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Multimessenger observations of binary neutron star mergers offer a promising path toward resolution of
the Hubble constant (H0) tension, provided their constraints are shown to be free from systematics such as
the Malmquist bias. In the traditional Bayesian framework, accounting for selection effects in the likelihood
requires calculation of the expected number (or fraction) of detections as a function of the parameters
describing the population and cosmology; a potentially costly and/or inaccurate process. This calculation
can, however, be bypassed completely by performing the inference in a framework in which the likelihood
is never explicitly calculated, but instead fit using forward simulations of the data, which naturally include
the selection. This is likelihood-free inference (LFI). Here, we use density-estimation LFI, coupled to
neural-network-based data compression, to infer H0 from mock catalogues of binary neutron star mergers,
given noisy redshift, distance and peculiar velocity estimates for each object. We demonstrate that LFI
yields statistically unbiased estimates of H0 in the presence of selection effects, with precision matching
that of sampling the full Bayesian hierarchical model. Marginalizing over the bias increases the H0

uncertainty by only 6% for training sets consisting of Oð104Þ populations. The resulting LFI framework is
applicable to population-level inference problems with selection effects across astrophysics.
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I. INTRODUCTION

In recent years, late-time measurements [1–3] of the
Hubble constant, H0, have diverged from estimates pro-
vided by early-time probes [4–7] (see Refs. [8–10] for a
summary). At the heart of the discrepancy is a 4.2σ tension
between the latest direct measurement of H0 ¼ ð73.2�
1.3Þ km s−1 Mpc−1 by the SH0ES Team’s Cepheid-super-
nova distance ladder [1] and the model-dependent value of
H0 ¼ ð67.4� 0.5Þ km s−1Mpc−1 inferred from observa-
tions of the cosmic microwave background (CMB) anisot-
ropies by the Planck satellite [4]. While unforeseen
systematic effects [11–16] might be the cause of this
disagreement, it is possible that this is a hint for new
physics beyond the standard ΛCDM model (see Ref. [17]
for a comprehensive summary of potential theoretical
solutions). Despite considerable effort, however, no con-
sensus on an explanation has been reached. This strongly
motivates the need for a new, independent, direct probe of
H0. Gravitational waves (GWs) emitted by compact-object
mergers—so-called standard sirens—are very promising in

this regard [18–32], since their amplitude provides a self-
calibrated estimate of the luminosity distance, d, depending
only on general relativity.
There are three types of compact-object systems typi-

cally considered for H0 studies [33]: binary black holes
(BBH), binary neutron stars (BNS) and neutron star-black
hole (NSBH) systems. The potential for BNS and NSBH
systems to have electromagnetic (EM) counterparts makes
them particularly promising, as if an EM counterpart can be
detected, the merger’s host galaxy can be identified and its
redshift measured, yielding H0 when combined with d
[20,21,24,27–29,34,35]. The first BNS system detected
by the LIGO-Virgo Consortium, GW170817 [36], also
produced an EM counterpart [37], constraining H0 to
70.0þ12.0

−8.0 km s−1 Mpc−1 [35]. The 10% constraints pro-
duced by this single event are expected to shrink to ∼1%
in the next 5–10 years once Oð100Þ events have been
observed [28,29,34].
For standard siren estimates of H0 to resolve the current

tension, they must be shown to be free from systematic
errors. Standard siren datasets suffer from Malmquist bias
[38,39] which, left untreated, results in H0 being overesti-
mated. Traditional Bayesian methods must therefore take*francesca.gerardi.19@ucl.ac.uk
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this effect into account by including in the likelihood terms
involving the number (or, equivalently, fraction) of mergers
that are expected to be detected given a set of population
and cosmological parameters, N̄ðΩÞ [32,35,40–42]. The
simplest method for calculating the expected number of
detections is through Monte Carlo integration, i.e., repeated
simulations of the dataset. Implementing this directly
within a posterior sampling algorithm is, however, com-
pletely unfeasible, given the sheer number of simulations
that would be needed. Instead, a single large catalogue of
detected mergers can be generated using a fiducial set of
population parameters and then reweighted to approximate
N̄ for any value of population parameters sampled [43].
If the distribution of object parameters changes rapidly
as a function of population parameters, however, a large
(potentially computationally unfeasible) number of fidu-
cial-population simulations are required to guarantee there
are enough non-zero weights for the estimate of N̄ to be
reliable (the effective number of detected mergers must
be at least four times the measured number [44]).
Alternatively, N̄ can be evaluated on a grid of Ω and
interpolated to generic population parameters [31,42].
While no reweighting is necessary in this case, the
dependence on gridded computations means this method
scales very poorly with parameter-set dimensionality.
Recently, Ref. [45] proposed a machine-learning based

approach to this problem. The authors use a Gaussian
mixture model to fit the distribution of object parameters
found using a set of detected mergers drawn from a fiducial
population. By dividing out the prior on the object
parameters for the fiducial population, they obtain an
estimate of the probability of detecting a merger given
its parameters. This estimate can be combined with the
prior on the object parameters for a generic population
to calculate N̄ at any point sampled, either directly or
via a neural-network-based interpolation. This approach
suffers less bias than the reweighting method due to the
assumption of a fiducial population, and comes at a cost of
only Oð1000Þ simulated populations. However, the esti-
mate of the detection probability as a function of object
parameters is only defined over the range of parameters
supported by the fiducial population; should this range
change rapidly with the population parameters, the meth-
od’s N̄ estimates will lose accuracy.
Here, we take a different approach, demonstrating that the

computation of N̄ can be completely bypassed using like-
lihood-free inference (LFI), which requires no analytic
knowledge of the likelihood function. Specifically, we use
density-estimation LFI (DELFI) [46–49], in which the
distribution of data as a function of the parameters that
generated them is fit by supplying density estimators with a
training set of simulated datasets. This fit is then used as a
proxy likelihood to obtain posteriors on the parameters of
interest. As the simulated data include the selection function,
LFI automatically accounts for the Malmquist bias.

LFI’s ability to accelerate the inference of the properties
of individual BBH mergers has been demonstrated in a
number of recent works [50–56]. Here, we apply LFI to
population-level inference, taking as our example the
inference of H0 from 100 simulated GW-selected BNS
mergers with EM counterparts. In this particular setting,
traditional Bayesian inference (with N̄ interpolated from a
grid of cosmological values [42]) is feasible, and we take
this approach as a ground truth from which we can robustly
quantify any systematic errors introduced by LFI. We
take as our inputs sets of individual mergers’ observed
redshifts, distances (generated via traditional [36] or like-
lihood-free analyses e.g., [55]) and peculiar velocities,
performing our LFI analysis with the aid of pydelfi [49].
While we concentrate here on the inference of H0 from
BNS, the technique is applicable to population studies in
general e.g., [57,58].
We describe the hierarchical model we use to simulate

our BNS mergers in Sec. II, and explain our inference
method in Sec. III, highlighting the importance of data
compression. Results are discussed in Sec. IV, and con-
clusions are drawn in Sec. V.

II. SIMULATIONS

In this work we assume we possess noisy estimates of
redshift ẑ, distance d̂ and peculiar velocity v̂ for each BNS
merger. The mergers’ ½ẑ; d̂; v̂� are generated via the hierar-
chical model in Fig. 1, which is loosely based on the model
used in Ref. [42]. We assume that the strain data have been
precompressed into estimates of d̂, which can be done
rapidly using the likelihood-free method of Ref. [55].
Given the aforementioned prospects for solving the H0

tension, we fix the number of mergers to N ¼ 100. We
consider two test cases, both assuming the same set of
observables, but distinguished by whether GW selection is
applied. Considering these two cases allows us to differ-
entiate the impact of LFI alone from LFI specifically in the
presence of selection effects.
In the following we wish to infer two cosmological

parameters—the Hubble constant, H0, and the deceleration
parameter, q0—which we denote by Ω ¼ ½H0; q0�. For
a given choice of Ω, true redshifts are randomly
sampled from

PðzijΩ;zmaxÞ¼
1

ð1þziÞ
dV
dz

ðΩÞHðzmax−ziÞ

≃
4π

ð1þziÞ
c3z2

H3
0

½1−2ð1þq0Þzi�Hðzmax−ziÞ;

ð1Þ

where H is a Heaviside step function. The final line is a
good approximation for zmax ≪ 1. Given a single cosmo-
logical redshift draw, the ith distance is given by [59]
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diðzi; H0; q0Þ ¼
czi
H0

�
1þ 1

2
ð1 − q0Þzi

�
: ð2Þ

Denoting asN ðμ; σÞ the normal distribution of mean μ and
standard deviation σ, peculiar velocities are sampled from

PðviÞ ¼ N ðμvk ; σvk Þ
¼ N ð0 km s−1; 500 km s−1Þ: ð3Þ

We convert our true redshifts, distances and peculiar
velocities into observed quantities x̂ ¼ ½ẑ; d̂; v̂� assuming,
for simplicity, the marginal likelihoods are Gaussian,1

as follows

Pðẑjz; vÞ ¼ N ðzþ v=c; σẑ ¼ 1.2 × 10−3Þ ð4Þ
Pðd̂jdÞ ¼ N ðd; σd̂ ¼ d=10Þ ð5Þ

Pðv̂jvÞ ¼ N ðv; σv̂ ¼ 200 km s−1Þ: ð6Þ

When GW selection is not applied, we simulate pop-
ulations by simply drawing from the above distributions
N times. When using GW selection, we require that the
signal-to-noise ratio (SNR), defined as

ρiðd̂iÞ ¼ 12

�
250 Mpc

d̂i

�
; ð7Þ

is greater than ρ� ¼ 12 for i ¼ ½1; N�. Introducing the GW
selection changes the distribution of GW sources, reducing
the effective upper redshift limit in a cosmology-dependent
way, as shown in Fig. 2; the peak of the redshift distribution
broadens and shifts to higher z for increasing H0, while q0
has a much smaller impact over this redshift range. For
values ofH0 ∈ ½60; 80� km s−1Mpc−1 and q0 ∈ ½−2; 1�, the
redshift distribution is peaked at z ≃ 0.05. To ensure we
generate sources at similar redshifts for our selection and
no-selection populations (and consequently obtain similar
constraints on cosmological parameters) we set zmax
equal to 0.05 and 0.13 for the no-selection and selection
cases, respectively.

III. METHOD

A. Traditional inference

We begin by outlining the traditional approach to
inferring parameters from GW-selected populations,
before describing our adopted likelihood-free methodology.

FIG. 2. The dependence of BNS redshift distributions on q0
(top) and H0 (bottom) for our no-selection (dashed) and selection
datasets (solid). To obtain comparable constraints on H0 from
the two datasets, we impose a cutoff at zmax ¼ 0.05 for the no-
selection case, while using zmax ¼ 0.13 for the selection case.
The input distribution for the selection dataset is shown as a dot-
dashed line.

FIG. 1. The hierarchical model used to describe our BNS
population and data, adapted from Ref. [42]. Read top-to-bottom,
parameters (circles) are drawn from probability distributions
(orange rectangles) to generate observed quantities (double
circles). I represents the prior information assumed about the
cosmological parameters, Ω ¼ ½H0; q0�, and quantities within the
red plate are specific to an individual merger.

1The σd̂ ∝ d scaling of the distance uncertainty is chosen for
simplicity. A better motivated choice would be σd̂ ∝ d2, given
that the signal-to-noise ratio, Eq. (7), scales as 1=d e.g., [42].
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The traditional framework has been set out in numerous
references [18,20–22,24,29,30,32,34,35,41,42], but we will
follow the notation of Ref. [42] here. For simplicity, in this
work we set aside the inference of the BNS properties (e.g.,
the NS mass distribution) and focus on the cosmology. As
we are considering a fixed sample size here, the posterior on
the cosmological parameters given a catalogue x̂ ¼ ½ẑ; d̂; v̂�
can be written as

Pðz;v;H0; q0jx̂Þ ∝
PðH0ÞPðq0Þ
½N̄ðH0; q0Þ�N

YN
i¼1

PðzijH0; q0; zmaxÞPðviÞ

×Pðẑijzi; viÞPðd̂ijdiÞPðv̂ijviÞ: ð8Þ

We assume truncated Gaussian priors on the cosmological
parameters

PðH0Þ ¼ HðH0 − 60ÞHð80 −H0Þ
×N ð70 km s−1 Mpc−1; 20 km s−1 Mpc−1Þ

Pðq0Þ ¼ Hðq0 þ 2ÞHð1 − q0ÞN ð−0.55; 0.5Þ: ð9Þ

All other distributions are taken to match those set out
in Sec. II.
The impact of the selection function is captured by

the factor of ½N̄ðH0; q0Þ�−N . N̄ (which, recall, denotes the
expected number of detected mergers) must be evaluated at
every point in parameter space sampled by a particular
inference tool. Here, we follow Ref. [42] in evaluating N̄ on
a 10 × 10 grid inH0 and q0 (boosting the fiducial detection
rate Γ ¼ 1540 Gpc−3 yr−1 [36] by a factor of 130 to reduce
sample variance), and then fitting using a fourth-order
(15-coefficient) polynomial. Following Ref. [42], we then
perform traditional Bayesian Inference using No-U-Turn-
Sampling [60] as implemented in the PyStan package
[61,62], explicitly sampling each merger’s true redshift
and peculiar velocity along with H0 and q0. We take the
marginal posteriors on H0 and q0 output by PyStan as the
ground truth in the tests that follow.

B. Likelihood-free inference

Explicitly calculating N̄ðH0; q0Þ at each point of param-
eter space sampled is computationally unfeasible. The
methods proposed to circumvent this issue must balance
computational cost and accuracy. The standard method of
estimating N̄ via a reweighted sum over a set of detected
mergers generated using a fiducial population [43,44,57]
works well provided the object-level parameter distribu-
tion for generic population parameters does not differ too
strongly from that of the fiducial population [44]. To
counter this, the fiducial detected merger population must
be oversampled, increasing the cost of both generating the
detected sample and evaluating the likelihood. The cost of
the former will become prohibitive in any setting where the
distributions of object parameters have finite (or strongly

suppressed) support which changes with the population
parameters. Reference [45] estimates N̄ by fitting the
distribution of object parameters found in the fiducial
detection set and from this obtaining an estimate of the
probability of detecting a merger given its parameters. This
reduces both the computational cost and the bias due to
estimating the detection probability from a fiducial pop-
ulation that might differ strongly from the underlying truth;
however, it still fundamentally depends on the assumption
of a fiducial population. The gridded approximation [42]
we use for our traditional Bayesian analysis here does not
require a fiducial population but is computationally expen-
sive, requiring ∼130 × N selected mergers for each single
point of the grid, hence ∼13000 detected samples in total.
It can not be scaled to problems with a large number of
population parameters.
Here we demonstrate that we can bypass the N̄ cal-

culation entirely using likelihood-free methods, which
are based solely on simulations and therefore naturally
account for selection effects. In particular, we use density-
estimation likelihood-free inference (DELFI) [46–49], in
which synthetic mergers sampling the joint parameter-data
space ðΩ; x̂Þ are used to train neural density estimators
(NDEs) to fit Pðx̂jΩÞ, the probability of obtaining
GW-selected data given the population parameters. By
fitting this distribution, we implicitly marginalize over the
mergers’ true redshifts and peculiar velocities. The fit is
evaluated at the observed data x̂obs to obtain Pðx̂obsjΩ;wÞ, a
parametric model for the likelihood depending on the
trained weights w of the neural density estimators. This
is then multiplied by the prior to yield the final posterior
PðΩjx̂obsÞ ∝ PðΩÞPðx̂obsjΩ;wÞ.
Our LFI analysis uses pydelfi,2 an implementation of

DELFI developed by Ref. [49], based on Refs [46–48].
pydelfi learns a parametric model to the conditional distri-
bution Pðx̂jΩÞ—via on-the-fly or precomputed simulations
—using a set of NDEs. The NDE components can be freely
chosen as a combination of mixture density networks
(MDNs) and masked autoregressive flows (MAFs) (see
Refs. [46,49,63,64] for details on the NDEs). To reduce the
possibility of pathological behavior from one particular
NDE affecting our results, we create an ensemble of
estimators by stacking together five MDNs (with one to
five Gaussian components) and one MAF. We use the same
ensemble of NDEs for all pydelfi runs. To reduce variance in
our results, we train all of the NDEs using a fixed set of
2000 simulated training populations, rather than letting the
algorithm generate on-the-fly simulations. These training
samples are obtained by uniformly drawing from H0 ∈
½60; 80� km s−1Mpc−1 and q0 ∈ ½−2; 1�. The choice of
the training-set size is empirically driven by the estima-
tors’ efficiency: there exists a (setting-specific) limiting

2https://github.com/justinalsing/pydelfi.

GERARDI, FEENEY, and ALSING PHYS. REV. D 104, 083531 (2021)

083531-4

https://github.com/justinalsing/pydelfi
https://github.com/justinalsing/pydelfi


training-set size beyond which there is no significant
improvement in the training [49]. Reducing the training
set to 1000 populations significantly impacts the quality of
our results; boosting it to 10000 does not improve the
results enough to justify the higher computational cost.

1. Data compression method

As the simulated catalogues consist of N ¼ 100 sources,
performing LFI on the raw data would require fitting a
302-dimensional probability distribution, which is unfea-
sible (given the available resources in terms of number of
simulations and our fidelity requirements). In order to
reduce the dimensionality of the inference space, the data
must be compressed to a set of summary statistics t̂, a vector
of dimðt̂Þ≡ dimðΩÞ components (i.e., one compressed
summary per parameter of interest). Identifying suitable
summary statistics translates into finding a map f∶x̂ → t̂
that compresses the data while retaining as much informa-
tion as possible. Methods capable of performing such a
mapping include score compression [48,65,66], informa-
tion maximizing neural networks [67] and regression neural
networks (NNs) [68]. In this work, we train regression
neural networks to compress generic merger data into
estimates of the generative cosmological parameters. For
training purposes, we need to construct a set of training and
validation datasets, for which the underlying cosmology is
known and will constitute the target. The network will
ultimately compress the noisy data to a set of summary
statistics which correspond to a prediction about the
generative cosmological model. To avoid any dependence
on the particular training initialization of a single network,
we create an ensemble of 9 trained neural networks, all
defined by the same settings and trained on the same exact
data but using different random initial weights.
The raw observables span a broad range of magnitudes

—ẑ ≃Oð10−2Þ, d̂ ≃Oð102Þ and v̂ ≃Oð103Þ—which can
cause problems in the training process. If there are large
differences in scale between different components of the
data vector, the NN will naturally prioritize the larger
components, effectively ignoring part of the dataset.
Moreover, the magnitude of the data vector determines
the update rate, so large values might lead to stability
problems. Prior to feeding data into any neural network,
therefore, we normalize the data to ensure they are all at
roughly the same scale. We first sort all merger catalogues
by redshift to reduce the variability to which each NN input
node is exposed. We then concatenate each catalogue’s ẑ, d̂
and v̂ to create a single 300-element raw-input vector.
Finally we shift and scale by the mean and standard
deviation of 100 catalogues generated at our fiducial
cosmology ½H0; q0� ¼ ½70;−0.5� to create the normalized
inputs for our regression networks. We also normalize the
target parameters which generated the training and vali-
dation datasets, shifting and scaling their distributions to

be within 0 and 1. The NN predictions—our summary
statistics—are hence normalized estimates of the cosmo-
logical parameters.

2. Data compression optimization

The choice of architecture and settings for our neural
networks is completely free, which poses an intimidating
optimization problem over the vast number of possible NN
architectures and settings. To define a NN we must choose
an architecture, its activation function and training, by
tuning batch size, learning rate and potentially employing
regularization methods. We cannot reasonably explore all
of these choices, and we therefore consider neural networks
composed of two hidden layers, each made of 128 hidden
units, fix the activation function to be a leaky relu [69] with
alpha ¼ 0.01,3 and focus on finding the best combination
of batch size nbatch and learning rate α from a small set of
choices, namely nbatch¼½100;500� and α¼½10−4;5×10−4;
10−3�. To avoid potential overfitting, we consider regulari-
zation terms, which control the training while acting on
the loss function, set to be the mean squared error (MSE).
We toggle between ridge and lasso regression methods,
which use L2 and L1 regularizations respectively [70], and
explore a few values of the parameters weighting the
regularization term, λ1;2, namely fλ1;2 ¼ 0g,fλ1 ¼ 0; λ2 ¼
½10−4; 2 × 10−4�g and fλ1 ¼ ½10−4; 2 × 10−4�; λ2 ¼ 0g. We
define the optimal compressor as the NN for which pydelfi

most faithfully reproduces PyStan’s results for a range of
½H0; q0�. The process by which we determine the optimal
NN settings is described in the following.
For each combination of batch size, learning rate and

regularization, we first train the regression NN on a set
of ntrain samples of known cosmology, validating with
a further nval datasets. To determine the impact of the
amount of training data available on the final inference, we
consider two training set sizes, the first with ½ntrain; nval� ¼
½5000; 2000� and the second with [500000, 100000]. In all
cases, the generative cosmologies are sampled from H0 ∈
½60; 80� km s−1Mpc−1 and q0 ∈ ½−2; 1� using the Latin
hypercube method.
To determine the NN parameters that optimize LFI

performance for a range of underlying cosmologies,
we generate 100 test catalogues for cosmological param-
eters sampled from H0 ∈ ½65; 75� km s−1 Mpc−1 and q0 ∈
½−0.7;−0.3� using the Latin hypercube method (the reason
for this restricted range will be explained in Sec. IV). We
then perform traditional Bayesian inference and LFI on
each test catalogue, for each choice of NN parameters.
Given these results, we compute the differences bH0

¼
Ĥtrad

0 − ĤLFI
0 and bq0 ¼ q̂trad0 − q̂LFI0 between the maximum-

posterior estimates of the cosmological parameters from
the traditional and LFI approaches, which we define

3https://keras.io/api/layers/activation_layers/leaky_relu/.
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as “biases”.4 Compiling the results from all of the test
catalogues, we calculate the means (b̄H0;q0) and standard
deviations (σbH0 ;q0

) of the biases injected by LFI for each
compression NN. The optimal compression network is
chosen to be that which minimizes the standard deviation
of the H0 bias, provided its mean bias is consistent
with zero.
In addition to requiring LFI produces unbiased estimates

of the cosmological parameters, we also want to ensure
our compression is as lossless as possible, i.e., that the LFI
and traditional constraints have similarH0 uncertainties. To
do so, we need the total uncertainty in the LFI parameter
constraints, which we approximate as the quadrature sum
of the “raw” uncertainty of the LFI posteriors and the
additional uncertainty due to the bias.5 We estimate the
former by calculating the mean variance of the LFI
cosmological parameter posteriors over all 100 test cata-
logues; the uncertainty on the bias is simply σbH0

. Hence,

the increase in the H0 uncertainty expected from replacing
traditional Bayesian inference with LFI in this setting can
be estimated by calculating

%σ̂H0

incr ¼ 100 ×

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσH0

LFIÞ2 þ σ2bH0

q
σH0

trad

− 1

1
CA: ð10Þ

IV. RESULTS

We first consider the no-selection case to demonstrate the
feasibility of LFI in this setting and obtain a baseline for its
impact on the precision and accuracy of the inference. We
then add in GW selection to determine whether selection
specifically affects LFI’s performance, and to provide a
final estimate of the systematics.

A. No-selection case

Considering the no-selection case first gives us a base-
line for gauging LFI’s performance in the more complex
setting with selection, allowing us to determine whether
selection specifically has any impact on LFI. We train our
compression NNs for all combinations of the aforemen-
tioned batch size, learning rate and regularizer choices, for
both training-set sizes ½ntrain; nval�. Each of these neural
networks provides different compression performance and
thus all are tested as compressors in the LFI workflow.

An example of compression performance for ½ntrain; nval� ¼
½500000; 200000� is given in Fig. 3, which shows the
summary statistics t̂ output by the regression NN against
the generative cosmological parameters for the validation
set. Focusing on the t̂1 −H0 and t̂2 −H0 plots for now, we
notice that the width and slope of the distribution change at
the edges of the training set, shaded in grey. As the NN
behavior might be suboptimal in these ranges, we generate
the test samples used to optimize the compressor settings
from values of H0 within ½65; 75� km s−1Mpc−1, lying in
the unshaded area.
We identify the best regularization for each combination

of batch size and learning rate using the bH0
distribution.

The bH0
and bq0 probability densities are respectively

shown as blue and orange violin plots in Fig. 4, for
½ntrain; nval� ¼ ½5000; 2000�, and summarized in Table I.
Results for all NN parameter choices can be found in
Tables III and IV. From the violin plots we see that the
likelihood-free inference of both H0 and q0 is unbiased,
since the bias is consistent with zero for all choices
of NN parameters. For the best models, independent of
the specific NN parameters and data realization, LFI’s
maximum posterior estimate for both parameters is
typically well within PyStan’s 1σ posterior uncertainty
(≥0.89 km s−1 Mpc−1 for these test populations).
We observe that for our smaller training set, regu-

larization greatly improves performance. As an example,

FIG. 3. The summary statistics t̂ ¼ ðt̂1; t̂2Þ output by our
compression NN plotted against the cosmological parameters
at which the corresponding data were generated. This NN was
trained with ½nbatch; α; λ1;2� ¼ ½100; 10−4; 0�, and the points cor-
respond to the validation dataset for the ½ntrain; nval� ¼
½500000; 200000� setup. The shaded areas indicate the regions
of H0 where the slopes of the summary statistics change with
respect to the central trend.

4As such, these biases contain contributions from any inac-
curacies in the traditional N̄ estimation and inference (expected to
be small) and loss of information through imperfect compression.
If the compression is lossless and the PyStan inference introduces
no error, the PyStan and LFI posteriors should match perfectly.

5This is equivalent to marginalizing over an unknown additive
bias, assuming the parameters and bias are independent and
Gaussian-distributed.
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considering ½nbatch; α� ¼ ½100; 10−4� we find that adding a
regularization term λ1 ¼ 10−4 reduces σbH0

from 1.75 to
0.35 and markedly increases the H0 constraining power,
reducing fH0

σ ¼ σLFIH0
=σtradH0

from 1.95 to 1.06. With regu-
larization added, the width of the LFI H0 posterior is
compatible with PyStan’s. Considering the larger training
set reduces the impact of the regularizer and significantly

reduces the H0 LFI posterior’s uncertainty, which we
find to be systematically ∼2–3% smaller than PyStan’s:
we suspect that this is due to slight overfitting by pydelfi.
The LFI q0 constraints are also ∼5% tighter than PyStan’s,
independent of the size of the training set.
For the ½ntrain; nval� ¼ ½5000; 2000� setup, the network

with ½nbatch; α; λ1� ¼ ½500; 10−3; 10−4� imparts the smallest
bias in the H0 posterior, with σbH0

¼ 0.32. The H0 bias

FIG. 4. Violin plots for the bH0
¼ Ĥtrad

0 − ĤLFI
0 (blue) and bq0 ¼ q̂trad0 − q̂LFI0 (orange) bias distributions for the no-selection setting.

Results are shown for the NNs whose regularization choice minimizes the bias for each combination of batch size nbatch and learning rate
α. Dots represent the mean biases, and lines the 1σ error bars. The mean biases are consistent with zero, and the bias distributions are
considerably narrower than the relevant parameter posteriors, for all NNs plotted.

TABLE I. Means and standard deviations for the biases bH0;q0 , posterior-width ratios fH0;q0 and percentage increase in H0 uncertainty
for the NNs whose regularization choice minimizes the bias for each combination of batch size nbatch and learning rate α in the
no-selection case.

NO SELECTION CASE

nbatch α Regularizer bH0
½km s−1 Mpc−1� bq0 fH0

σ fq0σ %σ̂H0

incr

TRAINING and VALIDATION parameters: ½ntrain; nval� ¼ ½5000; 2000�
100 10−4 λ1 ¼ 10−4 0.024� 0.35 −0.003� 0.095 1.014� 0.045 0.95� 0.035 7.64%

5 × 10−4 λ1 ¼ 10−4 −0.002� 0.365 0.004� 0.098 1.028� 0.042 0.952� 0.032 9.43%
10−3 λ1 ¼ 10−4 0.007� 0.352 0.009� 0.09 1.024� 0.048 0.952� 0.038 8.58%

500 10−4 λ1 ¼ 10−4 0.012� 0.358 −0.003� 0.092 1.003� 0.043 0.947� 0.036 6.81%
5 × 10−4 λ1 ¼ 10−4 0.026� 0.328 0.001� 0.091 1.018� 0.051 0.948� 0.026 7.3%
10−3 λ1 ¼ 10−4 0.021� 0.322 −0.0� 0.087 1.012� 0.054 0.943� 0.036 6.45%

TRAINING and VALIDATION parameters: ½ntrain; nval� ¼ ½500000; 100000�
100 10−4 λ2 ¼ 2 × 10−4 −0.073� 0.193 0.015� 0.061 0.979� 0.042 0.945� 0.038 −0.05%

5 × 10−4 None −0.061� 0.218 0.014� 0.071 0.978� 0.048 0.948� 0.04 0.35%
10−3 None −0.058� 0.21 0.02� 0.058 0.973� 0.042 0.945� 0.04 −0.35%

500 10−4 λ2 ¼ 10−4 −0.043� 0.193 0.017� 0.066 0.972� 0.041 0.944� 0.039 −0.77%
5 × 10−4 λ2 ¼ 2 × 10−4 −0.053� 0.208 0.015� 0.061 0.975� 0.046 0.944� 0.037 −0.15%
10−3 λ2 ¼ 10−4 −0.062� 0.189 0.012� 0.06 0.979� 0.048 0.946� 0.035 −0.22%
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shrinks further when using our larger training set, with
σbH0

¼ 0.19. As the bias is small and consistent with zero it
could be ignored when doing population-level inference;
here, however, we marginalize over it and find that it would
impart a 6.45% and −0.05% increase in the quoted H0

uncertainty, respectively: well within any reasonable tol-
erance. We note here that this slight increase in uncertainty

is entirely down to imperfect compression, since in tests
pydelfi provides the same posteriors when rerunning on the
same compressed data.
One advantage of using a regression neural network for

compression is that it only relies on a fiducial model for the
computation of the mean and standard deviations used to
normalize the neural network inputs. Nevertheless, the
compression is sensitive to the choice of the training and
validation data, as well as the range of sampled Ω values.
To investigate the randomness of theH0 bias with respect to
the sampled parameter space, we plot the biases against the
generative parameters for all 100 test catalogues for our
best compression network in Fig. 5. We find there is no
major correlation between the true parameters and the
biases (for example, for the best model of the ½ntrain; nval� ¼
½5000; 2000� setup, we find correlation coefficients of
CðH0; bH0

Þ ¼ −0.13 and Cðq0; bH0
Þ ¼ −0.023).

B. Selection case

We now proceed to determine the impact of selection
on the compression. As in the no-selection case, we first
optimize the regularization for each combination of batch
size and learning rate. We compute the distributions of the
H0 and q0 biases, plotting the results for the best com-
pressors in Fig. 6 and tabulating their performance in
Table II. Results for all the NN parameters can be found in
Tables V and VI. As in the no-selection case, the LFI
maximum-posterior parameter estimates are unbiased when
compared to the PyStan baseline.
As before, for our smaller training set regularization

overall largely improves the performance. Considering

FIG. 5. Distribution of generative parameters and LFI posterior
biases. The one-sigma range of the bias is shaded grey. The neural
network model used to perform the compression and generate
this plot corresponds to the NN parameters combination
½nbatch; α; λ1� ¼ ½500; 10−3; 10−4� for ½ntrain; nval� ¼ ½5000; 2000�.

FIG. 6. Violin plots for the bH0
(blue) and bq0 (orange) bias distributions for the setting with GW selection. Results are shown for the

NNs whose regularization choice minimizes the bias for each combination of batch size nbatch and learning rate α. Dots represent the
mean biases, and lines the 1σ error bars. As in the no-selection case, the mean biases are all consistent with zero, and the bias
distributions are all considerably narrower than the relevant parameter posteriors.

GERARDI, FEENEY, and ALSING PHYS. REV. D 104, 083531 (2021)

083531-8



½nbatch; α� ¼ ½100; 10−4� as an example as before, we find
that regularizing the training for λ1 ¼ 10−4 reduces the
uncertainty on the H0 bias from 1.71 to 0.34 and greatly
improves the H0 constraining power, from fH0

σ ¼ 1.77 to
1.06. As in the no-selection case, the LFI posteriors
produced using the optimal compressors are completely
compatible with PyStan’s. Again, increasing the training set
size reduces the impact of the regularizer and significantly
reduces the LFI H0 posterior’s uncertainty, to ∼2.5%
smaller than PyStan’s.
For the ½ntrain; nval� ¼ ½5000; 2000� setup two NN com-

pressors minimize theH0 bias, with σbH0
¼ 0.31. These are

defined by ½nbatch; α; λ1� ¼ f½100; 5 × 10−4; 10−4�; ½500;
5 × 10−4; 10−4�g. As in the no-selection case the best
models compressors use λ1 regularization. For the larger
½ntrain; nval� ¼ ½500000; 100000� setup, the smallest stan-
dard deviation for the H0 bias is again considerably
smaller: σbH0

¼0.18 for the compressor with ½nbatch;α;λ2�¼
½100;5×10−4;10−4�. As in the no-selection case, we
compute the percentage increase in uncertainty on H0

imparted by replacing traditional inference with LFI,
marginalizing over the bias. For the aforementioned
three best compressors, these percentage increases are
f5.9%; 6.99%g and −0.56%, respectively, compatible with
that determined for the no-selection case. Including GW
selection does not impact LFI performance on a statistical
level. Illustrative examples of the H0 − q0 joint posteriors
produced by pydelfi and PyStan can be found in Fig. 8.
In Fig. 7 we plot the values of the bH0

and bq0
distributions against true input cosmology parameters.

Unlike in Fig. 5, there is a clear dependence of bH0
and

bq0 on the true value of H0 that generated the data. The
strongest correlation is between the q0 bias and the
generative H0, with a correlation coefficient of −0.47
for the best model ½nbatch; α; λ1� ¼ ½100; 5 × 10−4; 10−4�

TABLE II. Means and standard deviations for the biases bH0;q0 , posterior-width ratios fH0;q0 and percentage increase inH0 uncertainty
for the NNs whose regularization choice minimizes the bias for each combination of batch size nbatch and learning rate α in the
selection case.

SELECTION CASE

nbatch α Regularizer bH0
½km s−1 Mpc−1� bq0 fH0

σ fq0σ %σ̂H0

incr

TRAINING and VALIDATION parameters: ½ntrain; nval� ¼ ½5000; 2000�
100 10−4 λ1 ¼ 10−4 −0.015� 0.338 0.014� 0.115 1.013� 0.039 1.005� 0.044 6.53%

5 × 10−4 λ1 ¼ 10−4 −0.02� 0.313 −0.001� 0.122 1.014� 0.041 1.005� 0.058 5.9%
10−3 λ1 ¼ 10−4 0.014� 0.357 0.008� 0.119 1.018� 0.042 1.006� 0.051 7.67%

500 10−4 λ1 ¼ 10−4 −0.002� 0.334 0.019� 0.116 1.025� 0.04 1.01� 0.049 7.63%
5 × 10−4 λ1 ¼ 10−4 0.001� 0.313 0.012� 0.128 1.025� 0.038 1.013� 0.036 6.99%
10−3 λ1 ¼ 10−4 0.051� 0.329 0.011� 0.137 1.019� 0.053 1.011� 0.058 6.91%

TRAINING and VALIDATION parameters: ½ntrain; nval� ¼ ½500000; 100000�
100 10−4 λ2 ¼ 10−4 −0.032� 0.184 0.022� 0.092 0.976� 0.031 1.006� 0.036 −0.73%

5 × 10−4 λ2 ¼ 10−4 −0.033� 0.177 0.02� 0.092 0.979� 0.039 1.003� 0.043 −0.56%
10−3 None 0.0� 0.183 0.026� 0.091 0.965� 0.03 1.004� 0.038 −1.88%

500 10−4 λ1 ¼ 10−4 −0.022� 0.178 0.015� 0.093 0.978� 0.036 1.003� 0.039 −0.7%
5 × 10−4 λ2 ¼ 10−4 −0.013� 0.18 0.019� 0.086 0.977� 0.035 1.006� 0.038 −0.68%
10−3 λ2 ¼ 2 × 10−4 −0.01� 0.199 0.021� 0.083 0.979� 0.043 1.003� 0.042 −0.18%

FIG. 7. Distribution of generative parameters and LFI posterior
biases for the GW selection setting. The one-sigma range of the
bias is shaded grey. The neural network model used to perform
the compression and generate this plot corresponds to the
NN parameters combination ½nbatch;α;λ1�¼ ½100;5×10−4;10−4�
for ½ntrain; nval� ¼ ½5000; 2000�.
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of the smaller training set ½ntrain; nval� ¼ ½5000; 2000�.
Increasing the size of the training sample generates stronger
correlation (−0.66 for the best model). This indicates the
regression (or, indeed, an imperfect fit to PyStans N̄) is not
capturing the selection function perfectly, and that other
compression methods may fare better. Nevertheless, for
the optimal compressors the biases on the cosmological
parameters are consistent with zero, and have standard
deviations which are a small fraction of the full posterior
uncertainty.

V. CONCLUSIONS

We have investigated the ability of likelihood-free
inference (LFI) to estimate the cosmological expansion
from GW-selected populations of binary neutron star
mergers with EM counterparts. When computing the
parameter posterior using traditional Bayesian inference,
selection effects must be taken into account through
the computation of the expected number of detected
sources, N̄. This is a computationally expensive (and
potentially inaccurate) process, even in approximate forms
[42–44]. As LFI does not explicitly evaluate the posterior,
instead building a proxy likelihood using neural density
estimator fits to parameter–simulated-dataset pairs, there is
no need to calculate N̄ when performing LFI. Instead, the
selection is naturally built into the simulations on which the
method is based.
The goal of this work was to compare the precision

and accuracy achievable using LFI to that of traditional
Bayesian inference in the presence of selection effects.
We note that improvements to the traditional found-
injection approach broadening injection-set coverage

(through, e.g., designer injection sets covering a range of
populations) have the potential to improve the resulting N̄
estimates. A quantitative comparison (in terms of precision,
accuracy and computational cost, and considering more
complete data models) of the LFI approach with improved
found-injection methods is strongly motivated by the
findings of this proof-of-concept work.
In this work we considered GW selection only; adding

EM selection would increase the computational burden,
making accounting for selection effects even more expen-
sive. We employed “preprocessed” 100-merger datasets,
consisting of noisy estimates of redshift, distance and
peculiar velocity for each merger, assuming the distances
have already been inferred from GW strains (which can
be performed rapidly as in Ref. [55] to yield a fully LFI-
based pipeline). Given the high dimensionality of the
input data, LFI methods require the data to be compressed
to a set of summary statistics. We trained ensembles of
regression neural networks for this purpose, passing their
outputs to the density-estimation likelihood-free-inference
package pydelfi to infer the cosmological parameters.
Both of these stages require the provision of training
data: we have presented results for compression networks
trained using ½ntrain; nval� ¼ ½5000; 2000� and ½ntrain; nval� ¼
½500000; 100000� populations; in all cases pydelfi was
trained using 2000 simulated populations. Given each
population contains 100 mergers, the total number of
detected mergers required to train the two setups was
9 × 105 and 6 × 108, respectively.
LFI’s precision and accuracy depends sensitively on the

compression method’s ability to retain salient information
about the parameters of interest. We trained a large suite of
regression networks (each containing two hidden layers of

FIG. 8. Example posterior contour plots produced by LFI (blue) and traditional Bayesian sampling (red) for test datasets with GW
selection.
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128 hidden units) for compression, optimizing the learning
rate, batch size and regularization based on pydelfi’s ability
to infer H0 using the networks’ outputs. Specifically,
we selected the network whose resulting H0 inference best
reproduced the traditional Bayesian “ground truth” (as
implemented using PyStan) for a set of 100 test datasets,
taking the differences between maximum-posterior H0

estimates for the two methods as our metric.
Testing the method first on datasets in which no GW

selection was made, we demonstrated that LFI provides
unbiased H0 estimates when using suitably optimized
regression-network data compression. For our optimal
combination of training variables, we found a bias
(defined as the difference between the maximum-posterior
PyStan and pydelfi estimates) on H0 of bH0

¼ 0.021�
0.322 km s−1Mpc−1: consistent with zero and with a
standard deviation a factor of roughly three smaller than
the posterior uncertainty on H0. Marginalizing over this
bias would lead to an increase of only 6.45% in the
uncertainty on H0. Adding in GW selection, we find
no impact on LFI’s performance: LFI is still able to
provide unbiased estimates of H0 in the presence of
selection effects. For the best model we obtain
bH0

¼ −0.02� 0.313 km s−1 Mpc−1, which would yield
an increase in uncertainty on H0 of only 5.9% when
marginalized over. Increasing the number of samples used
to train the compression networks results in LFI posteriors
that are statistically indistinguishable from their traditional
Bayesian counterparts in mean and variance; however, this
comes with a significant increase in computational cost.
When processing GW-selected data, we note a small but
significant correlation between theH0 and q0 biases and the
generative H0 values. This indicates a different choice of
compressor architecture and setup might improve results,
but investigating alternative compression methods is left
for future work.

As this method is simulation-based, having a trust-
worthy and sufficient generative model is critical. This
analysis has been conducted on simplified mock data, for
which we know the underlying model. In the context of
real observations, more-realistic simulations, such as
those implemented in LALSuite [71], are needed. As
current ground-based interferometers enhance their sen-
sitivity [33], third-generation GW detectors such as
Einstein Telescope [72] and Cosmic Explorer [73] come
online, and the BNS sample builds, including instrumental
systematics [74] and an as-yet elusive model of joint
EM-GW selection e.g., [31,75–81] will become ever more
important. In this work we have focused on inferring the
cosmological parameters only, but complete inference of
the population properties of BNS catalogues must include
parameters fixed here, such as the merger rate, mass
distributions and equation of state e.g., [57,82–86].
Extending the analysis to incorporate these parameters
is left to future work. Finally, we note that, though we
have focused on the inference of the cosmological
expansion from GW-selected catalogues of binary neutron
star mergers with EM counterparts here, this method can
be applied to a broad range of population analyses in the
presence of selection effects e.g., [57,58].

The code is provided at [87].

ACKNOWLEDGMENTS

We thank Tom Charnock, Will Farr, Colm Talbot
and Niall Jeffrey for helpful discussions. This work was
partially enabled by funding from the UCL Cosmoparticle
Initiative. S. M. F. is supported by the Royal Society. J. A.
was supported by the research project grant Fundamental
Physics from Cosmological Surveys funded by the Swedish
Research Council (VR) under Dnr 2017-04212.

UNBIASED LIKELIHOOD-FREE INFERENCE OF THE HUBBLE … PHYS. REV. D 104, 083531 (2021)

083531-11



APPENDIX: FULL TABLES

For completeness, in the following we tabulate the results for all combinations of learning rate, batch size and
regularization explored for both no-selection and selection analyses.

TABLE III. Means and standard deviations for the biases bH0;q0 , posterior-width ratios fH0;q0 and percentage increase in H0

uncertainty for all combinations of batch size, learning rate and regularization in the no-selection case, using ½ntrain; nval� ¼ ½5000; 2000�.
NO SELECTION CASE

nbatch α Regularizer bH0
½km s−1 Mpc−1� bq0 fH0

σ fq0σ %σ̂H0

incr

TRAINING and VALIDATION parameters: ½ntrain; nval� ¼ ½5000; 2000�
100 10−4 None 0.369� 1.752 0.002� 0.098 1.951� 0.124 0.948� 0.023 165.74%

λ2 ¼ 10−4 −0.002� 0.459 0.008� 0.089 1.055� 0.043 0.95� 0.028 15.59%
λ2 ¼ 2 × 10−4 0.054� 0.415 0.008� 0.095 1.056� 0.05 0.95� 0.028 13.95%
λ1 ¼ 10−4 0.024� 0.35 −0.003� 0.095 1.014� 0.045 0.95� 0.035 7.64%

λ1 ¼ 2 × 10−4 0.012� 0.398 0.009� 0.1 1.038� 0.049 0.95� 0.037 11.58%
5 × 10−4 None −0.101� 1.612 −0.003� 0.103 1.855� 0.116 0.948� 0.031 148.89%

λ2 ¼ 10−4 0.008� 0.404 0.012� 0.082 1.043� 0.039 0.948� 0.031 12.24%
λ2 ¼ 2 × 10−4 −0.003� 0.423 0.011� 0.084 1.04� 0.042 0.948� 0.029 12.76%
λ1 ¼ 10−4 −0.002� 0.365 0.004� 0.098 1.028� 0.042 0.952� 0.032 9.43%

λ1 ¼ 2 × 10−4 −0.006� 0.415 0.011� 0.083 1.027� 0.042 0.947� 0.03 11.27%

10−3 None 0.053� 0.498 0.005� 0.09 1.058� 0.037 0.954� 0.028 17.55%
λ2 ¼ 10−4 −0.014� 0.385 0.009� 0.083 1.04� 0.045 0.952� 0.032 11.32%

λ2 ¼ 2 × 10−4 −0.012� 0.391 0.005� 0.09 1.036� 0.048 0.949� 0.031 11.15%
λ1 ¼ 10−4 0.007� 0.352 0.009� 0.09 1.024� 0.048 0.952� 0.038 8.58%

λ1 ¼ 2 × 10−4 −0.026� 0.418 0.011� 0.086 1.022� 0.048 0.948� 0.035 10.94%

500 10−4 None 0.087� 2.066 −0.007� 0.105 2.047� 0.163 0.948� 0.025 195.21%
λ2 ¼ 10−4 −0.035� 0.41 0.003� 0.099 1.049� 0.047 0.948� 0.032 13.05%

λ2 ¼ 2 × 10−4 −0.007� 0.375 −0.004� 0.087 1.04� 0.044 0.95� 0.04 10.91%
λ1 ¼ 10−4 0.012� 0.358 −0.003� 0.092 1.003� 0.043 0.947� 0.036 6.81%

λ1 ¼ 2 × 10−4 0.01� 0.399 0.002� 0.096 1.041� 0.043 0.948� 0.032 11.94%

5 × 10−4 None −0.195� 1.807 0.003� 0.099 2.068� 0.157 0.948� 0.022 178.17%
λ2 ¼ 10−4 0.021� 0.427 0.003� 0.096 1.041� 0.042 0.949� 0.026 13.01%

λ2 ¼ 2 × 10−4 −0.027� 0.388 0.009� 0.099 1.038� 0.053 0.953� 0.035 11.19%
λ1 ¼ 10−4 0.026� 0.328 0.001� 0.091 1.018� 0.051 0.948� 0.026 7.3%

λ1 ¼ 2 × 10−4 0.015� 0.361 −0.002� 0.087 1.022� 0.043 0.951� 0.032 8.73%

10−3 None 0.593� 1.892 0.001� 0.101 2.078� 0.172 0.951� 0.022 184.82%
λ2 ¼ 10−4 0.01� 0.413 0.01� 0.088 1.052� 0.044 0.949� 0.034 13.42%

λ2 ¼ 2 × 10−4 0.003� 0.413 0.001� 0.084 1.038� 0.04 0.947� 0.036 12.13%
λ1 ¼ 10−4 0.021� 0.322 −0.0� 0.087 1.012� 0.054 0.943� 0.036 6.45%

λ1 ¼ 2 × 10−4 −0.01� 0.362 0.01� 0.101 1.03� 0.053 0.95� 0.041 9.59%
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TABLE IV. Means and standard deviations for the biases bH0;q0 , posterior-width ratiosfH0;q0 and percentage increase inH0 uncertainty for
all combinations of batch size, learning rate and regularization in the no-selection case, using ½ntrain; nval� ¼ ½500000; 100000�.

NO SELECTION CASE

nbatch α Regularizer bH0
½km s−1 Mpc−1� bq0 fH0

σ fq0σ %σ̂H0

incr

TRAINING and VALIDATION parameters: ½ntrain; nval� ¼ ½500000; 100000�
100 10−4 None −0.063� 0.253 0.016� 0.065 0.969� 0.042 0.945� 0.038 0.3%

λ2 ¼ 10−4 −0.053� 0.193 0.018� 0.065 0.981� 0.047 0.951� 0.042 0.11%
λ2 ¼ 2 × 10−4 −0.073� 0.193 0.015� 0.061 0.979� 0.042 0.945� 0.038 −0.05%
λ1 ¼ 10−4 −0.073� 0.243 0.023� 0.062 0.97� 0.044 0.944� 0.038 0.13%

λ1 ¼ 2 × 10−4 −0.075� 0.254 0.006� 0.064 0.975� 0.038 0.943� 0.034 0.93%

5 × 10−4 None −0.061� 0.218 0.014� 0.071 0.978� 0.048 0.948� 0.04 0.35%
λ2 ¼ 10−4 −0.058� 0.222 0.015� 0.063 0.972� 0.045 0.945� 0.041 −0.18%

λ2 ¼ 2 × 10−4 −0.044� 0.224 0.016� 0.058 0.981� 0.049 0.945� 0.037 0.79%
λ1 ¼ 10−4 −0.032� 0.267 0.009� 0.067 0.968� 0.045 0.94� 0.041 0.57%

λ1 ¼ 2 × 10−4 −0.072� 0.293 0.024� 0.062 0.973� 0.043 0.947� 0.04 1.89%

10−3 None −0.058� 0.21 0.02� 0.058 0.973� 0.042 0.945� 0.04 −0.35%
λ2 ¼ 10−4 −0.066� 0.224 0.024� 0.063 0.979� 0.044 0.944� 0.035 0.54%

λ2 ¼ 2 × 10−4 −0.039� 0.252 0.022� 0.063 0.979� 0.047 0.946� 0.039 1.23%
λ1 ¼ 10−4 −0.074� 0.281 0.021� 0.062 0.98� 0.044 0.947� 0.038 2.14%

λ1 ¼ 2 × 10−4 −0.057� 0.3 0.014� 0.062 0.974� 0.044 0.946� 0.039 2.12%

500 10−4 None −0.034� 0.264 0.017� 0.065 0.974� 0.044 0.948� 0.042 1.15%
λ2 ¼ 10−4 −0.043� 0.193 0.017� 0.066 0.972� 0.041 0.944� 0.039 −0.77%

λ2 ¼ 2 × 10−4 −0.047� 0.196 0.016� 0.059 0.976� 0.044 0.945� 0.034 −0.37%
λ1 ¼ 10−4 −0.064� 0.225 0.012� 0.061 0.969� 0.041 0.947� 0.038 −0.41%

λ1 ¼ 2 × 10−4 −0.069� 0.246 0.022� 0.064 0.976� 0.044 0.945� 0.041 0.88%

5 × 10−4 None −0.052� 0.243 0.008� 0.06 0.974� 0.042 0.946� 0.04 0.54%
λ2 ¼ 10−4 −0.064� 0.208 0.016� 0.057 0.969� 0.04 0.942� 0.037 −0.79%

λ2 ¼ 2 × 10−4 −0.053� 0.208 0.015� 0.061 0.975� 0.046 0.944� 0.037 −0.15%
λ1 ¼ 10−4 −0.056� 0.249 0.022� 0.065 0.967� 0.039 0.944� 0.034 0.0%

λ1 ¼ 2 × 10−4 −0.057� 0.273 0.022� 0.07 0.974� 0.043 0.946� 0.038 1.37%

10−3 None −0.056� 0.227 0.019� 0.056 0.975� 0.054 0.944� 0.04 0.3%
λ2 ¼ 10−4 −0.062� 0.189 0.012� 0.06 0.979� 0.048 0.946� 0.035 −0.22%

λ2 ¼ 2 × 10−4 −0.044� 0.229 0.015� 0.066 0.982� 0.045 0.946� 0.04 0.96%
λ1 ¼ 10−4 −0.076� 0.27 0.014� 0.063 0.97� 0.04 0.946� 0.033 0.88%

λ1 ¼ 2 × 10−4 −0.078� 0.285 0.011� 0.064 0.974� 0.041 0.947� 0.037 1.73%
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TABLE V. Means and standard deviations for the biases bH0;q0 , posterior-width ratios fH0;q0 and percentage increase inH0 uncertainty
for all combinations of batch size, learning rate and regularization in the selection case, using ½ntrain; nval� ¼ ½5000; 2000�.

SELECTION CASE

nbatch α Regularizer bH0
½km s−1 Mpc−1� bq0 fH0

σ fq0σ %σ̂H0

incr

TRAINING and VALIDATION parameters: ½ntrain; nval� ¼ ½5000; 2000�
100 10−4 None −0.153� 1.714 0.014� 0.136 1.77� 0.139 1.019� 0.076 144.02%

λ2 ¼ 10−4 0.043� 0.403 0.02� 0.123 1.059� 0.044 1.012� 0.04 13.05%
λ2 ¼ 2 × 10−4 0.021� 0.426 0.016� 0.114 1.047� 0.037 1.013� 0.044 12.74%
λ1 ¼ 10−4 −0.015� 0.338 0.014� 0.115 1.013� 0.039 1.005� 0.044 6.53%

λ1 ¼ 2 × 10−4 −0.029� 0.365 0.008� 0.119 1.029� 0.038 1.008� 0.044 8.97%

5 × 10−4 None −0.309� 1.657 0.007� 0.126 1.838� 0.153 1.013� 0.032 145.28%
λ2 ¼ 10−4 0.059� 0.423 0.009� 0.116 1.018� 0.043 1.007� 0.057 9.95%

λ2 ¼ 2 × 10−4 −0.015� 0.4 0.022� 0.118 1.033� 0.041 1.009� 0.044 10.47%
λ1 ¼ 10−4 −0.02� 0.313 −0.001� 0.122 1.014� 0.041 1.005� 0.058 5.9%

λ1 ¼ 2 × 10−4 0.0� 0.393 0.003� 0.115 1.036� 0.038 1.009� 0.042 10.5%

10−3 None −0.006� 0.526 0.011� 0.132 1.055� 0.055 1.015� 0.089 17.38%
λ2 ¼ 10−4 −0.03� 0.408 0.011� 0.114 1.013� 0.044 1.005� 0.056 8.93%

λ2 ¼ 2 × 10−4 0.017� 0.387 0.02� 0.121 1.023� 0.046 1.009� 0.063 9.09%
λ1 ¼ 10−4 0.014� 0.357 0.008� 0.119 1.018� 0.042 1.006� 0.051 7.67%

λ1 ¼ 2 × 10−4 −0.003� 0.476 0.0� 0.12 1.055� 0.048 1.011� 0.056 15.32%

500 10−4 None 0.022� 1.961 0.005� 0.136 2.028� 0.176 1.005� 0.028 179.37%
λ2 ¼ 10−4 0.011� 0.455 0.016� 0.119 1.044� 0.035 1.009� 0.051 13.52%

λ2 ¼ 2 × 10−4 −0.009� 0.417 0.011� 0.114 1.056� 0.04 1.008� 0.048 13.25%
λ1 ¼ 10−4 −0.002� 0.334 0.019� 0.116 1.025� 0.04 1.01� 0.049 7.63%

λ1 ¼ 2 × 10−4 −0.018� 0.377 0.013� 0.125 1.033� 0.037 1.016� 0.03 9.66%

5 × 10−4 None 0.189� 2.115 0.027� 0.127 1.97� 0.134 1.017� 0.042 185.92%
λ2 ¼ 10−4 −0.039� 0.453 0.02� 0.12 1.048� 0.039 1.012� 0.056 13.75%

λ2 ¼ 2 × 10−4 0.011� 0.408 0.015� 0.119 1.039� 0.035 1.01� 0.046 11.34%
λ1 ¼ 10−4 0.001� 0.313 0.012� 0.128 1.025� 0.038 1.013� 0.036 6.99%

λ1 ¼ 2 × 10−4 −0.037� 0.359 0.014� 0.12 1.038� 0.044 1.01� 0.058 9.62%
10−3 None −0.082� 1.972 0.016� 0.117 2.027� 0.173 1.012� 0.031 180.05%

λ2 ¼ 10−4 −0.006� 0.451 0.011� 0.119 1.046� 0.036 1.005� 0.062 13.57%
λ2 ¼ 2 × 10−4 −0.027� 0.371 0.017� 0.124 1.046� 0.042 1.005� 0.058 10.71%
λ1 ¼ 10−4 0.051� 0.329 0.011� 0.137 1.019� 0.053 1.011� 0.058 6.91%

λ1 ¼ 2 × 10−4 0.004� 0.348 0.011� 0.113 1.027� 0.038 1.003� 0.05 8.2%
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