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We propose a new model of early dark energy (EDE) as a possible solution to the Hubble tension
in cosmology, the apparent discrepancy between local measurements of the Hubble constant H0 ≃
74 km s−1 Mpc−1 and H0 ≃ 67 km s−1 Mpc−1 inferred from the cosmic microwave background (CMB). In
chain EDE, the universe undergoes a series of first order phase transitions, starting at a high energy vacuum
in a potential, and tunneling down through a chain of every lower energy metastable minima. As in all EDE
models, the contribution of the vacuum energy to the total energy density of the universe is initially
negligible, but reaches ∼10% around matter-radiation equality, before cosmological data require it to
redshift away quickly—at least as fast as radiation. We indeed obtain this required behavior with a series
of N tunneling events, and show that for N > 600 the phase transitions are rapid enough to allow fast
percolation and thereby avoid large scale anisotropies in the CMB. We construct a specific example of
chain EDE featuring a scalar field in a quasiperiodic potential (a tilted cosine), which is ubiquitous in axion
physics and, therefore, carries strong theoretical motivation. Interestingly, the energy difference between
vacua can be roughly the size of today’s dark energy (milli-electron-volt scale). Therefore, the end result of
chain EDE could provide a natural explanation of dark energy, if the tunneling becomes extremely slow in
the final step before the field reaches zero (or negative) energy. We discuss a simple mechanism which can
stop the scalar field in the desired minimum. Thus chain EDE offers the exciting prospect to explain EDE
and dark energy by the same scalar field.
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I. INTRODUCTION

The cosmological standard model ΛCDM has provided
dramatic insights into the evolution of the universe, the
formation of the large scale structure (LSS), and the physics
of the cosmic microwave background (CMB). However,
one striking anomaly referred to as the “Hubble tension”
has persisted over the past years and could indicate that
ΛCDM is incomplete. Supernova observations in combi-
nation with spectral redshift measurements consistently
prefer a value of H0 ≃ 74 km s−1Mpc−1 [1,2] significantly
different from H0 ≃ 67 km s−1Mpc−1 as inferred from the
CMB by Planck [3]. A possible resolution of this discrep-
ancy requires an alteration of the expansion history

compared to ΛCDM. In particular, if the sound horizon
at matter-radiation decoupling is reduced, a larger value of
H0 would be derived from the CMB [4].
The challenge is that any type of physics affecting the

sound horizon induces further changes in the pattern of
CMB fluctuations. Simple scenarios such as an extra dark
radiation increase the CMB-inferred Hubble parameter at
the price of degrading the cosmological fit to the higher-l
temperature peaks and polarization of the CMB and baryon
acoustic oscillation data [3,5]. However, one particular
form of energy dubbed “early dark energy” (EDE) has been
shown to resolve the Hubble tension while (so far) passing
all cosmological tests [6–20]. Initially, the energy density
of EDE behaves roughly as a cosmological constant
[logðρEDEÞ ∼ const], and its contribution to the total energy
density of the universe is negligible. But as the universe
cools down, the ratio ρEDE=ρtot grows and reaches ∼10%
around matter-radiation equality, before cosmological data
require it to redshift away quickly—at least as fast as
radiation [8].
The original model of EDE involved a scalar field ϕ that

is initially displaced from its minimum (see, e.g., [8–10]).
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As long as the Hubble friction dominates its evolution, the
field value remains (nearly) constant and the corresponding
potential energy behaves as a cosmological constant. But
once the Hubble scale approaches the effective mass of
the scalar field, ϕ becomes dynamical. While it performs
coherent oscillations around its minimum, the energy
density ρϕ stored in ϕ decreases. A major drawback of
the scalar field models is that ρϕ typically redshifts away
more slowly than radiation—in contrast to what is required
in the EDE scenario. Only for highly nongeneric choices of
the scalar field potential such as V ∝ ð1 − cosðϕ=fÞÞn with
n ≥ 2, can a sufficiently fast decrease of the energy density
be realized [8].
An alternative model of EDE invokes a first order phase

transition. The universe is trapped in a false minimum, but
tunnels into the true minimum around matter radiation
equality. Unfortunately, this scenario suffers from a short-
coming that bears resemblance to the “empty universe
problem” [21] in old inflation [22]: in order for EDE to
stay around long enough the tunneling rate must be sup-
pressed. This implies that during the phase transition bubbles
of true vacuum are formed far away from each other. They
grow to macroscopic sizes before eventually colliding with a
neighboring bubble and releasing the energy contained in the
bubble walls. As a consequence large scale anisotropies
would arise and leave undesirable footprints in the CMB.
In order to avoid these anisotropy problems in EDE,

one can mimic solutions to the empty universe problem in
Guth’s original model of “old” inflation: (i) double field
inflation [23,24]) employed an additional trigger field to
make the tunneling rate time dependent; at first the
tunneling rate is slow to allow for a long enough period
of inflation but then suddenly switches to rapid tunneling
so that bubbles nucleate simultaneously throughout
the universe, collide, and reheat. References [11,13]
employed the same approach, using a trigger field to
obtain a time-dependent tunneling rate, to construct a
viable model of EDE. (ii) In chain inflation [25,26], the
universe tunnels from a large vacuum energy through a
series of minima of ever lower vacuum energy. Each
tunneling event is rapid enough for successful percolation
and reheating, with hundreds of tunneling events required
to add up to enough inflation.
In this work we propose a new model of EDE in which

the universe undergoes a series of phase transitions instead
of just one. Drawing on its similarity with chain inflation
[25,26], we will dub our proposal “chain early dark energy”
(chain EDE). In the simplest case, chain EDE is realized
through a scalar field which starts at a vacuum with energy
density V0 ¼ OðeV4Þ and tunnels down through a chain of
metastable minima of ever lower energy. The required
quasiperiodic potential (e.g., a tilted cosine) is ubiquitous in
axion physics and, therefore, carries strong theoretical
motivation. With the appropriate choice of two parame-
ters—the initial EDE density V0 and the summed lifetime

of vacua along the chain1—the EDE fraction of the
universe’s energy density is negligible at the beginning,
raises to ∼10% around matter-radiation equality, and then
decays away quickly, as shown in Fig. 3 below. This is
exactly the required behavior to resolve the Hubble tension.
Furthermore, in Sec. II, we will argue that chain EDE

does not suffer from the anisotropy problem that plagues
the single phase transition case. Given a series of meta-
stable vacua, the requirement of EDE to survive until
matter-radiation equality can be fulfilled even if each
individual vacuum is short-lived. Hence, the bubbles of
new vacuum in chain EDE are created in close proximity
and only grow for a short time before they percolate. We
will show that the resulting anisotropies occur at small
distance scales and do not spoil cosmological observables.
In Sec. III, we will trace the evolution of the chain EDE

component over the history of the universe. In particular,
we will show that the evolution is very similar as in the
best fit EDE models [10] invoking oscillating scalar fields.
Since the latter have been proven to resolve the Hubble
tension via dedicated cosmological fits, the same can be
claimed for chain EDE.
Section IV presents a specific model realization of chain

EDE in the form of a tilted cosine potential. We also
introduce a mechanism for stopping the axion once the
EDE is dissipated at z ≃ 3300, i.e., which prevents ϕ
from further tunneling down the chain into the regime of
negative vacuum energy.
Finally, in Sec. V we will show that the energy difference

between vacua in chain EDE can naturally be of OðmeVÞ.
Wewill argue that if the tunneling field is still trapped in the
lowest minimumwith positive energy, it can account for the
dark energy that dominates our universe today.

II. CONSTRAINTS ON PHASE TRANSITIONS
FROM CMB ANISOTROPIES

In the first step we want to derive constraints on one or
several first order phase transition(s) that take place shortly
before matter-radiation equality. A phase transition induces
scale-dependent anisotropies that can spoil CMB and LSS
observations.

A. CMB bounds on a single phase transition

We consider a scalar field ϕ that is initially trapped in a
false vacuum. The energy density of the scalar is assumed
to be subdominant at all times such that the expansion of
the universe is mainly controlled by the radiation compo-
nent. Once the age of the universe approaches the lifetime
of the false vacuum, bubbles of true vacuum are formed
with the energy of the false vacuum stored in the bubble

1As discussed further below, this summed lifetime is approx-
imately given by N=Γ1=4 where N is the number of tunneling
events and Γ is the tunneling rate per phase transition.
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walls. The bubble walls expand approximately at the speed
of light and release their energy upon collision (e.g., into
radiation). In order to avoid dangerous energy injection into
the visible sector ϕ is assumed to be a dark sector field that
does not couple directly to the visible sector.
If we denote the tunneling rate per volume as Γ, we can

determine the mean lifetime τ of the universe in the false
vacuum by requiring ΓV4ðτÞ ¼ 1. Here V4ðτÞ is the
spacetime volume of the past light cone at time t ¼ τ (at
an arbitrary position).2 For a radiation-dominated universe
we obtain

τ ¼
�
105

8πΓ

�
1=4

≃ 1.4 × Γ−1=4: ð1Þ

We can invert this equation and express Γ in terms of the
redshift of the phase transition zb ≡ zðτÞ,

Γ−1=4 ≃ 4.4 × 104 yr ×

�
3500

zb

�
2

≃ 13.5 kpc ×

�
3500

zb

�
2

:

ð2Þ

One can easily verify that the typical distance between the
bubble nucleation centers is also given by ∼Γ−1=4. It is
convenient to consider the comoving bubble separation

db ≃ Γ−1=4zb ≃ 47 Mpc ×

�
3500

zb

�
: ð3Þ

This is because db will also correspond to the comoving
size of the bubbles upon percolation (assuming that bubble
walls expand at the speed of light until collision). After
the bubble walls transferred their energy, anisotropies of
comoving size db are present in the dark sector which are
gravitationally transferred to the visible sector. These
anisotropies can leave imprints in the CMB which are
not observed in the data [11,13]. Indeed, if the energy
density in the vacuum is 10% of the radiation, one might
expect δρ=ρ ∼ 10% at the time of the phase transition,
growing up to Oð1Þ at the time of the CMB epoch. In the
following we will require the anisotropies to occur at small
enough scales to be unobservable in CMB and LSS data.
The anisotropies occur at an angle in the sky which can

be estimated as follows [13]:

θ ≃
db

DCMB
; ð4Þ

where DCMB denotes the comoving angular diameter
distance of the CMB

DCMB ¼
Z

zCMB

0

dzH−1ðzÞ ≃ 14 Gpc: ð5Þ

Current observations of the CMB temperature power
spectrum by Planck and earth-bound detectors reach up
to l ≃ 4000 [3]. Even smaller scales are accessible through
the Lyman-α forest which covers the dynamical range
k ≃ ð0.1–10Þ hMpc−1 [27] corresponding to l ≃ 103–105

[28]. If we use the stronger Lyman-α constraint we need to
require

θ <
π

lmax
¼ 0.002° ð6Þ

on the angular scale of anisotropies. We use Eqs. (5) and (6)
in Eq. (4) to find a bound on db, which using Eq. (3)
translates to

Γ−1=4 < 0.14 kpc ×
3500

zb
: ð7Þ

Combining Eq. (2) and (7) we obtain a constraint on the
redshift of the phase transition

zb > 3.3 × 105: ð8Þ

However, in order to resolve the Hubble tension EDE has to
stay around until redshift z ∼ 3500 [8,10]. Therefore, EDE
models with a single phase transition suffer from unac-
ceptable anisotropies in the CMB.
As mentioned in the Introduction, a caveat to this

argument which employs a time-dependent tunneling rate
has been pointed out in [11,13]: if Γ is initially small, but
increases around matter-radiation equality, the lifetime of
the universe in the false vacuum and the duration of the
phase transition (which controls the size of anisotropies)
can effectively be decoupled. In particular, the anisotropies
can be made compatible with CMB constraints if the
increase in Γ occurs rapidly. The required mechanism,
which includes the EDE field and an additional trigger
field, has first been introduced in the context of double field
inflation [23,24].

B. CMB bounds on a series of phase transitions

We now turn to an alternative possibility to evade the
CMB constraints. In chain EDE the vacuum energy is
dissipated through a series of phase transitions instead of
just one. As a simple realization we consider a scalar field
that tunnels along a chain of false vacua with decreasing
energy (see Fig. 1 for illustration). In order to keep the
discussion simple, we assume that the tunneling rate per
volume Γ remains constant for all vacuum transitions
within the chain. Again, the energy density of the scalar
is assumed to be subdominant at all times such that the

2V4ðτÞ¼
R
τ
0
4π
3
r3ðtÞdt with rðtÞ ¼ aðtÞ R τ

t
dt0
aðt0Þ, where a denotes

the scale factor of the universe.
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expansion of the universe is mainly controlled by the
radiation component.
Initially, the field sits in its highest energy minimum; in

the meantime the (dominant) radiation density and the
Hubble parameter decrease with the expansion of the
universe. Once the Hubble parameter drops to the point
where it becomes comparable to the tunneling rate,
Γ=H4 ∼ 1, the first phase transition in the chain takes
place. The first transition can be treated completely
analogously to the single phase transition case in the
previous section. Thus as in the case of the single phase
transition, it occurs when the lifetime of the universe
reaches 1.4 × Γ−1=4 [cf. (1)].
Since bubbles are nucleated at every tunneling step, we

need to apply the CMB constraints to each of the vacuum
transitions. We begin by finding the most restrictive
bounds, in which we follow the same logic as in
Sec. II A for a single phase transition, and require the first
phase transition to happen on scales not observable in the
CMB. These restrictive bounds require a large number of
phase transitions (N > 20; 000). However, we then re-
examine the bounds for chain EDE and argue that they
likely do not need to be so restrictive, since the amplitude
of CMB anisotropies in each of the phase transitions
is reduced compared to the single phase transition case.
Thus the number of phase transitions must instead
satisfy N > 600.

1. Most restrictive bounds, modeled on single phase
transition case

First, we find the most restrictive possible bounds on a
series of phase transitions, by requiring the CMB anisot-
ropies to occur on small enough scales to be unobservable
in the CMB. Equation (7) implies that the strongest CMB
constraints always apply to the first phase transition. This
can easily be understood since the corresponding anisot-
ropies have the longest time available to grow by the
expansion of the universe. To be unobservable in the CMB,
the first phase transition, again as found in the case of a
single phase transition, would need to occur at redshift
z > 3.3 × 105 [see Eq. (8)], which according to Eq. (2)
translates to a tunneling time

Γ−1=4 < 5 yr ≃ 1.5 pc ð9Þ

(comparable to the age of the universe at that redshift).
In the case of many vacua each tunneling step reduces

the EDE only by a small amount. If there are sufficiently
many transitions N along the chain, the EDE can stay
around until matter-radiation equality while still satisfying
the constraint above. In order to find the minimal numberN
we need to determine the (mean) lifetime of the universe in
each vacuum.
We realize that for each subsequent transition the lifetime

per vacuum decreases. Although we have assumed constant
Γ for all the transitions, the Hubble parameter decreases
with redshift during radiation domination as H ∝ z2. Thus
the ratio Γ=H4 ∝ z−8 increases rapidly, so that after the first
few phase transitions the field has reached the fast tunnel-
ing regime Γ=H4 ≫ 1. The number of vacuum transitions
per time is obtained by counting the bubble walls hitting
an observer at a fixed point in space. The first transition
occurs when the lifetime of the universe, corresponding
to 1=ð2HÞ, reaches 1.4 × Γ−1=4 [cf. (1)]. Therefore, the
vacuum bubbles seeded by the first transition are generated
at a distance Γ−1=4 ¼ Oð1=HÞ from each other and take
around one Hubble time to collide. Their evolution is,
hence, significantly affected by the expansion of the
universe. For subsequent transitions with Γ=H4 ≫ 1, a
large number of bubbles is created per Hubble four-volume
implying that the bubbles collide before they “realize” the
expansion.
Simulations of colliding bubbles have recently been

performed in [29]. Even though the simulations assumed
an inflationary background, the results in the limit
Γ=H4 ≫ 1 also apply to radiation domination since the
bubbles are not affected by the expansion as we argued. For
Γ=H4 ≫ 1 we extract the time of the universe in one
vacuum i as

τi ¼
Δϕ

dhϕi=dt ≃ 0.7Γ−1=4; ð10Þ

where Δϕ is the field-space distance between minima.
Comparing (1) for the first phase transition and (10) for

FIG. 1. Models of EDE in which the energy is initially stored in a scalar field. In the left panel the EDE is dissipated through a single
phase transition. In the right panel a series of phase transitions occur. We denote the scenario in the right panel as chain EDE.
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later phase transitions in the series, we see that τi decreases
by an Oð1Þ factor along the chain.
In practice we will apply (10) to all vacuum transitions.

Since Γ=H4 ≫ 1 is satisfied after the first few tunneling
steps, the error we make by this assumption is negligible.
The total time τ elapsed after N phase transitions can,
hence, be estimated as

τ ¼ Nτi ¼ 0.7N × Γ−1=4 < N × 1.1 pc: ð11Þ

In the last step we applied the constraint derived from CMB
anisotropies (9). Requiring that EDE remains present until
redshift z ∼ 3500 leads to the following constraint on the
number of vacuum transitions

N > 2 × 104: ð12Þ

We emphasize that we derived this constraint by requiring
that anisotropies occur on small scales that are experimen-
tally inaccessible.

2. Less restrictive bounds since there are multiple phase
transitions in the chain

The bound in Eq. (12) is unduly restrictive due to the
fact that there are multiple phase transitions. The energy
dissipation through a series of phase transitions (compared
to just one) suppresses the amplitude of EDE-induced
CMB anisotropies by a factor ∼1=N so that the anisotropies
induced by chain EDE could be acceptable even if they fall
into the observable range of scales. While a more dedicated
analysis goes beyond the scope of this work, one would
expect the density perturbations sourced by EDE at redshift
z to be bounded by

ΔρEDE
ρtot

≲ 1

N
ρEDEðzÞ
ρtotðzÞ

; ð13Þ

where ρEDEðzÞ=ρtotðzÞ is the fraction of the total energy
density of the universe contained in EDE at redshift z.
Assuming ρEDE=ρtot ∼ 0.1 at z ∼ 3500 in order to resolve
the Hubble tension and logarithmic (linear) growth of
perturbations during radiation (matter) domination, we
can determine the maximal amplitude of EDE-induced
fluctuations as a function of scale and redshift. Requiring
ΔρEDE=ρtot < 10−5 at last scattering for scales observable
in the CMB and in LSS then leads to the constraint

N > 6 × 102; ð14Þ

which is significantly weaker than (12).
We conclude that if EDE disappears not by a single

phase transition, but instead by a series of phase transitions,
dangerous anisotropies can be avoided. The advantage of
multiple phase transitions is twofold: (i) the amplitude of
the anisotropies is reduced by the number of transitions

N; (ii) the scale of the anisotropies is smaller. For the case
of one phase transition, requiring the EDE to stick around
long enough leads to a large bubble size and large scale
anisotropies; for the case of many transitions, each phase
transition needs to last only 1=N of the total EDE epoch and
the faster tunneling rate produces smaller bubbles (at
percolation) and smaller scale anisotropies. Requiring
at least Oð104Þ transitions one is definitely on the safe
side since anisotropies only occur at scales that are
experimentally inaccessible. Most likely, even a few
hundred transitions are sufficient since the amplitude of
EDE-induced fluctuations is strongly suppressed in this
case.

III. SOLUTION TO THE HUBBLE TENSION

The Hubble tension consists in the apparent discrepancy
between local measurements of the Hubble constant yielding
H0≃74 kms−1Mpc−1 [1,2] and H0≃67 kms−1Mpc−1

inferred from the CMB [3]. EDE resolves the discrepancy
by adding an additional energy component which reduces
the sound horizon rs at recombination. In order to preserve
the angular size of the first peak in the CMB, the decrease
of rs needs to be compensated by a reduction of the
angular diameter distance of the CMBDCMB. As is apparent
from (5) this in turn leads to an increase of H0 inferred
from the CMB compared to ΛCDM, i.e., to a resolution of
the Hubble tension.
Since a shorter sound horizon would also shift the

position of the higher CMB peaks to larger l and affect
their amplitude, further cosmological parameters including
the dark matter density, the baryon density, and the scalar
spectral index need to be modified in order to balance this
effect [8–10]. Furthermore, to minimize the impact on other
successful ΛCDM predictions, EDE should redshift away
at least as fast as radiation at z≲ 3000.
We begin by discussing previously proposed models of

EDE and then turn to our model of chain EDE.

A. Oscillating scalar field

Previous models of EDE invoke a scalar field ϕ
in a dark sector which exhibits a potential of the
form [8,10]

V ¼ m2f2
�
1 − cos

�
ϕ

f

��
n
; ð15Þ

wherem and f are parameters of mass dimension one and n
is an integer number. Other choices, e.g., V ∝ ϕ2n, have
also been considered [9]. One can easily trace the time
evolution of the EDE energy density ρEDE ¼ _ϕ2=2þ V by
solving the homogeneous Klein-Gordon equation

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ 0: ð16Þ
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The scalar field is initially frozen at the field value ϕ0 by the
Hubble friction and ρEDE remains constant. Once H falls
below the effective mass V 00ðϕ0Þ, the field starts to perform
damped oscillations around its minimum. During this
period, the energy oscillates around the asymptotic solution

ρEDE ∝ a−6n=ðnþ1Þ; ð17Þ

where a denotes the scale factor of the universe. Since,
during the oscillation period, ρEDE must redshift at least as
fast as radiation, n ≥ 2 is required.
In [10] the cosmological predictions of the EDE model

were investigated in a combined fit to the Planck power
spectra [30], BAO data [31–33], and supernova measure-
ments of the Hubble constant [2,34]. It was found that
the cases n ¼ 2 (n ¼ 3) reduce the total χ2 by 16 (20)
compared to ΛCDM—suggesting a clear preference for the
EDE component. In Fig. 4 we depict the evolution of ρEDE
for the best fit point with n ¼ 2. As can be seen, the early
dark energy fraction reaches a maximum of ρEDE=ρtot ¼
0.09 at z ¼ 3111. The best fit points feature a Hubble
constant H0 ≃ 71.6 km s−1 Mpc−1 close to the value pre-
ferred by local measurements.

B. Chain EDE

In the following we want to argue that chain EDE is
capable of resolving the Hubble tension. We have seen
that the EDE solution requires ρEDE to contribute signifi-
cantly (∼10%) around matter-radiation equality, but then
to disappear quickly. However, the cosmological fit is
expected to be insensitive to the details of the underlying
model. In fact, a simple modeling of the EDE component in
an effective fluid approach [8] yielded very similar results
compared to the full implementation of the oscillating
scalar field model [10]. In this light we can refrain from
performing a full cosmological fit for chain EDE. Instead,
we will show that chain EDE is able to closely reproduce
the redshift dependence of ρEDEðzÞ in the oscillating scalar
field model.
In chain EDE, the energy density of the EDE sector

ρEDE ¼ ρϕ þ ρwall þ ρDR consists of three components,
namely

(i) the vacuum energy stored in the scalar field ρϕ,
(ii) the energy of bubble walls ρwall,
(iii) the energy density ρDS created by the collision of

bubble walls which may consist of dark radiation,
gravity waves, and small scale anisotropic stress
[11,13]. We will refer to this component as the
energy density of the dark sector (DS) in the
following.

Let us first investigate how the potential energy ρϕ evolves.
Initially, all energy of the EDE sector is stored in ϕ and,
hence, ρEDE ¼ ρϕ ≡ V0. With each tunneling process the
potential energy is reduced by the energy difference
between vacua ΔV ¼ V0=N, where N again denotes the

number of transitions required to dissipate the energy in ϕ.
To keep the discussion simple, we take both ΔV and the
decay rate (per volume) Γ to be constant along the entire
chain of vacua.
If there are sufficiently many vacua in the chain, we can

approximate ρϕ to continuously decrease with

_ρϕ ≃ −
ΔV
τi

; ð18Þ

with τi, denoting the time spent in one vacuum as given
in (10).
Equation (18) implies that ρϕ decreases linearly with

time. Naively, this seems at odds with the requirements that
EDE should initially behave as a cosmological constant and
then disappear quickly. However, the intuition fails here,
since these requirements need to be imposed on a loga-
rithmic scale. And, in fact, a linearly decreasing function ρϕ
looks almost like a step function in a log-log plot as we
show in Fig. 2.
Furthermore, since (most) transitions in Chain EDE

occur quickly (compared to the Hubble time), we will
approximate the energy transfer from ρϕ to ρDS as instanta-
neous and neglect ρwall in the following.
The dark sector is permanently heated by vacuum

transitions of ϕ. At the same time the energy density of
ρDS redshifts with the scale factor as a−3ð1þwÞ, where w
stands for the equation-of-state parameter. The evolution of
the energy densities in the EDE sector is, hence, governed
by the following set of differential equations:

ð1þ zÞ dρϕ
dz

≃
1.4ΔVΓ1=4

HðzÞ ;

ð1þ zÞ dρDS
dz

≃ −
1.4ΔVΓ1=4

HðzÞ þ 3ð1þ wÞρDS; ð19Þ

where we traded the time dependence for a redshift
dependence and used Eq. (10). Note that in the second
of the above equations, the first term on the right-hand side
(RHS) is simply the negative of the RHS of the first
equation (as energy is transferred from the vacuum to the
dark sector), and the second term is the redshifting of the
DS component. We implicitly assumed that the DS com-
ponent can be treated as an effective fluid. While the
condensate emerging from the bubble collisions is highly
inhomogeneous and anisotropic on small scales, we expect
that such short-wavelength perturbations can effectively
be integrated out at the larger scales relevant for CMB
observations, resulting in an effective fluid description of
the anisotropic stress characterized by its equation of state,
sound speed, and viscosity [35].
The equation-of-state parameter depends on the under-

lying dissipation mechanism for the vacuum energy. It is
expected that bubble walls release their energy into small

KATHERINE FREESE and MARTIN WOLFGANG WINKLER PHYS. REV. D 104, 083533 (2021)

083533-6



scale anisotropic stress, dark radiation, and, subdominantly,
gravity waves. The distribution among these forms of
energy is, unfortunately, highly model dependent. The
generation of dark radiation, e.g., requires the availability
of light final states in the dark sector. Furthermore, while
w ¼ 1=3 for dark radiation, the equation-of-state parameter
for anisotropic stress is not precisely known. A number
of heuristic arguments suggest that it falls in the range
1=3 < w < 1 [13]. Luckily, the EDE solution to the Hubble
tension only requires w ≥ 1=3 [8] which is satisfied by all
forms of energy emerging from the bubble collisions. We
can, therefore, refrain from a more detailed investigation of
the equation-of-state parameter and simply consider the
limiting cases w ¼ 1=3 and w ¼ 1 in order to bracket the
uncertainties.
The evolution of the EDE sector is coupled to the visible

sector through the expansion rate. We will later perform a
full numerical solution of (19) taking into account the
impact of EDE on H. However, in order to roughly
understand how ρEDE evolves with redshift, it is instructive
to perform an analytic estimate which neglects the (sub-
dominant) impact of EDE on the Hubble parameter. Since
the phase transitions occur during radiation domination,
we can then approximate HðzÞ ≃ 0.25z2 × 10−8 kpc−1.
Solving the first equation in Eq. (19), we obtain

ρϕ ¼ V0

�
1–2.8 × 108 kpc

Γ1=4

Nz2

�
; ð20Þ

where we replaced V0=ΔV by the total number of tran-
sitions N. We note that the change in the potential scales as
1=z2, i.e., drops off linearly with time, as expected. The
expression above holds as long as ρϕ ≥ 0. We assume that
ϕ settles in a stable minimum at V ∼ 0 once the entire

potential energy has been dissipated.3 In order to resolve
the Hubble tension this should occur at z� ≃ 3000 which
allows us to constrain Γ,

Γ1=4

N
≃ 0.03 kpc−1

�
z�

3000

�
2

: ð21Þ

Notice that, in terms of the background evolution, models
of chain EDE are indistinguishable as long as they feature
the same Γ1=4=N. The absence of dangerous CMB anisot-
ropies requires N ≳ 104 transitions (see Sec. II B), but one
is otherwise free to choose N. Using (20) the differential
equation for the dark sector energy density can also be
solved analytically such that we arrive at

ρϕ ¼ V0

�
1 − ðz�z Þ2 z > z�
0 z < z�

;

ρDS ¼
2V0

5þ 3w

� ðz�z Þ2 z > z�
ð zz�Þ3þw z < z�

;

ρEDE ¼ ρϕ þ ρDS ¼ V0

�
1 − 3þ3w

5þ3w ðz�z Þ2 z > z�
2

5þ3w ð zz�Þ3þw z < z�
: ð22Þ

Note that we have defined the EDE component of the
universe ρEDE to include both the chain vacuum energy ρϕ
plus the dark sector ρDS that it decays into. We thus find that
ρEDE behaves approximately as a cosmological constant
until z� and then redshifts away at least as fast as radiation
(since w ≥ 1=3). Hence, chain EDE meets the criteria for a
successful solution to the Hubble tension.
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0.0
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0

50 500 5000 5 × 104
10–5

10–4
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0.100

1

t [yr]

/V
0

FIG. 2. Time evolution of the energy density ρϕ in chain EDE (in units of the initial energy density V0). The same ρϕ is depicted on a
linear scale (left panel) and on a log-log scale (right panel). The figure illustrates that a linear decrease of ρϕ looks almost like a step
function in a log-log plot. We note that the individual phase transitions in the chain are too rapid to be visible in the plot which hence
looks like a line. Notice that the redshift moves from right to left in this figure since we are plotting time on the x axis—the reverse of
Figs. 3 and 4 below.

3We assume tunneling into anti–de Sitter does not happen.
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We have then performed a numerical solution of (19)
taking into account all subdominant contributions to the
Hubble parameter and the full dynamics of the visible
sector. The initial vacuum energy and the decay rate were
chosen as V0 ¼ 0.25 eV4 and Γ1=4=N ¼ 0.04 kpc−1. In
Fig. 3 we depict the resulting evolution of the energy
densities in radiation, matter, dark energy, and EDE [the
latter essentially follows our analytic estimate (22)].
The cases w ¼ 1=3 and w ¼ 1 are depicted separately.
As can be seen, the EDE component amounts to an energy
injection strongly peaked around matter-radiation equality,
while it plays virtually no role outside this window.
In Fig. 3, we have plotted ρEDE ¼ ρϕ þ ρDS; i.e., the

EDE curve has contributions from both the chain vacuum
energy and the dark sector it decays into. If we were to plot
only the vacuum component ρϕðzÞ [the first equation in
Eq. (22)], in this log-log plot it would look similar to a step
function: essentially flat for all z > z� and plummeting to
ρϕ ¼ 0 at z ¼ z�. As a reminder, for sufficiently many
vacua, we can treat ρϕ as continuously decreasing for the
purposes of these figures. Below z� the vacuum energy has
converted to ρDS which redshifts away.
In Fig. 4 we compare the evolution of ρEDE in the chain

EDE scenario and in the oscillating scalar field model [10]
described in the previous section (which we refer to as
standard EDE in the figure). For the latter we have chosen
the best fit point with n ¼ 2.
We observe that all three cases in Fig. 4 are virtually

indistinguishable for z > z�. For z < z� the early dark
energy density in the standard EDE scenario oscillates
between the chain EDE solutions with w ¼ 1=3 and w ¼ 1.

Since the true equation-of-state parameter of chain EDE is
expected to lie between the two extremes, a very similar
scaling of ρEDE in chain EDE and in the standard EDE
scenario is expected.
An explicit proof that chain EDE resolves the H0

cproblem of ΛCDM would require a dedicated cosmologi-
cal fit including the full modeling of the EDE component at
the fluctuation level. Alterations compared to the ΛCDM
picture arise, e.g., from acoustic oscillations in the dark
sector which source additional gravitational potentials.
However, we have shown that chain EDE follows almost
exactly the background evolution of the standard EDE
scenario. Furthermore, we argued that a fluid description of
the dark sector component is expected to hold also for chain
EDE. Therefore, we see a strong indication that—also at
the perturbation level—an effective mapping of chain EDE
onto the standard EDE scenario can be performed. Since
the latter has been proven to resolve the Hubble tension in a
full cosmological fit, we consider it very likely that the
same is true for chain EDE.
As discussed in the Introduction, we must fix two param-

eters to obtain successful chain EDE. Phenomenologically,
we must obtain the correct values for z� ∼ 3500 and
ρEDEðz�Þ ∼ 0.1ρtotðz�Þ. As shown in Eqs. (20) and (21), these
two requirements can be achieved by the choice of the two
parametersV0 and tunneling rate Γ1=4=N. In the next section,
for the particular case of a tilted cosine potential, we will
explicitly make choices for these two parameters that lead to
successful chain EDE.

IV. MODEL REALIZATION OF CHAIN EDE

As a simple realization of chain EDE, we consider an
axion field ϕ in a quasiperiodic potential

Radiation

Matter

Cosmological Constant

Total Density

Chain EDE (w=1/3)

Chain EDE (w=1)
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FIG. 3. Evolution of the radiation, matter, dark energy, and
EDE densities in the chain EDE scenario. The cases w ¼ 1 and
w ¼ 1=3 bracket the uncertainties in the equation-of-state param-
eter of the final state effective fluid generated by vacuum
transitions in the EDE sector.
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FIG. 4. Energy density in the EDE component compared to the
total energy density of the universe. The orange line shows the
best fit EDE solution for an oscillating scalar field (n ¼ 2 model
from [10]). The two purple lines refer to chain EDE for the
parameters stated in the text. The cases w ¼ 1 and w ¼ 1=3
bracket the uncertainties in the equation-of-state parameter of the
final state effective fluid generated by the bubble wall collisions.
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VðϕÞ ¼ −μ3ϕþ Λ4 cos

�
ϕ

f

�
þ V0; ð23Þ

where f denotes the axion decay constant, while the
parameters μ and Λ control the strength of the shift
symmetry breaking and the barrier height of individual
minima. Finally, V0 stands for a possible constant in the
potential. Without loss of generality we can take ϕ0 ≃ 0
as the initial field value such that V0 corresponds
to the initial EDE energy density (thus matching our
previous definition of V0). For convenience, we define
the parameter x ¼ fμ3=Λ4. Given that x < 1, the potential
features an (infinite) series of minima with decreasing
vacuum energy.
The tunneling rate Γ between two minima is given by

Γ ¼ Ae−SE; ð24Þ

where SE stands for the Euclidean action of the bounce
solution [36], while A denotes a prefactor which incorpo-
rates quantum fluctuations about the classical action [37].
In a recent paper [29], we provided new analytic estimates
for the bounce action and the tunneling rate in periodic
potentials which replace the thin-wall approximation in
the regime of fast tunneling. Specifically, we derived the
following analytic approximation of the tunneling rate for
the potential in Eq. (23):

Γ ≃
Λ8

f4
ð1 − x2Þ S2E

4π2
exp

�
13.15 −

15.8
x2.9

�
× exp ð−SEÞ

ð25Þ

with

SE ≃
f4

Λ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − 0.86x2Þ

q
4

π

�
12

x

�
3

; x ¼ fμ3

Λ4
:

ð26Þ

The above expressions4 allow us to directly determine
parameter combinations μ, Λ, f which give rise to
successful chain EDE. As an example we choose

μ ¼ 29.8 meV; f ¼ 13.9 meV;

Λ ¼ 26.4 meV; V0 ¼ ð0.7 eVÞ4; ð27Þ

yielding an axion mass mϕ ∼ Λ2
0=f ¼ 50 meV. The initial

field value is set to ϕ0 ¼ 0 as mentioned previously. For the
parameter choice above, the tunneling rate takes the value
Γ1=4 ¼ 4 pc−1 corresponding to a lifetime τi ¼ 0.6 yr per

vacuum which remains constant along the chain.5 The
energy density ρEDE follows precisely the evolution
depicted in Fig. 3 until the entire vacuum energy ρϕ has
been dissipated at z ≃ 3300. The number of phase tran-
sitions is N ¼ 105 such that CMB and LSS constraints (see
Sec. II B) are easily satisfied.
The only problem of the tilted cosine model (23) is that it

lacks a mechanism to stop the axion once ρϕ ¼ 0, i.e.,
which prevents ϕ from further tunneling down the chain
into the regime of negative vacuum energy. However, we
remind the reader that the tunneling rate between two
adjacent minima is exponentially sensitive to the param-
eters in the potential. Hence, small changes in the energy
difference or barrier height between minima can quickly
change the tunneling rate from fast to slow, i.e., prevent ϕ
from further tunneling.
We, therefore, now extend the tilted cosine model by a

stopping mechanism for the axion. For this purpose we
consider the potential

V ¼ ðM2 − g1MϕÞχ2 − g2M3ϕþ ðΛ4
0 þ Λ2

1χ
2Þ cosϕ

f

þ λχ4 þ V0; ð28Þ

which has originally been motivated in the context of the
relaxion mechanism [38].6

However, in contrast to the relaxion mechanism, we
identify χ with a scalar field in the dark sector (rather
than with the Higgs boson). The above potential has been
argued to be radiatively stable since the breaking of the
axionic shift symmetry is controlled by the (small) cou-
plings g1 ∼ g2. We will, furthermore, assume that M is
much larger than the axion mass mϕ ∼ Λ2

0=f.
Let us now look at the evolution of the two-field system

starting from ϕ ¼ 0. The field χ is initially stabilized at
χ ¼ 0 by the large mass term M and can be integrated out.
We thus obtain

V ¼ −g2M3ϕþ Λ4
0 cos

ϕ

f
þ V0; ð29Þ

in the axion direction which agrees with (23) if we identify
μ≡ g1=32 M and Λ≡ Λ0. The axion tunnels down the
potential with the time spent in each vacuum remaining
constant. However, once it reaches a field value ϕc ≃M=g1,
the squared mass of χ turns negative and χ gets displaced
from the origin.7 The quartic term stabilizes χ at a finite

4The approximation (25) is valid as long as gravitational
corrections to the tunneling rate are negligible (which we
explicitly verified for the parameter combinations provided in
this section).

5We assume that there is no backreaction of the dark sector
energy density ρDS on the tunneling rate.

6We consider the non-QCD version of the relaxion mecha-
nism; see Sec. III in [38,39].

7Notice that ϕc is only approximately given by M=g1. This is
because the term Λ2

1χ
2 cosϕ=f yields an additional subdominant

mass term for χ which slightly shifts the transition.
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field value. As soon as χ ≠ 0, the term Λ2
1χ

2 cosϕ=f
increases the barriers in the axion potential. Therefore,
the tunneling time between vacua increases rapidly and
becomes larger than the age of the universe shortly after the
axion has passed ϕc. In Fig. 5 we (schematically) depict the
potential in the axion direction with χ set to its ϕ-dependent
minimum.
In order to realize a successful EDE scenario, we

consider the following parameter example:

M ¼ 1.6 eV; Λ0 ¼ 26.4 meV; Λ1 ¼ 42.8 meV;

f ¼ 13.9 meV; C ¼ ð0.69 eVÞ4;
λ ¼ 0.002; g1 ¼ 1.8 × 10−4; g2 ¼ 0.66 × 10−5:

ð30Þ

Starting from ϕ0 ¼ 0 the axion undergoes ∼105 tunnelings
until it reaches the critical field value ϕc. In the field range
ϕ ¼ ½ϕ0;ϕc�, the axion follows exactly the dynamics of the
tilted cosine model in Eq. (23) [the parameters (30) were
chosen to reproduce (27)]. The lifetime of each vacuum
remains constant at τi ¼ 0.6 yr. But once the axion passes
ϕc, the tunneling rate between vacua starts decreasing
dramatically. For the specific example (30), only three more
tunneling events occur after passing ϕc with corresponding
lifetimes τi ≃ 1 yr, 60 yr, and 0.4 Myr. The next transition
in the chain would already take ∼20 Gyr, i.e., longer than
the age of the universe. One might worry that the handful of
late transitions (at ϕ > ϕc) could spoil the cosmological
evolution. However, this is not the case as ρEDE remains
strongly subdominant in the late universe which we
explicitly verified for the example above. We can, hence,
conclude that the relaxion mechanism (28) provides a
successful exit from the EDE epoch.

We want to emphasize, however, that chain EDE does
not necessarily require two scalar fields. Another model
with only one field is suggested in the remainder of this
paragraph. A model building challenge for single-field
realizations of chain EDE consists in the prompt transition
from rapid tunneling to a (meta)stable ground state. Most of
the EDE must be dissipated around matter-radiation equal-
ity in order not to affect the late-time evolution of the
universe. This could happen via a trigger mechanism such
as in Eq. (28). However, another simple possibility is to
consider a potential in which the barrier height between
minima continuously decreases along the chain.8 The EDE
field would tunnel quicker and quicker between minima
until most of the EDE has decayed away. In the last stage
the barriers in the potential become so shallow (or dis-
appear entirely) that ϕ starts rolling. If the potential features
a stable minimum at V ¼ 0, the EDE field would perform
coherent oscillations around the minimum. Different from
the oscillating scalar field EDE models discussed in
Sec. III A, most of the EDE would, however, already be
dissipated in the previous tunneling stage. The remaining
subdominant EDE fraction would typically redshift at least
as fast as matter during the oscillation stage. Given this
fraction is sufficiently small compared to the initial
EDE density, it should not significantly affect the further
evolution of the universe (it would essentially manifest as a
tiny fraction of the observed dark matter density). We leave
a more dedicated analysis of this scenario and further chain
EDE realizations for future work.

V. CHAIN DARK ENERGY

In this section we suggest a new model for the dark
energy (DE) that currently dominates the energy density of
the universe. Again we imagine a chain of tunneling events.
A scalar field starts somewhere up in the potential. This
time, after the field successfully tunnels through a series of
higher energy minima, it gets stuck in a low-energy false
vacuum ρDE ≃ ð2 meVÞ4 with a lifetime longer than the
current age of the universe. The energy of this false vacuum
could be responsible for the dark energy today.
An enthralling possibility is that the same field is

responsible for the EDE and the DE simultaneously.
Comparing the EDE and DE energy densities, we have

ρEDE
ρDE

≃
�
0.7 eV
2 meV

�
4

≃ 1010: ð31Þ

This ratio can find a striking explanation within the EDE
scenario and simply correspond to the number of phase
transitions required to dissipate the EDE.
For illustration let us consider the chain EDE model

described in the previous section [see Eq. (28)]: the EDE

FIG. 5. Illustration of the potential (28) in the axion direction
with χ set to its respective minimum. The barrier height between
minima remains constant as long as ϕ < ϕc, but increases quickly
once the axion passes the critical value ϕc. The axion tunneling
rate between minima almost immediately switches from fast to
slow at ϕc.

8Potentials of this type have, e.g., been considered in the
context of modulated natural inflation [40,41].
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field tunnels quickly through a large number of vacua until
matter-radiation equality. But once most of the EDE has
been dissipated, the lifetime of individual vacua blows up
and only a few more tunneling events occur. If we set the
initial EDE density to ð0.7 eVÞ4 and require N ≃ 1010

phase transitions, the energy difference between individual
vacua comes out as

ΔV ¼ ð2 meVÞ4: ð32Þ

If the EDE field settles in the lowest de Sitter minimum, the
corresponding energy density is of OðΔVÞ. Hence, it could
naturally account for the DE that dominates our universe
today. Only after a time longer than the age of the universe,
the EDE field would ultimately tunnel into the next
minimum along the chain with negative energy. Far in
the future our observable universe would then end in a big
crunch. For illustration we depict the evolution of the
energy density stored in the EDE field as a function of
redshift in Fig. 6.
Our chain model relates the cosmological constant to the

parameters in the axion potential. Furthermore, it success-
fully establishes a connection between the EDE and DE
energy densities in terms of the number of phase transi-
tions. However, as yet our model does not provide a

solution of the cosmological constant problem. Within
the mechanism (28) the fact that the axion stops tunneling
at the right moment in time (i.e., when the vacuum energy is
small) is a coincidence and relies on a parameter choice.
A full solution to the cosmological constant problem
without fine-tuning would require a dynamical reason
for the axion to stop in the desired minimum.
An intriguing idea in this direction has been formulated

by Abbott in 1984 [42] who suggested a solution to the
cosmological constant problem in terms of a tunneling
field—similar to our chain dark energy proposal. However,
he relies on gravitational corrections to the tunneling in
order to dynamically stop the tunneling field in a vacuum
with small energy density. Abbott’s proposal fails since it
requires an extremely flat potential of the tunneling field
(in order to make gravitational corrections important)
which renders the phase transitions far too slow to
relaxate the vacuum energy within the age of the universe.
Nevertheless, it would be very interesting to explore
whether we can employ a dynamical stopping mechanism
for the axion in our chain (E)DE scenario which relies on
gravity. For example, one could try to extend the Abbott
mechanism by a nonminimal coupling of the tunneling
field to gravity in order to increase gravitational correc-
tions. We leave further investigation of the cosmological
constant problem within our chain models for future work.

VI. CONCLUSION AND DISCUSSION

We have suggested chain early dark energy as a solution
to two problems in cosmology, the Hubble tension and
today’s small value of the dark energy. The original idea of
EDE was proposed [6,8] to resolve the apparent discrep-
ancy between local measurements of the Hubble constant
H0 ≃ 74 km s−1Mpc−1 [1,2] and H0 ≃ 67 km s−1Mpc−1

inferred from the CMB [3] by altering the expansion
history of the universe right around the epoch of matter-
radiation equality. The original EDE model employed a
scalar field oscillating in a potential.
In chain EDE, the universe instead undergoes a series

of first order phase transitions, starting at a vacuum
with energy density ρEDE ¼ OðeV4Þ, and tunneling down
through a chain of metastable minima with decreasing
energy. For sufficiently many transitions, the discreteness
of individual vacua can be neglected and ρEDE decreases
quasilinearly with time. As can be seen in Fig. 2, the linear
decrease looks almost like a step function in a log-log plot.
Such a rapid drop of vacuum energy produces a narrow
peak in the energy fraction ρEDE=ρtot as a function of log t
(or equivalently as a function of log z; see Fig. 3). With the
appropriate choice of two parameters—the initial EDE
density V0 and the summed lifetime of vacua along the
chain N=Γ1=4—the EDE fraction of the universe’s energy
density is negligible at the beginning, raises to ∼10%
around matter-radiation equality and then decays away
quickly, as shown in Fig. 3. This is exactly the required
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FIG. 6. Illustration of the scenario, where the same scalar field
ϕ accounts for the EDE and the DE. Depicted is the vacuum
energy stored in ϕ as a function of redshift. At large redshift ρϕ
remains approximately constant. But around matter-radiation
equality ρϕ decreases quickly by fast tunneling along the chain
of vacua. The energy is dumped into dark radiation or anisotropic
stress (not shown in the picture). Once most of ρϕ has been
dissipated, the tunneling rate becomes small and only a few more
vacuum transitions occur within the lifetime of the universe
(shown as the steps in the above figure). The energy density in the
final vacuum in which ϕ settles until today corresponds to the DE
of our present universe.
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behavior to resolve the Hubble tension: the additional
contribution to the energy density of the universe prior
to recombination reduces the sound horizon at matter-
radiation decoupling and leads to a larger value of H0

derived from the CMB.
In principle the bubbles formed from first order phase

transitions in the early universe could leave dangerous
imprints in the CMB or affect LSS. However, we have
shown that if the lifetime of individual vacua does not
exceed a few years, the scale of the anisotropies is below
the resolution of current experiments; i.e., all observational
constraints are satisfied. Since the solution to the Hubble
tension requires the EDE field to stay around for about
50000 years (until matter-radiation equality), the
anisotropy constraints impose N ≳ 600 phase transitions.
Further, since chain EDE has essentially the same back-
ground evolution as previously studied EDE models which
were shown to resolve the Hubble tension while satisfying
all cosmological constraints [10], we expect the same to be
true for chain EDE.
At the same time, the bubble wall collisions seeded by

chain EDE leave a gravitational wave signature that can
potentially distinguish chain EDE from other early time
solutions of the Hubble tension. While the peak frequency
of the gravitational wave spectrum—which is determined
by the radius of the colliding bubbles compared to the
Hubble radius—typically falls below the threshold of future
observatories [43], the tail of the spectrum can potentially
reach the nHz regime accessible at pulsar timing arrays.
A comprehensive analysis of the gravity wave signatures
from chain EDE is left for future work.
We have also provided a concrete model of chain EDE

which easily achieves the required number of transitions
and which carries strong motivation from axion physics.
The model employs a scalar field in a quasiperiodic
potential (a tilted cosine). The scalar field tunnels from
vacuum to vacuum at a (nearly) constant rate until it reaches
a critical field value, where it is stopped almost instantly,
e.g., due to the backreaction from a second scalar field
(employing the relaxion mechanism). Further pathways to
successful chain EDE models with only a single scalar field
are also discussed.
Interestingly, the energy difference between vacua can be

of the same size as the dark energy density of the present
universe (meV scale). This offers the exciting prospect to
explain EDE and DE by the same scalar field. The
tunneling field would be subdominant to ordinary matter

and radiation throughout its evolution, until it gets trapped
in the last minimum of the chain before reaching zero/
negative energy. If this minimum has a lifetime longer than
the age of the universe, the remaining vacuum energy of the
scalar field would produce today’s dark energy.
We end with speculation about recurrent chain dark

energy. Most exciting of all would be a chain vacuum
energy model that could explain all epochs in the history
of the universe, where the vacuum energy dominates or
becomes significant: inflation, EDE, today’s dark energy
(and perhaps others we do not yet even know about). We
imagine a chain potential in which a field tunnels through a
series of ever lower minima. In this recurrent model, the
vacuum energy is initially the dominant energy density in a
chain inflationary epoch; after that the vacuum would be
mostly subdominant to radiation and matter, but occasion-
ally raises its head to a large enough value to affect the
universe evolution. It becomes important at z ∼ 3000 at the
level of 10% of the total energy density to provide the EDE
that can resolve the Hubble tension, and it is dominant
again today as the origin of the dark energy. Recurrent
chain dark energy would most likely require multiple scales
in the potential (rather than, e.g., a single tilted cosine). The
difficulty of this idea is that inflation must reheat to the
Standard Model (SM), but EDEmust reheat to a dark sector
(suggesting no direct coupling to visible matter) in order to
avoid unacceptable modifications to the CMB. It would be
interesting to look for a successful model of recurrent dark
energy that avoids this problem, e.g., inflation producing
very massive DS particles that later decay to the SM
particles, but which are too massive to be created in the
EDE epoch.
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