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The thermal Sunyaev-Zeldovich effect contains information about the thermal history of the Universe,
which is observable in maps of the Compton y parameter; however, it does not contain information about the
redshift of the sources. Recent papers have utilized a tomographic approach, by cross correlating the Compton
ymap with the locations of galaxies with known redshift in order to deproject the signal along the line of sight.
In this paper, we test the validity and accuracy of this tomographic approach to probe the thermal history of the
Universe. We use the state-of-the-art, cosmological, and hydrodynamical simulation, Magneticum, for which
the thermal history of the Universe is a known quantity. The key ingredient is the Compton-y-weighted halo
bias, by, which is computed from the halo model. We find that, at redshifts currently available, the method
reproduces the correct mean thermal pressure (or the density-weighted mean temperature) with high accuracy,
validating and confirming the results of previous papers. At higher redshifts (z ≳ 2), there is significant
disagreement between by from the halo model and the simulation.
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I. INTRODUCTION

As cosmological structures form, the gravitational
potential wells seeded by primordial density fluctuations
become deeper [1]. As this process occurs, gravitational
potential energy is converted into kinetic energy in an
expanded Universe, following the Layzer-Irvine equation
[2–4]. A part of the kinetic energy is converted into
thermal energy via the process of shock heating in the
large-scale structure of the Universe [5–7], while the rest
remains in the form of bulk or turbulent motion until it
decays and thermalizes [8,9]. Therefore, measurements of
the mean thermal energy of the cosmic gas content at
different redshifts can be used to probe the growth of
structure, as recently demonstrated in Refs. [10,11].

To this end, the thermal Sunyaev-Zeldovich (SZ) effect
[12,13] can be used to probe the baryons in the Universe
[14–16]. As photons in the cosmic microwave background
(CMB) are inverse Compton scattered off of the free
electrons in the ionized gas, they leave an imprint in the
form of a spectral distortion in the CMB. The amplitude of
the SZ effect depends on the electron pressure integrated
along the line of sight, which is parametrized by the
Compton y parameter [12,13],

yðϕ̂Þ ¼ σT
mec2

Z
dχ

1þ z
Peðχϕ̂Þ; ð1Þ

where σT is the Thomson scattering cross section, me is the
electron mass, c is the speed of light, χ ¼ χðzÞ is the
comoving radial distance out to a given redshift z, and Pe is
the electron pressure. The integral runs from zero up to the
surface of last scattering, z ≃ 1090. The electron pressure
Pe is related to the electron temperature Te as Pe ¼ nekBTe,
where ne and kB are the (proper) electron number density
and the Boltzmann constant, respectively.
The SZ effect, which is observable in maps of the

Compton y parameter, contains information about Pe
but does not contain information about z of the sources.
To probe the growth history of structure using the SZ effect,
we therefore require an external source of information
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about z [17,18]. As the SZ signal is dominated by massive
structure, the signal can be deprojected along the line of sight
using clustering-based redshift inference [19–21]. Following
this method, an external sample of reference sources with
known z is taken, and cross correlated with the Compton y
parameter as a function of z. This allows correlated
intensities to be extracted tomographically [22–24], as has
been studied in recent papers for the SZ-galaxy cross
correlation with spectroscopic redshifts [10,25,26]. See
Refs. [27–29] for the cross correlation with photometric
redshifts.
The halo bias-weighted mean electron pressure, hbPei, is

the direct observable of the SZ-galaxy cross-correlation
function on large scales [25]. Here, h…i denotes an
ensemble average. To infer the mean electron pressure,
hPei, we need to know the Compton y-weighted halo bias,
by ≡ hbPei=hPei. In Refs. [10,11], the halo model devel-
oped in Refs. [26,30–33] was used to calculate by and infer
hPei from the measured hbPei.
How accurate is this approach? It is the aim of this paper

to test the validity of the tomographic approach to the mean
thermal history of the Universe in Refs. [10,11]. Specifically,
we test this approach against the Magneticum simulation
[34]. We use cross correlations of the density and pressure to
calculate the density-weighted mean temperature of baryonic
gas, which is a known quantity in the simulation.
The rest of this paper is organized as follows. In Sec. II,

we describe the Magneticum simulation. We then present
the comparison of the simulation and observations for
hbPei in Sec. III and the density-weighted mean electron
temperature T̄e in Sec. V, while we compare the halo model
calculation and the simulation results for by in Sec. IV. We
conclude in Sec. VI.

II. THE MAGNETICUM SIMULATION

The Magneticum simulation is a set of state-of-the-art,
cosmological, and hydrodynamical simulations of different
cosmological volumes with different resolutions, per-
formed with an improved version of the smoothed-particle
hydrodynamics (SPH) code GADGET3 [35,36]. They
follow a standard Λ cold dark matter (CDM) cosmology
with parameters close to the best-fitting values of the
WMAP 7-year results [37] for a flat ΛCDM cosmology
with the total matter density Ωm ¼ 0.272 (16.8% baryons),
the cosmological constant ΩΛ ¼ 0.728, the Hubble con-
stant H0 ¼ 70.4 km s−1 Mpc−1 (h ¼ 0.704), the index of
the primordial power spectrum ns ¼ 0.963, and the overall
normalization of the power spectrum σ8 ¼ 0.809.
Here, we describe the simulations briefly. For more

detailed descriptions, we refer to previous work using these
simulations [34,38–42]. The simulations follow a wide
range of physical processes (see Refs. [43,44] for details),
which are important for studying the formation of active
galactic nuclei (AGN), galaxies, and galaxy groups and

clusters. The simulation set covers a huge dynamical range
that follows the same underlying treatment of the physical
processes controlling galaxy formation, thereby allowing
them to reproduce the properties of the large-scale, inter-
galactic, and intracluster mediums [34,39,45], as well as the
detailed properties of galaxies, including morphological
classifications and internal properties [44,46,47]. This also
includes the distribution of different metal species within
galaxies and galaxy clusters [48] and the properties of the
AGN population [43,49]. Especially, the simulations well
reproduce the observed pressure profiles of galaxy clusters
[39,50] and x-ray scaling relations [51].
Here, we focus on the largest box (“Box0”), which

follows the evolution of 2 × 45363 particles in a large box
of the comoving volume ð2688h−1 MpcÞ3 [38,40,52],
making it the largest cosmological and hydrodynamical
simulation to reach z ¼ 0 performed to date.

III. THE HALO BIAS-WEIGHTED MEAN
ELECTRON PRESSURE hbPei

The tomographic technique provides direct constraints
on the halo bias-weighted mean electron pressure, hbPei
[25]. This can be rewritten using the large-scale, y-
weighted halo clustering bias by and the mean electron
pressure hPei as hbPei ¼ byhPei [10]. By making use of
the Magneticum simulation, knowledge of the density and
pressure is readily available for different z, and instead of
using the clustering redshift technique, we can perform an
equivalent measurement using a cross correlation of the
density ρ and thermal gas pressure Pth:

hδρPthiðkÞ
hδρδρiðkÞ

→ hbPthi ¼ byhPthi; ð2Þ

where δρ ≡ ðρ − ρ̄Þ=ρ̄ and the bar denotes the mean value
in the simulation. Assuming the gas is fully ionized, the
electron pressure Pe is related to the total thermal gas
pressure Pth as Pth ¼ ð8 − 5YÞ=ð4 − 2YÞPe, where Y ¼
0.24 is the primordial helium mass fraction (we assume a
primordial mixture of elements and full ionization). Here,
hδρPthiðkÞ and hδρδρiðkÞ denote the density-pressure cross
power spectrum and the density power spectrum, respec-
tively, and k is the wave number. The arrow indicates the
large-scale limit, k → 0.
Why do we call hbPthi the “halo-bias weighted” quan-

tity, when we cross correlate the pressure and density fields
with no explicit reference to collapsed structures such as
halos? The reason is that the thermal pressure is dominated
by halos [6,31]; specifically, the density-pressure cross
correlation is dominated by galaxy groups and clusters
[10,11]. Therefore, our estimator using the density fields
yields the halo-bias weighted mean pressure.
In order to obtain hδρPthiðkÞ and hδρδρiðkÞ, particles in

the Magneticum simulation are assigned to the nearest point
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in a 1003 grid spanning a simulation’s box. The coarse grain
of the grid is acceptable since we are only interested in the
large-scale limit of the cross correlation. The nbodykit
package [53] is used to calculate the power spectra and cross
correlation of the resulting maps.
In Fig. 1, we show the ratio hδρδPiðkÞ=hδρδρiðkÞ as a

function of k, where δP ≡ ðPth − P̄thÞ=P̄th. This quantity is
equal to by in the large-scale limit. We obtain the large-
scale value by averaging the correlation functions over
k < 0.03 Mpc−1. This reduces the scatter in the correla-
tion functions at small k due to the finite box size. We have
checked for convergence with respect to our choice of
k < 0.03 Mpc−1. The standard deviation in the correlation
functions is used to derive error bars on the quantities
derived using this method. We also checked that fitting the
correlation functions to various forms has only a small
effect on the calculated values for by of approximately
2%, which is subdominant to the uncertainty due to
cosmic variance.
We estimate the uncertainty due to cosmic variance by

dividing the simulation box into 64 subregions and calculat-
ing the variance of hbPei within those regions. In Fig. 2, we
compare the values of hbPei from the Magneticum simu-
lation and the observations [10]. They are in excellent
agreement. To quantify how well the Magneticum values
fit the data, we consider an overall rescaling of the electron
pressure hbPei → ChbPei, and consider if this can give a
better fit to the data as presented in [10]. A χ2 analysis,
comparing the Magneticum values with the data up to z ¼
0.98 (above this value only upper bounds are available), gives
a value C ¼ 0.936� 0.095. This confirms that the measure-
ments from the Magneticum simulation are in agreement
with observations—with an uncertainty at the 10% level.

IV. THE LARGE-SCALE, y-WEIGHTED HALO
CLUSTERING BIAS by

While hbPei is the direct observable of the SZ-based
tomography, there is a degeneracy between the redshift
of the SZ clusters and their bias. We therefore need
the knowledge of by to obtain hPei from the observed
hbPei. In Refs. [10,11], the halo model developed in
Refs. [26,30–33], which resulted in the pysz code [54],
was used to calculate by. One of the key outcomes of this
paper is to determine the accuracy of this approach—since
the bias by can be computed directly within the
Magneticum simulation and compared to the halo model
calculation.
The halo model calculation yields (see Appendix B of

[10] for details)

byðzÞ ¼
R
dM dn

dMM5=3þαpbhðM; zÞR
dM dn

dMM5=3þαp
; ð3Þ

where dn=dM and bh are the mass function and linear
clustering bias of dark matter halos, respectively [55,56].
The physics is simple: the total pressure of gas in a haloR
dVPthðMÞ is proportional to the halo mass M times the

virial temperature, the latter of which is proportional to
M2=3; thus, the virial relation gives

R
dVPth ∝ M5=3. The

x-ray observation of galaxy clusters shows a small empiri-
cal correction to this relation,M5=3þαp with αp ¼ 0.12 [57].
We use the pysz code to calculate by with the following
parameters: h ¼ 0.704,Ωbh2 ¼ 0.02265,Ωch2 ¼ 0.11216,
As ¼ 2.42 × 10−9, and ns ¼ 0.963. The neutrino mass mν

is set to zero because the Magneticum simulation does not
include massive neutrinos.
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FIG. 1. The ratio of the density-pressure cross power spectrum
and the density power spectrum, hδρδPiðkÞ=hδρδρiðkÞ with
δP ≡ ðPth − P̄thÞ=P̄th, as measured in the Magneticum simula-
tion. We show the results for three different redshifts: z ¼ 1.98,
0.90, and 0.00 (from top to bottom). At large scales, the value
approaches a constant value, by, to within scatter due to the finite
box size.
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FIG. 2. The bias-weighted mean electron pressure hbPei is
shown as a function of z. The points are taken from the observed
data given in Ref. [10], and the blue dashed line shows the value
from the Magneticum simulation. The (small) shaded blue region
shows the 1σ uncertainty in the Magneticum simulation due to the
scatter in the correlation functions at small k, while the shaded
green region shows the uncertainty due to cosmic variance.
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In Fig. 3, we show the comparison of by calculated with
the halo model and from Magneticum. We find that for
low z, there is excellent agreement between the two
calculations—well within the uncertainties. However, at
large z≳ 2, there is significant disagreement, with by
measured in Magneticum being significantly lower than
predicted by the halo model. This suggests that the
measurements made in Ref. [10] of the mean electron
temperature (see Sec. V) are reliable up to a redshift z≲ 2,
but implies uncertainty in the upper bounds which were
derived at z≳ 2.
The reason for this disagreement is not clear, but it is

plausible that the assumption (made for the halo model)
that pressure is dominated by the virialized structures and
the contribution from supernova and AGN feedback are
subdominant compared to the thermal pressure of virialized
gas may be violated at such a high z. There may be an
additional term arising from a response of internal proper-
ties of galaxy groups and clusters to the large-scale over-
density [58,59], which we do not include in Eq. (3). As
Eq. (3) agrees with by from the Magneticum simulation,
which should include all the relevant effects, precisely at
z≲ 2, these contributions are small in this redshift range.
Further analysis of this disagreement at z≳ 2 is left for
future work.
To quantify how well the Magneticum values fit the halo

model prediction, we again consider an overall rescaling
factor to the halo bias calculated with the halo model,
by → Aby, and consider whether this can provide a better fit
to the simulation. Fitting only to values from z < 2.5, and
performing a χ2 analysis, the value A ¼ 1.0027� 0.0043 is
given, indicating that the halo model prediction is able to
predict the values from Magneticum to better than 1%
accuracy.

V. THE DENSITY-WEIGHTED MEAN ELECTRON
TEMPERATURE T̄e

The mean electron pressure hPei is related to the density-
weighted mean temperature of electrons in the Universe,
defined as T̄e ≡ hneTei=hnei [5,6]. Specifically, using
hbPei and by, we find

T̄e ¼
2mH

ρcΩbkBð2 − YÞð1þ zÞ3
1

by
hbPei; ð4Þ

where ρc ¼ 3H2
0=ð8πGÞ is the critical density of the

Universe at z ¼ 0 and mH is the hydrogen mass.
The temperature data can also be read directly from the

output files of the Magneticum simulation, and the uncer-
tainty in the mean temperature (and pressure) due to cosmic
variance is estimated by dividing a simulation’s box into 64
subregions and calculating the variance of the mean temper-
ature within those subregions. We assume throughout that
the electron temperature and the total temperature are equal,
although there is likely to be some difference between the
two, as discussed in more detail in Refs. [60,61].
For a direct comparison to the measurements of Ref. [10],

we here use the value of by calculated using the halo model,
rather than the measured value from the Magneticum
simulation. In Fig. 4, we compare T̄e from the data and
the simulation as a function of z. As expected from the
excellent agreement for hbPei (Fig. 2) and by (Fig. 3), we
find excellent agreement for T̄e. This completes the vali-
dation of the methodology for obtaining hTei, i.e., the
thermal history of the Universe, developed in Refs. [10,11].

Magneticum
Halo model

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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FIG. 3. The y-weighted halo bias by is shown as a function of z.
The red, dotted line is the prediction from the halo model, while
the blue line is that derived from the Magneticum simulation. The
shaded blue region represents the 1σ uncertainty in by due to
scatter in the large-scale correlation functions. We find excellent
agreement between the two until z≳ 2.
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FIG. 4. The density-weighted mean electron temperature T̄e (in
units of million K) is shown as a function of z. The points are
taken from the observed data given in Ref. [10]. The solid green
line shows the temperature read directly from the Magneticum
simulation, while the blue dashed line shows that calculated from
the pressure data in the Magneticum simulation. The blue and
green regions show the 1σ confidence intervals for their respec-
tive data.
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VI. CONCLUSION

This study aimed to answer two principle questions:
(1) The bias-weighted mean electron pressure hbPei is

observable from cosmological surveys. Does this
quantity measured from the Magneticum simulation
agree with the data given in Ref. [10]?

(2) In Ref. [10], the density-weighted mean electron
temperature T̄e is derived by dividing hbPei by by,
calculated from the halo model. Is this method
accurate?

The results presented here show that the answer to
both questions is yes. The values of hbPei (as well
as T̄e) from Magneticum agree well with the data—with
the best-fitting value to rescale the overall pressure
given by C ¼ 0.936� 0.095, consistent with unity to
within the uncertainty. Likewise, the halo model pre-
diction for by matches very well to that measured in
Magneticum, with the best-fitting rescaling value given
by A ¼ 1.0027� 0.0043.
The results presented here confirm the validity of the

tomographic method in order to determine the thermal
history of gas in the Universe, although they also highlight
a need for further study of the halo model calculation at
high redshifts, z≳ 2, which are yet to be probed by
observations.
We also suggest that the measured mean temperature can

be used as a simple “thermometer test” of the baryonic
physics of simulations to confirm that they are capable of

accurately reproducing observed values, which can be
performed for a host of state-of-the-art cosmological and
hydrodynamical simulations [62–67].
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