to a vanishing
cosmological constant, and because of inconsistency, it is
unacceptable and so it should be ignored too [26]. As a
result, the two remaining solutions of Eq. (13) are
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X�
SA ¼ 3α3 þ 2α4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

p
2α4

: ð14Þ

Using this result, we can find the modified Friedmann
equation. For this purpose, we start by writing the equation
of motion related to the lapse function N,

3H2 −
ω

2M2
Pl

_σ2

N2

�
1 − 3β

σ̈

N2

�

¼ Λþm2
gfðα3 þ α4ÞX3 − 3ð1þ 2α3 þ α4ÞX2

þ 3ð3þ 3α3 þ α4ÞX − ð6þ 4α3 þ α4Þg; ð15Þ

where _σ
N ¼ MPlðH þ _X

NXÞ and σ̈
N2 ¼ MPl

N2
d
dt ðNH þ _X

XÞ. If
X ¼ X�

SA, using time reparametrization invariance to set
NðtÞ ¼ 1, we obtain the Friedmann equation

�
3 −

ω

2
ð1 − 3βMPl

_HÞ
�
H2 ¼ Λþ ξ�: ð16Þ

Here, ξ� is a fixed quantity, which is defined as follows:

ξ� ¼ m2
gfðα3 þ α4ÞðX�

SAÞ3 − 3ð1þ 2α3 þ α4ÞðX�
SAÞ2

þ 3ð3þ 3α3 þ α4ÞðX�
SAÞ3 − ð6þ 4α3 þ α4Þg: ð17Þ

One can see that ξ� has appeared as an additional cosmo-
logical constant in Friedmann’s equation. To describe the
dynamics of the Hubble parameter, it is better to convert the
time in Eq. (16) to the redshift. Applying a change of
variable d

dt ¼ −Hðzþ 1Þ d
dz, the modified Friedmann equa-

tion becomes

�
3 −

ω

2
ð1þ 3βMPlHð1þ zÞH0Þ

�
H2 ¼ Λþ ξ�; ð18Þ

where the prime denotes the derivative with respect to the
redshift z. For the case β ¼ 0, the Friedmann equation (18)
provides a condition on the parameter ω. For the self-
accelerating solutions, to keep the left-hand side of the
Friedmann equation (18) positive, one needs to have ω < 6.
This ensures having standard cosmology during matter

domination if we add the ordinary matter to the right-hand
side of the equation. For the case β ≠ 0, ifω is equal to 6, the
solution to the asymptotic state of Eq. (18) in small redshifts
can be obtained as

HðzÞ ∼H0 þ
ζ�

H3
0

zþ ½−3ðζ�Þ2 − ζ�H4
0�

2H7
0

z2

þ ζ�½21ðζ�Þ2 þ 9ζ�H4
0 þ 2H8

0�
6H11

0

z3 þ � � � ; ð19Þ

where ζ� is defined as

ζ� ≡ −
2

9

Λþ ξ�

βMPl
; ð20Þ

and H0 represents the Hubble parameter at the present time.
In the case of ω ¼ 6, one can conclude that for any value of
β, the Hubble parameter is well behaved, and so this model
can explain the accelerated expansion of the Universe.
Taking the variation of action (6) with respect to the

scalar field, the equation of motion corresponding to σ is
obtained as

0 ¼ 3H

�
H þ

_X
NX

�
þ 1

N
d
dt

�
H þ

_X
NX

�

þ 3

2
β

�
H þ

_X
NX

�
Ξ −

m2
g

ω
Xf−ð3þ rÞð3þ 3α3 þ α4Þ

þ 6ð1þ rÞð1þ 2α3 þ α4ÞX − 3ð1þ 3rÞ
× ðα3 þ α4ÞX2 þ 4rα4Xg; ð21Þ

where

Ξ≡MPl

�
3H2 þ

_H
N
þ

_N2

N4
− 5H

_N
N2

−
N̈
N3

��
H þ

_X
NX

�

þ 2MPl

�
H −

_N
N2

�
1

N2

d
dt

�
NH þ

_X
X

�
: ð22Þ

Exploiting Eq. (21), one finds

rSA ¼ 1

m2
gðω − 6ÞðX�

SAÞ2ðX�
SAα3 − α3 − 2Þ f2ðm

2
gð3þ α3Þ − ΛÞω − 2βðω − 6ÞωH4M2

Pl

þm2
gX�

SA½X�
SAð12þ 6α3 þ 4ωþ 5α3ω − X�

SAα3ðωþ 6ÞÞ − 6ωðα3 þ 2Þ�g: ð23Þ

III. COSMOLOGICAL TESTS

In 1998, observations on distant type Ia supernovae
confirmed the accelerated expansion of the Universe
[50–53]. In this section, using the Union2 SNIa dataset

consisting of 557 SNIa [54], we examine the cubic Galileon
massive gravity model. The results of the Union2 SNIa
dataset can be expressed in terms of μobs, and should be
compared with the predictions of the model
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μthðziÞ ¼ 5 log10 DLðziÞ þ μ0; ð24Þ

where μ0 ¼ 42.38 − 5 log10 h (h is the Hubble constant H0

in units of 100 km=s=Mpc), and

DLðzÞ ¼ ð1þ zÞ
Z

z

0

dx
Eðx;pÞ ; ð25Þ

where E ¼ H=H0 and p denotes the model parameters.
It should be noted that X2 from the 557 Union2 SNIa is
given by

X2
μðpÞ ¼

X
i

½μobsðziÞ − μthðziÞ�2
σ2ðziÞ

; ð26Þ

where σ is related to the 1σ error, and the parameter μ0 is a
nuisance parameter and is independent of the data points.
According to Refs. [55,56], we expand X2

μ in Eq. (26) to
minimize it with respect to μ0,

X2
μðpÞ ¼ Ã − 2μ0B̃þ μ20C̃; ð27Þ

where

ÃðpÞ ¼
X
i

½μobsðziÞ − μthðzi; μ0 ¼ 0; pÞ�2
σ2μobsðziÞ

;

B̃ðpÞ ¼
X
i

μobsðziÞ − μthðzi; μ0 ¼ 0; pÞ
σ2μobsðziÞ

;

C̃ ¼
X
i

1

σ2μobsðziÞ
: ð28Þ

For μ0 ¼ B̃
C̃
, Eq. (27) has a minimum at

X̃2
μðpÞ ¼ ÃðpÞ − B̃2ðpÞ

C̃
: ð29Þ

Since X2
μ;min ¼ X̃2

μ;min, we can consider minimizing X̃2
μ

which is independent of μ0. It is important to note that
the best-fit model parameters are determined by minimizing
X2 ¼ X̃2

μ. Clearly, the corresponding h can be determined by

μ0 ¼ B̃
C̃

for the best-fit parameters. From Eq. (19), the
dimensionless Hubble parameter can be written as

E ¼ HðzÞ
H0

¼ 1þ Yz −
�
3Y2 þ Y

2

�
z2

þ
�
21Y3 þ 9Y2 þ 2Y

6

�
z3 þ � � � ; ð30Þ

where

Y ¼ ζ�

H4
0

: ð31Þ

We plot the correspondingX2 and the likelihood as functions
of parameter Y in Fig. 1. The best fit has X2

min ¼ 543.579,
and the best-fit parameter is

Y ¼ 0.394þ0.147
−0.131 with 1σ uncertainty; ð32Þ

Y ¼ 0.394þ0.312
−0.250 with 2σ uncertainty: ð33Þ

Furthermore, the best fit for the Hubble parameter in this
theory is h ¼ 0.701. In Fig. 2, we illustrate the Hubble
diagram for the best fit compared with the 557 Union2 SNIa
data points. One can see that the cubic Galileon massive
gravity is consistent with the 557 Union2 SNIa dataset.

IV. TENSOR PERTURBATIONS

In this section, we analyze tensor perturbation to
calculate the dispersion relation of gravitational waves.
The first step is to find the action in the second order of the

FIG. 1. The X2 and likelihood as functions of parameter Y.
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perturbations. For this, we consider small fluctuations δgμν,
and expand the physical metric around a background

solution gð0Þμν ,

gμν ¼ gð0Þμν þ δgμν: ð34Þ

We require the terms in quadratic order in δgμν to be kept.
It should be noted that we perform all calculations in the
unitary gauge, so we do not worry about the form of
gauge-invariant combinations. Here, we raise and lower
the spatial indices on perturbations by δij and δij.
Moreover, we can write the expanded action in the
Fourier domain with plane waves, i.e., with replacements

∇⃗2 → −k2 and d3x → d3k. Note that we take N ¼ 1,
which means that the derivatives should be considered
with respect to time in the following calculations.
Let us begin by considering tensor perturbations as

δgij ¼ a2hTTij ; ð35Þ

where

∂ihij ¼ 0; gijhij ¼ 0: ð36Þ

The tensor perturbed action in the second order can be
calculated for each part of the action separately. The gravity
part of the perturbed action in quadratic order is

Sð2Þgravity ¼
M2

Pl

8

Z
d3kdta3

�
_hij _h

ij −
�
k2

a2
þ 4 _H þ 6H2 − 2Λ

�
hijhij

�
: ð37Þ

The second order piece of the massive gravity sector of the perturbed action can be written as

Sð2Þmassive ¼
M2

Pl

8

Z
d3kdta3m2

g½ðα3 þ α4ÞrX3 − ð1þ 2α3 þ α4Þð1þ 3rÞX2

þ ð3þ 3α3 þ α4Þð3þ 2rÞX − 2ð6þ 4α3 þ α4Þ�hijhij: ð38Þ

In addition, we write the cubic Galileon part of the
perturbed action in quadratic order

Sð2Þcubic−Galileon ¼ −
M2

Pl

8

Z
d3kdta3

�
ω

M2
Pl

_σ2ð1− β _σ2Þhijhij
�
:

ð39Þ

Summing up the second order pieces of the perturbed

actions Sð2Þgravity, S
ð2Þ
massive, and Sð2Þcubic−Galileon, we obtain the

total action in second order for tensor perturbations

Sð2Þtotal ¼
M2

Pl

8

Z
d3kdta3

�
_hij _hij −

�
k2

a2
þM2

GW

�
hijhij

�
:

ð40Þ

At this point, using Eqs. (14) and (23) we calculate α3 and
α4. Therefore, the dispersion relation of gravitational waves
is obtained as

M2
GW ¼ 4 _H þ 6H2 þ ω

M2
Pl

_σ2ð1 − β _σ2Þ þ γ; ð41Þ

where

FIG. 2. The Hubble diagram for the best fit (red solid line)
compared with the 557 Union2 SNIa data points (blue dots).
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γ ¼ 1

ðX�
SA − 1Þ½2ω − 4ωX�

SA þ ð6þ ωÞðX�
SAÞ2�

× f2βðω − 6ÞωH4M2
Pl½ðX�

SA − 3ÞX�
SAðrSAX�

SA − 2Þ − 2�
þ X�

SA½6ðm2
g − ΛÞðωðrSA − 1Þ − 2Þ þ X�

SAð2ΛðωðrSA − 1Þ − 6Þ þ 12m2
gð3þ ω − rSAωÞ

þm2
gX�

SA½6ωðrSA − 1Þ þ X�
SAð6þ 6rSA þ ω − rSAωÞ − 36�Þ�g: ð42Þ

It is interesting to note that if the square of the mass of
gravitational waves is positive, the stability of long-
wavelength gravitational waves is guaranteed. However,
if it is negative, it should be tachyonic. Hence, as the mass
of the tachyon is of the order of the Hubble scale, the
instability should take the age of the Universe to develop.

V. CONCLUSION

In this work, we have presented the cubic Galileon
massive gravity theory which is a development of dRGT
massive gravity theory. We have introduced the action and
have found the full set of equations of motion for a FLRW
background. To explain the late-time acceleration of the
Universe, we have analyzed the self-accelerating back-
ground solutions.
In addition, we have tested the solution of cubic Galileon

massive gravity theory with the latest Union2 SNIa dataset,
which consists of 557 SNIa, and have demonstrated the
compatibility of the model with the observational data.
Therefore, this comparison with the observational data for
the late-time acceleration of the Universe can be very useful
for checking the parameters of the cubic Galileon massive
gravity theory. We have illustrated the Hubble diagram for

the best fit in comparison with the 557 Union2 SNIa data
points, and the best fit for the Hubble parameter in this
theory is h ¼ 0.701.
In the last section of this paper, to examine the mass of the

graviton in the framework of cubic Galileon massive gravity
theory, we have presented a detailed analysis of the tensor
perturbation and have obtained the dispersion relation of
gravitational waves. We have studied the propagation of
gravitational perturbation in the FLRW cosmology in the
cubic Galileon massive gravity theory. This kind of analysis
is crucial for probing the alternative gravity theories in the era
of gravitational waves.
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