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Boltzmann solvers are an important tool for the computation of cosmological observables in the linear
regime. In the presence of massive neutrinos, they involve solving the Boltzmann equation followed by an
integration in momentum space to arrive at the desired fluid properties, a procedure which is known to be
computationally slow. In this work we introduce the so-called generalized Boltzmann hierarchy (GBH) for
massive neutrinos in cosmology, an alternative to the usual Boltzmann hierarchy, where the momentum
dependence is integrated out leaving us with a two-parameter infinite set of ordinary differential equations.
Along with the usual expansion in multipoles, there is now also an expansion in higher velocity weight
integrals of the distribution function. Using a toy code, we show that the GBH produces the density contrast
neutrino transfer function to a ≲0.5% accuracy at both large and intermediate scales compared to the
neutrino free-streaming scale, thus providing a proof-of-principle for the GBH. We comment on the
implementation of the GBH in a state of the art Boltzmann solver.

DOI: 10.1103/PhysRevD.104.083535

I. INTRODUCTION

Neutrino oscillation experiments have established that
neutrinos are massive particles (at least two eigenstates),
with a lower bound, in the sum of all neutrino masses, ofP

mν ≥ 0.06 eV, 0.1 eV for normal and inverted hierar-
chies, respectively [1,2]. The large-scale structure of our
Universe gives a sensitive probe of neutrino masses [3,4].
This allows us to use cosmological data to constrain the
sum of neutrino mass eigenstates:

P
mν ≲ ð0.1–0.3Þ eV,

e.g., [5,6], depending on the choice of used datasets.
Current and future large-scale structure surveys [7–13]
will be used to determine the mass scale of neutrinos
[14,15], but also to constraint beyond-ΛCDM scenarios
[16,17]. It is then of paramount importance that cosmo-
logical observables, such as the matter power spectrum, can
be computed to a subpercent level accuracy, in both linear
and nonlinear scales.
The study of structure formation in the nonlinear regime

relies on N-body simulations [18,19]. On the other hand,
the linear theory is much simpler, and there are publicly
available codes, such as the code for anisotropies in the
microwave background (CAMB) [20] and the cosmic linear
anisotropy solving system (CLASS) [21], that can be used
to compute the observables. The implementation of neu-
trinos in the linear theory is somewhat cumbersome, since it
involves solving a Boltzmann hierarchy of equations in
momentum space. The reason for this can be traced back to
the usual statement that the momentum dependence in the
distribution function cannot be integrated out [22]. For this
reason, fluid approximations have been developed in the
past, and incorporated as an optional tool in the Boltzmann
solvers [23–25].

In this work we show that the momentum dependence in
the distribution function can, in fact, be exactly integrated
out, at the expense of introducing a new countable para-
meter n, along with the parameter l associated with the
multipole expansion, to the infinite system of ordinary
differential equations that need to be solved to determine
the dynamics, in Fourier space ([25,26] being examples of
this in the literature). This leads us to a novel two-parameter
infinite set of equations that determine the evolution of
noncold dark matter (or ncdm, borrowing notation from
CLASS [23]) perturbations in a flat universe: The gener-
alized Boltzmann hierarchy (GBH). Along with the usual
multipole expansion, there is now also an expansion in
higher velocity weight integrals of the distribution func-
tion.1 The GBH is simpler than the usual approach, as
implemented in Boltzmann solvers, in the sense that it does
not require the numerical computation of momentum
integrals, after solving the dynamical equations.
The paper is organized as follows: In Sec. I, we introduce

the generalized Boltzmann hierarchy for ncdm perturba-
tions, and compare it to the usual approach of evolving the
distribution function in phase space. In Sec. II, we imple-
ment the equations numerically for a single massive
neutrino component, with varying mass m and scale k,
obtaining ≲0.5% agreement with the Boltzmann solver
CLASS in high precision settings, for all redshift. We also

1An expansion in higher velocity weights is used in CAMB to
approximate the evolution of the perturbations in massive
neutrinos once already in the nonrelativistic regime [25], while
in our approach we obtain the exact evolution, starting from
initial conditions while still in the relativistic regime.
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discuss the dependence of our framework on the neutrino
mass m and scale k, and show that when switching to a
fluid approximation on the small scales, i.e., once a given
mode becomes smaller than the free-streaming scale (here-
after named GBHþ FA), we can produce the neutrino
transfer function, at z ¼ 0, with the same accuracy as
CLASS in its default precision settings (or CLASS-DPS),
over all scales. We also found that CAMB, when also in its
default precision settings (CAMB-DPS), yields more accu-
rate results than both the GBHþ FA and CLASS-DPS on
the small scales. In Sec. III, we conclude and comment on
the implementation of the GBH in Boltzmann solvers,
along with its current limitations. In Appendix A, we give a
detailed account of the truncation scheme for the GBH.
Finally, in Appendix B we investigate the GBH in the
simple case of lmax ¼ 2 and nmax ¼ 0, i.e., a viscous fluid
approximation (FA). We compare the truncation scheme
developed for the GBH with the one employed in CLASS.

II. GENERALIZED BOLTZMANN HIERARCHY

We start by introducing the additional expansion in
higher velocity weight integrals of the distribution function,
followed by a derivation of their associated dynamical
equations. We will be considering scalar (linear) perturba-
tions to a flat Friedmann-Robertson-Walker (FRW) uni-
verse, in the Newtonian gauge

ds2 ¼ aðτÞ2½−ð1þ 2ψÞdτ2 þ ð1 − 2ϕÞdx⃗2�: ð1Þ

Conventions and notation follow [22]. Let us first define
suitable generalized fluid properties, at the level of back-
ground

Pn ¼ ρωn ≔
4π

3
a−4

Z
∞

0

dqq2f0ðqÞϵ
�
q
ϵ

�
2n ∀n≥ 0; ð2Þ

where f0ðqÞ ¼ ð2=ð2πÞ3Þð1þ e
q
T0Þ−1 is the Fermi-Dirac

distribution written in terms of comoving momentum
q⃗ ¼ ap⃗, with p⃗ the proper momentum and T0 ≈ 1.95 K
the temperature of relic neutrinos today. Also ϵ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2m2

p
¼ aE, with m the neutrino mass and E the

proper energy. Then P0 ¼ ð1=3Þρ is a third of the back-
ground energy density, P1 ¼ P is the pressure, P2 ≡ P, and
in general Pnþ2 ≡ PðnÞ, n ≥ 0 are higher velocity weight
pressures. Similarly, ω0 ¼ 1=3, ω1 ¼ ω is the equation of
state parameter, and ωnþ2, n ≥ 0 are higher velocity weight
equation of state parameters.
Taking the derivative of Eq. (2) with respect to conformal

time gives the following hierarchy of equations:

ω0
n ¼ −ð2nþ 3ÞHωn þ ð2n − 1ÞHωnþ1

−
ρ0

ρ
ωn ∀ n ≥ 0; ð3Þ

where H ¼ a0=a, and 0 denotes derivative with respect to
conformal time. Notice that q=ϵ ¼ v ∼ T0=ma is the
physical velocity of an individual neutrino particle, such
that the additional factors of ðq=ϵÞ2 in the integrals in
Eq. (2) effectively shift the peak of the distribution function
to higher particle velocities. In the relativistic regime, all
particles travel at the speed of light, and one only needs
to consider the n ¼ 0 equation. The same holds in the
nonrelativistic regime, where Oðv2Þ corrections become
negligible. During the transition, however, the higher
velocity weight fluid properties need to be taken into
account, in order to probe the whole spectrum of neutrino
particle velocities.
Setting n ¼ 0 in Eq. (3) yields the familiar equation

ρ0 þ 3Hðρþ PÞ ¼ 0. At this level, it is easier to simply
determine the evolution of the distribution function, and
then integrate Eq. (2) directly, than to approach the infinite
set of Eqs. (3). This is because the background distribution
function admits a simple, analytic solution (e.g., the Fermi-
Dirac distribution). However, this is no longer true when
inhomogeneities are introduced.
In this case we have, along with the expansion in higher

velocity weight integrals of the distribution function, para-
metrized by n, the usual expansion in multipoles, para-
metrized by l. To obtain it, split the distribution function as
f ¼ f0ðqÞð1þ ΨÞ, and expand Ψ in a Legendre series

Ψðk⃗; n̂; q; τÞ ¼
X∞
l¼0

ð−iÞlð2lþ 1ÞΨlðk; q; τÞPlðk̂ · n̂Þ; ð4Þ

where we are working in Fourier space (set ∇⃗ → ik⃗), and
define n̂ ¼ q⃗=q.
In terms of the multipole expansion in Eq. (4), the fluid

properties directly sourcing the gravitational field, i.e., in
the energy momentum tensor, are [22]

δρ ¼ ρδ ¼ 4πa−4
Z

∞

0

dqq2f0ðqÞϵΨ0 ð5aÞ

δP ¼ 4π

3
a−4

Z
∞

0

dqq2f0ðqÞϵ
�
q
ϵ

�
2

Ψ0 ð5bÞ

ðρþ PÞθ ¼ 4πka−4
Z

∞

0

dqq2f0ðqÞqΨ1 ð5cÞ

ðρþ PÞσ ¼ 8π

3
a−4

Z
∞

0

dqq2f0ðqÞϵ
�
q
ϵ

�
2

Ψ2: ð5dÞ

We now wish to generalize this to higher multipoles, and
also include higher velocity weight integrals of the dis-
tribution function, in analogy to Eq. (2), to make sure that
the whole spectrum of particle velocities is being probed
during the transition from the relativistic to nonrelativistic
regimes. The following is then a natural choice of dynami-
cal variables:
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δPn ¼ ρδn ≔
4π

3
a−4

Z
∞

0

dqq2f0ðqÞϵ
�
q
ϵ

�
2n
Ψ0 ð6aÞ

ðρþ PÞθn ≔ 4πka−4
Z

∞

0

dqq2f0ðqÞϵ
�
q
ϵ

�
2nþ1

Ψ1 ð6bÞ

ðρþPÞfl;n ≔ 4π
l!

ð2l− 1Þ!!a
−4
Z

∞

0

dqq2f0ðqÞϵ
�
q
ϵ

�
2nþl

Ψl

∀ l≥ 1; ð6cÞ

and n ≥ 0 everywhere. Notice that δ0 ¼ 1
3
δ is a third of

the density contrast, ρδ1 ¼ δP is the perturbation to the
pressure, ρδ2 ≡ δP, and ρδnþ2 ≡ δPðnÞ, n ≥ 0 are the
perturbations to the higher velocity weight pressures.
Also θ0 ¼ θ is the divergence of the velocity, θ1 ≡ Θ
and θnþ1 ≡ ΘðnÞ, n ≥ 0 are its higher velocity weight
counterparts. We also define f2;n ≡ σn, the anisotropic
shear stress, with a similar notation for its higher velocity
weight integrals (i.e., ΣðnÞÞ, and set θn ≡ kf1;n, when it is
convenient to do so. In order to derive a set of equations for
the variables in Eq. (6), we need the time evolution of the
multipoles. It follows from the substitution of Eq. (4) into
the Boltzmann equation, and reads [22]

Ψ0
0 ¼ −

qk
ϵ
Ψ1 − ϕ0 d ln f0

d ln q
ð7aÞ

Ψ0
1 ¼

qk
3ϵ

ðΨ0 − 2Ψ2Þ −
ϵk
3q

ψ
d ln f0
d ln q

ð7bÞ

Ψ0
l ¼

qk
ð2lþ 1Þϵ ½lΨl−1 − ðlþ 1ÞΨlþ1� ∀ l ≥ 2: ð7cÞ

Now take the derivative of each expression in Eq. (6) with
respect to conformal time, and use Eqs. (2), (3), (6), and (7)
to arrive at

δ0n ¼ −ð2n − 3wÞHδn þ ð2n − 1ÞHδnþ1

−
1

3
ð1þ wÞθn þ ½ð2nþ 3Þωn − ð2n − 1Þωnþ1�ϕ0

ð8aÞ

θ0n ¼ −
�
ð2nþ 1 − 3wÞHþ w0

1þ w

�
θn þ 2nHθnþ1

þ 1

1þ w
k2δnþ1 − k2σn

þ 1

1þ w
½ð2nþ 3Þωn − ð2n − 1Þωnþ1�k2ψ ð8bÞ

f0l;n ¼ −
�
ð2nþ l − 3wÞHþ w0

1þ w

�
fl;n

þ ð2nþ l − 1ÞHfl;nþ1 þ
l2

4l2 − 1
kfl−1;nþ1

− kflþ1;n ∀ l ≥ 2; ð8cÞ

with n ≥ 0. This is the generalized Boltzmann hierarchy
(GBH) for a ncdm component. Setting n ¼ 0 in Eq. (8), one
recovers the usual ncdm fluid equations (and up to l ¼ 2,
including only dynamical equations for the fluid properties
that directly source the gravitational field)

δ0 ¼ −ð1þ wÞðθ − 3ϕ0Þ − 3H
�
δP
δρ

− w

�
δ ð9aÞ

θ0 ¼ −
�
ð1 − 3wÞHþ w0

1þ w

�
θ þ δP=δρ

1þ w
k2δ − k2σ þ k2ψ

ð9bÞ

σ0 ¼ −
�
ð2 − 3wÞHþ w0

1þ w

�
σ þHΣþ 4

15
Θ − kf3: ð9cÞ

As is well known, Eq. (9) involves variables, i.e., δP=δρ,
Σ, Θ and kf3, that need to be somehow approximated, in
terms of the dynamical variables in the system, in order to
close the equations. On the other hand, the two-parameter
hierarchy of Eqs. (8) is closed as it is, and we have achieved
our goal: To get rid of the momentum integrals altogether.
Of course, any practical implementation of the GBH
requires a good truncation scheme: A choice of a given
number of multipoles, lmax þ 1, and higher velocity weight
variables, nmax þ 1, to dynamically evolve, together with
a recipe for approximating higher order quantities. The
resulting system of equations is of dimension ðlmax þ 1Þ×
ðnmax þ 1Þ. We discuss this at length in Appendix A. Here
we will just spell out the recipe. The truncation in multi-
poles is done with the approximation

flmaxþ1;n ≈ ðlmax þ 1Þ
�
1

kτ
flmax;n −

lmax

4l2max − 1
flmax−1;nþ1

�
;

ð10Þ

while the truncation in higher velocity weight integrals is
handled with

δnmaxþ1

δnmax

≈
2nmax þ 5

2nmax þ 3

ωnmaxþ1

ωnmax

1 − 2nmaxþ1
2nmaxþ5

ωnmaxþ2

ωnmaxþ1

1 − 2nmax−1
2nmaxþ3

ωnmaxþ1

ωnmax

ð11aÞ
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fl;nmaxþ1

fl;nmax

≈
2ðnmax þ lÞ þ 3

2ðnmax þ lÞ þ 1

ωnmaxþl

ωnmaxþl−1

×
1 − 2ðnmaxþlÞ−1

2ðnmaxþlÞþ3

ωnmaxþlþ1

ωnmaxþl

1 − 2ðnmaxþlÞ−3
2ðnmaxþlÞþ1

ωnmaxþl

ωnmaxþl−1

∀ l ≥ 1: ð11bÞ

Furthermore, as explained in Appendix A, both the l and n
expansions are controlled by the parameter x ¼ kT, with T
the neutrino horizon [average comoving distance traveled
by neutrino particles through cosmic history, see Eq. (A6)
and comments below Eq. (A12), along with the plot in
Fig. 1]. Specifically, if one wishes to follow the neutrino
transfer function up to a time x, we found that

lmax ≈
x
2

ð12aÞ

nmax ≈
x1.6

5
ð12bÞ

are approximately sufficient for convergence, up to x ¼ 30.
These are plotted in Fig. 2. This concludes our discussion
on the truncation scheme.
Now we move on to setting the initial conditions for the

GBH, starting at early times when all the individual
neutrinos still move at the speed of light. Notice that in
the relativistic regime q

ϵ → 1 and all higher velocity weight
integrals approach one another: We recover the usual
hierarchy of equations for radiation. One can then set
the (say adiabatic) initial conditions for the n ¼ 0 fluid
properties as usual [22]:

δ ¼ −2ψ ð13aÞ

θ ¼ 1

2
ðk2τÞψ ð13bÞ

σ ¼ 1

15
ðkτÞ2ψ ð13cÞ

fl;0 ¼ 0 ∀ l > 2: ð13dÞ

Along with fl;n ¼ fl;0 ∀ n > 0 to set the initial condition
for the remaining higher velocity weight fluid properties.
In the nonrelativistic regime, these variables get sup-

pressed by powers of ðq=ϵÞ2 ¼ v2 ∼ ðT0=maÞ2, and sim-
ilarly n ¼ 0 should suffice for most applications. During
the transition, however, higher order contributions become
important, and must be included for an accurate compu-
tation of the ncdm transfer functions.
In the standard approach for including massive neutri-

nos in the computation of cosmological observables in
linear theory, Eq. (7) are solved for a given number Nq of
momentum bins, and up to some lmax, i.e., a system of
dimensionality Nq × ðlmax þ 1Þ. The solution is then used
to perform the q integrals in Eq. (5) for the neutrino fluid
properties, which in turn are coupled to the perturbations
to the other components in the universe via the Einstein
equations. This is known to be a computationally slow pro-
cedure [22,25]. Originally, these q integrals were evaluated
with a fixed grid of many equally spaced samples. A sig-
nificant acceleration in the integration procedure was
achieved once a kernel-weighted sampling scheme was
introduced, allowing for a much smaller number of
momentum bins Nq (now employed in both CLASS and
CAMB [23,27]).
The GBH is simpler than the standard approach in that it

removes the intermediate step of performing the q integrals,
i.e., the neutrino fluid properties are directly coupled to the
perturbations to the other species in the universe. It is then

Τ
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FIG. 1. Evolution of the neutrino horizon, i.e., T for q=T0 ¼ 3,
andm ¼ 0.1 eV. It grows like the conformal time τ up to the time
of transition, when it effectively freezes as it approaches the
nonrelativistic regime. The significant difference between T and τ
in the nonrelativistic regime explains why one needs a much
higher lmax for radiation than for massive neutrinos [22].
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FIG. 2. Choices of lmax and nmax as a function of x, as given by
Eq. (12), to approximately ensure convergence, up to x ¼ 30.
Note that nmax grows faster than linearly with x.
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plausible that the GBH may be faster than the standard
approach (a performance comparison between the GBH
and the standard approach is left to future work, see
Sec. III). However, it could be the case that the dimension-
ality of the GBH, i.e., ðlmax þ 1Þ × ðnmax þ 1Þ is signifi-
cantly bigger than Nq × ðlmax þ 1Þ (and it is actually what
happens on the small scales, given the rapid increase of
nmax with x, as seen in Fig. 2), for the same achieved
accuracy. Notwithstanding, in some cases a very large
number of momentum bins is actually necessary, e.g., to
accurately obtain the effective sound speed [28]. The GBH
is not plagued with the same issue since all momentum
dependence is integrated out of the dynamical equations.
We now have everything we need, i.e., a closed system of

dynamical equations plus suitable initial conditions, to
consider the numerical implementation of the GBH. This
will allow us to compare it with the Boltzmann solvers
CLASS and CAMB.

III. NUMERICAL IMPLEMENTATION

As an example of the numerical implementation of the
GBH, we will first consider an individual neutrino com-
ponent, with varying mass: m ¼ 0.02 eV, m ¼ 0.1 eV
and m ¼ 0.5 eV. Also, we implement the GBH at inter-
mediate scales compared to the neutrino horizon today, i.e.,
k ¼ x=T with x ¼ 15 and x ¼ 30. On larger scales (x≲ 1),
neutrino velocities are unimportant and a simple viscous
fluid approximation suffices i.e., lmax ¼ 2, nmax ¼ 0 should
be enough, while on smaller scales (say x > 30) accurately
obtaining the neutrino transfer functions is not so impor-
tant because of free streaming: Neutrino perturbations
get washed out and have a negligible impact on matter
perturbations. Nonlinear effects also start to kick in.
Furthermore, because of the rapid increase of nmax with
x found in Fig. 2, integration time also rapidly increases
with x.
The neutrino density contrast transfer function, as a

function of the scale factor, obtained from the GBH is
compared to the output from CLASS. Boltzmann solvers
do not produce accurate neutrino transfer functions at their
default precision settings, as the codes are tailored to
accurately produce the matter power spectrum, and relic
neutrinos only have a subleading impact on this observable.
To obtain accurate results, we follow the improved settings
found in Appendix B of [28]: Turn off the CLASS ncdm
fluid approximation, use a quadrature strategy to perform
the q-integrals, with Nq ¼ 30 momentum bins, and set
lmax ¼ 30, i.e., a system of 930 equations. We then expect
to get subpercent level accuracy for all redshifts and scales
of interest. Note that CAMB does not provide the option of
outputting neutrino transfer functions as a function of
redshift, for a given fixed scale. This is why a direct
comparison of the GBH with CAMB is not included at this
stage. However, in high precision settings the neutrino

transfer functions from CLASS and CAMB are known to
agree to a percent level [28].
We develop a toy code, where the sources ϕðaÞ and

ψðaÞ, as given by CLASS, are used to evolve the GBH. In
that way, we do not need to solve the Einstein equations,
i.e., we do not need to consider the dynamics of perturba-
tions to the other components in the universe, and can
evolve the neutrino perturbations alone. The full problem of
implementing the GBH in a Boltzmann code, followed by a
comparison of performance with the standard method, is
beyond the scope of this paper, and is left to future work.
This is discussed in Sec. III. Our goal here is to demonstrate
that the GBH indeed can be used to produce accurate
neutrino transfer functions, i.e., to provide a proof-of-
principle for the GBH.
The initial conditions are set, according to Eq. (13), at

some arbitrary early time, when all modes of interest are
in superhorizon scales, and neutrinos are relativistic. Our
choices of lmax and nmax are guided by Eq. (12). For x ¼ 15,
we set lmax ¼ 8 and nmax ¼ 16, while for x ¼ 30, we
choose lmax ¼ 15 and nmax ¼ 49.
The relative difference in the transfer functions generated

from CLASS and the GBH are shown in Fig. 3: There is
≲0.5% agreement for all redshift, so the GBH is accurately
producing neutrino transfer functions.
The case x > 30 requires a much larger system of

equations to obtain subpercent level agreement with
CLASS, with the n expansion converging rather slowly
on the small scales. There are also some technical issues
with the truncation scheme for the GBH in this regime (see
the discussion at the end of Appendix A), so going beyond
x ¼ 30 requires a more efficient numerical implementation.
Notwithstanding, and as pointed out before, on the small

scales neutrinos free stream, so it no longer becomes
important that neutrino transfer functions are obtained very
accurately (nonlinearities also start to kick in). In fact, we
find that when switching to a viscous fluid approximation
once a given mode is sufficiently inside the horizon
(GBHþ FA), we produce the density contrast neutrino
transfer function as accurately as CLASS in its default
precision settings (CLASS-DPS, where a similar switch to
a viscous fluid approximation is also employed), over all
scales of interest, and at redshift z ¼ 0. We also find that
CAMB in its default precision settings (CAMB-DPS) is as
accurate as CLASS-DPS and the GBHþ FA at intermedi-
ate and large scales, but more accurate on the small scales,
where both the GBHþ FA and CLASS-DPS are in the FA
regime, and hence not producing neutrino transfer func-
tions very accurately. Finally, CAMB in its high-precision
settings (CAMB-HPS)2 is found to closely agree with
CLASS in its high-precision settings (CLASS-HPS),

2CAMB-HPS is defined by the following choice of precision
settings: massive nu approx ¼ 0, accurate massive neutrino
transfers ¼ T, accuracy boost ¼ 3, and l accuracy boost ¼ 3.

GENERALIZED BOLTZMANN HIERARCHY FOR MASSIVE … PHYS. REV. D 104, 083535 (2021)

083535-5



–8 –6 –4 –2 0

–1

0

1

2

3
1–

G
B

H

C
LA

S
S

[0
.1

%
]

m=0.02eV, x=15, k=0.004Mpc–1

–8 –6 –4 –2 0

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

2.5

m=0.1eV, x=15, k=0.008Mpc–1

–8 –6 –4 –2 0

–2

–1

0

1

2

3

m=0.5eV, x=15, k=0.02Mpc–1

–8 –6 –4 –2 0

–1

0

1

2

3

ln(a)

1–
G

B
H

C
LA

S
S

[0
.1

%
]

m=0.02eV, x=30, k=0.008Mpc–1

–8 –6 –4 –2 0

–1

0

1

2

3

ln(a)

m=0.1eV, x=30, k=0.017Mpc–1

–8 –6 –4 –2 0

–2

0

2

4

ln(a)

m=0.5eV, x=30, k=0.04Mpc–1

FIG. 3. Relative difference in the density contrast neutrino transfer function from the GBH and CLASS (in high precision settings) for
neutrino masses of m ¼ 0.02 eV, m ¼ 0.1 eV, and m ¼ 0.5 eV, and at intermediate scales defined by k ¼ x=T, with x ¼ 15 (top) and
x ¼ 30 (bottom). The agreement is in the ≲0.5% level for all redshift. We conclude that the GBH is accurately producing neutrino
transfer functions.
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FIG. 4. Density contrast neutrino transfer functions, as a function of scale and at redshift z ¼ 0, from the GBH while switching to a
fluid approximation at xmax ¼ 15 (GBHþ FA), CLASS in both default (CLASS-DPS), and high (CLASS-HPS) precision settings, and
CAMB in both default (CAMB-DPS) and high (CAMB-HPS) precision settings as well. Here we set the neutrino mass to m ¼ 0.1 eV.
We verified that choosing a value of xmax ¼ 30 for the turning point between the GBH and the FA produced very similar results for the
black dots. Also, the neutrino transfer function from CAMB is originally in the synchronous gauge, so we had to perform a gauge
transformation to the Newtonian gauge to produce the curves in cyan.
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according to expectation. These results are illustrated
in Fig. 4.
Finally, as derived in Appendix A, T ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
T0=m

p
in the

nonrelativistic regime. It implies that, and for a given fixed
scale k, one needs higher lmax and nmax for smaller neutrino
masses (assuming that m is big enough for the transition to
the nonrelativistic regime to happen before today). In
Fig. 5, we plot both lmax and nmax, as given by Eq. (12),
as a function of scale for varying mass.

IV. CONCLUSION

We introduced the so-called generalized Boltzmann
hierarchy (GBH) for noncold dark matter cosmological
perturbations in a flat universe, an alternative to the usual
Boltzmann hierarchy for accurately producing neutrino
transfer functions in the linear regime. It was determined
that the GBH agrees with Boltzmann solvers in high
precision settings, to a ≲0.5% level accuracy, in both large
and intermediate scales compared to the neutrino free-
streaming scale.
On the small scales one needs to choose a very high nmax

in order to produce accurate neutrino transfer functions,
and the numerical integration of the GBH becomes com-
putationally expensive. However, one should keep in mind
that on small scales free-streaming effects, and nonlinear-
ities, start to kick in, and hence the less important it

becomes that the neutrino transfer functions are produced
very accurately, which enables a switch to a fluid approxi-
mation once a given mode becomes smaller than the free-
streaming scale (GBHþ FA).
For a given scale and accuracy goal, the GBH approach

involves solving at least roughly the same number of
equations as a standard Boltzmann solver would, but
completely avoids the inconvenience, and computational
challenges, associated with solving the hierarchy to later
integrate over momentum space, a procedure which is
known to be computationally slow, since the momentum
integrals are performed to compute neutrino fluid proper-
ties, which in turn are coupled to the perturbations to the
other components in the universe via the Einstein equa-
tions. This feature makes it plausible that the GBH may be
faster than the standard approach.
In this work, we considered the numerical implementa-

tion of the GBH in a simplified scenario, where the sources
ϕðaÞ and ψðaÞ are obtained directly from CLASS. In this
way, we do not need to solve the Einstein equations, and
can evolve neutrino perturbations alone, with the goal of
providing a proof-of-principle for the GBH. The full
problem of implementing the GBH in a Boltzmann solver
(allowing for a comparison of performance between the
GBH and the standard approach), is left for future work.
Being a novel approach to the inclusion of massive

neutrinos in the computation of cosmological perturbations

lmax(m=0.02 eV)

nmax(m=0.02 eV)

lmax(m=0.1 eV)

nmax(m=0.1 eV)

lmax(m=0.5 eV)

nmax(m=0.5 eV)

1. × 10–4 5. × 10–4 0.001 0.005 0.010

0

10

20

30

40

50

k(Mpc–1)

FIG. 5. Choices of lmax and nmax, as given by Eq. (12) to approximately ensure convergence of the GBH, as a function of scale for
varying neutrino mass, and up to x ¼ 30. For a given fixed scale, the dimension of the GBH increases for smaller neutrino mass. In fact,
since T ∼ 1=

ffiffiffiffi
m

p
, we can use Eq. (12) to conclude that lmax ∼ 1=

ffiffiffiffi
m

p
, while nmax ∼ 1=m0.8.
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in linear theory, the GBH is interesting in its own right.
It can provide some insight, and serve as cross check for the
standard approach. Moreover, while both CLASS and
CAMB are now greatly optimized for speed and perfor-
mance, it is always worthwhile to explore new numerical
approaches.3 This is because cosmological analyses often
employ Markov chain Monte Carlo (MCMC) methods to
map the likelihood in a multidimensional parameter space,
requiring Boltzmann codes to be run multiple times, and
thus demanding significant computational resources.
In future work, we plan to implement the GBHþ FA in

the Boltzmann solver CLASS. Based in our findings,
we expect to obtain similar accuracy as in the standard
approach in default precision settings, and, we surmise,
reduced computational time. Furthermore, with a more
efficient numerical implementation of the GBH, we will be
able to assess its applicability to produce accurate neutrino
transfer functions on the small scales, i.e., for x > 30. This
is a current limitation of the GBH, that stops it from
producing neutrino transfer functions as accurately as
existing Boltzmann solvers in high precision settings, on
the small scales (see Fig. 4). However, we reinforce that
because of neutrino free streaming, the accuracy currently
achieved with the GBHþ FA is good enough for the vast
majority of projects that involve massive neutrinos.
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APPENDIX A: TRUNCATION SCHEME

We now look for a well-defined truncation scheme (TS)
for the GBH: For a given neutrino mass m and scale k, we
must be able to find values of lmax and nmax for which the
GBH accurately produces the neutrino transfer functions,
and becomes insensitive to a further increase in these
parameters. This is, of course, just the statement of
convergence. From our experience with the Boltzmann
hierarchy, we expect that convergence with respect to lmax
is not hard to achieve. In fact, we found that the following
truncation, suggested in [22]:

Ψlmaxþ1 ≈
ð2lmax þ 1Þϵ

qkτ
Ψlmax

− Ψlmax−1; ðA1Þ

is compatible with the structure of the GBH, and produces
good results. Substitution of Eq. (A1) into Eq. (6) yields

flmaxþ1;n ≈ ðlmax þ 1Þ
�
1

kτ
flmax;n −

lmax

4l2max − 1
flmax−1;nþ1

�

ðA2Þ

for lmax > 1. Next we move on to the truncation with
respect to nmax. First notice that

fl;nmaxþ1 − fl;nmax
∼
Z

∞

0

dqq2f0ðqÞϵ
�
q
ϵ

�
2nmaxþl

×

�
1 −

�
q
ϵ

�
2
�
Ψl: ðA3Þ

This integrand contains a term with the form fðyÞ ¼
ykð1 − y2Þ, for y → q=ϵ. This goes to zero in both the
relativistic and nonrelativistic regimes, with a peak in
between that goes as 1=k for k ≫ 1. If our truncation
scheme is based on finding an approximate expression for
Eq. (A3), it seems reasonable to assume that convergence
will be achieved for high enough nmax. We proceed in
analogy to what is done in [23]: Find an approximate
expression to

Λ0 ≔
δnmaxþ1

δnmax

¼
R∞
0 dqq2f0ðqÞϵðqϵÞ2nmaxþ2Ψ0R
∞
0 dqq2f0ðqÞϵðqϵÞ2nmaxΨ0

ðA4aÞ

Λl ≔
fl;nmaxþ1

fl;nmax

¼
R
∞
0 dqq2f0ðqÞϵðqϵÞ2nmaxþlþ2ΨlR∞
0 dqq2f0ðqÞϵðqϵÞ2nmaxþlΨl

∀ l ≥ 1 ðA4bÞ

based on an educated guess on the q=ϵ dependence of the
multipolesΨl. In order to investigate this carefully, let us go
back to the Boltzmann hierarchy in Eq. (7). After setting

Ψl ¼ −
d ln f0
d ln q

Ψ̃l ðA5Þ

and introducing a new (q-dependent) time variable,

T ≔
Z
i
dτ

q
ϵ
; ðA6Þ

along with x ¼ kT, the Boltzmann hierarchy reads

dΨ̃0

dx
¼ −Ψ̃1 þ

dϕ
dx

ðA7aÞ

dΨ̃1

dx
¼ 1

3
ðΨ̃0 − 2Ψ̃2Þ þ

1

3
ψ̃ ðA7bÞ

dΨ̃l

dx
¼ 1

2lþ 1
½lΨ̃l−1 − ðlþ 1ÞΨ̃lþ1�: ðA7cÞ

3This is especially true for the implementation of massive
neutrinos, one of the most time-consuming tasks of Boltzmann
codes.
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This is the same set of equations one would find for
radiation, but in terms of the time parameter T, and a
(q-dependent) effective gravitational potential ψ̃ ¼ ðϵ=qÞ2ψ .
This has two important consequences: First, all dependence
on scales is actually encoded in x ¼ kT, i.e., horizon crossing
is effectively defined by the condition that kT ∼ 1. Second,
the mass dependence is encoded in x, but also in the effective
gravitational potential, and in the nonrelativistic limit it
dominates the right-hand side of the evolution equation
for Ψ̃1: This is just the well-known decoupling of l < 2
fromhighermultipoles in the nonrelativistic regime. It is then
true that

Ψ̃1 ∼
Z

dxψ̃ ∼
Z

dτ
ϵ

q
ψ ðA8Þ

and hence Ψ̃1 ∝ ϵ=q to leading order, where we think of
expanding Ψ̃l in a power series on q=ϵ around the non-
relativistic regime. Substitution of this into Eq. (A7) now
implies that Ψ̃0 ∝ 1 and Ψ̃l ∝ ðq=ϵÞl−2 for l ≥ 1, to leading
order. This, combined with Eq. (A5), are used on Eq. (A4)

Λ0 ≈

R
∞
0 dqq2f0ðqÞϵ d ln f0

d ln q ðqϵÞ2ðnmaxþ1Þ
R∞
0 dqq2f0ðqÞϵ d ln f0

d ln q ðqϵÞ2nmax
ðA9aÞ

Λl ≈

R
∞
0 dqq2f0ðqÞϵ d lnf0

d ln q ðqϵÞ2ðnmaxþlÞ
R
∞
0 dqq2f0ðqÞϵ d lnf0

d lnq ðqϵÞ2ðnmaxþl−1Þ l ≥ 1: ðA9bÞ

After integration by parts, this can be written solely in terms
of the background pressures Pn (or equation of state
parameters ωn) as follows:

Λ0 ≈
2nmax þ 5

2nmax þ 3

ωnmaxþ1

ωnmax

1 − 2nmaxþ1
2nmaxþ5

ωnmaxþ2

ωnmaxþ1

1 − 2nmax−1
2nmaxþ3

ωnmaxþ1

ωnmax

ðA10aÞ

Λl ≈
2ðnmax þ lÞ þ 3

2ðnmax þ lÞ þ 1

ωnmaxþl

ωnmaxþl−1

×
1 − 2ðnmaxþlÞ−1

2ðnmaxþlÞþ3

ωnmaxþlþ1

ωnmaxþl

1 − 2ðnmaxþlÞ−3
2ðnmaxþlÞþ1

ωnmaxþl

ωnmaxþl−1

: ðA10bÞ

There is only one final piece of information that needs to
be specified in order to complete the truncation scheme:
How to choose the values of lmax and nmax. We know that
higher multipoles and higher velocity weight fluid proper-
ties contribute as small scale effects, acting as viscosity,
since on large scales a simple fluid approximation suffices.
Based on this, and the observations made following
Eq. (A7), we expect that higher values of lmax and nmax
are needed as x ¼ kT increases.
Due to its importance, let us stop for a moment to study

the time variable T, defined in Eq. (A6). During the

relativistic regime, it is identical to τ. Let us now see what
happens in the nonrelativistic regime, assuming that the
time of transition atr ∼ q=m, happens during matter domi-
nation, as is the case for massive neutrinos. We may then
write the following approximation:

T ≈ τtr þ
Z
tr

da
a

1

aH
q
ma

; ðA11Þ

where we split the integral from the initial time to the
transition, and from the transition to the final time, use
dτ ¼ da

a
1
aH, with H ¼ H

a is the Hubble rate, and approxi-
mate ϵ ≈ma in the nonrelativistic regime, along with ϵ ≈ q
up to the transition. Further using H ∼ a−3=2 during matter
domination, one obtains for the integral in the right-hand
side of Eq. (A11)

Z
tr

da
a

1

aH
q
ma

∼
q
m

Z
tr

da
a
a−

1
2 ∼

q
m
a
−1
2

tr ∼
ffiffiffiffi
q
m

r
; ðA12Þ

where we use the fact that the integral is dominated by its
lower limit, and use atr ∼ q=m. Further notice that during

matter domination τtr ∼ a1=2tr ∼
ffiffiffiq
m

p
as well, so T ∼

ffiffiffiffi
T0

m

q
approaches a time-independent constant, as opposed to τ,
which grows indefinitely. In other words, T grows like τ up
to the time of transition, effectively freezing as one
approaches the nonrelativistic regime. Indeed, since q=ϵ ¼
v is the neutrino velocity, T is the comoving distance
traveled by a neutrino particle through cosmic history.
When evaluated at the peak of the Fermi-Dirac distribution
(say q=T0 ¼ 3), this is roughly the neutrino horizon, or the
free-streaming scale (integrated over e-folds). From this
point forward, when used as a time variable, it is implicitly
assumed that T is evaluated at q=T0 ¼ 3, and hence
corresponds to the neutrino horizon (plotted in Fig. 1).
On the large scales, i.e., x ¼ kT≲ 1, a simple viscous

fluid approximation with lmax ¼ 2 and nmax ¼ 0 suffices,
and we discuss this in detail in Appendix B.
As x ≫ 1, we expect that higher values of both lmax and

nmax are needed. A naive assumption would then be that
lmax; nmax ∝ x. Indeed, our experience with the GBH
indicates that it converges for lmax ≈ x=2, with the differ-
ence between T and τ explaining why one needs a much
higher lmax for radiation than for massive neutrinos [22].
Unfortunately, the same cannot be said about the n
expansion, with nmax, and hence the dimensionality of
the system, growing very rapidly for modes inside the
horizon. This can be explained as follows: The higher
velocity weight variables are effectively accounting for the
dynamics of neutrinos with higher particle velocities. This
means that T, as defined by Eq. (A6), should not be
evaluated at the peak of the Fermi-Dirac distribution
q=T0 ≈ 3, but rather at a larger value q ¼ qnmax

, that we
choose to be the peak of the integrand in Eq. (2), for the

GENERALIZED BOLTZMANN HIERARCHY FOR MASSIVE … PHYS. REV. D 104, 083535 (2021)

083535-9



corresponding value of n ¼ nmax. This is to make sure that
Tðqnmax

Þ is the comoving distance traveled by the neutrino
particles that are actually being probed by the higher-
velocity weight fluid properties. We then expect that

nmax

x
∼
kTðqnmax

Þ
x

¼ Tðqnmax
Þ

T
: ðA13Þ

We evaluated Eq. (A13) numerically for many values of
nmax, to find that nmax ∼ x1.6 up to x ¼ 30. From our
experience with the GBH, nmax ≈ x1.6=5 is approximately
sufficient for convergence.
Before moving on to the viscous fluid approximation, we

should point out that our truncation scheme in Eq. (A10)
requires accurate numerical evaluation of quotients involv-
ing higher-velocity weight equations of state, which
according to Eq. (2), become really small numbers in
the nonrelativistic regime. The numerical computation of
Λl can then be very time consuming, especially for high
nmax. However, as it is clear from Eq. (2),ωn is a function of
just a single variable y ¼ ma=T0, and hence can be easily
tabulated.

APPENDIX B: FLUID APPROXIMATION

On large scales for which x ¼ kT≲ 1, a simple viscous
fluid approximation with lmax ¼ 2 and nmax ¼ 0 should
suffice. Since in the nonrelativistic regime T basically
freezes at τtr, the value of conformal time evaluated at the
transition atr ∼

q
m ∼ T0

m , this can be rephrased as to say that
the mode has to be superhorizon at the transition, i.e., in
enters the horizon during the nonrelativistic regime. This is
exactly what was found in [29], from comparing the exact
solution with a simple fluid approximation.
Furthermore, on the small scales x ≫ 1, free-streaming

and nonlinear effects start to kick in and it no longer
becomes important that the neutrino transfer function is
produced very accurately. One can then choose a xmax
above which a simple fluid approximation can be used once
again. Let us then stop for a moment to carefully study
the case lmax ¼ 2 and nmax ¼ 0. The fluid equations are
given by Eq. (9). Our truncation scheme, developed in
Appendix A, provides approximations for the quantities
δP=δρ, Σ, Θ and kf3, in terms of the dynamical variables in
the system.
Setting lmax ¼ 2 and nmax ¼ 0 in Eq. (A2) (which is

known not to be a particularly good approximation for
lmax ¼ 2 [30]), one obtains

kf3 ≈
3

τ
σ −

2

5
Θ: ðB1Þ

Both sides of this equation can be accurately determined
at intermediate scales, from the GBH. A comparison can be
found in Fig. 6.

Furthermore, set nmax ¼ 0 into Eq. (A10) to arrive at

1

3
Λ0 ¼

δP
δρ

≈
5

3

ω

1þ ω

�
1 −

1

5

ω2

ω1

�
¼ c2g ðB2aÞ

Λ1 ¼
Θ
θ
≈ 3c2g ⇔ c2vis ¼

3

4
ð1þ ωÞc2g ðB2bÞ

Λ2 ¼
Σ
σ
≈
7

5

ω2

ω1

1 − 1
7
ω3

ω2

1 − 1
5
ω2

ω1

; ðB2cÞ

where a fluid viscosity speed cvis, was introduced as a
different parametrization to Λ1, using notation from [24]

c2vis ¼
1

4
ð1þ ωÞΘ

θ
: ðB3Þ

In the CLASS ncdm fluid approximation, the truncation
in the multipole is done in the exact same way as in
Eq. (B1), while for the higher velocity weight quantities,
the authors of [23] apply a bit of trial and error to arrive at
the following ad hoc approximations:

1

3
Λ0 ¼

δP
δρ

≈
5

3

ω

1þ ω

�
1 −

1

5

ω2

ω1

�
¼ c2g ðB4aÞ

Λ1 ¼
Θ
θ
≈ 12

ω

1þ ω
c2g ⇔ c2vis ¼ 3ωc2g ðB4bÞ

Λ2 ¼
Σ
σ
≈
ω2

ω1

: ðB4cÞ

The Eqs. (B2) and (B4) differ slightly on the expressions
for Θ=θ and Σ=σ.
In Fig. 7 we compare the adiabatic sound speed squared

to the exact solutions coming from both CLASS and the
GBH: The GBH and CLASS agree to a subpercent level,

kf3(GBH)

kf3(TS)

–8 –6 –4 –2 0
–0.002

–0.001

0.000

0.001

0.002

ln(a)

FIG. 6. Left- (GBH) and right-hand (TS) sides of Eq. (B1) as
obtained from the GBH. Here x ¼ 15, or k ¼ 0.008 Mpc−1,
m ¼ 0.1 eV, lmax ¼ 8, and nmax ¼ 16. The approximation re-
produces the right features, but is not accurate.
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with both differing from the assumption of adiabaticity
when approaching the nonrelativistic regime.
In Fig. 8, we compare the Λ1’s from CLASS and GBH

truncation schemes for the FAwith the exact solution from
the GBH: There is an overall 10% level error in both cases,
but the GBH truncation scheme is an order of magnitude
better in the nonrelativistic regime.
In Fig. 9, we compare Λ2’s from CLASS and GBH

truncation schemes for the FAwith the exact solution from
the GBH: there is a 10% level error in both cases, with the
CLASS truncation scheme being an order of magnitude
better in the nonrelativistic regime. However, we found that
the accuracy of the FA is insensitive to the specific choice
of Λ2.

Finally, in Fig. 10 we compare fluid approximations,
with GBH and CLASS truncation schemes, with the exact
solution from CLASS: there is also an overall 10% level
error in the neutrino density contrast transfer function, but
the CLASS fluid approximation works better at late times.
Indeed, this is possible because the CLASS truncation
scheme is tuned to produce the best outcome, even though
all the individual approximations are in a similar level of
accuracy as in the truncation scheme for the GBH, which
was motivated from first principles. Because of this, the
CLASS fluid approximation works better overall, and
should be the one used in the regime x > xmax, as
discussed.

GBH
Adiabatic
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S

FIG. 7. Relative difference between sound speeds squared,
coming from the GBH and the assumption of adiabaticity, when
compared to the exact solution from CLASS. Here x ¼ 15, or
k ¼ 0.008 Mpc−1, m ¼ 0.1 eV, lmax ¼ 8, and nmax ¼ 16.
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FIG. 8. Relative difference between Λ1’s, coming from CLASS
and GBH truncation schemes, when compared to the exact
solution from the GBH. Here x ¼ 15, or k ¼ 0.008 Mpc−1,
m ¼ 0.1 eV, lmax ¼ 8, and nmax ¼ 16.
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FIG. 9. Relative difference between Λ2’s, coming from CLASS
and GBH truncation schemes, when compared to the exact
solution from the GBH. Here x ¼ 15, or k ¼ 0.008 Mpc−1,
m ¼ 0.1 eV, lmax ¼ 8, and nmax ¼ 16.
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FIG. 10. Relative difference between density contrast neutrino
transfer functions coming from the fluid approximation with
GBH and CLASS truncation schemes, when compared to the
exact solution from CLASS. Here x ¼ 15, or k ¼ 0.008 Mpc−1,
and m ¼ 0.1 eV.
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