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We study the role of the Standard Model Higgs condensate, formed during cosmological inflation, in the
epoch of reheating that follows. We focus on the scenario where the inflaton decays slowly and
perturbatively, so that there is a long period between the end of inflation and the beginning of radiation
domination. The Higgs condensate decays nonperturbatively during this period, and we show that it heats
the primordial plasma to much higher temperatures than would result from the slowly decaying inflaton
alone. We discuss the effect of this hot plasma on the thermalization of the inflaton’s decay products, and
study its phenomenological implications for the formation of cosmological relics like dark matter, with
associated isocurvature fluctuations, and the restoration of the electroweak and Peccei-Quinn symmetries.
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I. INTRODUCTION

The discovery of the Higgs boson in 2012 not only
provided the final piece of the Standard Model of particle
physics, but also stimulated the realization that the Higgs is
of fundamental significance to cosmology. Its deep con-
nections to cosmic inflation, and in particular its dynamics
during inflation, have attracted special attention [1–7].
If the Higgs is a light spectator field during inflation [8],

then its quantum fluctuations accumulate on superhorizon
scales and locally displace the field away from the mini-
mum of its potential [9–12]. A Higgs condensate is formed,
which does not survive in the universe today but rather is
destroyed during the epoch of reheating, when the Higgs
and inflaton transferred their condensate energy to a
thermal bath of Standard Model particles.
In this paper, we present a new physical prediction for

how reheating of the Standard Model proceeds when the
inflaton field ϕ decays slowly, meaning that its decay rate
Γϕ is small enough that

Γ̃≡ Γϕ

m3
ϕ

M2
Pl ≪ 1: ð1Þ

Heremϕ is the inflaton’s mass, andMPl ¼ ð8πGÞ−1=2 is the
reduced Planck mass. If the inflaton decays, for example,
through a dimension-5 Planck-suppressed operator
L ¼ ðϕ=MPlÞO4, then the decay rate is parametrically Γϕ ∼
m3

ϕ=M
2
Pl and Γ̃ ∼ 1. Models with Γ̃ ≪ 1 then occur when

the coupling that mediates the decay of the inflaton to
matter is weaker than gravity [13].
A tiny coupling is technically natural, and couplings of

gravitational strength or weaker for the inflaton are in
general desirable on theoretical grounds to avoid spoiling
the flatness of the inflaton’s potential [13,14], and on
phenomenological grounds to avoid overproducing grav-
itinos during reheating [15].
In this regime, the decay of the inflaton is a perturbative

process which can be understood analytically. As the
inflaton decays to relativistic particles during reheating,
it sources the primordial plasma with an energy density ρr
evolving according to

dρr
dN

þ 4ρr ¼ 3Γ̃m3
ϕH ð2Þ

until reheating is completed. We use the e-folds N ≡ ln a
counted from the end of inflation as our time coordinate
throughout thiswork, andH¼HðNÞ is theHubble parameter.
Under the assumption that the inflaton’s potential is

quadratic near its minimum, the inflaton condensate’s
coherent oscillations drive an effectively matter-dominated
cosmological expansion with H ∝ e−3N=2. The radiated
energy density then has the asymptotic solution
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ρr ¼
6

5
Γ̃m3

ϕH: ð3Þ

As the Hubble rate drops, this radiation loses energy in
absolute terms but gains energy relative to the inflaton
condensate itself.
Reheating is generally taken to complete when Γϕ ∼H,

at a time

NRH ∼
2

3
ln

�
Hend

m3
ϕ

M2
Pl

Γ̃

�
; ð4Þ

where Hend denotes the Hubble rate at the end of inflation.
The plasma temperature at this time, i.e., the reheating
temperature, is taken by convention as [16,17]

TRH ¼
�

90

π2g�

�
1=4

ffiffiffiffiffiffiffiffiffi
Γ̃m3

ϕ

MPl

s
; ð5Þ

where g� is the effective number of relativistic degrees of
freedom of the plasma.
Since the radiation energy density decreases throughout

the reheating epoch, the maximum temperature of the
thermal component of the plasma can be much larger than
TRH [16,17]. If the Higgs condensate is neglected, the
maximum temperature during reheating is achieved when a
majority of the radiation produced by the inflaton has
thermalized, giving the relation [18]

Tϕ-max ≃
�
30ρr
π2g�

�����1=4
Nϕ-therm

; ð6Þ

where the thermalization time Nϕ-therm can be computed as
a function of Γ̃ [19]. Since the radiation energy density
evolves as ρr ∝ H ∝ e−3N=2 during matter domination,
the maximum plasma temperature scales as Tϕ-max ∝
e−3Nϕ-therm=8. We mark Nϕ-therm and Tϕ-max with ϕ’s to denote
they are associated with the decay of the inflaton.
In this work, we show that Tϕ-max is not necessarily the

maximum temperature of the primordial plasma during
reheating. The decay of the Higgs condensate formed
during inflation can lead to a higher temperature.
After inflation the Higgs condensate oscillates around

the minimum of its potential. We assume that the amplitude
of the Higgs condensate is not so large as to probe the
classically unstable part of its potential. Avoiding this
instability requires either that the energy scale of inflation
is below Hunstable ∼ 1010 GeV or that the Higgs potential is
stabilized at high energies [3,20,21]. As the Higgs con-
densate oscillates in its approximately quartic potential, its
energy density redshifts like radiation. Therefore, well after
the end of inflation, the Higgs’ energy density can be
simply parametrized as

ρh
H4

end

¼ ρ̃he−4N; ð7Þ

where ρ̃h is a constant, dimensionless parameter which
encodes all the details of how the Higgs condensate was
formed and how it began to oscillate. We will show that it is
generally of order unity or larger. The Hubble rate at the
end of inflation, Hend, will mainly scale all of our results
together rather than affect the relative importance of the
various processes.
After a few oscillations, the Higgs condensate decays

by parametric resonance in a completely Standard Model
process [22,23]. This produces an effectively thermal
plasmas at some time Nh-therm not long after the end of
inflation, with temperature

Th-max ≃
�
30ρh
π2g�

�����1=4
Nh-therm

: ð8Þ

Comparing the maximum temperature of the Higgs
condensate’s contribution to the plasma (8) to the maxi-
mum temperature of the inflaton condensate’s contribution
(6), we see that even though the radiation from the inflaton
will eventually dominate the energy density of our uni-
verse, the radiation from the Higgs controls the maximum
temperature of our universe if

Th-max

Tϕ-max
∼
�
ρ̃h
Γ̃

�
Hend

mϕ

�
3
�

1=4
e3Nϕ-therm=8−Nh-therm ð9Þ

exceeds unity. We denote parametric relations with ∼ here
and throughout. With ρ̃h generically of order unity or
larger, and mϕ ∼Hend as is typical for relatively large field
inflation1 we see that the Higgs contribution dominates
over the inflaton condensate contribution so long as it
sources a thermal population sufficiently before the inflaton
does and Γ̃ is small. Decreasing Γ̃ both suppresses the
energy density of the inflaton decay products and delays
their thermalization time Nϕ-therm. Technical naturalness
allows it to be very small, and empirically it is constrained
only by ensuring that reheating completes before big bang
nucleosynthesis around 1 MeV [24–26], yielding a lower
bound,

Γ̃≳ 10−17
�

TRH

1 MeV

�
2
�
1010 GeV

mϕ

�
3
�

g�
100

�
1=2

: ð10Þ

We will therefore be able to show that for much of the
allowed parameter space, the maximum temperature of our
universe is provided by the decay of the Higgs condensate
after reheating, with our results joining a growing body of
work highlighting the importance of the Standard Model
Higgs in a wide variety of reheating scenarios: when the
inflaton decays quickly [27,28]; when the inflaton decays
to a hidden sector [29] or has a stiff postinflationary

1One would generally expect that if inflation ended on a
quadratic potential Hend=mϕ ∼ ϕend=MPl.
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equation of state [30]; and when the condensate relaxation
contributes to leptogenesis [31,32].
This article is organized as follows. Table I follows this

introduction and summarizes the main parameters of this
work and gives the equations in which they are defined.
In Sec. II, we track the Higgs condensate from its

formation during inflation, through its oscillations during
reheating, to its resonant decay to effectively thermal
Standard Model radiation. We estimate the parameters ρ̃h
andNh-therm which control the maximum temperature of the
Higgs contribution to the primordial plasma.
In Sec. III, we review how the inflaton condensate

decays to a population of underoccupied hard particles,
slowing down thermalization, to relate the inflaton-decay
product thermalization time Nϕ-therm to the inflaton decay
rate Γ̃. We compute for the first time the effect of the Higgs
decay products on the thermalization of the inflation decay
products.
In Sec. IV we compare the Higgs and inflaton contribu-

tions to the plasma and show that for much of the parameter
space themaximum temperature of our universe is controlled
by the Higgs. We show that this temperature will generally
have inhomogeneities on large scales uncorrelated with the
adiabatic fluctuations sourced by the inflaton.
In Sec. V, we discuss the theoretical and observational

implications of having a maximum temperature controlled
by the Higgs, which include the enhancement of the
production of relic particles and the restoration of sponta-
neously broken symmetries. We conclude in Sec. VI.

II. RADIATION FROM THE HIGGS

In this section, we discuss the formation of the Higgs
condensate during inflation, its dynamics at the end of
inflation, and its decay to effectively thermal radiation via
parametric resonance after inflation.

A. Condensate formation

In their pioneering work, the authors of Ref. [12] studied
the equilibrium state of a self-interacting scalar field in a
de Sitter background. This is done by treating the field
amplitude, coarse-grained on a fixed physical scale larger
than the Hubble scale ∼1=H, as a random variable. Its
evolution is governed by a competition between determin-
istic rolling and stochastic fluctuations of amplitude
∼H=2π per e-fold as the exponentially expanding vacuum
fluctuations cross the averaging scale [33].
The probability distribution over field amplitudes can

be calculated by finding the stationary solutions of a
Fokker-Planck equation. For example in the case of four
real scalar fields with an SO(4) symmetry in their quartic
self-interaction λφ⃗4=4, the equilibrium distribution in de
Sitter space with Hubble parameter HdS has moments
hφ⃗i ¼ 0 and [21]

ffiffiffiffiffiffiffiffiffi
hh2i

q
¼

�
3

8π

�
1=4HdS

λ1=4
; ð11Þ

where h≡ jφ⃗j. We say then that h forms a scalar
condensate.
This discussion carries over to the SU(2)-doublet

Higgs field during inflation. Assuming that the inflationary
Hubble scale is much larger than the electroweak scale
v ≃ 246 GeV, the Higgs field will develop a scalar con-
densate. The typical condensate amplitude can be estimated
in de Sitter using Eq. (11) upon identifying λwith the Higgs
self coupling [3,34]. For simplicity, we neglect any running
of λ and in numerical estimates take λ ¼ 0.01. We assume
throughout that the Higgs is minimally coupled to gravity
and not directly coupled to the inflaton.
The cosmological inflationary epoch is only quasi-de

Sitter, and the Hubble parameter decreases as inflation
proceeds. Near the end of inflation in particular, the Hubble
rate can evolve quickly enough that a condensate estab-
lished stochastically early during inflation can further
evolve and the de Sitter result (11) becomes an inaccurate
estimate of the typical condensate amplitude [35,36]. This
evolution can be tracked directly by solving the Fokker-
Planck equation, but it can also be estimated by noting that
it is dominated by deterministic rolling rather than stochas-
tic fluctuations.
The local behavior of the condensate amplitude away

from the origin, where we can ignore the effective angular
momentum barrier associated with nonradial fluctuations,
can then be understood from the Klein-Gordon equation of
motion

d2h
dN2

þ 3

2
ð1 − wÞ dh

dN
þ V;h

H2
¼ 0; ð12Þ

where w is the background equation of state; w ≃ −1 during
inflation and w ¼ −1=3 when inflation ends.

TABLE I. The parameters and outputs of the slow reheating
scenario in the Standard Model.

Symbol Gloss Eq.

Inflaton control parameters
Hend Hubble rate at the end of inflation (7)
Γ̃ Inflaton decay rate (1) (10)
mϕ Inflaton mass (1) (9)

Higgs control parameters
ρ̃h Dimensionless asymptotic Higgs energy (7) (18)
Nh-therm Higgs effective thermalization time (8) (30)

Auxiliary derived parameters
TRH Reheating temperature (5)
Nϕ-therm Inflaton decay products therm. time (6) (55)

Maximum temperatures
Tϕ-max Maximum T from inflaton decay (6) (64)
Th-max Maximum T from Higgs decay (8) (36)

ACHIEVING THE HIGHEST TEMPERATURE DURING … PHYS. REV. D 104, 083540 (2021)

083540-3



When the Hubble drag conditions jdw=dNj ≪ 1 and
jd lnV;h=dNj ≪ 1 are satisfied, the Klein-Gordon equation
admits slow-roll solutions satisfying [37]

dh
dN

≃
−2

3ð3þ wÞ
V;h

H2
; ð13Þ

but the drag conditions break down if the condensate
amplitude is larger than

h ∼
Hffiffiffi
λ

p ; ð14Þ

which corresponds to the point where the Higgs field’s
effective mass ∼

ffiffiffi
λ

p
h is comparable to the Hubble scale H.

Therefore when the Hubble rate drops significantly near
the end of inflation, the condensate can be released from
Hubble drag if h≳H=

ffiffiffi
λ

p
. The condensate then rolls down

the potential until it is again halted by Hubble drag when
h=Hend ∼ λ−1=2, and the Higgs displacement at the end of
inflation is then independent of the Hubble rate earlier in
inflation.
When this occurs the Higgs at the end of inflation

will have a smaller displacement than the equilibrium
distribution in the earlier phase of inflation would suggest,
but a larger displacement than the equilibrium distribution
with HdS ¼ Hend would imply. This is consistent with the
results of Refs. [35,36] which solved the Fokker-Planck
equation for a spectator field in a variety of inflationary
backgrounds.
We show this effect in Fig. 1 by solving the equation of

motion (12) with various initial conditions near the end of

m2
ϕϕ

2 inflation. In this inflationary model the Hubble rate
at the end of inflation has decreased by an order of
magnitude from the Hubble rate when CMB scales crossed
the horizon, i.e.,Hend=H−60 ≃ 1=12 andmϕ=Hend ≃ 2. Due
to the dynamics discussed above, the condensate’s ampli-
tude at the end of inflation is roughly hend ∼Hend=

ffiffiffi
λ

p
, even

if the initial displacement was much larger.
Therefore though the Higgs field amplitude at the end of

inflation hend=Hend is a stochastic variable, it should be
within an order unity factor of the typical values

hend
Hend

∼min

�
HdS

Hend
λ−1=4; λ−1=2

�
; ð15Þ

where the first argument corresponds to the case where the
Hubble rate does not decrease significantly near the end
of inflation, and the second argument is the case where it
does. HdS is now identified with the Hubble rate when
the Higgs departed from the equilibrium solution. Since
HdS=Hend > 1 in any inflationary model, this window of
typical expectations is fairly narrow in practice, at most a
factor of ∼λ−1=4 ≃ 3 for λ ∼ 10−2.
After the end of inflation atN ¼ 0, the Hubble rate drops

and the condensate will eventually be released from Hubble
drag and oscillate in its quartic potential. As seen in Fig. 1,
in this regime the condensate energy density redshifts on
the cycle average like radiation [38],

ρh
H4

end

¼ ρ̃he−4N; ð16Þ

which defines ρ̃h as the dimensionless, time-independent
asymptotic energy of the condensate. We calibrate ρ̃h
directly as a function of hend=Hend by solving the equation
of motion (12) numerically starting from the end of
inflation with Hubble-dragged initial velocity and assum-
ing that the inflaton potential is quadratic near the end of
inflation and thereafter, V ¼ m2

ϕϕ
2=2. From solutions in

the range hend=Hend ∈ ½0; λ−1=2�, we infer an empirical
fitting function for the asymptotic Higgs energy

ρ̃h ∼
1

4
λ

�
hend
Hend

�
4

×

�
Hendffiffiffi
λ

p
hend

�
8=3

× 1.3

≃ 0.33λ−1=3
�
hend
Hend

�
4=3

: ð17Þ

The first factor of the first line accounts for the energy
density carried by the Higgs field at the end of inflation, the
second factor accounts for the Hubble drag phase untilH ∼ffiffiffi
λ

p
hend during which the energy density is approximately

constant rather than redshifting like e−4N , and the final
numerical factor 1.3 is calibrated from the numeric sol-
utions. This fitting function agrees parametrically with the

FIG. 1. The evolution of Higgs fluctuations through the end of
m2

ϕϕ
2 inflation. No matter how large fluctuations are early in

inflation (purple), they roll down as the Hubble rate decreases and
end up bounded by the drag value (14) at the end of inflation
(yellow). This is larger than the equilibrium value for fluctuations
in de Sitter with Hubble set byHend (red). The asymptotic energy
density after inflation (dashed) depends only on h4=3end rather than
h4end because small fluctuations remain frozen for a longer period
after inflation.
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fitting functions provided for a wide range of post-
inflationary backgrounds by Ref. [23].
For the typical Higgs displacements at the end of

inflation given in (15), we therefore have

ρ̃h ∼min

�
λ−2=3

�
HdS

Hend

�
4=3

; λ−1
�
: ð18Þ

In our examples and to normalize scaling relations we take
ρ̃h ¼ 10 reflecting HdS ∼Hend and λ ∼ 10−2. Similarly the
asymptotic Hubble rate after inflation ends and the inflaton
oscillates on a quadratic potential can be approximated as

H
Hend

≃ 0.8e−3N=2; ð19Þ

where the coefficient is a fit to numerical results.
The solution with ρ̃h ¼ 10 is shown in the first several

e-folds after the end of inflation in Fig. 2. We compare this
Higgs condensate energy density to the energy density of
the inflaton and its decay products (3) for an inflaton decay
rate with Γ̃ ¼ 10−7. While the Higgs condensate’s energy
density is much smaller than that of the inflaton, it can be
large in comparison to the inflaton’s decay products.

B. Condensate decay

After inflation, we assume that the Higgs condensate
is on a purely radial trajectory, which we have checked is a
good approximation due to Hubble friction. Rather than
jφ⃗j, h now represents a field that oscillates around zero and
its equation of motion asymptotically approaches the
simple form [38]

ḧþ λh3 ¼ 0; ð20Þ

where h≡ eNh is the conformally rescaled field and
overdots denote derivatives with respect to the conformal
time η ¼ R

dt=eN . This asymptotic equation of motion has
a solution in terms of an elliptic cosine function [38]

h ≃ hosccn

� ffiffiffi
λ

p
hoscðη − ηoscÞ;

1

2

�
; ð21Þ

which is periodic in zðηÞ≡ ffiffiffi
λ

p
hoscη, with period Δz≡

Γð1=4Þ2= ffiffiffi
π

p
≃ 7.4 where ΓðxÞ is the Euler gamma

function. hosc is the amplitude of the conformally con-
served oscillations, and ηosc is an arbitrary turning point
_hðηoscÞ ¼ 0. Matching this solution to the asymptotic
energy density (7) relates hosc to ρ̃h as

hosc
Hend

¼
�
4ρ̃h
λ

�
1=4

: ð22Þ

The Higgs condensate oscillates with this amplitude until
it decays into Standard Model particles [22,23,39–41] via
parametric resonance [38,42,43]. The most efficient decay
channel is to weak gauge bosons [23], since they have a
large coupling to the Higgs field and they do not experience
Pauli blocking [44]. Following Refs. [23,40], the Higgs
decay to one such field A ∈ fZ;W�g can be modeled using
a set of 3 scalar fields χi, one for each helicity, and a
corresponding scalar-Higgs interaction Lint ¼ −g2Aχ⃗2h2=8
which is familiar from studies of inflationary prehea-
ting [38,42,43,45]. This modeling provides an qualitative

FIG. 2. After inflation, the Higgs condensate’s energy density (red, ρ̃h ¼ 10) is negligible compared to the inflaton’s (purple), but it
can be larger than the energy of the inflaton’s decay products (blue, Γ̃ ¼ 10−7). The Higgs condensate (dashed) thermalizes (solid) some
Nh-therm ∼ 6 e-foldings after inflation, which can be well before the inflaton condensate’s decay products thermalize at Nϕ-therm. The
Higgs condensate thermalization time is associated with the condensate’s decay at Nh-decay (boxed region, shown in right panel), which
takes some N h-decay ∼ 4 Higgs amplitude oscillations. We have assumed here that inflation ends in a m2

ϕϕ
2 potential with

mϕ ¼ 1010 GeV, and we have not explicitly modeled the decay of the Higgs condensate here so ρr;h continues to oscillate after Nh-decay.
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understanding of the Higgs decay by parametric resonance
analytically.
The equation of motion for the mode functions χ;k in the

oscillatory regime is [38]

χ
k
00 þ

��
kffiffiffi
λ

p
hosc

�
2

þ q

�
h
hosc

�
2
�
χ
k
¼ 0; ð23Þ

where the conformal mode function χ
k
≡ eNχk, the reso-

nance parameter q≡ g2A=ð4λÞ, and 0 denotes a derivative
with respect to z. For a given energy scale, the Higgs self
coupling λ and the various gauge couplings can be
computed in the Standard Model, with typical values
λ ∼ 10−2 and g2Z ∼ 0.6, g2W ∼ 0.3 yielding q ∼ 10.
At early times the Higgs condensate’s energy loss from

decay can be neglected, h follows the analytic solution (21),
and the mode equation (23) describes a Lamé equation
which exhibits resonant behavior and exponentially-
growing solutions for certain ranges of k=ð ffiffiffi

λ
p

hoscÞ and
q. When nðnþ 1Þ=2 < q < ðnþ 1Þðnþ 2Þ=2 for an
odd integer n, the first resonance band extends from 0 to
k� ∼ ð ffiffiffi

λ
p

hoscÞðq=ð2π2ÞÞ1=4 [38].
Modes in the resonance band grow exponentially in z

and yield an exponentially increasing occupation number
of particles

fðk; zÞ ¼ 1

2
ðe2μkðz−zoscÞ − 1Þ; ð24Þ

with zosc ≡ zðηoscÞ and with the Floquet exponent μk a
nonmonotonic function of k and q bounded by 2 ln ð1þffiffiffi
2

p Þ=Δz ≃ 0.24. It can be approximated as a top hat

μk ∼ jμjΘð1 − k=k�Þ; ð25Þ

with jμj ∼ 0.2 [23]. The boson A is now identified with
the weak gauge boson which yields the largest Floquet
exponent, since it will dominate the condensate decay. Its
exponentially increasing number density then yields an
energy density

ρA ≃
h4oscq5=4λ2

213=4π7=2
e−4ðN−NoscÞðe2jμjðz−zoscÞ − 1Þ: ð26Þ

where in the per-particle energy we have accounted for the
effective mass g2hh2i=4 ≃ g2hosc=8 from the condensate
displacement. A key timescale is zh-decay when the con-
densate has transferred anOð1Þ fraction of its energy to the
gauge boson, ρA ¼ ρh. This time is conveniently expressed
in terms of a number of Higgs field oscillations,

N h-decay ≡ ðzh-decay − zoscÞ=Δz

¼ 1

2jμj
1

Δz
ln

�
1þ 25=4π7=2

q5=4λ

�
: ð27Þ

Using the fiducial values provided above, we estimate
that the Higgs condensate decays after N h-decay ∼ 2 field
oscillations. This number depends only logarithmically on
all of the parameters in the problem except the Floquet
exponent jμj, and is independent of the energy in the
Higgs condensate.2

This simple analytic estimate that the Higgs decays in
just a few oscillations is well supported by the lattice
simulations performed by Refs. [22,23], which incorporate
respectively Abelian and non-Abelian gauge structures for
the Higgs. They find that the condensate decays most of its
energy after N h-decay ¼ 3 ∼ 4 oscillations.
To absorb the theoretical uncertainty in this number, we

treat the number of Higgs field oscillations until decay
N h-decay as free parameter in our reheating study, with the
expectation that it lies in the above range.
Keeping N h-decay a free parameter also allows us to

absorb the scenario where none of the Standard Model
weak gauge bosons exhibit a k → 0 resonance. In this case,
while there will always be a resonance band at some k and
in the large q limit the resonance parameter μk in that band
will still approach the maximum possible value ≃0.24, in
general the Floquet exponent μk in a higher resonance band
will be smaller and imply a correspondingly longer decay
time N h-decay. Refs. [22,23] find that backreaction can take
up to ∼4 times more oscillations than in the usual case.
Finally, we need the number of cosmological e-folds that

elapse between the end of inflation and the time of Higgs
condensate decay. In the oscillatory regime the number of
e-folds ΔN in an interval of ΔN oscillations is

ΔN ≃ 2 ln ðΔNΔz=2þ 1Þ: ð28Þ

To get the absolute number of e-folds N in terms of the
absolute number of oscillations N , we calibrate the
mapping empirically by numerical solution of the con-
densate equation of motion. Identifying N as half the
number of zero-crossings of the field, the number of e-folds
to reach N h-decay for a condensate exiting inflation with
dimensionless displacement hend=Hend is

Nh-decay ∼ 2 ln

�
N h-decayΔz

2

�

−
2

3
ln

� ffiffiffi
λ

p
hend

Hend

�
− 0.4; ð29Þ

where the first term accounts for the e-folds from the
beginning of oscillations until decay (28), the second for
the e-folds between the end of inflation and the beginning

2One might wonder whether a resonance analysis is valid for
such a small number of oscillations—just 4 zero crossings—but
numerical solutions validate it within an intrinsic uncertainty of 1
zero crossing [38,46].
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of the Higgs oscillations, and the final numerical term is
calibrated from the numeric solutions. ForN h-decay ¼ 4, the
typical decay time is

Nh-decay ∼ ln

�
140ffiffiffiffiffiffiffi
λρ̃h

p
�
∼ 6; ð30Þ

where we have evaluated with ρ̃h ∼ 10 and λ ∼ 0.01.

C. Effective temperature and thermalization

We have seen that in just a few oscillations of the Higgs
field, most of the Higgs condensate’s energy is transferred
to weak gauge bosons. This radiation is very abundant in
the sense that the mode occupancy per helicity is much
larger than one. Specifically, combining Eqs. (24) and (27)
yields an estimate of the gauge boson spectrum when the
condensate decays. The occupation number is

f� ≡ fðp;N h-decayÞ ∼
21=4π7=2

q5=4λ
¼ Oð100Þ ð31Þ

in a resonance band that extends up to a physical
momentum

p� ∼
�

q
2π2

�
1=4 ffiffiffi

λ
p

hosce−Nh-decay : ð32Þ

The number density n� ∼ f�p3� and energy density ρ� ∼
f�p4� of produced particles is dominated by momenta
p ∼ p�. This momentum is larger than the Hubble rate,

HðNh-decayÞ ∼
p�

N h-decayq1=4
; ð33Þ

which confirms that a particle description is valid.
The weak boson radiation is already near thermal at the

time of production. If the energy of the decay products were
redistributed into a thermal spectrum with g� relativistic
species, then the typical energy per particle would be set by
the temperature T ∼ ðρh;�=g�Þ1=4. With hEi denoting the
population average energy, comparing this expression to
the per-particle energy of the produced particles yields

hEih-decay
hEiT

∼
p�

f1=4� p�g
−1=4
�

∼
g1=4�
f1=4�

∼ 1; ð34Þ

and reveals that most of the energy is carried by particles
with momenta p� ∼ T comparable to the eventual temper-
ature of the thermalized system.
With particles of similar number density and energy to

those of a thermal distribution, the weak boson spectrum
that results from parametric resonance is therefore effec-
tively thermal. This observation motivates us to identify the
effective thermalization time Nh-therm with the Higgs decay
time Nh-decay, i.e.,

Nh-therm ≃ Nh-decay: ð35Þ

At this time the effective temperature of the Higgs’ decay
products follows by energy conservation,

Th-max

Hend
¼

�
30ρ̃h
π2g�

�
1=4

e−Nh-therm

∼ 10−3
�
ρ̃h
10

�
1=4

e−ðNh-therm−6Þ; ð36Þ

where we have used g� ∼ 100 and scaled the result to
typical values for ρ̃h and Nh-therm from Eqs. (18), (30),
and (35).
As we will see in Sec. III, this is in sharp contrast with

the situation for the inflaton condensate, which decays by
producing less abundant particles but with much larger
energy than that of a thermal distribution of the same
energy density.
The subsequent evolution and complete thermaliza-

tion of the effectively thermal plasma of Higgs decay
products then depends on processes adjusting the number
of particles and their momentum distribution. An important
process while the Higgs is decaying is the nonlinear
interaction of the resonantly produced particles [47,48].
The non-Abelian interactions of the Higgs’ decay products
are especially efficient at extending the overoccupied
particles at p� to higher momenta with order unity
occupancy, which is even closer to thermal [22]. At low
momentum, scattering and absorption/emission processes
likewise bring the distribution closer to thermal [49].

III. RADIATION FROM THE INFLATON

We now discuss the decay of the inflaton and the
thermalization of its decay products. In contrast to the
Higgs condensate’s rapid decay via parametric resonance,
which produces an abundance of effectively thermal
particles, the inflaton’s decay is perturbative, and its decay
products first take the form of a severely underoccupied
distribution of hard primaries. These slowly transfer their
energy to a thermal soft population via in-medium splitting,
delaying thermalization of the full energy released by the
inflaton and lowering the maximum temperature of the
inflaton’s decay products.
Our calculations are based on the extensive literature on

thermalization of non-Abelian plasmas [50–52], applied to
the cosmological context of reheating [18,19,49,53,54]. We
provide the first calculation of how this thermalization
process proceeds in the presence of the decay products of
the Higgs condensate.

A. Inflaton condensate and decay

After inflation, the energy density of the universe
is dominated by the coherent oscillations of the infla-
ton condensate. Radiation domination begins once the

ACHIEVING THE HIGHEST TEMPERATURE DURING … PHYS. REV. D 104, 083540 (2021)

083540-7



condensate fully decays. Well before that time, the con-
densate’s energy loss is negligible, and it can be treated as
a free field oscillating in a quadratic potential VðϕÞ ¼
m2

ϕϕ
2=2 with a mass parameter mϕ corresponding to the

mass of an inflaton particle. On the cycle average the
inflaton’s energy density ρϕ ∝ e−3N corresponds to a
matter-dominated universe H ∝ e−3N=2 as in Eq. (19).
Each inflaton particle in the cold condensate carries an
energy of ∼mϕ and their number density is

nϕ ≃ ρϕ=mϕ ≃ 3M2
PlH

2=mϕ: ð37Þ

If the inflaton decays at a rate Γϕ ¼ m3
ϕΓ̃=M2

Pl into
relativistic particles, then the energy density ρr of the
emitted radiation obeys

dρr
dN

þ 4ρr ¼
Γϕ

H
ρϕ ≃ 3Γ̃m3

ϕH: ð38Þ

The asymptotic solution is

ρr ≃
6

5
Γ̃m3

ϕH: ð39Þ

B. Hard primaries

We assume that the inflaton decays to pairs of relativistic
Standard Model particles, each with energy ∼mϕ=2. The
energy of each hard primary produced by the inflaton
redshifts as e−N . The number density of hard primaries
obeys

dnhard
dN

þ 3nhard ¼ 2Γϕ
nϕ
H

; ð40Þ

where the factor of 2 accounts for the pair of hard primaries
produced by each inflaton particle decay. After some time
their accumulated phase space distribution function is then
[55,56] (also [18,19])

fhardðp;NÞ ¼ 3 · 27=2π2

ghard
Γ̃
�

p
mϕ

�
−3=2 H

mϕ

for mϕe−N=2≲ p≲mϕ=2; ð41Þ

where ghard counts the decay products’ redundant internal
degrees of freedom (e.g., color and spin). The numerical
coefficients ensure that the energy density of hard particles
is just ρhard ¼ ρr from Eq. (39), while the number density
evaluates to

nhard ¼ 4Γ̃m2
ϕH: ð42Þ

In these calculations, the momentum integration is domi-
nated by the UV cutoff p ¼ mϕ=2, and we drop terms

suppressed by H=Hend that are negligible after the end of
inflation.
Though the hard particles are sourced continuously, the

energy and number density of the hard particle population
is always dominated by those produced in the most recent
Hubble time. The per-particle energy ∼mϕ is then much
larger than it would be in a thermal bath of the same energy
T ∼ ðρr=g�Þ1=4; explicitly,

hEihard
hEiT

∼
mϕ

ðg−1� Γ̃m3
ϕHÞ1=4 ≫ 1: ð43Þ

This quantity is large because the total decay product
energy is suppressed by Γ̃ ≪ 1 and decreases with time,
while the energy of each particle is ∼mϕ which we assume
is comparable to or larger than Hend. Equivalently, the
number density of particles in the hard population is much
smaller than those in a thermal distribution of the same
energy density.
The hard primaries are therefore very far from thermal.

In order to thermalize, they must transfer their energy to an
abundant population of soft particles.

C. Energy cascade toward thermal bath

The hard primaries emit lowermomentum soft particles by
collinear splitting in a medium comprised of the hard
primaries themselves and the products of the previous
splittings. This splitting leads to a cascade of energy from
an underoccupied hard distribution to an abundant soft popu-
lation. The total energy density of the radiation (hardþ soft)
obeys Eq. (39) until backreaction on the condensate occurs
and reheating completes. For pedagogy and to connect to the
existing literature, we neglect here the influence of the decay
products of the Higgs. Their impact can change the thermal
history of the plasma, as we discuss in Sec. III E.
The abundantly populated soft particles rapidly thermal-

ize at a temperature Tsoft that is much less than the hard
particle energy mϕ=2. Most of the energy ρsoft and particle
number nsoft in the soft population is carried by particles
with momentum p ∼ Tsoft. Tsoft itself is determined by the
energy the hard particles have lost through in-medium
splitting. This transfer from hard to soft is a bottleneck
that prevents immediate thermalization of the full energy
released as the inflaton decays.
To write down the in-medium splitting rate, we must

specify the nature of the hard particles and their inter-
actions. For concreteness we consider a non-Abelian
plasma [50], and suppose that the hard primaries are
gluons. Then ghard ¼ 16 and the strong coupling is then
denoted by α ¼ g2s=4π ∼ 0.1.
By emitting soft radiation, a gluon of momentum pin can

split and form a gluon of momentum pout ≲ pin. The rate at
which this splitting occurs in the medium is estimated as
[54,57]
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ΓsplitðN; pin; poutÞ ∼ αΓel min

"
1;

ffiffiffiffiffiffiffiffiffiffiffi
pLPM

pout

r #

for pout ≲ pin; ð44Þ

where Γel is the rate for elastic gluon scattering. Γsplit only
depends on the incident gluon’s momentum pin through the
kinematic restriction pout ≲ pin, and Γsplit is suppressed for
high-momentum daughters pout > pLPM by the Landau-
Pomeranchuk-Migdal (LPM) effect [58,59]. The LPM
effect is the destructive interference of radiation produced
from nearby scattering sites when the formation time for the
radiation is long compared to the typical time between
scatterings. In QCD this occurs for daughter particles with
momentum pout above [60,61] (see also Refs. [51,62,63])

pLPM ∼
m2

Γel
; ð45Þ

where m is the gluon’s screening mass in the medium. We
estimate

m2 ∼ α
X
QCD

Z
f
p
d3p

∼ α
nhard
mϕ

þ α
gQCD
g�

nsoft
Tsoft

; ð46Þ

which has contributions from the hard particles and from
the thermal soft population, containing gQCD ∼ 88 quark
and gluon degrees of freedom. The screening mass also acts
as an infrared regulator for the elastic scattering rate

Γel ∼
Z

d2q
α2

q2ðq2 þm2Þ
X
QCD

Z
d3pfðpÞð1� fðpÞÞ

∼
α2

m2

�
nhard þ

gQCD
g�

nsoft

�
: ð47Þ

At this point we remind the reader that all expressions
containing the coupling α should be viewed parametrically.
For example we neglect numerical factors like the quadratic
Casimir, and we neglect logarithmic factors that appear
when solving the exact system of Boltzmann equations
describing collinear splitting in a non-Abelian plasma.
Energy transfer between the hard primaries and the soft

population relies on efficiently producing low-momentum
particles by splitting. This splitting is efficient if Γsplit ≳H.
Particles with large momenta pout are more difficult to
produce due to the LPM suppression, and their production
is inefficient above a momentum scale psplit where

ΓsplitðpsplitðNÞ; NÞ≡HðNÞ; ð48Þ

which implies

psplit ¼ phard
split þ psoft

split

∼ α4
�
nhard
H2

þ gQCD
g�

nsoft
H2

�
: ð49Þ

Note that psplit receives contributions from collisions with
both the hard and soft particles, and in Sec. III E we will
include the contribution from collisions with the decay
products of the Higgs.
Since the splitting rate (44) does not significantly depend

on the incident momentum pin, any secondaries produced
with pout < psplit can themselves radiate efficiently. When
they do so they lose an order unity fraction of their energy,
and in this way the energy cascades from the hard particles
to the thermal bath.

D. Asymptotic temperature of the bath

The energy cascading down from the hard particles
accumulates in the thermal bath of soft particles, such that
the energy density of the bath obeys

dρsoft
dN

þ 4ρsoft ¼
Z

psplitðNÞ

0

dp
Γsplitðp;NÞ

H
nhardðNÞ: ð50Þ

The integral is dominated by the UV modes with p ∼ psplit,

dρsoft
dN

þ 4ρsoft ∼ psplitnhard: ð51Þ

Asymptotically psplit is dominated by the contribution from
the soft particles themselves, and substituting psoft

split (49)
and nhard (42) yields

dρsoft
dN

þ 4ρsoft ∼ Amϕρ
3=4
softe

3N=2: ð52Þ

Here we have used that ðnsoft=g�Þ1=3 ∼ ðρsoft=g�Þ1=4 for a
thermal population, and we have defined a dimensionless
constant

A ∼ α4
gQCD
g3=4�

mϕ

Hend
Γ̃; ð53Þ

which is much less than unity for the parameters of interest.
The asymptotic solution of Eq. (52) is

ρsoft ∼
A4m4

ϕ

10000
e6N: ð54Þ

Despite the cosmological redshifting, the thermal popula-
tion’s energy density increases with time. This growth
continues until psplit reaches the hard particle energy mϕ=2
and ρsoft ∼ ρhard; this occurs
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Nϕ-therm ∼
2

15
ln

�
1

α16Γ̃3

g3�
g4QCD

�
Hend

mϕ

�
5
�

ð55Þ

e-folds after the end of inflation. At this point, the inflaton’s
decay products (hardþ soft) fully thermalize. The sub-
sequent temperature is then set by conservation of energy,

TϕðN > Nϕ-thermÞ ¼
�
30ρr
π2g�

�
1=4

; ð56Þ

and the plasma’s maximum temperature is reached at the
beginning of this fully thermal phase [18]

Tϕ-max ¼ TϕðNϕ-thermÞ ∼
α4=5Γ̃2=5mϕg

1=5
QCD

g2=5�
: ð57Þ

This is the maximum temperature of the inflaton decay
products during reheating in the slow decay regime,
neglecting the presence and influence of the hot plasma
produced by the Higgs. In Fig. 3, which we discuss further
in the next subsection, it corresponds to the maximum of
the purple line.

E. Effect of Higgs decay products

The Higgs condensate’s decay products contribute to the
medium in which the hard primaries split, amplifying the
hard particles’ splitting rate and changing their thermal-
ization history. Previous studies of thermalization during

reheating, upon which Secs. III C–III D are based, have
neglected this Standard Model process.
As a simplifying assumption, we suppose that the decay

of the Higgs condensate to an effectively thermal popula-
tion of relativistic particles occurs abruptly at Nh-therm.
These decay products then provide scattering targets for the
hard primaries, and the energy density of the soft radiation
emitted by in-medium splitting ρsoft evolves subject to an
extension of Eq. (51) where the splitting scale psplit is now

psplit ¼ phard
split þ psoft

split þ phiggs
split : ð58Þ

The first two terms appear in Eq. (49), and the new
contribution from the effectively thermal decay products
of the Higgs is obtained by including their contribution to
the elastic scattering rate (47) in the definition of the
splitting scale (44), yielding

phiggs
split

Hend
∼ α4

gQCD
g3=4�

ρ̃3=4h ; ð59Þ

which is time independent.
Since the soft particles will themselves interact and

thermalize with the Higgs’ decay products, ρsoft solved
from Eq. (51) should now be viewed as the energy
transferred from the inflaton to the thermal plasma with
total energy ρsoft þ ρh. We show the solution for ρsoft for a
typical parameter set in Fig. 3. We take an inflaton decay
rate Γ̃ ¼ 10−12 and an inflaton mass mϕ ¼ Hend. We
assume a Higgs energy ρ̃h ¼ 10 and a Higgs decay time
Nh-therm ¼ 6, which are typical values as seen in (18) and
(30). We use a coupling strength α ¼ 0.1.
At early times, the contribution to the total plasma

energy from the Higgs’ decay products dominates over
the contribution from all the inflation decay products. The
splitting scale (58) is therefore dominated by phiggs

split and so
the solution of Eq. (51) is

ρsoft ∼min ½phiggs
split ; mϕ� nhard; ð60Þ

where the minimum in this expression limits splitting to
occur below the energy of hard particles themselves. Due to
the α4 factor in (59), phiggs

split is smaller than mϕ unless
Hend ≫ mϕ or ρ̃h is much larger than unity.3

Despite being enhanced by scatterings off the Higgs’
decay products, ρsoft is initially a subdominant component
of the thermal plasma relative to the Higgs contribution ρh.
The solution (60) is valid until ρsoft overtakes ρh at time

FIG. 3. The total energy of inflaton decay products after
inflation (dashed blue, Γ̃ ¼ 10−12) can only thermalize after hard
primaries transfer their energy to a soft distribution by in-medium
splitting. The Higgs (ρ̃h ¼ 10) decays and produces an effectively
thermal plasma early (red, Nh-therm ¼ 6), which adds additional
scatterers into the medium and enables a soft population of
inflaton decay products to form early (blue). By the time this soft
population dominates over the Higgs (Nswitch ∼ 14), it will always
have a lower energy density than it does once all the hard
radiation thermalizes (Nϕ-therm ∼ 16), which is the same as if there
were no Higgs condensate at all (purple). See Sec. III E for further
discussion.

3While this can in principle be the case if λ is very small [see
Eq. (18)], in the very small λ regime the decay of the Higgs
condensate by parametric resonance may be disrupted if the weak
gauge bosons decay to fermions on the condensate oscillation
timescale [46,64].
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Nswitch ∼
2

5
log

�
ρ̃h
Γ̃

Hend

min ½phiggs
split ; mϕ�

H2
end

m2
ϕ

�
; ð61Þ

which is the intersection time of the red and blue lines in
Fig. 3. Nswitch is an important time. Observables which
depend on the temperature of the plasma during reheating,
such as the dark matter relic abundance we will discuss in
Sec. V, inherit the fluctuations of the thermal plasma at the
time they were produced. If they are produced before
Nswitch, the Higgs contribution to the thermal plasma
dominates and observables will inherit the Higgs’ fluctua-
tions. If they are produced after Nswitch, they inherit the
inflaton’s. We are therefore interested in the maximum
temperature of the plasma before and after Nswitch.
Before Nswitch, the Higgs contribution dominates the

thermal plasma and the maximum temperature is Th-max (8).
At Nswitch, we write ρ̃h in terms of phiggs

split to compare the
energy of the thermal plasma to the maximum energy it has
when it thermalizes without the Higgs ρrðNϕ-thermÞ. We find

ρswitch
ρrðNϕ-thermÞ

∼
�
min ½phiggs

split ; mϕ�2
phiggs
split mϕ

�4=5

≲ 1; ð62Þ

and thus regardless of whether phiggs
split is greater or less than

mϕ, by the time the inflaton contribution to the thermal
plasma dominates over the Higgs contribution, the plasma
is inevitably at a lower temperature than its maximum
without the Higgs, Tϕ-max.
After Nswitch, the energy ρsoft transferred from the inflaton

hard primaries dominates the energy density of the thermal
plasma and therefore provides the dominant contribution to
the splitting rate. If phiggs

split was less than the hard particle

energy mϕ, as we expect and as shown in Fig. 3, then psoft
split

begins to grow as described in §III D and approaches the
asymptotic solution (54). Once ρsoft reaches the hard particle
energy ρhard the plasma thermalizes completely. At this point
it reaches the maximum temperature Tϕ-max computed with-
out the effect of the Higgs in Eq. (57).
We therefore see that while the Higgs can increase the

hard primary splitting rate to enhance the inflaton con-
tribution to the thermal plasma, Tϕ-max still represents the
maximum temperature of the plasma after Nswitch as long
as phiggs

split ≲mϕ.

If, however, phiggs
split ≳mϕ, then the inflaton contribution to

the thermal plasma only comes to dominate the Higgs one
after the thermalization timeNϕ-therm (55) which defined the
maximum temperature Tϕ-max of the plasma neglecting the
Higgs. Explicitly,

Nswitch − Nϕ-therm ∼
2

15
log

�
p4
split

min ½phiggs
split ; mϕ�3

1

mϕ

�
: ð63Þ

When Nswitch > Nϕ-therm, the maximum temperature of
the plasma after the inflaton contribution dominates at
Nswitch is in fact determined by the energy at Nswitch itself
∼ρrðNswitchÞ, lower than it was without the Higgs. We will
not focus on this regime in the following.

IV. MAXIMUM TEMPERATURE DURING
REHEATING

We have seen that the thermal plasma during reheating
receives contributions from the decay of the Higgs and
inflaton condensates, and that it can be much hotter than the
ultimate reheating temperature at the onset of radiation
domination. The inflaton decay products provide a maxi-
mum temperature (57)

Tϕ-max

Hend
∼ 0.4

�
mϕ

Hend

�
3=4

Γ̃1=4e−3Nϕ-therm=8

∼ 10−3
�

mϕ

Hend

��
Γ̃

10−4

�
2=5

�
α

0.1

�
4=5

; ð64Þ

which is controlled by the inflaton parametersmϕ=Hend and
Γ̃ and by the Standard Model parameters of which we have
retained here only α.
The decay of the Higgs condensate provides a maximum

temperature (36),

Th-max

Hend
∼ 10−3

�
ρ̃h
10

�
1=4

e−ðNh-therm−6Þ; ð65Þ

which is controlled by the Higgs density parameter ρ̃h and
by the Higgs effective thermalization time Nh-therm. Both of
these temperature scales can be much larger than the
reheating temperature (5)

TRH

Hend
∼ 10−7

�
Hend

1010 GeV

�
1=2

�
mϕ

Hend

�
3=2

�
Γ̃

10−4

�
1=2

ð66Þ

that characterizes the plasma at the onset of radiation
domination.
We show these temperatures in Fig. 4 as a function of the

inflaton decay rate Γ̃ for the parameter values above. With
these parameter choices the maximum temperature of our
universe is provided not by the decay of the inflaton but by
the decay of the Higgs condensate provided that the
inflaton decay rate is sufficiently small,

Γ̃≲ 10−4
�
Hend

mϕ

�
5=2

; ð67Þ

or equivalently when reheating takes a sufficiently long
time
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NRH ≳ 32 −
4

3
ln

�
Hend

1010 GeV

�
mϕ

Hend

�
1=4

�
: ð68Þ

If the maximum temperature during reheating arises from
the decay of theHiggs condensate, i.e.,Th-max > Tϕ-max, then
the plasma temperature will for some time track the Higgs
condensate’s spatial inhomogeneities. Since these inhomo-
geneities result from the Higgs’ stochastic fluctuations
during inflation, the maximum temperature during reheating
can therefore locally inherit large-scale spatial correlations.
In de Sitter space, correlation functions must be invariant

under the SOð4; 1Þ isometry. Consequently, the Higgs
field’s equal-time spatial correlation function GðRÞ can
be computed from the unequal-time temporal correlation
function GðΔNÞ≡ hhðx⃗; NÞhðx⃗; N þ ΔNÞi. The leading
order nontrivial behavior is [12,21]

GðΔNÞ ∝ e−jΔNj=Nc; ð69Þ

with the asymptotic correlation time

Nc ≡ H
Λ1

≃ ð110 e-foldsÞ
�

λ

10−2

�
−1=2

; ð70Þ

determined by the smallest nonzero eigenvalue Λ1 of the
Fokker-Planck equation for the Higgs’ one-point proba-
bility distribution function.4

The equal-time spatial correlation function between
points separated by a physical distance R is then obtained
by the mapping ΔN → 2 lnðRHÞ. For regions probed by
the CMB, which crossed the inflationary horizon some
60e-folds before the end of inflation, the physical distance
is R60 ∼H−1e60, and we estimate the spatial correlation
function to be

GðR60Þ
Gð0Þ ∼ e−2×60=Nc ∼ 0.3 ð71Þ

for λ ¼ 10−2.
These estimates imply that the Higgs condensate during

reheating was only partially correlated on large length
scales that correspond to our present Hubble patch. If the
Higgs condensate sets the maximum temperature of our
universe during reheating, we expect order unity fluctua-
tions in that temperature across the CMB scales.
Note that the evolution of the Hubble rate during infla-

tion can change this expectation. As discussed in Sec. II A,
if the Hubble rate shrinks near the end of inflation then
regions with stochastic Higgs fluctuations set earlier during
inflation are released from Hubble drag and roll down the
potential until their evolution is arrested once again. This
causes regions with different values of the Higgs conden-
sate to converge on the Hubble drag solution (see Fig. 1). In
the HdS=Hend ≫ 1 limit, this attractor behavior enhances
the Higgs’ correlation on large scales relative to Eq. (71),
and can in principle reduce the inhomogeneity of the effects
we will discuss in the next section.

V. IMPLICATIONS FOR LOW-SCALE
REHEATING

A. Dark matter and unwanted relics

It may appear that by increasing the temperature of the
primordial plasma the Higgs can source viable dark matter
candidates when the inflaton alone cannot. This is not so.
Any relic produced while the Higgs’ decay products
dominate the thermal plasma inherits the Higgs’ order
unity correlations on large scales (71), which can be viewed
as an extreme form of matter-radiation isocurvature fluc-
tuations. One should therefore instead be concerned that
scenarios with a low reheating temperature could generi-
cally suffer from the production of catastrophic relics
sourced by the Higgs contribution to the thermal plasma.
Fortunately, we shall see that this can only occur if
Hend ≳ 1011 GeV, a region of parameter space which is
likely excluded by the Higgs instability constraint
Hend ≲Hunstable ∼ 1010 GeV.
Observations of the CMB constrain the amplitude of

matter-radiation isocurvature perturbations Smr to be
≲10−1R where R ≃ 5 × 10−5 is the amplitude of the
adiabatic perturbations [65]. Any stable, weakly coupled
relic χ that was produced by the thermal plasma in the

FIG. 4. The maximum temperature during reheating as a
function of the inflaton decay rate Γ̃. The Higgs decays to an
effectively thermal population at a temperature Th-max [red, (36)],
which dominates over the contribution to the thermal plasma
from the inflaton’s thermal decay products Tϕ-max [blue, (57)]
when Γ̃ ≲ 10−4 for Hend ∼mϕ. For further discussion see Sec. IV.

4We use here the eigenvalue for a real field with a Z2

symmetry, because only radial steps decohere the condensate.
The variance of the SU(2)-doublet Higgs is slightly larger relative
to the radial steps than the variance of the Z2 field, so the Higgs
should be slightly harder to decohere and the correlation time (70)
is a mild underestimate.
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epoch when it was dominated by the Higgs’ decay products
will carry Oð1Þ energy inhomogeneities δρχ ∼ ρχ . If it is
nonrelativistic at recombination it will behave as a
dark matter component leading to an isocurvature ampli-
tude Smr ∼ δρχ=ρtot comparable to its relic abundance
Ωχ ∼ ρχ=ρtot. Consequently, the CMB isocurvature con-
straint implies an abundance constraint

Ωχh2 ≲ 10−6: ð72Þ

We now compute the relic abundance of particles
produced during reheating by the thermal plasma. We
separate the produced abundance into the contributions
from the Higgs and inflaton decay products to see under
what circumstances the bound (72) on the Higgs contri-
bution is satisfied.
When the relic is produced during a matter-dominated

reheating phase, its relic abundance can be related to its
production time N� and its number density at production
nχðN�Þ through [17]

Ωχh2 ¼
π2

270

g�S;0T3
CMBmχTRH

M4
PlH

2
100

�
nχ
H2

�����
N�

; ð73Þ

so long as after reheating the comoving entropy density is
conserved. mχ is the mass of the particle, g�S;0 ≃ 3.91 is
the number of effective entropy degrees of freedom today,
and H100 ¼ 100 km=s=Mpc.
For simplicity we focus on thermal production mecha-

nisms for nχ, though nonthermal production of relics during
perturbative reheating can also generally be important due
to the continual generation of hard primaries with energies
∼mϕ [66–69]. Since the Higgs provides additional scatter-
ing targets for those particles (see Sec. III E), it may play a
role in such processes as well.
The kinetic equation for nχ is [17]

dðe3NnχÞ
dN

¼ −
hσvi
H

e3Nðn2χ − n2χ;eqÞ; ð74Þ

where the thermally averaged annihilation cross section
hσvi can be implicitly time dependent if it is temperature
dependent, and nχ;eq is the equilibrium number density. We
assume bosonic dark matter with one internal degree of
freedom so nχ;eq ¼ T3ζð3Þ=π2.

1. Freeze out

Freeze out occurs when hσvineq ≈ 3H, and if this occurs
whenmχ ≫ T then nχ ≫ nχ;eq and the kinetic equation (74)
yields

e3NnχðNÞ ≃
�Z

N

NFO

dN
hσvi
H

e−3N
�

−1
; ð75Þ

where NFO is the freeze-out time. So long as the cross
section is not enhanced at low temperatures, the particle
annihilation occurs mainly near NFO and the number
density at N ≫ NFO is simply

nχ ≃
3

2

HFO

hσviFO
e−3ðN−NFOÞ; ð76Þ

where HFO is the Hubble rate when the freeze-out tem-
perature TFO is reached and hσviFO is the cross section
at freeze out. The particular order unity numerical coef-
ficient here assumes a temperature independent cross
section.
First let us consider the well-known case (see, e.g.,

Refs. [17,70]) in which the relic particle is produced by the
inflaton decay products before radiation-domination is
reached; this corresponds to TRH < TFO < Tϕ-max. Under
these assumptions, the relic mass mχ , relic abundance
Ωχh2, freeze-out temperature TFO ≡mχ=xFO, reheating
temperature TRH, and scattering strength hσvi, are related
through

mχ

TRH
∼
1

β

�
TRH

2 TeV

�
2
�
0.12
Ωχh2

��
xFO
20

�
7=2

; ð77Þ

where we have parameterized the cross section as

hσviFO ¼ β
4π

m2
χ

ffiffiffiffiffiffiffi
xFO
6

r
; ð78Þ

which defines the dimensionless parameter β. The value
xFO ∼ 20 is familiar from studies of weak-scale freeze out,
and xFO is only logarithmically sensitive to the mass scale
(see, e.g., [70]).
The validity of the underlying assumptions requires that

the cross section be sufficiently high that the particle
reaches equilibrium before freeze out but not so high as
to violate unitary bounds. Unitarity requires β ≲ 1, and
thermal equilibrium requires hσviFOnχ;eq;FO ≳HFO, which
translates to

β ≳
ffiffiffi
6

p
HFOπx

5=2
FO

4mχζð3Þ
: ð79Þ

The upper and lower bounds on β then yield, respectively,
lower and upper bounds on the mχ which can yield a given
relic abundance at a given reheating temperature

�
TRH

2 TeV

�
2
�
0.12
Ωχh2

��
xFO
20

�
7=2

≲ mχ

TRH
≲ 104

�
TRH

2 TeV

�
1=4

�
0.12
Ωχh2

�
1=4

�
xFO
20

�
5=4

; ð80Þ
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subject to the condition TRH < TFO < Tϕ-max. Notice that
unitarity provides a lower bound on the mass. This is
because H ∝ T4 before radiation domination; if instead
freeze out occurs after radiation domination when H ∝ T2,
then unitarity leads to the familiar upper bound on
mass [71].
ForΩχh2 ≃ 0.12 such that χ can be all of the dark matter,

the lower bound on the mass is below the upper bound for
all reheating temperatures below ∼400 TeV. The crossing
point determines the maximum mass particle which can
be the dark matter, mχ ∼ 1010 GeV. On the other hand,
in the limiting scenario of reheating right before BBN,
TRH ∼ 1 MeV, the maximum mass for a dark matter
candidate is only mχ ∼ 300 MeV.
Now if instead freeze out occurs at Tϕ-max < TFO <

Th-max, then the Higgs contribution to the plasma deter-
mines the relic abundance and we generically expect order
unity inhomogeneities in its number density on large scales.
In this case the temperature is related to the Hubble rate

as H ∝ T3=2 by Eqs. (7) and (19), and so the abundance
is enhanced for more massive particles. The analog of
Eq. (77) is now

mχ

TRH
∼ β2=3

�
1010 GeV

Hend

�
1=3

�
10

ρ̃h

�
1=4

×

�
107 GeV
TRH

�
5=3

�
Ωχh2

10−6

�
2=3� 20

xFO

�
2=3

; ð81Þ

where we have scaledΩχh2 by the isocurvature bound (72).
The lower and upper bounds on β now provide, respec-
tively, lower and upper bounds on the mass as5

�
1010 GeV

Hend

��
107 GeV
TRH

�
2

×

�
Ωχh2

10−6

��
10

ρ̃h

�
3=4 ≲ mχ

TRH
≲
�
Ωχh2

10−6

�
2=3�10

ρ̃h

�
1=4

×

�
1010 GeV

Hend

�
1=3

�
107 GeV
TRH

�
5=3

�
20

xFO

�
2=3

; ð82Þ

subject to the condition Tϕ-max < TFO < Th-max. The
allowed region increases for increasing Hend and TRH.
Replacing TRH with Γ̃ and mϕ, then Γ̃ < 10−4 (67) sets a
lower bound on Hend for which a solution for a given relic
abundance exists

Hend ≳ 1011 GeV

�
Ωχh2

10−6

�
2=7�10−4

Γ̃

�
1=7

×

�
10

ρ̃h

�
3=7

�
xFO
20

�
4=7

�
Hend

mϕ

�
3=7

: ð83Þ

This limit sets the Hubble rate at the end of inflation
above which the presence of the Higgs can be dangerous. If
Hend is above 1011 GeV and Γ̃ is suitably small but not
too small (though the dependence is very weak), then the
Higgs condensate can source relics by thermal freeze out in
sufficient abundance to interfere with the CMB. Conversely
if Hend ≪ 1011 GeV then no such relics can form.
Remarkably, this safe region is similar to the Higgs

instability bound, which restricts the inflationary Hubble
rate to be below Hunstable ∼ 1010 GeV. Thus if the Hubble
rate during inflation is low enough that the Higgs was not
sent to its instability, which we implicitly assume in our
calculations, then by this criteria the Higgs is also not able
to source dangerous isocurvature perturbations by thermal
freeze out. The exact bound Hunstable is on the other hand
currently subject to experimental uncertainties in the top
mass, as well as the stochastic history of the Higgs during
inflation, and our results therefore provide an independent
mechanism by which the Higgs may limit the inflationary
energy scale.

2. Freeze in

The lower bound on the cross section (79) is the
condition that the relic was once in equilibrium with the
thermal bath. When relic particles are produced from
the bath at a low enough rate that the process was never
in equilibrium, thermal freeze in occurs instead [72–79].
With nχ ≪ nχ;eq, the kinetic equation (74) yields

e3NnχðNÞ ∼ g2χζð3Þ2
π4

Z
N

0

dN
e3NT6hσvi

H
; ð84Þ

where we assume that mχ ≪ TðNÞ while particle produc-
tion occurs. Freeze-in production is inefficient in the
complementary regime, mχ ≳ TðNÞ, where the rate is
Boltzmann suppressed. The integral may be dominated
by early times or late times, depending on how T, H, and
hσvi vary in time.
With H ∝ T3=2 the Higgs contribution comes from

production at Th-max for all hσvi which do not decrease
with increasing temperature. This UV-dominated freeze in
yields a number density at production [80]

nχðNh-thermÞ ≃
g2χζð3Þ2

π4
T6
h-maxhσvih-max

HðNh-thermÞ
; ð85Þ

where hσvih-max is the production rate at Th-max and
the specific order unity coefficient here assumes a
constant hσvi.

5If the dark matter particles are relativistic at the time of freeze
out, the resultant scaling would be the same as the lower limit on
mχ shown here.
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With H ∝ T4 the inflaton contribution, on the other
hand, comes from production at the end of reheating for
constant hσvi. This remains true for UV-enhanced cross
sections hσvi ∝ Tn for all n < 6 [81]. Only for n > 6 is
the dominant contribution from Tϕ-max. Regardless, the
relative relic abundance produced by the Higgs and inflaton
depends on the relic mass and the relative values of hσvi at
the respective production times. We focus here on the
regime where hσvi is sufficiently larger at Th-max that the
Higgs decay products provide the dominant contribution to
the abundance.
That abundance is then bounded from above by the

condition that it was not in thermal equilibrium,

hσvih-maxneq;h-max < Hh-max; ð86Þ

which is stronger than the relativistic version of the
unitarity bound on the cross section. As in the freeze-out
case, the bound can be translated into a bound on Hend
given a relic density

Hend ≳ 1011 GeV
�
Ωχh2

10−6

�
2=7�10−4

Γ̃

�
1=7

×

�
Th-max

mχ

�
2=7

�
10

ρ̃h

�
3=7

�
Hend

mϕ

�
3=7

; ð87Þ

where we have scaled mχ by Th-max but note it should
satisfy mχ ≪ Th-max for our approximations to be consis-
tent. The danger zone for potentially producing isocurva-
ture perturbations that are too large is quite similar to the
freeze-out one (83): Hend ≳ 1011 GeV.

B. Symmetry restoration

The maximum temperature of the thermal plasma during
reheating has implications for the restorations of sym-
metries by finite temperature effects. The maximum tem-
perature of the thermal plasma neglecting the presence of
the Higgs condensate (64) can be written in terms of the
reheating temperature as [18,19]

Tϕ-max ∼ 100 GeV

�
1010 GeV

mϕ

�
1=5

�
TRH

1 MeV

�
4=5

: ð88Þ

Note that for a fixed reheating temperature it is inversely
dependent on mϕ. The electroweak symmetry is restored
if the temperature reaches values ≳100 GeV, and we
therefore see that, neglecting the Higgs condensate, for
low reheating temperatures the electroweak symmetry
is not necessarily restored by the thermal plasma if
mϕ ≳ 1010 GeV. This point was discussed in Ref. [19].
The decay of the Higgs condensate, however, provides a

plasma temperature (65)

Th-max ∼ 107
�

Hend

1010 GeV

��
ρ̃h
10

�
1=4

e−ðNh-therm−6Þ; ð89Þ

independent of the reheating temperature. Comparing
the maximum temperature from the Higgs decay to the
maximum temperature from the inflaton decay, we see that if
mϕ ∼Hend then the decay of the Higgs is complementary to
the decay of the inflaton: whenever the electroweak sym-
metry is not restored by the inflaton it is restored by
the Higgs.
Thanks to the decay of the Higgs condensate, the

electroweak symmetry is therefore in fact guaranteed to be
restored in the early universe when reheating is perturbative,
except when the Hubble rate at the end of inflation is low,

Hend < 105 GeV

�
0.01
λ

�
1=2

�
10

ρ̃h

�
3=4

; ð90Þ

and much smaller than the inflaton mass

mϕ

Hend
> 105

�
λ

0.01

�
1=2

�
ρ̃h
10

�
3=4

�
TRH

1 MeV

�
4

: ð91Þ

The Higgs condensate may similarly play a role in the
restoration of symmetries predicted by theories of new
physics. For instance the hypothetical Peccei-Quinn axion
arises as the pseudo-Nambu-Goldstone boson associated
with the spontaneous breaking of a global Uð1ÞPQ sym-
metry [82–85]. If the primordial plasma temperature initially
exceeds the symmetry breaking scale, then as the universe
cools the symmetry is broken in a cosmological phase
transition which can lead to the formation of topological
defects such as axion strings and domain walls. These can
leave distinctive imprints on cosmological observables [86].
The symmetry breaking scale is model-dependent, and some
of the most compelling scenarios have ∼1010–1012 GeV
[87], but even if inflation occurs at a high energy scale the
inflaton decay products may not be hot enough to restore
such symmetries if the inflaton decay is slow [19]. The decay
of the Higgs condensate, on the other hand, leads to a high
temperature plasma irrespective of the reheating tempera-
ture and may facilitate such symmetry restorations and the
accompanying phase transitions and topological defect for-
mation. However, unless the Peccei-Quinn scale is suffi-
ciently low, i.e., ≲Th-max from Eq. (89), even the Higgs
condensate decaywill be insufficient to restore the symmetry.
Note that the large scale inhomogeneity of Th-max does

not directly impact relic defects from symmetry breaking
except in rare regions where Th-max fluctuates to such low
values that the given symmetry is not restored.

VI. CONCLUSION

We have studied the role of the Standard Model
Higgs field during the epoch of reheating after inflation.
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The Higgs forms a condensate during inflation, and we
have focused on its behavior in the scenario where the
inflaton decays slowly, having a small perturbative decay
rate Γϕ ≪ m3

ϕ=M
2
Pl. We have calculated the maximum

temperature achieved by the primordial plasma due to
energy transfer from the Higgs and inflaton condensates,
and the time evolution of this temperature between the end
of inflation and the start of radiation domination.
To do so, we built upon well-established results in the

literature and applied them to the Higgs, including the
formation of a Higgs condensate during inflation from its
quantum fluctuations as a light spectator field, the dynam-
ics of the Higgs condensate after inflation as it oscillates on
its quartic potential, and the parametric resonance in the
electroweak gauge fields that induces an energy transfer
from the Higgs condensate into an effectively thermal
plasma which can be understood qualitatively analytically
and quantitatively by lattice simulations.
We contrasted the resonant decay of the Higgs con-

densate with the inflaton’s perturbative decay into rare hard
particles which thermalize by an in-medium splitting sup-
pressed by the LPM effect, in doing so drawing from the
extensive literature on thermalization in non-Abelian plas-
mas in the effective kinetic theory.
From this synthesis of constituent ideas, we are able to

develop a comprehensive understanding of the Higgs
condensate’s role in reheating. The central conclusions
of our work are
(1) Regardless of the inflationary history, the Higgs

condensate has a typical energy density after in-
flation which lies within a narrow window between
∼λ−2=3H4

ende
−4N and ∼λ−1H4

ende
−4N controlled by

the Hubble rate at the end of inflation.
(2) The Higgs condensate is important to the thermal

history of the universe when the inflaton decay rate
is sufficiently small (67),

Γ̃≡ ΓϕM2
Pl=m

3
ϕ ≲ 10−4

�
Hend

mϕ

�
5=2

;

or equivalently when reheating takes a sufficiently
long time, see Eq. (68).

(3) The maximum temperature of the primordial plasma
is then obtained at the time of the Higgs conden-
sate’s fragmentation and decay, typically a few
e-folds after the end of inflation, and for typical
parameters in Eq. (89) is

Th-max ∼ 107 GeV

�
Hend

1010 GeV

�
:

In the absence of a Higgs condensate, by contrast,
the maximum temperature could be much lower,
see Eq. (88).

(4) As shown in Fig. 3, the presence of the Higgs’ decay
products changes the thermalization history of the
hard primaries produced as the inflaton decays by
increasing the scattering targets in the plasma. This
enhances the energy transfer from the hard primaries
to the thermal sector, but once the inflaton contri-
bution dominates the thermal energy of the universe
the subsequent maximum temperature is set by the
Higgs-less result above.

(5) The maximum temperature of our universe will
inherit the Higgs’ large scale stochastic fluctuations,
which are uncorrelated with the curvature fluctua-
tions in our universe. If relics are produced in
substantial abundance from the plasma while it is
dominated by the Higgs’ decay products, they will
therefore lead to unacceptable isocurvature fluctua-
tions in the CMB. We show that for production by
either thermal freeze out (83) or freeze in (87) this
cannot occur so long as the inflationary scale is
below

Hend ≲ 1011 GeV:

(6) Even for low reheating temperatures, the electro-
weak symmetry in our universe is restored by the
decay of the Higgs condensate after inflation if
Hend ≳ 105 GeV, which complements symmetry
restoration from the inflaton decay products. Pec-
cei-Quinn axion symmetry may also be restored if its
symmetry breaking scale is below Th-max.
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Poincaré Phys. Theor. A 9, 109 (1968).

[9] A. D. Linde, Phys. Lett. B 116, 335 (1982).
[10] I. Affleck and M. Dine, Nucl. Phys. B249, 361 (1985).
[11] K.-M. Lee and E. J. Weinberg, Phys. Rev. D 36, 1088

(1987).
[12] A. A. Starobinsky and J. Yokoyama, Phys. Rev. D 50, 6357

(1994).
[13] J. Ellis, M. A. G. Garcia, D. V. Nanopoulos, and K. A.

Olive, J. Cosmol. Astropart. Phys. 07 (2015) 050.
[14] V. Assassi, D. Baumann, D. Green, and L. McAllister, J.

Cosmol. Astropart. Phys. 01 (2014) 033.
[15] M. Kawasaki, K. Kohri, T. Moroi, and A. Yotsuyanagi,

Phys. Rev. D 78, 065011 (2008).
[16] D. J. Chung, E. W. Kolb, and A. Riotto, Phys. Rev. D 60,

063504 (1999).
[17] G. F. Giudice, E. W. Kolb, and A. Riotto, Phys. Rev. D 64,

023508 (2001).
[18] K. Harigaya and K. Mukaida, J. High Energy Phys. 05

(2014) 006.
[19] K. Mukaida and M. Yamada, J. Cosmol. Astropart. Phys. 02

(2016) 003.
[20] K. Kohri and H. Matsui, Phys. Rev. D 94, 103509

(2016).
[21] P. Adshead, L. Pearce, J. Shelton, and Z. J. Weiner, Phys.

Rev. D 102, 023526 (2020).
[22] K. Enqvist, S. Nurmi, S. Rusak, and D. Weir, J. Cosmol.

Astropart. Phys. 02 (2016) 057.
[23] D. G. Figueroa, J. Garcia-Bellido, and F. Torrenti, Phys.

Rev. D 92, 083511 (2015).
[24] M. Kawasaki, K. Kohri, and N. Sugiyama, Phys. Rev. D 62,

023506 (2000).
[25] P. F. de Salas, M. Lattanzi, G. Mangano, G. Miele, S. Pastor,

and O. Pisanti, Phys. Rev. D 92, 123534 (2015).
[26] T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T.

Tram, and S. Hannestad, J. Cosmol. Astropart. Phys. 12
(2019) 012.

[27] K. Freese, E. I. Sfakianakis, P. Stengel, and L. Visinelli, J.
Cosmol. Astropart. Phys. 05 (2018) 067.

[28] A. Litsa, K. Freese, E. I. Sfakianakis, P. Stengel, and
L. Visinelli, arXiv:2009.14218 [Phys. Rev. D (to be
published)].

[29] T. Tenkanen, Phys. Rev. D 100, 083515 (2019).
[30] D. G. Figueroa and C. T. Byrnes, Phys. Lett. B 767, 272

(2017).

[31] A. Kusenko, L. Pearce, and L. Yang, Phys. Rev. Lett. 114,
061302 (2015).

[32] L. Yang, L. Pearce, and A. Kusenko, Phys. Rev. D 92,
043506 (2015).

[33] A. A. Starobinsky, Lect. Notes Phys. 246, 107 (1986).
[34] T. Kunimitsu and J. Yokoyama, Phys. Rev. D 86, 083541

(2012).
[35] R. J. Hardwick, V. Vennin, C. T. Byrnes, J. Torrado, and D.

Wands, J. Cosmol. Astropart. Phys. 10 (2017) 018.
[36] J. Fumagalli, S. Renaux-Petel, and J. W. Ronayne, J. High

Energy Phys. 02 (2020) 142.
[37] C. Gordon and W. Hu, Phys. Rev. D 70, 083003 (2004).
[38] P. B.Greene, L.Kofman,A. D. Linde, andA. A. Starobinsky,

Phys. Rev. D 56, 6175 (1997).
[39] K. Enqvist, T. Meriniemi, and S. Nurmi, J. Cosmol.

Astropart. Phys. 10 (2013) 057.
[40] K. Enqvist, R. N. Lerner, and S. Rusak, J. Cosmol. As-

tropart. Phys. 11 (2013) 034.
[41] D. G. Figueroa, J. High Energy Phys. 11 (2014) 145.
[42] L. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Rev.

Lett. 73, 3195 (1994).
[43] L. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Rev.

D 56, 3258 (1997).
[44] J. Garcia-Bellido, S. Mollerach, and E. Roulet, J. High

Energy Phys. 02 (2000) 034.
[45] M. A. Amin, M. P. Hertzberg, D. I. Kaiser, and J. Karouby,

Int. J. Mod. Phys. D 24, 1530003 (2015).
[46] K. Enqvist, S. Nurmi, and S. Rusak, J. Cosmol. Astropart.

Phys. 10 (2014) 064.
[47] K. D. Lozanov, arXiv:1907.04402.
[48] K. D. Lozanov and M. A. Amin, Phys. Rev. D 97, 023533

(2018).
[49] A. Kurkela and E. Lu, Phys. Rev. Lett. 113, 182301 (2014).
[50] R. Baier, A. H. Mueller, D. Schiff, and D. Son, Phys. Lett. B

502, 51 (2001).
[51] P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy

Phys. 11 (2001) 057.
[52] P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy

Phys. 01 (2003) 030.
[53] S. Davidson and S. Sarkar, J. High Energy Phys. 11 (2000)

012.
[54] A. Kurkela and G. D. Moore, J. High Energy Phys. 12

(2011) 044.
[55] J. McDonald, Phys. Rev. D 61, 083513 (2000).
[56] R. Allahverdi, Phys. Rev. D 62, 063509 (2000).
[57] H. Bethe and W. Heitler, Proc. R. Soc. A 146, 83 (1934).
[58] L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk Ser.

Fiz. 92, 535 (1953).
[59] A. B. Migdal, Phys. Rev. 103, 1811 (1956).
[60] R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D.

Schiff, Nucl. Phys. B483, 291 (1997).
[61] B. G. Zakharov, JETP Lett. 63, 952 (1996).
[62] P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy

Phys. 12 (2001) 009.
[63] P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy

Phys. 06 (2002) 030.
[64] J. Garcia-Bellido, D. G. Figueroa, and J. Rubio, Phys. Rev.

D 79, 063531 (2009).
[65] Y. Akrami et al. (Planck Collaboration), Astron. Astrophys.

641, A10 (2020).

ACHIEVING THE HIGHEST TEMPERATURE DURING … PHYS. REV. D 104, 083540 (2021)

083540-17

https://doi.org/10.1016/j.physletb.2012.02.013
https://doi.org/10.1103/PhysRevD.91.123537
https://doi.org/10.1103/PhysRevD.91.123537
https://doi.org/10.1007/JHEP09(2015)174
https://doi.org/10.1007/JHEP09(2015)174
https://doi.org/10.1103/PhysRevD.95.023526
https://doi.org/10.1103/PhysRevLett.120.121301
https://doi.org/10.1103/PhysRevLett.120.121301
https://doi.org/10.1007/JHEP02(2020)011
https://doi.org/10.1007/JHEP02(2020)011
https://doi.org/10.1103/PhysRevD.101.123523
https://doi.org/10.1103/PhysRevD.101.123523
https://doi.org/10.1016/0370-2693(82)90293-3
https://doi.org/10.1016/0550-3213(85)90021-5
https://doi.org/10.1103/PhysRevD.36.1088
https://doi.org/10.1103/PhysRevD.36.1088
https://doi.org/10.1103/PhysRevD.50.6357
https://doi.org/10.1103/PhysRevD.50.6357
https://doi.org/10.1088/1475-7516/2015/07/050
https://doi.org/10.1088/1475-7516/2014/01/033
https://doi.org/10.1088/1475-7516/2014/01/033
https://doi.org/10.1103/PhysRevD.78.065011
https://doi.org/10.1103/PhysRevD.60.063504
https://doi.org/10.1103/PhysRevD.60.063504
https://doi.org/10.1103/PhysRevD.64.023508
https://doi.org/10.1103/PhysRevD.64.023508
https://doi.org/10.1007/JHEP05(2014)006
https://doi.org/10.1007/JHEP05(2014)006
https://doi.org/10.1088/1475-7516/2016/02/003
https://doi.org/10.1088/1475-7516/2016/02/003
https://doi.org/10.1103/PhysRevD.94.103509
https://doi.org/10.1103/PhysRevD.94.103509
https://doi.org/10.1103/PhysRevD.102.023526
https://doi.org/10.1103/PhysRevD.102.023526
https://doi.org/10.1088/1475-7516/2016/02/057
https://doi.org/10.1088/1475-7516/2016/02/057
https://doi.org/10.1103/PhysRevD.92.083511
https://doi.org/10.1103/PhysRevD.92.083511
https://doi.org/10.1103/PhysRevD.62.023506
https://doi.org/10.1103/PhysRevD.62.023506
https://doi.org/10.1103/PhysRevD.92.123534
https://doi.org/10.1088/1475-7516/2019/12/012
https://doi.org/10.1088/1475-7516/2019/12/012
https://doi.org/10.1088/1475-7516/2018/05/067
https://doi.org/10.1088/1475-7516/2018/05/067
https://arXiv.org/abs/2009.14218
https://doi.org/10.1103/PhysRevD.100.083515
https://doi.org/10.1016/j.physletb.2017.01.059
https://doi.org/10.1016/j.physletb.2017.01.059
https://doi.org/10.1103/PhysRevLett.114.061302
https://doi.org/10.1103/PhysRevLett.114.061302
https://doi.org/10.1103/PhysRevD.92.043506
https://doi.org/10.1103/PhysRevD.92.043506
https://doi.org/10.1007/3-540-16452-9
https://doi.org/10.1103/PhysRevD.86.083541
https://doi.org/10.1103/PhysRevD.86.083541
https://doi.org/10.1088/1475-7516/2017/10/018
https://doi.org/10.1007/JHEP02(2020)142
https://doi.org/10.1007/JHEP02(2020)142
https://doi.org/10.1103/PhysRevD.70.083003
https://doi.org/10.1103/PhysRevD.56.6175
https://doi.org/10.1088/1475-7516/2013/10/057
https://doi.org/10.1088/1475-7516/2013/10/057
https://doi.org/10.1088/1475-7516/2013/11/034
https://doi.org/10.1088/1475-7516/2013/11/034
https://doi.org/10.1007/JHEP11(2014)145
https://doi.org/10.1103/PhysRevLett.73.3195
https://doi.org/10.1103/PhysRevLett.73.3195
https://doi.org/10.1103/PhysRevD.56.3258
https://doi.org/10.1103/PhysRevD.56.3258
https://doi.org/10.1088/1126-6708/2000/02/034
https://doi.org/10.1088/1126-6708/2000/02/034
https://doi.org/10.1142/S0218271815300037
https://doi.org/10.1088/1475-7516/2014/10/064
https://doi.org/10.1088/1475-7516/2014/10/064
https://arXiv.org/abs/1907.04402
https://doi.org/10.1103/PhysRevD.97.023533
https://doi.org/10.1103/PhysRevD.97.023533
https://doi.org/10.1103/PhysRevLett.113.182301
https://doi.org/10.1016/S0370-2693(01)00191-5
https://doi.org/10.1016/S0370-2693(01)00191-5
https://doi.org/10.1088/1126-6708/2001/11/057
https://doi.org/10.1088/1126-6708/2001/11/057
https://doi.org/10.1088/1126-6708/2003/01/030
https://doi.org/10.1088/1126-6708/2003/01/030
https://doi.org/10.1088/1126-6708/2000/11/012
https://doi.org/10.1088/1126-6708/2000/11/012
https://doi.org/10.1007/JHEP12(2011)044
https://doi.org/10.1007/JHEP12(2011)044
https://doi.org/10.1103/PhysRevD.61.083513
https://doi.org/10.1103/PhysRevD.62.063509
https://doi.org/10.1098/rspa.1934.0140
https://doi.org/10.1103/PhysRev.103.1811
https://doi.org/10.1016/S0550-3213(96)00553-6
https://doi.org/10.1134/1.567126
https://doi.org/10.1088/1126-6708/2001/12/009
https://doi.org/10.1088/1126-6708/2001/12/009
https://doi.org/10.1088/1126-6708/2002/06/030
https://doi.org/10.1088/1126-6708/2002/06/030
https://doi.org/10.1103/PhysRevD.79.063531
https://doi.org/10.1103/PhysRevD.79.063531
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887


[66] K. Harigaya, M. Kawasaki, K. Mukaida, and M. Yamada,
Phys. Rev. D 89, 083532 (2014).

[67] M. A. G. Garcia and M. A. Amin, Phys. Rev. D 98, 103504
(2018).

[68] K. Harigaya, K. Mukaida, and M. Yamada, J. High Energy
Phys. 07 (2019) 059.

[69] M. Drees and B. Najjari, arXiv:2105.01935.
[70] K. Harigaya, T. Lin, and H. K. Lou, J. High Energy Phys. 09

(2016) 014.
[71] K. Griest and M. Kamionkowski, Phys. Rev. Lett. 64, 615

(1990).
[72] A. Kusenko, Phys. Rev. Lett. 97, 241301 (2006).
[73] A. de Gouvea, S. Gopalakrishna, and W. Porod, J. High

Energy Phys. 11 (2006) 050.
[74] S. Gopalakrishna, A. de Gouvea, and W. Porod, J. Cosmol.

Astropart. Phys. 05 (2006) 005.
[75] K. Petraki and A. Kusenko, Phys. Rev. D 77, 065014

(2008).

[76] V. Page, J. High Energy Phys. 04 (2007) 021.
[77] A. Kusenko, Phys. Rep. 481, 1 (2009).
[78] L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West,

J. High Energy Phys. 03 (2010) 080.
[79] E.W. Kolb and A. J. Long, Phys. Rev. D 96, 103540 (2017).
[80] F. Elahi, C. Kolda, and J. Unwin, J. High Energy Phys. 03

(2015) 048.
[81] M. A. G. Garcia, Y. Mambrini, K. A. Olive, and M. Peloso,

Phys. Rev. D 96, 103510 (2017).
[82] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440

(1977).
[83] R. D. Peccei and H. R. Quinn, Phys. Rev. D 16, 1791

(1977).
[84] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
[85] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
[86] D. J. E. Marsh, Phys. Rep. 643, 1 (2016).
[87] L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli, Phys.

Rep. 870, 1 (2020).

PASSAGLIA, HU, LONG, and ZEGEYE PHYS. REV. D 104, 083540 (2021)

083540-18

https://doi.org/10.1103/PhysRevD.89.083532
https://doi.org/10.1103/PhysRevD.98.103504
https://doi.org/10.1103/PhysRevD.98.103504
https://doi.org/10.1007/JHEP07(2019)059
https://doi.org/10.1007/JHEP07(2019)059
https://arXiv.org/abs/2105.01935
https://doi.org/10.1007/JHEP09(2016)014
https://doi.org/10.1007/JHEP09(2016)014
https://doi.org/10.1103/PhysRevLett.64.615
https://doi.org/10.1103/PhysRevLett.64.615
https://doi.org/10.1103/PhysRevLett.97.241301
https://doi.org/10.1088/1126-6708/2006/11/050
https://doi.org/10.1088/1126-6708/2006/11/050
https://doi.org/10.1088/1475-7516/2006/05/005
https://doi.org/10.1088/1475-7516/2006/05/005
https://doi.org/10.1103/PhysRevD.77.065014
https://doi.org/10.1103/PhysRevD.77.065014
https://doi.org/10.1088/1126-6708/2007/04/021
https://doi.org/10.1016/j.physrep.2009.07.004
https://doi.org/10.1007/JHEP03(2010)080
https://doi.org/10.1103/PhysRevD.96.103540
https://doi.org/10.1007/JHEP03(2015)048
https://doi.org/10.1007/JHEP03(2015)048
https://doi.org/10.1103/PhysRevD.96.103510
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016/j.physrep.2020.06.002

