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We study the compatibility of the quantum homogeneitiy and isotropy hypothesis (QHIH), proposed by
Ashtekar and Gupt to restrict the choice of vacuum state for the cosmological perturbations in loop
quantum cosmology (LQC), with the requirement that the selected vacuum should lead to a power
spectrum that does not oscillate. We inspect in close detail the procedure that these authors followed to
construct a set of states satisfying the QHIH, and how a preferred vacuum can be determined within this set.
We find a step that is not univocally specified in this procedure, in relation with the replacement of the set of
states that was originally allowed by the QHIH with an alternative set that is more manageable. In fact, the
first of these sets does not contain the state that has been used in most of the implementations of the QHIH
to the analysis of the power spectrum of the perturbations in LQC. We focus our attention on the original set
picked out by the QHIH and investigate whether some of its elements may display a nonoscillatory
behavior. We show that, to the extent to which the techniques used in this paper apply, this possibility is
feasible. Thus, the two aforementioned criteria for the physical restriction of the vacuum state in LQC are
compatible with each other and not exclusive.
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I. INTRODUCTION

In order to extract useful predictions from a physical
theory, sometimes it does not suffice to determine the
dynamical equations that rule the evolution of the system
and analyze their properties. Choosing initial conditions
can be just as important as these dynamical laws, especially
for scenarios that cannot be reproduced in a controlled way
in a laboratory (such as, e.g., gravitational systems). In
these cases, any successful theory should incorporate a
procedure to determine suitable initial conditions, based on
reasonable justifications and leading to phenomenologi-
cally sensible results. A situation in which this issue is
particularly important is in the study of the evolution of
primordial cosmological perturbations. These perturbations
are believed to be the seeds of the temperature anisotropies
that can be observed in the cosmic microwave background
(CMB) [1–4]. Beyond the standard cosmological para-
digm, there is a growing hope that the power spectrum of
the CMB radiation may keep some traces of the quantum
geometry phenomena that would have taken place when

the Universe was extremely young and in this manner
provide a way to falsify the predictions of quantum
cosmology formalisms that describe the behavior of those
early epochs [5–8].
Many attempts have been made to include quantum

gravity effects in the analysis of primordial perturbations in
cosmology (see, e.g., [9–28]). Most of these works adopt a
Fock representation for the linear fields corresponding to
the gauge-invariant perturbations. Then, the choice of
initial conditions is equivalent to selecting a preferred
Fock vacuum state. A natural starting point is to demand
that this vacuum state remains invariant under the spatial
isometries of the homogeneous background (either treated
as a classical or a quantum entity). Nonetheless, since the
cosmological background is not stationary, these sym-
metries are usually not enough to pick out a unique
vacuum, but only to restrict the choice within a family
of states, unitarily equivalent among them in an optimal
scenario, if the selection criteria have been wisely imposed
[29,30]. Within that family, one of the most common
proposals is to choose the Bunch-Davies vacuum at the
onset of inflation, especially if there is an inflationary phase
that admits a slow-roll description. The Bunch-Davies state
is arguably the most natural vacuum in de Sitter spacetime,
which is believed to provide a good approximation for the
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cosmological expansion in such an inflationary phase [2,31].
However, this state is not well adapted to the cosmological
evolution if there are relevant regimes previous to slow-roll
inflation with physical phenomena that can affect the
primordial perturbations. For instance, this may happen
for perturbation modes with wavelengths of the order of
the characteristic scales associated with the quantum gravity
processes that may have affected the Universe well before
inflation, out of the domains of applicability of classical
general relativity. To take those primeval epochs into
account, we must have some level of understanding of
the underlying quantum geometry. Several candidate for-
malisms have been suggested to describe quantum gravity
regimes in cosmology. Among them, we will focus our
attention on loop quantum cosmology (LQC) [32–34],
which is a nonperturbative quantization of cosmological
systems based on the background-independent canonical
theory of loop quantum gravity [35,36]. In LQC, for certain
quantum states with interesting classical properties at large
volumes, the big bang singularity becomes replaced with a
quantum bounce [37,38].
Within these bouncing regimes of LQC, the choices of

vacuum state for the perturbations that were first employed
to extract predictions from the theory correspond to the so-
called adiabatic states [19,39]. Adiabatic states [40,41] are
constructed iteratively from a zeroth-order state and, for
sufficiently high order, they have the physically appealing
property of permitting the renormalization of the stress-
energy tensor. The adiabatic iterative process, however,
is not mathematically robust and breaks down in certain
circumstances. In addition, the motivation for using adia-
batic conditions around a bounce of quantum origin is not
completely clear from a theoretical point of view [42–44].
A more recent proposal for the choice of a vacuum, with a
more elaborated motivation, has been given by Ashtekar
and Gupt [45,46] in the context of the so-called dressed-
metric approach to the study of primordial perturbations
in LQC (see, e.g., Refs. [16,19,20,47]). According to this
proposal, one chooses the state with a maximal classical
behavior at the end of inflation among those that fulfill the
so-called quantum homogeneity and isotropy hypothesis
(QHIH). This is an extension into the quantum realm of
Penrose’s Weyl curvature hypotesis [48,49], which states
that the Weyl curvature should vanish at the big bang. The
vacuum state selected so far using this QHIH has been seen
to lead to a primordial power spectrum that is highly
oscillatory in the dressed-metric approach to LQC, with
respect to the wave number of the Fourier modes of the
perturbations [46]. When these oscillations are suitably
averaged, this power spectrum shows good agreement with
the current CMB observations, and it may even provide a
way to alleviating certain anomalies reported by the Planck
satellite [6,7]. Nonetheless, it has been argued that these
oscillations might come from an evolution of the proposed
vacuum in the preinflationary epoch that blurs the infor-
mation about the genuine effects of the LQC bounce on the

perturbations [50,51]. To deal with the problem of these
superimposed oscillations in the power spectrum, Martín de
Blas and Olmedo put forward an alternative proposal,
implemented numerically, which selects a vacuum state
with a nonoscillatory (NO) spectrum [50]. This NO-
vacuum was originally introduced in the context of the
so-called hybrid approach to LQC (see Ref. [52] for a
comprehensive review on the topic). Recent investigations
have identified some analytical conditions that must be
satisfied by a vacuum displaying NO properties, and that
restrict its asymptotic behavior for infinitely large wave
numbers [51,53].
The aim of this work is to investigate the relationship and

compatibility between the QHIH and the NO-proposal as
two criteria to restrict the choice of vacuum state in the
context of hybrid LQC. In order to do this, we start by
revisiting the mathematical conditions that define the
admissible states according to the QHIH in a bouncing
quantum cosmological scenario, indicating the steps where
there appear ambiguities when the original proposal of
Ashtekar and Gupt [45] is put into practice [46]. This
construction starts by defining a ball of states that satisfies
the QHIH in an interval around the quantum bounce, that is
regarded as the Planck regime. In more detail, this interval
is defined, for the sake of concreteness, as the period in
which the density of the Universe is higher than 10−4 in
Planck units. Then, according to Ashtekar and Gupt, a
preferred state should be selected within this ball such that
it has maximal classical behavior at the end of inflation.
However, because of the numerical complications in the
imposition of these requirements, an alternative but much
more manageable definition of the ball of admissible states
was finally adopted in Ref. [46]. In the present work we
show that this alternative definition leads to a different set
of states to the original QHIH ball, raising the question of
whether the Ashtekar-Gupt state selected in this manner
actually lives in such original ball. We find that the answer
is in the negative, at least in the hybrid approach to LQC.
We recall that this state has highly oscillatory properties in
the case of the dressed-metric approach to LQC, and it can
be reasonably expected that it also displays this behavior
in hybrid LQC.1 Our result then opens the possibility that
the preferred vacuum state that would arise from the
original QHIH considerations may be compatible with
the demand of an NO-behavior. With this motivation in
mind and using the results of Ref. [51], we derive certain
necessary conditions for the simultaneous satisfaction of an
NO-behavior and the QHIH. Employing these conditions,
we then examine the possibility that the Ashtekar-Gupt
proposal may eventually lead to the choice of an NO-
vacuum. Our result is that, without additional inputs, the
two proposals are compatible.

1This is because both approaches share a classical preinfla-
tionary period that tends to produce oscillations in the evolution
of the vacuum state, if this vacuum is not carefully chosen [43].
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The structure of this paper is as follows. In Sec. II we
take a close look at the definition of the QHIH given in
Ref. [45] and the Ashtekar-Gupt vacuum selected in
Ref. [46]. In Sec. III we identify a loose step in the passage
from the theoretical construction of the ball of QHIH states,
where this vacuum should reside, to its practical imple-
mentation. Furthermore, we derive certain compatibility
conditions between the ball introduced in Ref. [45] and an
NO-behavior. Section IV considers the analog in the hybrid
approach to LQC of the Ashtekar-Gupt vacuum that was
finally selected in Ref. [46], proving that it does not belong
to the original QHIH ball of states of Ref. [45]. In view of
this result, in this section we also study the compatibility
conditions between the original QHIH and an NO-behavior
in hybrid LQC, showing that they are not exclusive.
Section V contains our conclusions and further comments.
Throughout this paper, we work in Planck units, setting
ℏ ¼ c ¼ G ¼ 1.

II. CONSTRUCTION OF THE
ASHTEKAR-GUPT VACUUM

Given a real-valued function sðηÞ, where η is a time
coordinate, let us consider all complex solutions of the
following family of differential equations:

μ00k þ ðk2 þ sÞμk ¼ 0; k ∈ Rþ; ð2:1Þ

that satisfy the normalization condition,

μkμ̄
0
k − μ0kμ̄k ¼ i: ð2:2Þ

Here, the prime denotes the derivative with respect to
the time η and the overhead bar indicates complex con-
jugation. On the other hand, let us consider a purely
inhomogeneous real scalar field on R4 with Fourier
coefficients labeled by a real wave vector k⃗ ∈ R3 − f0⃗g
and satisfying Eq. (2.1) with k ¼ jk⃗j. It is well known that
any complete set fμkgk∈Rþ of normalized solutions univ-
ocally defines a quantum Fock representation of the
considered real scalar field [54]. Now, since Eq. (2.1) is
linear and real, we may write its general complex solution
as a linear combination of a particular solution and its
complex conjugate [which are functionally independent in
virtue of Eq. (2.2)]. It then follows that any two choices of
basis elements, μ̃k and μk, may be related to each other
through a linear Bogoliubov transformation,

μ̃kðηÞ ¼ αkðμ̃k; μkÞμkðηÞ þ βkðμ̃k; μkÞμ̄kðηÞ: ð2:3Þ

The normalization condition (2.2) holds provided that the
constant Bogoliubov coefficients satisfy

jαkðμ̃k; μkÞj2 − jβkðμ̃k; μkÞj2 ¼ 1; ∀ k ∈ Rþ: ð2:4Þ

A choice of solutions fμkgk∈Rþ is often called a basis of
positive-frequency solutions, and it completely specifies a
vacuum state from which the Fock space can be con-
structed. Henceforth, we refer to the vacuum state selected
by a specific basis fμkgk∈Rþ as j0μi.
In cosmological perturbation theory, both classically as

well as for several approaches to quantum cosmology, an
equation of the form (2.1) typically dictates the propagation
of the mode coefficients of the real Mukhanov-Sasaki
field that describes the gauge-invariant scalar perturbations
[55–57]. Therefore, this equation is frequently called the
Mukhanov-Sasaki equation. Moreover, the dynamics of
the tensor perturbations are also ruled by an equation of this
type [2]. The function sðηÞ is commonly referred to as the
(effective) mass of the perturbations, and it can be given as
a function of the geometrical variables of the background
on classical solutions or alternatively on quantum back-
ground states [19,25]. In this context, any choice of basis
of positive-frequency solutions (or, equivalently, of their
initial conditions) amounts to the choice of a specific
vacuum state in the Fock quantization of the perturbations.
Let us define μη0k as the solution to Eq. (2.1) determined

by the following initial conditions at any given time η0:

μη0k ðη0Þ ¼
1ffiffiffiffiffi
2k

p ; μη00k ðη0Þ ¼ −i
ffiffiffi
k
2

r
: ð2:5Þ

The basis constructed from such solutions μη0k for all k gives
rise to the so-called adiabatic state of zeroth-order, j0μη0 i
[41]. The family of adiabatic states of zeroth-order para-
metrized by η0 has some interesting physical properties, as
we have succinctly commented in the Introduction. One of
these properties is that j0μη0 i is the unique state that exactly
fulfills at time η0 the QHIH formulated in Refs. [45,46].
In the case of tensor perturbations, this condition can be
understood as an instantaneous quantum generalization of
Penrose’s Weyl curvature hypothesis that takes into account
and minimizes the quantum uncertainties of the operators
representing the Weyl tensor at η0. Owing to the similarities
between the dynamics of the tensor and scalar perturba-
tions, the QHIH has also been proposed in order to select a
preferred family of quantum states for the Mukhanov-
Sasaki field [46].
Actually, the space of states allowed in the analysis of

Ashtekar and Gupt is larger than the family of adiabatic
states of zeroth-order that we have introduced. This is to
cope with the fact that the dynamical evolution of the
quantum field states is nontrivial in cosmological scenarios,
something that leads to an instability of the instantaneous
QHIH condition as time evolves. Explicitly, the QHIH is
fulfilled at time η0 by a normalized solution μ̃k of Eq. (2.1)
if and only if [45]

Λkðμ̃; η0Þ ¼ 1; Λkðμ̃k; ηÞ ¼ kjμ̃kðηÞj2 þ
1

k
jμ̃0kðηÞj2:

ð2:6Þ
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As commented above, this condition alone fixes μ̃k ¼ μη0k
(up to a constant phase that does not affect the definition of
the corresponding vacuum). In fact, one may write Λk in
terms of beta coefficients for Bogoliubov transformations
to adiabatic states,

Λkðμ̃k; ηÞ ¼ 1þ 2jβðμ̃k; μηkÞj2: ð2:7Þ

This implies that Λkðμη0k ; ηÞ > 1 in general, for any η ≠ η0.
In view of this property of the cosmological system,
Ashtekar and Gupt generalized the instantaneous QHIH
condition to a dynamical one by requiring that physically
admissible vacuum states should belong to the set [45,46],

B ¼ fj0μ̃ijΛkðμ̃k; ηÞ ≤ zk; ∀ k ∈ Rþ; η ∈ Ig; ð2:8Þ

where I is certain compact interval of time, and we have
defined the supremum,2

zk ¼ sup
η0;η1∈I

Λkðμη0k ; η1Þ: ð2:9Þ

We will refer to the family of states B as the total Weyl
uncertainty ball. Obviously, its construction depends on the
choice of interval I. Since the QHIH is a generalization of
Penrose’s Weyl curvature hypothesis, which should only be
applied in the high-curvature regime of spacetime, it is
natural to demand that this interval coincides with the
period where important quantum cosmological phenomena
take place (the so-called Planck regime). Specifically, in
Ref. [45] this interval was defined as the epoch in which the
density of the Universe is higher than 10−4 Planck units.
In order to extract robust physical predictions from the

theory, one needs to single out a preferred vacuum state
within B by demanding a suitable behavior. According to
Ref. [46], this preferred state must minimize the quantum
dispersions of the field operators at the end of inflation, so
that the state has optimal classical properties at times when
the quantum effects should be negligible. In practice, it is a
complicated task to find such a state starting from B (even
from a numerical perspective). This difficulty was circum-
vented in Ref. [46] by instead searching for the vacuum
among states that live in instantaneous Weyl uncertainty
balls Bη0 , defined as follows:

Bη0 ¼ fj0μ̃ijΛkðμ̃k; η0Þ ≤ zη0k ∀ k ∈ Rþg; ð2:10Þ

where

zη0k ¼ sup
η∈I

Λkðμηk; η0Þ: ð2:11Þ

According to Ref. [46], the state j0νη0 i that minimizes the
quantum field dispersions at the end of inflation, within the
instantaneous Weyl uncertainty ball Bη0 , has the form,

νη0k ðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðrη0k Þ2

q
μη0k ðηÞ þ rη0k e

−iθη0k μ̄η0k ðηÞ; ð2:12Þ

where

ðrη0k Þ2 ¼
1

2
ðzη0k − 1Þ; θη0k ¼ π − 2 arg ½μη0k ðηendÞ�;

ð2:13Þ

where ηend marks the end of inflation, rη0k ≥ 0, and arg
denotes the argument of the complex quantity. Considering
then all instantaneous Weyl uncertainty balls in the
Planck regime, we have a one-parameter family of states
that minimize the quantum dispersions at ηend. The state
corresponding to the global minimum is the unique
Ashtekar-Gupt vacuum.3

III. QHIH: AMBIGUITIES IN ITS
IMPLEMENTATION AND COMBINATION

WITH THE NO-PROPOSAL

A. Difference between balls of states

As we have commented, the actual construction of the
Ashtekar-Gupt vacuum state put forward in Ref. [46] does
not start from the total Weyl uncertainty ball of states B, but
rather from the union of instantaneous balls, ∪η0∈IBη0 . An
important question that immediately arises is whether the
two sets of states are equal. If this were the case, then the
procedure followed in Ref. [46] to find the state with a
maximally classical behavior at the end of inflation would
be, without question, consistent with the QHIH originally
proposed in Ref. [45] (and actually used as a motivation in
Ref. [46]). In the following, we show that the answer is in
the negative.
We begin by using Eq. (2.6) to rewrite the definition of

B and Bη0 in terms of beta coefficients,

Bη0 ¼ fj0μ̃ijjβkðμ̃k;μη0k Þj2 ≤ sup
η∈I

jβkðμηk;μη0k Þj2 ∀k ∈Rþg;

ð3:1Þ

2This definition is consistent as long as sðηÞ has no singular-
ities in I. This is the case for LQC, where sðηÞ is obtained from
well-defined expectation values of quantum geometry operators.

3In principle, there is no guarantee that there exists such global
minimum simultaneously for all k. If this did not happen, one
may instead choose the state j0νη0 i that minimizes a (suitably
defined) average of the quantum dispersions over all of the
modes. Alternatively, one may construct a new state by picking
out each positive-frequency solution, among the two-parameter
family fνη0k g, that minimizes the quantum dispersions for each k
separately. Unfortunately, by its construction, one cannot gen-
erally assure that the state that would result from this last
procedure belongs to any of the instantaneous balls Bη0 . So,
we will not consider this possibility in this paper.
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B ¼ fj0μ̃ijjβkðμ̃k; μηkÞj2 ≤ sup
η0;η1∈I

jβkðμη0k ; μη1k Þj2

∀ k ∈ Rþ; ∀ η ∈ Ig: ð3:2Þ

Given a compact interval I and any positive k there exist
times ηk− and ηkþ in I such that

jβkðμη
k
−
k ; μ

ηkþ
k Þj2 ¼ sup

η0;η1∈I
jβkðμη0k ; μη1k Þj2: ð3:3Þ

Considering a fixed (but otherwise generic) wave number k̃,
let us then define a state j0μSi such that

μSkðηÞ ¼ ᾱkðμη
k̃
þ
k ; μη

k̃
−
k Þμηk̃þk ðηÞ þ βkðμη

k̃
þ
k ; μη

k̃
−
k Þμ̄ηk̃þk ðηÞ: ð3:4Þ

This state belongs to the instantaneous ball Bηk̃þ
, which is by

definition contained in the union ⋃η0∈IBη0 . In order to
show this, we first notice that

jβkðμSk; μ
ηk̃þ
k Þj ¼ jβkðμη

k̃
−
k ; μ

ηk̃þ
k Þj; ð3:5Þ

as one can check using the general property jβkðμ̃k; μkÞj ¼
jβkðμk; μ̃kÞj, which follows from Eqs. (2.3) and (2.4). Thus,
for any k and taking into account the definition of
supremum, it holds that

jβkðμSk; μ
ηk̃þ
k Þj2 ≤ sup

η∈I
jβkðμηk; μ

ηk̃þ
k Þj2: ð3:6Þ

This inequality can at most be saturated, as it happens e.g.,
for k ¼ k̃. Hence we conclude that, according to the
definition of instantaneous ball given in Eq. (3.1), the state
j0μSi belongs to Bηk̃þ

as we wanted to show.

Now, we can write the basis element μ
ηk̃þ
k in terms of the

Bogoliubov coefficients that relate it to μη
k̃
−
k ,

μ
ηk̃þ
k ðηÞ ¼ αkðμη

k̃
þ
k ; μη

k̃
−
k Þμηk̃−k ðηÞ þ βkðμη

k̃
þ
k ; μη

k̃
−
k Þμ̄ηk̃−k ðηÞ: ð3:7Þ

Composing the transformations (3.7) and (3.4), we see that

βkðμSk; μη
k̃
−
k Þ ¼ 2ᾱkðμη

k̃
þ
k ; μη

k̃
−
k Þβkðμη

k̃
þ
k ; μη

k̃
−
k Þ: ð3:8Þ

Therefore, focusing our discussion on the mode k ¼ k̃, we
have that

jβk̃ðμSk̃ ; μ
ηk̃−
k̃
Þj2 ¼ 4jαk̃ðμη

k̃
þ
k̃
; μη

k̃
−
k̃
Þj2jβk̃ðμη

k̃
þ
k̃
; μη

k̃
−
k̃
Þj2

≥ 4 sup
η0;η1∈I

jβk̃ðμη0k̃ ; μ
η1
k̃
Þj2; ð3:9Þ

where we have used that the squared norm of the alpha-
coefficient is never smaller than the unit because of the

normalization condition (2.4). This inequality straightfor-
wardly implies that j0μSi does not belong to B, and hence
we have that B ≠ ⋃η0∈IBη0 . Of course, this does not mean
that the intersection of these two sets is empty. In fact, we
clearly have that any adiabatic state of zeroth-order j0μηi,
with η ∈ I, automatically belongs to both sets.

B. Nonoscillatory requirements for states
in the Weyl uncertainty ball

The primordial power spectrum of the perturbations in a
state j0μ̃i can be obtained from the evaluation of jμ̃kj2 at the
end of slow-roll inflation. The dynamical evolution of the
perturbations from their initial conditions in the Planck
regime to this stage when inflation ends can leave imprints
that are potentially observable in the CMB. In particular,
any oscillatory behavior of the amplitude of the positive-
frequency solutions during the preinflationary evolution
may affect the spectrum and, in this way, produce oscil-
lations in it. These oscillations may be superimposed to
the genuine imprints of the preinflationary dynamics of
the Universe on the spectrum, including quantum gravity
modifications, and blur them [51]. With this motivation in
mind, Martín de Blas and Olmedo proposed a criterion to
select a state with nonoscillatory behavior, called the NO-
vacuum, which minimizes the oscillations in the spectrum
over the interval between the time where the initial
conditions are imposed and the onset of inflation [50].
The implementation of this criterion was generally numeri-
cal, in the way in which it was originally introduced.
More recently, it has been possible to derive some

necessary conditions that an NO-vacuum has to satisfy.
In detail, given an NO-vacuum j0μNOi (the existence of
which is supported at least from a numerical perspec-
tive), we can write the squared amplitude of the basis of
positive-frequency solutions associated with any other state
j0μ̃i as [51],

jμ̃kj2 ¼
1

2
jμNO

k j2½AþBþðA−BÞcosð2ϕkÞþ 2Csinð2ϕkÞ�;

ϕ0
k ¼

1

2
jμNO

k j−2; ð3:10Þ

where A, B, and C are real constants, with C2 ¼ AB − 1.
As long as there exists a sufficiently long regime in the
evolution of the perturbations in which 2jjμNO

k j0jμNO
k jj < 1,

it follows from this formula that any other NO-vacuum
state must have constants A and B lying in a close
neighborhood of the unit. The existence of such a regime
is expected in any preinflationary cosmological evolution
that resembles the Einsteinian one for a universe with a
massless scalar field at low energy densities, as it is the case
e.g., in interesting LQC scenarios [43,47]. This is because,
in low-curvature regimes of general relativity where the
energy density of the inflaton is dominated by its kinetic
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contribution, the mass sðηÞ is a very slowly varying
function of time [51,58].
Following these considerations, we can regard as a

necessary condition for any candidate to be an NO-vacuum
j0μNOi that it must satisfy 2jjμNO

k j0jμNO
k jj < 1 at least for all

times η near the end of the Planck regime. Explicitly, if we
write the basis of positive-frequency solutions fμNO

k g in the
form [51],

μNO
k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2ImðhkÞ
p e

i
R

η

η1
dη̃ ImðhkÞ ðη̃Þ; ð3:11Þ

where η1 is a reference time, irrelevant for the choice of
vacuum state, and hk is a solution to the Riccati equation

h0k ¼ k2 þ sþ h2k ð3:12Þ

with strictly negative imaginary part, then the aforemen-
tioned necessary condition on an NO-vacuum can be
equivalently expressed as

jReðhkÞðηÞj ¼ ϵkðηÞjImðhkÞðηÞj with 0 < ϵkðηÞ < 1;

ð3:13Þ
���� k

2 þ sðηÞ
ImðhkÞðηÞ

− ½1þ ϵ2kðηÞ�ImðhkÞðηÞ
���� < 1; ð3:14Þ

at least for all times η at the end of the Planck regime.
Actually, we expect the above expressions involving hk to
be much smaller than the unity, in particular for the
resulting value of ϵk.

One can use the Bogoliubov transformation between the
NO-vacuum and a zeroth-order adiabatic state j0μηi to
obtain that

jμNO
k ðηÞj ¼ 1ffiffiffiffiffi

2k
p jαkðμNO

k ; μηkÞ þ βkðμNO
k ; μηkÞj;

jμNO0
k ðηÞj ¼

ffiffiffi
k
2

r
jαkðμNO

k ; μηkÞ − βkðμNO
k ; μηkÞj: ð3:15Þ

These identities, combined with Eqs. (3.12) and (3.13),
imply that

2ΛkðμNO
k ; ηÞ ¼ k

jImðhkÞðηÞj
þ ½1þ ϵ2kðηÞ�

jImðhkÞðηÞj
k

ð3:16Þ

for times η at the end of the Planck regime.
Hence, given an interval I defining this Planck regime,

a state satisfying the first necessary NO-vacuum condi-
tion (3.13) can belong to the total Weyl uncertainty ball B
only if

k
jImðhkÞðηÞj

þ ½1þ ϵ2kðηÞ�
jImðhkÞðηÞj

k
≤ 2zk; ð3:17Þ

for all η at the end of I [and with ϵkðηÞ being small]. This
inequality can be solved and leads to the following
restriction:

½1þ ϵ2kðηÞ�jImðhkÞðηÞj ∈
h
kzk − k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2k − ½1þ ϵ2kðηÞ�

q
; kzk þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2k − ½1þ ϵ2kðηÞ�

q i
: ð3:18Þ

On the other hand, the second necessary condition (3.14) for an NO-vacuum is satisfied if and only if

½1þ ϵ2kðηÞ�jImðhkÞðηÞj ∈
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½k2 þ sðηÞ�½1þ ϵ2kðηÞ�

q
−
1

2
;
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½k2 þ sðηÞ�½1þ ϵ2kðηÞ�

q
þ 1

2

�
: ð3:19Þ

Recalling that ϵk is expected to be much smaller than the unity for an NO-vacuum, at leading order we can ignore the
contribution of this parameter in the above expressions. With this approximation, it follows that the two necessary
conditions for an NO-vacuum can only be compatible with the QHIH (as formulated in terms of the total ball B) if

h
kzk − k

ffiffiffiffiffiffiffiffiffiffiffiffi
z2k − 1

q
; kzk þ k

ffiffiffiffiffiffiffiffiffiffiffiffi
z2k − 1

q i
⋂

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½k2 þ sðηÞ�

q
−
1

2
;
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½k2 þ sðηÞ�

q
þ 1

2

�
≠ =0; ð3:20Þ

for all instants of time η near the end of I. It is worth
remarking that this interval I should cover all of the Planck
regime, so that it smoothly connects with a kinetically
dominated universe where, according to general relativity,
the mass sðηÞ varies very slowly over time.

One can similarly obtain a consistency requirement for a
state that satisfies the necessary NO-vacuum conditions in
order that it also belongs to the instantaneous Weyl
uncertainty balls Bη0 for times η0 close to the end of I:
it suffices to replace η with η0 and zk with z

η0
k in Eq. (3.20).
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Nonetheless, we will mainly focus our attention on the
consistency of the nonoscillatory behavior with the QHIH
formulated in terms of the total ball B. This is so because
of two reasons. The first one is that this is the original
formulation of the QHIH, motivated in Ref. [45] on
fundamental issues. The second one is that, for the alter-
native formulation of the QHIH given in Ref. [46], our
current analytic knowledge of the NO-vacua only allows us
to study the consistency requirement on solid grounds for
instantaneous Weyl uncertainty balls Bη0 defined at times η0
that are near the end of the Planck regime.

IV. QHIH IN HYBRID LQC: COMPATIBILITY
WITH THE NO-PROPOSAL

Our previous discussion is valid for any choice of mass
sðηÞ for the perturbations, provided that it is nonsingular in
the time interval of interest, and that it varies slowly at the
end of this interval. In the following we will focus our
attention on the case that this mass is given by the
evaluation on effective LQC backgrounds of the result
of a hybrid quantization of the perturbed inflationary
cosmology. In this hybrid approach, the Friedmann-
Lemaître-Robertson-Walker (FLRW) background is quan-
tized according to LQC, while the perturbations are treated
with typical techniques of quantum field theory in curved
spacetimes, more specifically by adopting a Fock descrip-
tion. If we consider certain quantum states for the back-
ground in LQC that are highly peaked in bouncing
trajectories, the evaluation of background operators on
these quantum states can be well approximated by consid-
ering the evaluation of their classical analogs on the peak
trajectories. Actually, these peak trajectories follow the
evolution dictated by an effective Hamiltonian constraint
on the FLRW background. In this background, inflation is
driven by a homogeneous scalar field subject to a potential,
that we will particularize to a quadratic one for simplicity.
In this setting, any background solution is completely fixed
by the value of the inflaton field at an arbitrary initial time,
e.g., at the bounce, and of its mass m. From a phenom-
enological point of view, in order to obtain power spectra
that are compatible with the observations but still are
capable of including traces of the LQC effects, the typical
effective solutions that turn out to be interesting present a
classical era shortly after the bounce in which the kinetic
energy of the inflaton greatly dominates over its potential,
era that extends almost until the onset of inflation [43,47].
This type of solutions is obtained for initial values of
the inflaton at the bounce and values of its mass close to
ϕB ¼ 0.97 and m ¼ 1.2 × 10−6, data that we will adopt
from now on for our analyses [43,58]. In the hybrid
approach, the gauge-invariant perturbations that propagate
on the above LQC backgrounds follow dynamical equa-
tions of the form (2.1).
We can numerically integrate the background evolution

with the aforementioned initial conditions to obtain the

value of the mass sðηÞ, and then apply the procedure that
we have explained in Sec. II to determine the Ashtekar-
Gupt vacuum in hybrid LQC. For this numerical integra-
tion, we use Verner’s “most efficient” 9=8 Runge-Kutta
method (with a lazy nineth-order interpolant) [59,60]. To
implement this procedure, we first need to characterize
the Planck regime in a precise manner. According to the
definition given by Ashtekar and Gupt, which requires
values of the inflaton energy density above 10−4, the
conformal times that define the considered regime are
IPL ¼ ½−4.2; 4.2� (with η ¼ 0 corresponding to the
bounce). Employing the interval I ¼ IPL, we can obtain
values of the upper bounds zη0k , for all η0 ∈ IPL, and zk,
which respectively define the instantaneous and total Weyl
uncertainty balls Bη0 and B. As in the case of the dressed-
metric approach to LQC [45,46], these bounds rapidly
approach the unit for Fourier scales k that are much larger
than the Planck scale, which is the characteristic order of
magnitude of the spacetime curvature around the bounce in
LQC. This behavior reflects the fact that the effects of the
cosmological evolution on a zeroth-order adiabatic state are
negligible in the ultraviolet regime, and hence the ultra-
violet scales approximately remain in this vacuum state,
thus satisfying the QHIH at all times. On the other hand, for
scales of the Planck order and smaller, the effects of the
cosmological evolution on the dynamics of a zeroth-order
adiabatic state become increasingly important, and as a
consequence the bounds zη0k and zk grow above one in the
infrared regime.
With the obtained values of the bounds zη0k that character-

ize the instantaneous uncertainty balls Bη0 in hybrid LQC,
we can determine the initial conditions that correspond to
the one-parameter family of states j0νη0 i with maximal
classical behavior at the end of inflation. Indeed, in view of
Eqs. (2.12) and (2.13) determining such states, the only
additional data that we need are the phases of the adiabatic
solutions μη0k at the end of inflation, which we compute
numerically. As we explained in Sec. II, the vacuum state
that Ashtekar and Gupt would propose as preferred,
according to Ref. [46], should lie in the resulting family
of states. Recalling that the QHIH was originally formu-
lated in terms of the total uncertainty ball B which, as we
have shown in Sec. III A, is different to the union of
instantaneous balls ⋃η0∈IPLBη0 , the following question
naturally arises: does the family of states fj0νη0 igη0∈IPL
actually belong to B, within the hybrid LQC framework?
According to the definition given in Eq. (2.8) for this total
ball, the considered states belong to B if and only if, for
each η0 ∈ IPL, we have

ðzkÞ−1max
η∈IPL

Λkðνη0k ; ηÞ ≤ 1; ð4:1Þ

for all k ∈ Rþ. In Fig. 1 we plot this function of η0 for
two representative values of k, showing that the above
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requirement cannot be met for any time η0 in the Planck
regime. Therefore, in the case of hybrid LQC, the vacuum
state proposed by Ashtekar and Gupt in Ref. [46] does not
belong to the total Weyl uncertainty ball that was originally
motivated by the QHIH. From this perspective, the oscil-
latory behavior that is expected for this vacuum (taking into
account its analog in dressed-metric LQC) does not imply
an incompatibility between the NO-criterion and the
original implementation of the QHIH when combined with
a maximal classical behavior at the end of inflation.
This result further supports our decision to focus the

attention on vacua belonging to the total uncertainty ball B,

when studying the compatibility of the QHIH with the
necessary NO-vacuum conditions in hybrid LQC.
According to our discussion in Sec. III B, in order to do
this we just have to particularize the intervals appearing in
Eq. (3.20) to the case of hybrid LQC and check that their
intersection is nonempty. All the ingredients needed for this
test, namely the mass sðηÞ and the upper bound zk, are
readily available from our previous computations. In Fig. 2
we plot the curves that limit these two intervals at the
representative time η ¼ 4.2 that marks the end of the Planck
regime IPL. We clearly see that their intersection is not
empty, indicating the compatibility between the QHIH and
the NO-criterion for the choice of a vacuum state of the
cosmological perturbations in hybrid LQC. Actually, in the
infrared regime (which is where oscillations can appear
for the considered type of states [43]) the zk-independent
interval related with the NO-condition is contained in the
interval that corresponds to the original version of the
QHIH. Therefore, it follows that any state that is an NO-
vacuum satisfies this version of the QHIH at least at the end
of the Planck regime.

V. CONCLUSIONS

With a combination of analytical and numerical means,
we have investigated the compatibility between the QHIH
proposed by Ashtekar and Gupt [45,46] and the NO-
proposal for the choice of initial conditions on primordial
perturbations in quantum cosmology [50,51]. In order to do
this, we have examined in detail the construction that
Ashtekar and Gupt employed to determine their vacuum
state, and we have discussed a step that is not univocal and
its consequences. In addition, we have derived some
analytical conditions that a vacuum state must satisfy to
comply with the original formulation of the QHIH intro-
duced in Ref. [45] and with the NO-condition. We have
followed the Asthekar-Gupt proposal, adapted to hybrid
LQC, in the phenomenologically interesting case with a
kinetically dominated preinflationary era. We have shown
that the vacuum selected by the Ashtekar-Gupt construction
in fact lies outside the ball of states that satisfy the QHIH
according to the prescription of Ref. [45], where it was
motivated as a quantum generalization of Penrose’s Weyl
curvature hypothesis. Because of this, we have focused our
attention on the properties of the states in this last ball,
showing that the original formulation of the QHIH is
perfectly compatible with an NO-behavior.
More specifically, our starting point has been a careful

revisitation of the entire Ashtekar-Gupt proposal, appli-
cable for any real-valued (and nonsingular) function that
plays the role of a time-dependent mass in the dynamical
equations of the Fourier modes of the perturbations, which
have the form of generalized harmonic oscillator equations.
By translating Penrose’s hypothesis to the quantum realm,
one then defines a Weyl uncertainty ball for the states of the
perturbations such that they all fulfill the QHIH in a specific

FIG. 2. The bounds imposed by the Weyl uncertainty ball,
kðzk −

ffiffiffiffiffiffiffiffiffiffiffiffi
z2k − 1

p
Þ and kðzk þ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2k − 1

p
Þ, in red dashed and solid

lines respectively, compared with the bounds imposed by the NO-
condition, 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½k2 þ sðηÞ�

p
− 1

2
and 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½k2 þ sðηÞ�

p
þ 1

2
,

in blue dashed and solid lines respectively, for different modes k.
These are evaluated for the mass sðηÞ obtained in the hybrid
approach to LQC, where I ¼ IPL ¼ ½−4.2; 4.2� and η ¼ 4.2, time
near which the mass varies slowly. The intersection given by
these bounds is not empty for any k.

FIG. 1. The quantity Ckðη0Þ ¼ ðzkÞ−1 maxη∈IPLΛkðνη0k ; ηÞ com-
pared with 1 for k ¼ 10−6 and k ¼ 10−0.5. There exists no value
of η0 such that the two curves remain below or equal to 1, a fact
that implies that no state νη0k lives in B.
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interval of time [45]. Since this hypothesis is formulated for
high-curvature regimes, this interval is chosen as the Planck
regime in which quantum gravity effects are truly impor-
tant. To extract meaningful predictions, a unique preferred
state must be chosen from the ball obtained for the Planck
interval: this is the state with a maximal classical behavior
at times when quantum effects have become irrelevant,
e.g., the end of inflation for concreteness. Finding this state
directly with numerical methods is a very complicated task.
As an alternative route, in Ref. [46] Ashtekar and Gupt
opted to instead consider instantaneous Weyl uncertainty
balls, defined at each instant of time in the studied interval.
In this manner, one characterizes in an analytical way a
one-parameter family of states, namely, one with maximal
classical behavior for each instantaneous ball. Among
them, one should numerically find the state with best
classical properties and identify it with the Ashtekar-
Gupt vacuum.
The need to replace the ball of states originally deter-

mined by the QHIH by its instantaneous counterparts can
give rise to questions about the real habitat of the Ashtekar-
Gupt vacuum and to ambiguities in its construction, if these
balls are different. In fact, in this work we have shown that
the original Weyl uncertainty ball is actually different to the
union of all its instantaneous counterparts. It is worth
remarking that our proof is independent of the specific form
of the mass of the perturbations, the choice of compact
interval for the definition of the Planck regime, and the
wave number of the Fourier mode. In addition, we notice
that our proof does not exclude the fact that the two
considered sets of states, even if different, have a nonempty
intersection (e.g., adiabatic states of zeroth-order do belong
to both sets). For a fixed functional form of the time-
dependent mass of the perturbations, it is then legitimate to
ask whether any of the states with maximal classical
behavior in the instantaneous balls belongs to the original
Weyl uncertainty ball. To get an answer in the case of the
mass function derived in hybrid LQC, we have explicitly
evaluated all these possible vacuum candidates of
Ashtekar-Gupt type and shown that they do not belong
to the ball obtained with the original implementation of
the QHIH.
On the other hand, a physically relevant question one

may ask to any viable choice of vacuum state is whether or
not it leads to a highly oscillatory power spectrum. This
oscillatory behavior can be considered an undesirable
property inasmuch as it may blur away any modification
to the primordial power spectrum that is ultimately caused

by quantum geometry corrections [51]. Actually, it is clear
from the analysis carried out by Ashtekar and Gupt that
these oscillations indeed appear in the dressed-metric
approach for their choice of vacuum [46] (and a similar
behavior can be expected for hybrid LQC). Our result
shows, nonetheless, that in hybrid LQC this vacuum is
outside of the ball of states that was introduced to comply
with the fundamentals of the QHIH. This new perspective
has led us to wonder whether the basic requirements on this
set of admissible states are compatible with a nonoscillatory
behavior of (at least) a subset of them. In order to answer
this question, we have derived an analytical compatibility
condition between these two types of requirements and
then have proceeded to check it in hybrid LQC. The result
is satisfactory, from a theoretical perspective. Not only the
QHIH is compatible with an NO-behavior but, furthermore,
any NO-vacuum fulfills the QHIH at least at the end of the
Planck regime.
The conclusions of this work are an important advance

towards the theoretical motivation and determination of a
preferred vacuum for the perturbations and the extraction of
the corresponding physical predictions in (loop) quantum
cosmology. Given two well-motivated criteria for the
restriction of physically sound vacuum states (the QHIH
proposed by Ashtekar and Gupt and the NO-criterion
proposed by Martín de Blas and Olmedo), both of which
lead to predictions that are compatible with observations
[6,50,58], testing and ensuring their compatibility is a key
step to understand which physical conditions determine the
quantum state of the primordial perturbations that explains
the power spectrum that we observe nowadays in the CMB.
This knowledge is paramount to investigate and falsify on a
robust basis the phenomenological predictions that follow
from any theory of quantum cosmology, since an inappro-
priate choice of vacuum state can hide or misreflect the
imprints that the genuine quantum cosmological dynamics
may have left on the primordial fluctuations.
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