
Modifying PyUltraLight to model scalar dark matter with self-interactions

Noah Glennon * and Chanda Prescod-Weinstein†

Department of Physics and Astronomy, University of New Hampshire,
Durham, New Hampshire 03824, USA

(Received 3 December 2020; accepted 10 September 2021; published 20 October 2021)

We introduce a modification of the PySiUltraLight code that models the dynamical evolution of ultralight
axionlike scalar dark matter fields. Our modified code, PySiUltraLight, adds a quartic, self-interaction term
to reflect the one which arises naturally in axionlike particle models. Using a particle mass of 10−22 eV=c2,
we show that PySiUltraLight produces spatially oscillating solitons, exploding solitons, and collapsing
solitons which prior analytic work shows will occur with attractive self-interactions. Using our code we
calculate the oscillation frequency as a function of soliton mass and equilibrium radius in the presence of

attractive self-interactions. We show that when the soliton mass is below the critical mass (Mc ¼
ffiffi
3

p
2
Mmax)

described by Chavanis [Phys. Rev. D 94, 083007 (2016)] and the initial radius is within a specific range,
solitons are unstable and explode. We test the maximum mass criteria described by Chavanis [Phys. Rev. D
94, 083007 (2016)] and Chavanis and Delfini [Phys. Rev. D 84, 043532 (2011)] for a soliton to collapse
when attractive self-interactions are included. We also analyze both binary soliton collisions and a soliton
rotating around a central mass with attractive and repulsive self-interactions. We find that when attractive
self-interactions are included, the density profiles get distorted after a binary collision. We also find that a
soliton is less susceptible to tidal stripping when attractive self-interactions are included. We find that the
opposite is true for repulsive self-interactions in that solitons would be more easily tidally stripped.
Including self-interactions might therefore influence the survival timescales of infalling solitons.

DOI: 10.1103/PhysRevD.104.083532

I. INTRODUCTION

There is significant evidence to show that dark matter
makes up the majority of the matter in the Universe and that
this evidence suggests that dark matter is nonrelativistic and
collisionless [1–4]. Strong evidence for this cold dark matter
(CDM) picture comes from fluctuations in the cosmic
microwave background [5,6]. We still know very little about
the microphysics of the particle or particles that comprise
dark matter. One of the most successful and well-studied
dark matter paradigms is weakly interacting massive par-
ticles (WIMPs). WIMPs are consistent with the statistics of
large-scale structures formed in the Universe. However, at
small scales, questions remain. Models, such as the WIMP
model and other cold, collisionless models, with only dark
matter predict dense cusps at the center of dark matter halos.
Observations suggest that many dark matter halos have
constant density cores. This apparent issue may be resolved
with the inclusion of baryonic processes such as supernova
feedback, tidal stripping, and dynamical friction [7,8].
Traditional CDM models like WIMPs faced the missing

satellite problem, which is the discrepancy between the few
subhalos we observed and the number found in CDM

simulations. There are several proposed theoretical solu-
tions to the problem [1,9–11]. As astronomers find more
satellite galaxies, there is increasing confidence that the
missing satellite problem is no longer a real problem.
WIMPs also face the “too big to fail” problem, which
comes from the most dense dwarf galaxy-hosting subhalos
predicted by simulations being systematically denser than
what we infer from the brightest Milky Way satellite
galaxies [12]. This problem might also be solved by
including baryonic effects such as supernova feedback
and tidal stripping [7,8].
Another possible solution is that an alternative to the

CDM paradigm is needed. Axionlike particles (ALPs),
which are motivated by open problems in QCD and also
can come from string theory compactifications, are one
such dark matter candidate [1,3,13,14]. This class of scalar
dark matter particles has its roots in the QCD axion, which
is a consequence of the Peccei-Quinn mechanism that was
developed to solve the CP problem in QCD. The axion
arises in this model through spontaneous symmetry break-
ing as a psuedo-Nambu-Goldstone boson [15]. The QCD
axion potential is given by

VðϕÞ ¼ Λ4ð1 − cosðϕ=faÞÞ; ð1Þ
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where fa is the Peccei-Quinn symmetry breaking scale and
Λ ≈ 0.1 GeV [16]. Axion dark matter models can give the
expected dark matter abundance we see in the Universe
[17–20]. From [16], the abundance of QCD axion dark
matter is given by

Ωa ≈
�

fa
1011–12 GeV

�
7=6

: ð2Þ

In the literature, the QCD axion is typically theorized to
be more massive than the ALPs that are motivated by string
compactifications because the QCD fa cannot be trans-
Planckian. From [21] the QCD axion mass is given by

ma ≃ 5.7

�
1012 GeV

fa

�
μeV: ð3Þ

It is important to note that this relation only applies to
the QCD axion and not necessarily to ALPs. The mass of
the QCD axion has a range of values but is estimated to be
between 10–103 μeV [22]. The lower limit is set because
the QCD fa cannot be trans-Planckian. This is because
the shift symmetry for the axion would be unbroken if the
decay constant were above the Planck scale [23].
In this paper, we focus on the physics of ultralight axions

and not the QCD axion. ALPs are also sometimes referred
to as ultralight axions (ULAs). Fuzzy dark matter is a ULA
model where dark matter comprises ultralight bosons
∼Oð10−22Þ eV=c2 [24–26]. Because the mass of fuzzy
dark matter is very small, the de Broglie wavelength is large
(on the order of a kiloparsec) which means that dense cusps
would be suppressed by quantum pressure. Here, quantum
pressure is a term used to describe the effective particle-
particle interaction that is found in the Madelung formalism
[27]. Due to the wavelike nature of ULA models, on small
scales (on the order of a few kpc), we should observe
interference patterns [3,28,29]. ULA models have similar
predictions to WIMP models on large scales. However, on
small scales, ULA models have suppressed structure
formation [30]. In particular, ULA models will not have
dark matter halos on scales smaller than the Jeans scale
[24,31]. Focusing on small-scale structures is therefore
important to test the ULA hypothesis. ULAs leads to
distinct phenomenological considerations from those with
more massive ALPs, which can lead to miniclusters of
cosmological interest, see, e.g., [32,33].
ULA models that include self-interactions may diverge

from those that are gravity only [34]. If the self-interaction is
attractive, as is the case with the QCD axion, virialized dark
matter clusters of sufficient mass may collapse into black
holes, explode, or oscillate in size. Supermassive black holes
could be formed by ultralight particles such as ALPs with
an attractive self-interaction. Meanwhile, the presence of a
repulsive self-interaction guarantees the existence of a
stable halo configuration in the Newtonian limit [34].

This configuration occurs when the repulsive self-interaction
and repulsive quantum pressure balance gravity’s attractive
behavior. In the scenario where the scalar dark matter has a
repulsive interaction, [34,35] suggest that observations of the
bullet cluster sets a limit on the repulsive self-interaction
strength. This constraint combined with the mass of one of
the lightest known dark matter halos, Willman I, we can
estimate the mass of the boson to be on the order of m ¼
10−2 eV=c2 which is too massive to fall into the category of
ultralight dark matter [34].
To better quantitatively understand the effects of self-

interactions on ULA models, we introduce PySiUltraLight,
a modified version of PyUltraLight which simulates the dy-
namics of axion fields [36], which solves the Schrödinger-
Poisson equations. Our code upgrades the original by
including the self-interaction term which accounts for
additional physics. We validate the code by verifying
the analytic predictions made in [34]. In particular, we
confirm the oscillation behavior of solitons, the conditions
under which exploding solitons will occur, and the
existence of a maximum soliton mass given attractive
self-interactions. Our code is also capable of including
repulsive self-interactions. We explore the behavior of
solitons in binary collisions and in orbits around a central
potential when there are attractive or repulsive self-
interactions.
The results of this paper are of interest because we show

the phenomenological differences between ultralight dark
matter models with and without self-interactions. Under-
standing these differences allows for more detailed simu-
lations to better understand how ultralight dark matter models
contrast with CDM models. Since there is no reason dark
matter cannot have a self-coupling, it is unlikely the
self-interaction strength is exactly zero. Most well-motivated
particle physics models include a self-interaction. Since
the coupling is typically small, astrophysicists tend to neglect
the coupling in simulations. However, in this paper, we show
that including the self-interactions affects the phenomenology
of solitary and binary soliton systems, including mergers.
Self-interactions are believed to affect the density-radius
relationship of solitonic dark matter cores [37]. Under-
standing how solitons oscillate may also be important for
understanding dark matter structure formation because for a
range of axion masses, these objects may decay in the matter-
radiation equality or matter dominated epochs [38,39].
The contents of the paper are as follows. Section II

outlines the physics of ULA models with the inclusion of
self-interactions and describes the Gross-Pitaevskii-Poisson
(GPP) equations in dimensional and adimensional forms.
Section III shows how the equations of motion are imple-
mented in PySiUltraLight. In Sec. IV, we discuss results found
with PySiUltraLight. Using a Gaussian ansatz, we find the
oscillation frequencies of a soliton with attractive self-
interactions and test the conditions under which exploding
solitons can occur. We also include an analysis for finding
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the maximum mass for a soliton with attractive self-inter-
actions. In Sec. V, we discuss simulations of both binary
soliton collisions and solitons rotating around a central
potential with both repulsive and attractive self-interactions.
Our conclusion that the self-interaction remains an important
consideration—and future directions—are discussed in
Sec. VI.

II. ULA EQUATIONS OF MOTION

ULA dark matter in the high occupancy regime—e.g.,
Bose-Einstein condensate-like solitons—are normally
described by the Schrödinger-Poisson equations
[16,30,40–54]. When self-interactions are included, the
Schrödinger-Poisson equations become the nonlinear
Schrödinger-Poisson or Gross-Pitaevskii-Poisson equa-
tions [34,55]. We use the term soliton to refer to self-
localized axion dark matter which is near its ground state in
the Newtonian limit [54,56]. We focus on the leading order
self-interaction term which is a quartic term and do not
consider higher order terms. Assuming a classical field with
minimal coupling to gravity, the action takes the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ −

1

2
m2ϕ2 −

λ

4
ϕ4

�
: ð4Þ

Here, ϕ is the scalar field, m is the mass of the scalar field,
and λ is the dimensionless self-coupling strength.
The self-coupling strength, or self-interaction strength, is

also directly proportional to the scattering length, as. The
scattering length is a measure of the interaction cross
section. When as is positive, the interaction is repulsive.
When as is negative, the interaction is attractive [57]. λmay
be written in terms of the scattering length as. In [34], λ is
given by

λ ¼ 8πasmc
ℏ

¼ 8πM2
pGasm

ℏ2
; ð5Þ

whereMp is the Planck mass andm is the scalar field mass.
λ can also be defined in terms of the decay constant, fa,
with the relation λ ¼ m2

f2a
[58]. Constraints from observations

require a very small ULA self-interaction strength.
According to [35], constraints from the bullet cluster
require that the repulsive coupling be

λ < 10−11
�

m
eV=c2

�
3=2

: ð6Þ

We find the equations of motion in the Newtonian gauge,
and writing the real scalar field ϕ in terms of a complex
field ψ by

ϕ ¼ ℏffiffiffiffiffiffiffi
2m

p ðψe−imt=ℏ þ ψ�eimt=ℏÞ ð7Þ

(see [59]), we arrive at the GPP equations:

iℏ _ψ ¼ −
ℏ2

2m
∇2ψ þmΦψ þ 4πℏ2as

m
jψ j2ψ ð8Þ

and

∇2Φ ¼ 4πGmjψ j2: ð9Þ

Here, ψ is the boson field, and Φ is the gravitational
potential. Using the process found in [36], the nondimen-
sional form of the GPP equations is

i _ψ ¼ −
1

2
∇2ψ þΦψ þ κjψ j2ψ ð10Þ

and

∇2Φ ¼ 4πjψ j2: ð11Þ

Here we have introduced κ, a dimensionless coupling
constant that will simplify our numerical efforts later. By
definition,

κ ¼ 4πℏas
T m2G

; ð12Þ

where T is the timescale given in [36] as

T ¼
�

8π

3H2
0Ωm0

�1
2

≈ 75.5 Gyr: ð13Þ

For the equilibrium solution for a system of self-gravitating
bosons, we find the solution in the Newtonian limit.
A general relativistic treatment can be found in [54]. It is
important to note some differences in the general relativistic
treatment. For instance, in the general relativistic treatment,
there is always a maximum soliton mass, even when there are
repulsive self-interactions [34]. Validating that the Newtonian
limit is a good assumption is important for our simulations.
Appendix E in [34] shows that the Newtonian limit is valid
for our regime. They show that the Newtonian limit is a good
approximation except when a collapsing soliton is very close
to the end of its collapse time.
The significance of including the self-interaction merits

discussion, since as we described earlier, typically ULA
models, and more generally scalar dark matter models,
ignore self-interactions between the particles in favor of
considering only their coupling through gravity. This is
because the dimensionless coupling is on the order of 10−96

[58]. However, even though the coupling is very small,
to understand effective coupling strength, we must multiply
this value by the phase space density of axions in the
environment [58]. One way to have some intuition for this
is to consider that the density associated with the ψ field
is given by ρ ¼ mjψ j2. This means the nonlinear term
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κjψ j2ψ ∝ κρψ . In other words, the effect of the nonlinear
term is governed by the combination of κ and the density.
This is not a surprising conclusion since this result arises

in other areas of physics. For example, in optical systems
that are governed by the nonlinear Schrödinger/Gross-
Pitaevskii equation, the nonlinear term is responsible for
inducing an intensity-dependent refractive index. This
change in the refractive index is also known as the Kerr
effect [60]. Therefore, there is good reason to take seriously
the presence of a self-interaction, even if it is small.
Results in the following sections are consistent with this
expectation.

III. IMPLEMENTATION IN PySiUltraLight

PySiUltraLight is a Python solver for the evolution of
solitonic dark matter and solves the Schrödinger-Poisson
system of equations. The code uses a pseudospectral solver
where the linear differential operators are computed in
Fourier space whereas the nonlinear terms are computed in
phase space. We made the following changes to the code to
adapt it for a self-coupling term, creating a version we refer
to as PySiUltraLight
The original PySiUltraLight paper [36] goes over how to

implement the Schrödinger-Poisson equations as well as
how to make a soliton profile used for simulations.
PySiUltraLight uses a soliton profile of self-gravitating bosons
in equilibrium. The method used to get the profile can be
found in more detail in [36] or [54]. Reference [36] then
discusses several simulations of binary soliton collisions
and solitons rotating around a central potential. We produce
similar but distinct simulations which now include self-
interactions. The results appear in Sec. V. Reference [36]
also details how convergence tests were performed to verify
energy conservation and to see how spatial and temporal
resolutions affect the simulation results.
To find the dynamics of solitons, we follow a similar

procedure as in [36]. We rederived the evolution equations
in the presence of self-interactions. First, we determined
how ψ changes when a small step in time is taken:

ψðx⃗; tþ hÞ ¼ T exp
�
−i

Z
tþh

t
dt0

�
−
1

2
∇2 þΦðx⃗; t0Þ

þ κjψðx⃗; t0Þj2
��

ψðx⃗; tÞ: ð14Þ

Here, T is the time ordering operator. Next we use the
following approximations for small time steps which come
from the trapezoid rule:

Z
tþh

t
dt0Φðx⃗; t0Þ ≈ h

2
ðΦðx⃗; tþ hÞ þΦðx⃗; tÞÞ ð15Þ

Z
tþh

t
dt0κjψðx⃗;t0Þj2≈κh

2
ðjψðx⃗;tþhÞj2þjψðx⃗;tÞj2Þ: ð16Þ

Substituting these into Eq. (14) gives

ψðx⃗; tþ hÞ ≈ exp

�
−
ih
2
Φðx⃗; tþ hÞ

�

× exp

�
−
ihκ
2

jψðx⃗; tþ hÞj2
�

× exp

�
−
ih
2
∇2

�
exp

�
−
ih
2
Φðx⃗; tÞ

�

× exp

�
−
ihκ
2

jψðx⃗; tÞj2
�
ψðx⃗; tÞ: ð17Þ

Using the Baker-Campbell-Hausdorf formula we veri-
fied that the error is Oðh3Þ. This is the same order of error
as when there were no self-interactions (i.e., when κ ¼ 0).
The procedure to evolve the soliton uses the following
equations:

ψðx⃗; tþ hÞ ¼ exp

�
−
ih
2
Φðx⃗; tþ hÞ

�

× exp

�
−
ihκ
2

jψðx⃗; tþ hÞj2
�
F−1

× exp

�
−
ih
2
k2
�
F exp

�
−
ih
2
Φðx⃗; tÞ

�

× exp

�
−
ihκ
2

jψðx⃗; tÞj2
�
ψðx⃗; tÞ ð18Þ

Φðx⃗; tþ hÞ ¼ F−1
�
−

1

k2

�
F4πjψðx⃗; tiÞj2: ð19Þ

Here, F is the Fourier transform, F−1 is the inverse Fourier
transform, and k is the wave number in Fourier space.
ψðx⃗; tiÞ is the field at the half step. We checked energy
conservation to verify the integrity of changes we made to
the code. The Lagrangian density that yielded the GPP
equations is

L ¼ −
�
1

2
j∇Φj2 þΦjψ j2 þ 1

2
j∇ψ j2

þ i
2
ðψ _ψ� − _ψψ�Þ þ κ

2
jψ j4

�
: ð20Þ

The energy of the system then becomes

Etot ¼
Z
V
d3x

�
1

2
Φjψ j2 − 1

2
ψ�∇2ψ þ κ

2
jψ j4

�
: ð21Þ

PySiUltraLight follows PySiUltraLight in using the following
units. We will often refer to these units, which take the
following form, as code units:
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L ¼
�

8πℏ2

3m2H2
0Ωm0

�1
4

≈ 121

�
10−23 eV

m

�1
2

kpc; ð22Þ

T ¼
�

8π

3H2
0Ωm0

�1
2

≈ 75.5 Gyr; ð23Þ

and

M ¼ 1

G

�
8π

3H2
0Ωm0

�
−1
4

�
ℏ
m

�3
2

≈ 7 × 107
�
10−23 eV

m

�3
2

M⊙: ð24Þ

These are the code length, time, and mass respectively
where H0 is the present-day Hubble parameter and Ωm0 is
the present-day matter fraction of the energy density of the
Universe. One can get dimensionful quantities back by
using dimensional analysis. One can recover the desired
unit by taking a code unit and multiplying it by the proper
code quantities. For example, to recover the dimensional
form of the energy,

E ¼ ML2T −2Ecode: ð25Þ

To initialize PySiUltraLight, users must specify the initial
soliton profiles by giving the solitons the desired masses,
positions, velocities, and phases. PySiUltraLight additionally
requires that the user choose the boson mass and the
dimensionless coupling constant which are necessary
parameters for determining the solitonic dynamics with
self-interactions. Other parameters that must be specified
that are also necessary in PySiUltraLight are the box size
(which is the size of the simulation), the duration of the
simulation, and the time step. The time step used in the
code is independent of the self-interaction strength. It is
only dependent on the resolution but may also be adjusted
with the step factor.

PySiUltraLight uses periodic boundary conditions from
PySiUltraLight which can, in principle, affect this code’s
results. Using periodic boundary conditions means that the
space in which the simulation runs is topologically equiv-
alent to a torus. When mass travels through the boundary,
unphysical affects can arise because angular momentum is
not conserved. There may also be unwanted effects when
the box size is too small relative to the radius of the soliton.
When this happens, the soliton may interact with its
neighboring images in an unphysical way. In all of our
simulations, the solitonic bodies never cross the boundary.
For the simulations presented in this paper, we also checked
to see if increasing the box size made any changes to the
results. In all cases, the differences were negligible.

IV. SINGLE SOLITON BEHAVIOR IN PySiUltraLight

There are noticeable differences between simulations
with large attractive self-interactions and those without
self-interactions, indicating that it can be physically impor-
tant to account for the presence of self-interactions.We focus
on simulationswith attractive self-interactions in this section
to test the analysis in [34]. For portions of this work, wewill
employ a Gaussian ansatz for the soliton profile. The ansatz
approximates the exact profile and is commonly used in
studyingBose-Einstein condensates (BECs) [34,55,61], and
it is an approximate solution to theGross-Pitaevskii-Poisson
equations [34]. We are motivated to use the Gaussian ansatz
in order to make direct comparisons with [34]. This
approximation involves defining a density profile for a
self-gravitatingBECand thenminimizing the total energy of
the system with respect to the radius to find the equilibrium
radius. This technique has also been used to describe the
mass-radius relation in white dwarf stars [61]. The form for
the soliton using the Gaussian ansatz is

ψðr; tÞ ¼
�

M

π3=2RðtÞ3
�
1=2

e
− r2

2RðtÞ2eimHðtÞr2=2ℏ; ð26Þ

where RðtÞ is the measure of the size of the soliton, r is the
distance from the center of the soliton, and HðtÞ ¼ _R

R. This
should not be confused with the Hubble parameter. The
dependence on the self-interaction is included inHðtÞ. There
are other profiles we could have used [62], however, we
wanted to compare our results with the claims in [34] which
used a Gaussian ansatz. This profile is evolved using the
GPP equations using the methods explained in Sec. III.

PySiUltraLight makes a soliton profile by imposing spherical
symmetry on the Schrödinger-Poisson equations and also
requires that the radial density profile be time independent
[36]. This is thought to be a good approximation for
undisrupted solitonic cores (see e.g., [36,54]). We use the
ansatz when making comparisons to the analytical work
found in [34]. Specifically, we use the ansatz when looking
at oscillating and exploding solitons. PySiUltraLight expands
beyond its predecessor code by adding the ability for the user
to specify the radius of the soliton when there are attractive
self-interactions. This is necessary to implement the
Gaussian ansatz and more broadly introduces the capability
to change the radius of a soliton.
The first step to verify the newly adjusted program was

working properly involved comparing PySiUltraLight with
zero self-coupling to PySiUltraLight. There were no
differences between the new and old versions in the tests
that we ran with this condition. The next step in verifying
the code was to ensure the energy of the system was
conserved. Energy was indeed conserved to a high degree,
provided that the time step was sufficiently small. The
degree to which energy was conserved also depended on
the resolution of the simulation.
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In this section, we will first show the oscillatory
behaviors of single solitons. We will then describe the
behaviors of exploding solitons and the conditions in which
they should be observed. Lastly, we present numerical work
on collapsing solitons, which requires going beyond the
Gaussian ansatz and results available in earlier literature,
e.g., [34].

A. Oscillating solitons

We considered [34] as a benchmark for testing, and our
next step was to show that PySiUltraLight outputs results
which match those found there. In [34,63,64], axion dark
matter with an attractive self-coupling has a maximum halo
mass before the dark matter collapses into a black hole:

Mmax ¼ 1.012
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjasj
p ; ð27Þ

which can be rewritten as

Mmax

M⊙
¼ 1.56 × 10−34

�
eV=c2

m

�1
2

�
fm
jasj

�1
2

: ð28Þ

This means there are no time-independent solutions to the
GPP equations when the soliton mass is too large and the
self-interaction is attractive.
Using the Gaussian ansatz, we can test how solitons will

oscillate given a specified mass and radius. There are two
different scenarios where one can see oscillating solitons.
The first scenario is when the soliton mass is below a
critical mass Mc ¼

ffiffi
3

p
2
Mmax. When this is the case, the

soliton oscillates provided the starting radius is larger than

R ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðMMc

Þ2
q
2M

: ð29Þ

In the other scenario, the soliton mass is between the critical
mass and the maximum mass. In this case, there is a finite
range that the initial radius can be, otherwise the soliton
will collapse. For oscillating solitons, there is a relation
between the oscillation frequency and the equilibrium
radius when oscillations are small. According to [34],
the relation is given by

ω2 ¼ 2ðR2
e − 1Þ

R4
eðR2

e þ 1Þ : ð30Þ

Here, Re is the equilibrium radius in terms of the radius of
the soliton with a mass of Mmax and the frequency ω had
been scaled by the dynamical time. The equilibrium radius
is the radius where the effective potential as a function of
radius is minimized. The equilibrium radius is given by

Re ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

p

M
; ð31Þ

whereM is the total soliton mass [34]. The dynamical time
is given by

tD ¼ 3
ffiffiffi
2

p jasjℏ
Gm2

: ð32Þ

We ran several simulations to determine the frequency
of oscillations by analyzing the time for the soliton to go
from a peak density to the next peak density. We do this
because the density peak will occur when the soliton is
smallest in size. For these simulations, the only parameter
varied was the total soliton mass between 0.3Mmax < M <
Mmax so as to isolate the relationship between the mass
and the frequency of oscillation. The boson mass was
m ¼ 1 × 10−22 eV=c2, and the coupling was κ ¼ −2.0.
Figure 1 shows the plot of the soliton equilibrium radius
versus the oscillation frequency. The line in the plot shows
the best fit of Eq. (30) which fits the data well. The data
does not match the best fit line as well when the mass
approaches the maximum soliton mass.
The soliton oscillation frequency can also be found using

total mass. Figure 2 shows the soliton mass versus the
oscillation frequency. For positive ω2, the equation is
given by

ω2 ¼ 2M4ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

p
−M2 þ 1Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

p
þ 1Þ5

: ð33Þ

In the first simulation for testing oscillating solitons, the
soliton had a mass of 2.4 code units which is less than
Mmax. In this situation, the soliton oscillated in size. In
Fig. 3, we again see that energy is conserved to one part in
104 for a step factor of 1. For other simulations where the

FIG. 1. This plot shows how changing the equilibrium radius
changes the frequency of oscillation. The green line shows the fit
of Eq. (30) scaled by the best fit dynamical time squared.
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mass was less than Mmax, the solitons also oscillated.
Similarly, for other simulations where the mass was greater
than Mmax, the soliton collapsed. These results were
consistent with results that appear in [34].
Here, M is the soliton’s mass in terms of the maximum

soliton mass defined in Eq. (27). The best fit dynamical
time for both graphs was 0.786. This is longer than the
calculated dynamical time of 0.675 code units. The
difference in these values is unlikely to be caused by a
lack of spatial resolution because there was a negligible
difference between the oscillation frequencies when the
resolution was 256 versus 512. Therefore we believe that
the cause is deformation of the Gaussian profile over time,
into a more realistic profile. We know this occurs because
we fit a Gaussian to the density profile and looked at how
the R-squared value changes over time. The value started
at exactly 1 and evolved to approximately 0.998. This was

also the value that the exact solution took. Since we know
that the change in the profile has an effect on the
maximum mass a soliton can have before collapsing
[34,62], it is reasonable to think that the oscillation
frequencies might be scaled differently for the different
profiles. We verified that this is the likely explanation by
analytically calculating the dynamical time for the exact
solution and found that the dynamical time would be
0.791 code units. This new value matches well with the
dynamical time found through the simulations. This also
suggests the results of this section are robust beyond the
Gaussian ansatz.

B. Exploding solitons

According to [34], under certain initial conditions, we
expect to see exploding solitons which are solitons that
grow without bound. Specifically, when the soliton mass is

below the critical massMc ¼
ffiffi
3

p
2
Mmax and the radius of the

soliton in less than R ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−ð M

Mc
Þ2

p
2M but greater than the

radius that maximizes the effective potential, explosions
should occur. This value of the radius is the number of
equilibrium radii of a soliton with mass Mmax [i.e.,
R≡ ReqðMmaxÞ]. Because the Gaussian ansatz is only an
approximate solution, the criteria for observing different
phenomena, such as collapsing solitons and oscillating
solitons, changes slightly. For instance, the maximum mass
for a soliton with a Gaussian form isMmax ¼ 1.085 ℏffiffiffiffiffiffiffiffiffiffi

Gmjasj
p

instead of the exact value of Mmax ¼ 1.012 ℏffiffiffiffiffiffiffiffiffiffi
Gmjasj

p [34].

In Fig. 4, we simulate a soliton with attractive self-
interactions. The initial size is smaller than the critical
radius. The mass is also below the critical mass. The soliton
expands in size without collapsing again or oscillating in
size. We find that with a sufficiently small radius, provided
that the mass is less than a critical mass, the soliton
collapses.

C. Collapsing solitons

Moving beyond the Gaussian ansatz, we also set up a
scenario involving a single soliton with an attractive self-
interaction and varied the mass of the soliton. This provides
a test of how successful the code produces results without
assuming a Gaussian ansatz. For these simulations, we find
agreement with the numerical prediction of the exact
maximum mass criteria found in [55]. Using κ ¼ −2.0
and an axion mass of m ¼ 1 × 10−22 eV=c2 (which cor-
responds to as ¼ −7.6 × 10−60 fm), the maximum mass of
a soliton from Eq. (28) is Mmax ¼ 5.66 × 106 M⊙ or 2.46
code units. The starting simulation had the soliton mass at
2.5 code units which is larger thanMmax. We found that the
soliton collapsed into a singularity which we define as
when at least 0.25% of the total mass is contained in one
unit cell. PySiUltraLight can only handle a grid-point to

FIG. 2. This plot shows changing the equilibrium radius
changes the frequency of oscillation. The green line shows the
fit of Eq. (33) scaled by the best fit dynamical time squared.

FIG. 3. The energy components (the total energy, the energy
associated with a central potential, the gravitational potential
energy, and the kinetic and quantum energies) of an oscillating
soliton system. Note that the total energy is conserved (to within 1
part in 104).
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grid-point phase difference of up to π=2 which limits how
dense the collapsed soliton can get. Figure 5 also shows the
components of the system’s energy over time. From this,
we see that the total system energy is conserved up until
the end of the collapse. For most of the simulation, energy
is conserved to better than one part in 103. After the soliton
has collapsed, the total energy change is about 7 percent.
This simulation was done with a step factor of 0.05 which is
a measure of the temporal resolution. We found that
decreasing the step factor greatly reduced the percent
energy change when there are collapsing solitons.

V. MULTIPLE SOLITON BEHAVIOR AND
CENTRAL POTENTIAL EXAMPLES

IN PySiUltraLight

PySiUltraLight, like its predecessor, is capable of simu-
lating multiple solitons simultaneously. This is useful for
studying how solitons merge and interact with one another.
The setup that we consider in this section, of multiple
interacting solitons, goes beyond those explored in [34].
Unlike the work where we were making direct comparisons
with that paper, here we do not need to assume as prior an
approximate shape of the soliton density profile and do not
use the Gaussian ansatz. The first scenario we set up with
multiple solitons is a binary soliton collision. The examples
we use are idealized in that they are head-on collisions and
the solitons are of equal mass, however, understanding
binary collisions is important for understanding mergers.
In Figs. 6 through 10, two solitons move towards each
other. The setup differed only by a phase shift between
solitons and the value of the self-coupling.
In all the figures, the initial setup has two solitons, each of

20 code mass units (4.6 × 107 M⊙), spaced 1.2 code units
(45.6 kpc) apart moving towards each other with a relative
velocity of 20 code units (9.8 km=s). The duration in all
the simulations is 0.1 code units which is about 7.6 Gyr.

(a) t = 1.5

(b) t = 3.0

(c) t = 4.5

(d) t = 6.0

FIG. 4. A single soliton with a mass of 1.0 code units
(2.3 × 106 M⊙) explodes. These plots show contours of constant
density. Time progresses from top to bottom, and the time under
each frame is indicated in code units. In the Gaussian ansatz,
Rð0Þ ¼ 1 code unit. This is well below the critical mass of about
2.3 (5.3 × 106 M⊙) code units. Here, κ ¼ −2.0. The box length is
45 code units and the time step is 0.3.

FIG. 5. Similar to Fig. 3: the energy components of a collapsing
soliton system. The total energy (in blue) is under the orange line.
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NO SI WITH NO PHASE SHIFT

(a) t = 0.01 (b) t = 0.02

(c) t = 0.03 (d) t = 0.04

(e) t = 0.05 (f) t = 0.06

(g) t = 0.07 (h) t = 0.08

(i) t = 0.09 (j) t = 0.10

FIG. 6. Two colliding solitons with no phase shift and no self-
interaction. These plots show contours of constant density.
Time progresses across each row left to right, and the time
under each frame is indicated in code units. The total duration
of the simulation is 7.6 Gyr. The two solitons have the same
shape and size from when they leave the collision area and
when they enter. Each soliton passes though the other un-
affected.

ATTRACTIVE SI WITH NO PHASE SHIFT

(a) t = 0.01 (b) t = 0.02

(c) t = 0.03 (d) t = 0.04

(e) t = 0.05 (f) t = 0.06

(g) t = 0.07 (h) t = 0.08

(i) t = 0.09 (j) t = 0.10

FIG. 7. Two colliding solitons with no phase shift with an
attractive self-interaction. These plots show contours of constant
density. Time progresses across each row left to right, and the time
under each frame is indicated in code units. The duration for the
simulation is 7.6 Gyr. κ ¼ −0.02 or λ ¼ −9.7 × 10−91. The
inclusion of an attractive self-interaction causes the solitons to
become distorted. With relatively small masses, the solitons do not
collapse into a black hole, and instead merge and oscillate in size.
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REPULSIVE SI WITH NO PHASE SHIFT

(a) t = 0.01 (b) t = 0.02

(c) t = 0.03 (d) t = 0.04

(e) t = 0.05 (f) t = 0.06

(g) t = 0.07 (h) t = 0.08

(i) t = 0.09 (j) t = 0.10

FIG. 8. Two colliding solitons with no phase shift with a
repulsive self-interaction. These plots show contours of constant
density. Time progresses across each row left to right, and the
time under each frame is indicated in code units. The duration
is 7.6 Gyr. κ ¼ 0.02 or λ ¼ 9.7 × 10−91. The results are similar to
that in Fig. 6 but with the resultant solitons slightly enlarged.
There are also minor differences in the intermediate time
steps.

NO SI WITH PHASE SHIFT

(a) t = 0.01 (b) t = 0.02

(c) t = 0.03 (d) t = 0.04

(e) t = 0.05 (f) t = 0.06

(g) t = 0.07 (h) t = 0.08

(i) t = 0.09 (j) t = 0.10

FIG. 9. Two colliding solitons with a phase shift of pi and no
self-interaction. These plots show contours of constant density.
Time progresses across each row left to right, and the time
under each frame is indicated in code units. The total duration
of the simulation is 7.6 Gyr. The effective repulsive force from
the phase difference causes the solitons to decelerate and then
move in opposite directions. The initial and final soliton
profiles are the same.
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ATTRACTIVE SI WITH PHASE SHIFT

(a) t = 0.01 (b) t = 0.02

(c) t = 0.03 (d) t = 0.04

(e) t = 0.05 (f) t = 0.06

(g) t = 0.07 (h) t = 0.08

(i) t = 0.09 (j) t = 0.10

FIG. 10. Two colliding solitons with a phase shift of pi with an
attractive self-interaction. These plots show contours of constant
density. Time progresses across each row left to right, and the time
under each frame is indicated in code units. The total duration is
7.6 Gyr. κ ¼ −0.02 or λ ¼ −9.7 × 10−91. The repulsive force
caused by the phase shift is strong enough to repel the solitons,
however, the attractive self-interaction still causes the solitons to
oscillate in size.

REPULSIVE SI WITH PHASE SHIFT

(a) t = 0.01 (b) t = 0.02

(c) t = 0.03 (d) t = 0.04

(e) t = 0.05 (f) t = 0.06

(g) t = 0.07 (h) t = 0.08

(i) t = 0.09 (j) t = 0.10

FIG. 11. Two colliding solitons with a phase shift of pi with a
repulsive self-interaction. These plots show contours of con-
stant density. Time progresses across each row left to right, and
the time under each frame is indicated in code units. The
duration is 7.6 Gyr. κ ¼ 0.02 or λ ¼ 9.7 × 10−91. The results are
similar to that in Fig. 9.
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We chose this duration so that we would be able to compare
our simulation results with those in [36]. In the scenarios
where there is an attractive self-interaction, κ ¼ −0.02
corresponding to λ ¼ −9.7 × 10−91. When there are repul-
sive self-interactions, κ ¼ 0.02. This corresponds to
λ ¼ 9.7 × 10−91. In these, the decay constant is
fa ≈ 1014 GeV. In these figures, the color scales are differ-
ent in each frame in the sameway that the scales are different
in Fig. 4. These figures are useful schematically in under-
standing the behavior of these collisions.
In Figs. 6, 7, and 8, there is no phase shift between

solitons. The difference between these figures is that in
Fig. 6 the solitons enter and leave the collision area
unaltered while in Fig. 7 they are distorted. The solitons
pass through each other unaffected which is to be expected
when there is no self-interaction term. However, when there
is an attractive self-interaction term, the solitons merge and
then oscillate in size. There are only minor differences
between Figs. 6 and 8. The biggest difference is that with
the repulsive self-interaction, the resultant solitons are
slightly larger in size. In Figs. 9, 10, and 11 there is a
phase shift of π between the two solitons. This phase shift
creates an effective repulsive force between the solitons
[65]. As with the first three simulations, the main difference
is how the solitons enter and exit the collision zone.
In [36], the authors run a simulation in PySiUltraLight where

a soliton rotates around a central potential. We recreated this
and then included an attractive self-interaction to see what
differences exist with this inclusion of a self-coupling. For
the setup, an axion mass ofm ¼ 1 × 10−22 eV=c2 was used,
the box length was ten code units (380 kpc), the duration was
0.4 code units (30.2 Gyr), the central mass was 1000 code
units (2.3 × 109 M⊙), the soliton mass was 12 code units
(2.8 × 107 M⊙), the starting distance away from the central
mass was three code units (114 kpc), and the initial
tangential velocity was 16 code units (7.9 km=s).
Figure 12 shows three scenarios of a soliton orbiting around
a central potential, one without self-interactions, one with an
attractive self-interaction, and one with repulsive self-inter-
actions. In this figure the colorful lines represent constant
density contours. As the soliton rotates around the central
mass, the soliton stretches as the parts of the soliton closer to
the center rotate faster than the outside portions. When we
include an attractive self-interaction, we can see the soliton is
less disrupted than the case when there were no self-
interactions. Simulations with repulsive self-interactions
had the opposite effect in that the solitons became more
spread out. These observations are important because they
suggest self-interactions play a role in determining the
lifetimes of solitons. It is important to note contours with
the same colors at different times do not necessarily
correspond to the same density. This is because each figure
is made from overlaying different snapshots in time.

VI. CONCLUSIONS

In this paper, we provide an outline for altering
PySiUltraLight to include self-interactions. We provided

(a) No self-interactions

(b) Attractive self-interactions

(c) Repulsive self-interactions

FIG. 12. Plot (a) shows how a soliton behaves when rotating
around a central potential at different times when there are no
self-interactions. Plot (b) has the same initial conditions except it
has a coupling of κ ¼ −0.05. The most noticeable difference
between the two plots is that the soliton with an attractive self-
interaction is less spread out by the central potential. Plot (c) has a
repulsive coupling of κ ¼ 0.05. Here, we see that the soliton is
more spread out than the simulations with no coupling or with an
attractive coupling.
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background information on the physics of ultralight dark
matter and detailed the changes we made to PySiUltraLight.
We tested the altered program’s integrity by comparing the
new version with the original version and by confirming
energy was still conserved in the simulations. Using this
altered version, we attempted to verify predictions made in
[34] which quantified phenomena that one expects to see
when ultralight dark matter has attractive self-interactions.
The oscillation frequency results from our code behaved
similarly to analytic predictions but had a different dynami-
cal time. This discrepancy is likely caused by the approxi-
mate solution of the Gaussian profile being adjusted as the
simulation progressed. We looked at the conditions needed
to see exploding solitons by using an approximate Gaussian
soliton profile. When the soliton mass was less than the
critical mass and the starting soliton size was sufficiently
small, we saw the soliton explode. The predictions for
finding a maximum mass for a soliton with attractive self-
interactions matched well.
We also ran simulations that compared situations with

attractive self-interactions, repulsive self-interactions, and
without self-interactions, including binary soliton colli-
sions and solitons rotating around a central potential.
Qualitatively, there were noticeable differences when
self-interactions were introduced in these scenarios. The
attractive self-interactions cause the solitons to more easily
stick to one another which is to be expected. Attractive self-
interactions also made it more difficult for the solitons to be
tidally disrupted when the solitons rotated around the
central potential. We also found that having repulsive
self-interactions had the effect of spreading out the soliton

profile more when orbiting a central potential. This effect
may have an impact on the survival times of infalling
solitons.
For future work, we would like to implement absorbing

boundary conditions using a sponge layer. Another possible
phenomenon to test using this code is the formation of
vortices in a BEC which should occur with sufficiently
large repulsive self-interactions [66].
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