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Gravitational-wave cosmology began in 2017 with the observation of the gravitational waves emitted in
the merger of two neutron stars, and the coincident observation of the electromagnetic emission that
followed. Although only a 30% measurement of the Hubble constant was achieved, future observations
may yield more precise measurements either through other coincident events or through cross correlation of
gravitational-wave events with galaxy catalogs. Here, we implement a new way to measure the Hubble
constant without an electromagnetic counterpart and through the use of the binary-Love relations. These
relations govern the tidal deformabilities of neutron stars in an equation of state insensitive way.
Importantly, the Love relations depend on the component masses of the binary in the source frame. Since
the gravitational-wave phase and amplitude depend on the chirp mass in the observer (and hence redshifted)
frame, one can in principle combine the binary-Love relations with the gravitational-wave data to directly
measure the redshift, and thereby infer the value of the Hubble constant. We implement this approach in
both real and synthetic data through a Bayesian parameter estimation study in a range of observing
scenarios. We find that for the LIGO/Virgo/KAGRA design sensitivity era, this method results in a similar
measurement accuracy of the Hubble constant to those of current-day, dark-siren measurements. For third-
generation detectors, this accuracy improves to≲10%when combining measurements from binary neutron
star events in the LIGO Voyager era, and to ≲2% in the Cosmic Explorer era.

DOI: 10.1103/PhysRevD.104.083528

I. INTRODUCTION

The inference of cosmological parameters like the
Hubble constant, H0, using gravitational waves (GWs)
hinges on the standard siren approach [1,2]. The central
idea is to measure the luminosity distance, DL, from the
GW data while simultaneously identifying an electromag-
netic (EM) signal from the source. The independent
measurement of DL and the cosmological redshift, z, leads
to a measurement of H0. In the absence of a counterpart,
clustering ofH0 measurements from potential host galaxies
for a large sample of events also leads to a statistical
measurement ofH0 [3]. This idea found its first application
in the simultaneous panchromatic observations of GWs,
gamma rays, optical, and infrared radiation from the binary
neutron star (BNS) merger seen by the Advanced Laser
Interferometer Gravitational-wave Observatory (LIGO) [4]
and Advanced Virgo [5] detectors, GW170817 [6]. The
identification of the host galaxy, NGC 4993, led to an

independent measurement of H0 [7]. Also, the ∼16 deg2

sky localization led to a statistical measurement of H0,
agnostic of the host galaxy information [8]. Such indepen-
dent measurements are crucial in the light of the recent
tension in the value of H0 measured from observations of
the early and late-time universe [9].
A different approach of estimating the distance-redshift

relation, solely using GWs from merging BNS systems,
was first proposed by Messenger and Read [10]. Measuring
the redshift is challenging because while the amplitude
of the GW encodes information about DL, the mass
parameters are degenerate with the redshift, resulting in
the measurement of the redshifted mass at the detector
as opposed to the true source-frame mass, i.e., mdet ¼
ð1þ zÞmsource. However, matter effects in BNS inspirals,
characterized by the tidal deformability parameter, λ̄,
breaks this degeneracy since the tidal deformability is a
function of the source-frame mass, msource. This feature has
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been exploited in the literature via an expansion of λ̄ in
terms of msource [11–13]. However, the expansion coeffi-
cients are dependent on the Neutron Star (NS) equation of
state (EoS), which is uncertain. This implies that, in the
absence of a priori information about the EoS, the
expansion coefficients are free parameters in data analysis,
and extraction of the H0 is difficult.
This degeneracy, however, can be broken through a set of

universal relations discovered by Yagi and Yunes [14,15]
(hereafter YY17). Their work has shown that there exists
tight relations between these expansion coefficients that are

insensitive to the EoS. Using these so called λ̄ð0Þ0 − λ̄ðkÞ0

binary-Love relations, knowing one of the expansion

coefficient [which we call λ̄ð0Þ0 ] determines the others,
and this reduces the number of free parameters drastically.

Since the λ̄ð0Þ0 is universal, the measurements can be stacked
using data from gold-plated BNS events for which the
source frame mass, or equivalently the redshift, is known.
Subsequently, its value may be fixed to express λ̄ ¼
λ̄ðmsourceÞ for future BNS detections leading to a measure-
ment of msource, or equivalently the redshift, and thus H0.
In this paper, we use the YY17 prescription to construct a

λ̄ð0Þ0 − λ̄ðkÞ0 relation using EoSs that satisfy the current
constraint on the mass and radii of NSs from LIGO/
Virgo for GW170817 [16] and the same from by the
Neutron Star Interior Composition Explorer (NICER)
measurements of the millisecond pulsar, PSR J0030þ
0451 [17]. We then perform Bayesian parameter estimation
on GW170817 data, employing this relation to measure the

free coefficient, λ̄ð0Þ0 , appearing in the expansion. We then
analyze the prospects of measuring H0 by performing
Bayesian parameter estimation on a set of simulated
(synthetic) BNS signals across different detector eras.
While the H0 measurement from individual events may
not be very constraining due to the distance-inclination
degeneracy in GW parameter estimation, we show that by
combining the result from multiple events, the stacked
measurement of H0 converges to the true value. We find
that for the design sensitivity LIGO/Virgo/KAGRA/India
(HLVKI) era, the measurement accuracy is comparable
to the current dark siren measurements [18,19], or from
recent counterpart measurements, assuming the association
of GW190521 and ZTF19abanrhr, [20,21] shown in
Refs. [22,23]. This accuracy improves to ∼10% in the
Voyager era assuming Oð102Þ BNS events, and to ∼2% for
Oð103Þ detections in the Cosmic Explorer (CE) era.
Ultimately, the accuracy of the measurement of H0 will
be limited by systematic uncertainties in the binary-Love
method, and we study what limits these systematic uncer-
tainties place on future measurements of H0.
The organization of this paper is as follows. In Sec. II, we

summarize the universal binary-Love relations in brief. We

show the construction of the λ̄ð0Þ0 − λ̄ðkÞ0 relation for this

work. In Sec. III, we show our measurement for λ̄ð0Þ0 by
performing Bayesian parameter estimation on GW170817

data. In Sec. IV, we use the results of λ̄ð0Þ0 and simulated
BNS events across different generations of ground-based
detectors to show the prospects of measuring H0 using
multiple events. In Sec. V, we consider the systematic errors
that could arise in the measurement of H0 due to uncer-

tainty in measurement of λ̄ð0Þ0 , and from uncertainties in the

λ̄ð0Þ0 − λ̄ðkÞ0 relations. Finally, we conclude in Sec. VI. We
follow the conventions of Ref. [24], and when necessary,
use geometric units G ¼ 1 ¼ c.

II. BINARY-LOVE RELATIONS

The quasicircular inspiral of a compact binary system is
described under the post-Newtonian (PN) formalism [25],
where the system parameters, like masses and spins, appear
in the coefficients of the expansion at different PN orders.
While the GW signal from a BNS system has similar
morphology to an analogous binary black hole (BBH)
system during the early inspiral phase, strong gravitational
effects in the late inspiral stage deforms the NSs, leading to
additional multipolar deformations that enhances GW
emission and leads to an earlier merger [26]. The defor-
mation of the NS is characterized by the electric-type,
l ¼ 2, tidal deformability parameter, λ̄ ¼ ð2k2=3ÞC−5,
where C ¼ M=R is the compactness of a NS with mass
M and radius R, which therefore depends on the EoS,
and k2 is the relativistic Love number [27]. This tidal
deformation modifies the binding energy of the binary,
which in turn modifies the chirping rate, and therefore
the waveform phase, with finite-size effect appearing
first at 5PN order [26]. In a BNS system, the waveform
phase will have modifications that will depend on the tidal
deformability of each binary component, but there exist
certain EoS-insensitive relations that relate them. We
present them here in brief, and refer the interested reader
to YY17 for further details (see also [28] for a similar
EoS-insensitive relation between the tidal deformability of
each component).
While the internal composition of NSs is extremely

complex, certain relations among some observables, like
the moment of inertia, the quadrupole moment, and the
tidal deformability, are insensitive to the details of the
microphysics [29,30] (see Refs. [31,32] for reviews on
universal relations). In the context of GW astrophysics,
these imply certain binary-Love relations, presented
in YY17:
(1) A relation between the symmetric and antisymmetric

combination of the individual tidal deformabilities,
λ̄s ¼ ðλ̄1 þ λ̄2Þ=2 and λ̄a ¼ ðλ̄1 − λ̄2Þ=2.

(2) A relation between the waveform-tidal parameters Λ̄
and δΛ̄ appearing in 5PN and 6PN order respec-
tively.
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(3) A relation between the coefficients of the Taylor
expansion of the tidal deformability λ̄ðMÞ about
some mass m0 as a function of mass.

Here, we are concerned with the third item in this list, and

we will refer to it as the λ̄ð0Þ0 − λ̄ðkÞ0 relation.

The central idea of the λ̄ð0Þ0 − λ̄ðkÞ0 relation is to express
λ̄ðMÞ in terms of a Taylor expansion about a fiducial value,
M ¼ m0 as

λ̄ðMÞ ¼
X∞
k¼0

λ̄ðkÞ0

k!

�
1 −

M
m0

�
k
; ð1Þ

where λ̄ðkÞ0 ¼ ð−1Þkdkλ̄=dMk is evaluated at M ¼ m0. The

λ̄ð0Þ0 − λ̄ðkÞ0 relation states that λ̄ðkÞ0 can be written entirely in

terms of λ̄ð0Þ0 , and the resulting expression is insensitive to
the EoS (to fractional accuracy of about 10%).

The λ̄ð0Þ0 − λ̄ðkÞ0 relation can be evaluated for any tabulated
EoS, but as a Fermi estimate, we first consider the
simplified example of a polytropic EoS. For such an
EoS, the pressure (p) and energy density (ϵ) are related
via p ∝ ϵ1þ1=n, where n is the polytropic index. To leading
order in compactness, the tidal deformability is then given

by [30], λ̄ ∝ M−10=ð3−nÞ. The λ̄ð0Þ0 − λ̄ðkÞ0 relation in this case

then becomes, λ̄ðkÞ0 ¼ Gn;kλ̄
ð0Þ
0 , where we have defined

Gn;k ¼
Γðkþ 10

3−nÞ
Γð 10

3−nÞ
: ð2Þ

Thus, the binary-Love relations ensure that λ̄ðkÞ0 ¼ λ̄ðkÞ0 ðλ̄ð0Þ0 Þ
for k > 1, with the relation only dependent on n.
In the relativistic case and for more realistic EoSs,

the tidal deformability is obtained numerically, and the

λ̄ð0Þ0 − λ̄ðkÞ0 relation is obtained by fitting the numerical
simulations to an expression of the form [see Eq. (22)
of YY17]

λ̄ðkÞ0 ¼ Gn̄;kλ̄
ð0Þ
0

�
1þ

X3
i¼1

ai;kxi
�
; ð3Þ

where x ¼ ðλ̄ð0Þ0 Þ1=5, ai;k are numerical coefficients, and
Gn̄;k is defined in Eq. (2). Here, we will only consider an
expansion to k ¼ 3. This is sufficient to accurately re-
present λ̄ðMÞ in the range M ∈ ð1.2 M⊙; 1.5 M⊙Þ for
m0 ¼ 1.4 M⊙, which we will choose for the rest of this
work. The degree of universality deteriorates as k increases,
but the overall sum is still EoS insensitive to about 10% for
the mass range and m0 mentioned.
We rederive the fitting coefficients ai;k for a set of EoSs

that are consistent with recent LIGO/Virgo and NICER
observations (and the observation of ∼2 M⊙ neutron stars
[33–35]). For simplicity, we here consider the piecewise
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FIG. 1. Upper panel: Mass-radius relations for 29 piecewise
polytropic EoSs that are consistent with the LIGO/Virgo and
NICER observations to 68% confidence. Middle panel: λ̄ðkÞ0 ¼
λ̄ðkÞ0 ðλ̄ð0Þ0 Þ relations for the same set of EoSs, together with the fit

in thick lines. Observe that the λ̄ð0Þ0 − λ̄ðkÞ0 relations are EoS
insensitive and the fit recovers the average. Bottom panel:
Distribution of the fractional-residual errors from the fit for each
coefficient.
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polytropic representation of the EoS [36], restricting
attention only to those that have support in the 68% con-
fidence region in terms of mass and radii reported by LIGO/
Virgo in Ref. [16], and NICER in Ref. [17]. The upper and
middle panels of Fig. 1 show the mass-radius curves and

the λ̄ð0Þ0 − λ̄ðkÞ0 relation constructed with the 29 EoSs used in
this work. Using Eq. (3) to fit for the ai;k coefficients up to
k ¼ 3 yields the coefficients listed in Table I. These fitting

functions give us an EoS averaged λ̄ð0Þ0 − λ̄ðkÞ0 relation, as

one can see from the middle panel of Fig. 1. Note that λ̄ð0Þ0 is
still a free parameter that is to be constrained by observa-
tional data. We will here use this fit to parametrize the tidal
deformability and perform Bayesian parameter estimation

on GW170817 data to measure the constant λ̄ð0Þ0 .

III. λ̄ð0Þ0 FROM GW170817

The first step in estimating the Hubble parameter with

the binary-Love relations is to estimate λ̄ð0Þ0 with a con-
trolled event. We provide a brief review of Bayesian
inference. The aim of Bayesian inference is to obtain a
posterior probability density for the parameters describing
the signal, Θ, given the GW data dGW,

pðΘjdGWÞ ∝ pðdGWjΘÞpðΘÞ: ð4Þ

Here, pðdGWjΘÞ is the likelihood of the parameters and
pðΘÞ is the prior distribution. Gravitational waves from
compact binary coalescences of BBHs are described by 15
parameters. These contain the intrinsic parameters like
the masses (m1;2) and spin parameter three-vectors (a1;2),
and the extrinsic parameters like luminosity distance,
DL, inclination angle, ι, and so on (see, for example,
Refs. [37–41]). In the case of BNSs, matter effects enter the
waveform phase first at 5PN and then 6PN order via two
additional tidal deformability parameters, λ̄1;2, as

Ψtid ¼ −
3

128ηx5=2

�
39

2
Λ̄x5

þ
�
3115

64
Λ̄ −

6595

364

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
δΛ̄

�
x6 þOðx7Þ

�
; ð5Þ

where x ¼ ½πðm1 þm2Þf�2=3 is the PN expansion para-
meter, f is the GW frequency, and η ¼ m1m2=ðm1 þm2Þ2
is the symmetric mass-ratio. The expressions for Λ̄ and δΛ̄
have the form,

Λ̄ ¼ fðηÞ
�
λ̄1 þ λ̄2

2

�
þ gðηÞ

�
λ̄1 − λ̄2

2

�

δΛ̄ ¼ δfðηÞ
�
λ̄1 þ λ̄2

2

�
þ δgðηÞ

�
λ̄1 − λ̄2

2

�
; ð6Þ

where the exact expressions for ff; g; δf; δgg are given in
Sec. 2.2 of YY17. In our case, we are interested in
measuring the tidal deformability by using the parametri-
zation described in Eq. (1) and Eq. (3), but of course, all
waveform parameters must be searched over when sam-
pling the likelihood.

To obtain a measurement for λ̄ð0Þ0 , we perform Bayesian
parameter estimation on 128 s of 4 kHz strain data for
GW170817.1 For the model we use the IMRPhenomPv2_
NRTidal waveform [42], which is the same as that used for
parameter estimation in Ref. [43] and Ref. [44] (hereafter
LV19).2 In our analysis, however, the parameters λ̄1;2 are
not independent, but rather they are modeled through
the Taylor expansion in Eq. (1), with the EoS-insensitive

λ̄ð0Þ0 − λ̄ðkÞ0 relation of Eq. (3). This then means that ðΛ̄; δΛ̄Þ
[or equivalently ðλ̄1; λ̄2Þ] are not parameters of our model
anymore, but rather the model now only depends on a

single tidal deformability parameter, namely λ̄ð0Þ0 . The
model also depends on the detector-frame masses mdet1;2

and the redshift z, since the Taylor expansion of Eq. (1)
depends on the source-frame masses msource1;2. For the
GW170817 event, however, the redshift is known to high
accuracy due to identification of the host galaxy, and so this
is no longer a free parameter in this case.
The priors on the parameters of our model are chosen as

follows. For the extrinsic parameters, like the distance,
inclination, coalescence phase, sky position, and so on we
pick uninformative priors as those in LV19.3 Following
LV19, we sample on detector-frame component masses
setting the prior distribution of each component mass as the
marginalized posterior distribution obtained for the com-
ponent masses from LV19. We also repeat the analysis
putting a flat prior on the component masses as in LV19,
and find similar results. For the spins, we use the low-spin

TABLE I. Coefficients found by fitting the function in Eq. (3) to

the λ̄ðkÞ0 − λ̄ð0Þ0 relation data calculated from the 29 EoSs we
considered in this work. See middle (lower) panel of Fig. 1 for the
fit (residuals).

k 1 2 3

a1;k −0.349 −1.063 −1.820
a2;k 5.674 10.649 14.693
a3;k 0.296 1.800 2.741

1Taken from Gravitational-Wave Open Science Center
(GWOSC) https://www.gw-openscience.org/catalog/GWTC-1-
confident/single/GW170817/.

2Both references analyze the same duration of data with the
same settings, but the latter uses data with a different calibration.
The data from the latter is available on GWOSC, which is what
we use here.

3In LV19, the sky position was fixed to the location of the host
galaxy. Here, we leave them free too.
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prior from LV19 i.e., χi ≤ 0.05. For λ̄ð0Þ0 , we use a flat prior
in [0, 1000], which implies a prior on the individual tidal
deformabilities through Eq. (1) for a fixed redshift. The
implied priors on the individual tidal deformabilities are
shown in Appendix A. This step is different from LV19,
where a uniform prior was used on the individual tidal
deformabilities, λ̄1;2, independently. We fix the redshift of
the source at the value of the host galaxy NGC4993,
zNGC4993 ¼ 0.0099, which was determined through EM
observations reported in Ref. [45], and used in LV19. This
allows us to obtain the source-frame component masses,
msource1;2 ¼ mdet1;2=ð1þ zNGC4993Þ. The setup of the like-
lihood function and the sampling is done through the open-
source GW parameter estimation library, BILBY, [46]
using with the adaptive nested sampler, DYNESTY [47].

The resulting marginalized distribution for λ̄ð0Þ0 is shown in
Fig. 2. The distribution of the other parameters is presented
in Appendix B.

We find the value of λ̄ð0Þ0 ¼ 191þ113
−134 at 90% confidence.

In order to verify the measurement is robust against the

residual errors coming from the λ̄ð0Þ0 − λ̄ðkÞ0 relation fit in

Fig. 1, we repeat the analysis sampling in λ̄ð0Þ0 , but also

sampling from the residual error in the λ̄ðkÞ0 ðλ̄ð0Þ0 Þ relation
error, shown in the bottom panel of Fig. 1. In this case,

when sampling, for each throw of a λ̄ð0Þ0 sample, we obtain

the λ̄ðkÞ0 using the fit and a sample from the distribution of

residuals. The posterior density of λ̄ð0Þ0 obtained this way is
shown in Fig. 2 using the unfilled histogram. We find that
the result is not significantly affected (∼2% difference in
median values).4 Our results are consistent with the
measurement of λ̄ð1.4 M⊙Þ ¼ 190þ390

−120 obtained by a linear
expansion of λ̄ðmsourceÞm5

source about 1.4 M⊙, reported in
Ref. [16] following the approach in Refs. [12,13]. The
difference in the upper limit is caused due to differences in
prior implied on the tidal deformabilities. In Appendix A
we compare our prior with that in Ref. [16].

The first measurement of λ̄ð0Þ0 reported above is perhaps
not extremely constraining, but one expects future
events to allow for more accurate measurements. Future
observing runs of LIGO/Virgo/KAGRA with coincident
operation of next-generation telescope facilities, like the
Rubin Observatory [48], will yield many more multimes-

senger BNS events. We can think of λ̄ð0Þ0 as a variable which
parametrizes λ̄ as a function of the source mass as in
Eq. (1). Using the parametrization in Eq. (1) we can stack
data from multiple observations to yield an improved

measurement of λ̄ð0Þ0 . This implies that eventually, we will

be able to “fix” the value of λ̄ð0Þ0 , or marginalize over
the small measurement (and eventually systematic)
uncertainties.

IV. MEASURING H0 WITH LOVE

If λ̄ð0Þ0 has been estimated by a set of controlled
observations (like the GW170817 event), what else can
be done with additional future observations of BNS events?
Using the same parametrization in Eq. (1), we then see
that the tidal deformability terms of the waveform phase
are now only a function of msource, or equivalently of
the detector-frame masses and the redshift. Since the
detector-frame masses can be separately and tightly esti-
mated from lower-PN order terms, the tidal deformability
terms now yield information exclusively on the redshift
[10]. Therefore, any BNS signal, irrespective of being well
localized or having an associated counterpart, would result
in a direct measurement of the redshift from the tidal
deformability, and this can be used to infer the Hubble
constant, H0.
Let us then consider the prospects of measuring H0 with

future observations, beginning with a best-case scenario, in

which we assume λ̄ð0Þ0 has been strongly constrained. We
rewrite Eq. (1) as

λ̄1;2 ¼ λ̄ð0Þ0 þ
XN
k¼1

λ̄ðkÞ0

k!

�
1 −

mdet1;2=m0

1þ zðDL;H0;ΩÞ
�

k
; ð7Þ

FIG. 2. Posterior probability density for the λ̄ð0Þ0 parameter
measured from 128 s of strain data (4 kHz) for GW170817. The

λ̄ð0Þ0 − λ̄ðkÞ0 relations are used in the parametrization of the tidal
deformability in Eq. (1) with (unfilled) and without (filled) the
residual errors in the relations. The redshift is fixed at the host
galaxy zNGC4993 ¼ 0.0099, and therefore, the tidal deformability

is parametrized only by λ̄ð0Þ0 . The vertical dash-dot lines represent
the median, the vertical dashed lines represent the 90% confidence
interval, and the horizontal line is the prior density.

4Kullback–Leibler divergence is Oð10−2Þ, regardless of the
direction of the comparison.
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where Ω ¼ fΩig are the cosmological parameters
apart from H0, which we here, for simplicity, fix to a flat
ΛCDM model with an assumed “true” value of H0 ¼
70 km s−1=Mpc and matter to critical density ratio
Ωm0 ¼ 0.3. Hence, we can write z ¼ zðDL;H0Þ in
Eq. (7). The measurement ofDL comes from the waveform
amplitude, and thus the redshift, z, alone comes from
Eq. (7). This enables either direct sampling of H0, or
we can infer H0 in a postprocessing step after we have
sampled in z.
Even though the logic behind this idea is straightforward

and robust, its implementation for a single event is hindered
by measurement uncertainties and covariances. In particu-
lar, the distance-inclination degeneracy in the amplitude
implies that distance measurements peak at lower than true
values for face-on sources, and to greater than true values
for edge-on sources (see Refs. [3,49], for example). Thus,
H0 measurements from individual events may be multi-
modal and, in general, peaked away from the true value.
However, since all observations should depend on the same
H0 (assuming this quantity is truly a constant), one should
be able to stack multiple events to obtain an accurate
measurement of the Hubble constant.
We investigate how this stacking measurement could

take place in the future. We simulate synthetic GW signals
in three different networks of detectors: ground-based
observatories in the O5 era (HLVKI 5 detector network),
the Voyager era (HLI upgraded to Voyager þ VK), and the
Cosmic Explorer era (1 CE instrument at H). For simplicity,
we consider a set of BNS signals produced by systems with
a fixed source frame chirp mass, Mc ¼ 1.17 M⊙, and
mass-ratio, q ¼ 0.9, but at different distances, sky locations
and inclination angles. We assume the true EoS is such that

it would lead to a tidal deformability of λ̄ð1.4 M⊙Þ ¼
λ̄ð0Þ0 ¼ 200 for a 1.4 M⊙ NS, a value motivated from the
previous section.
The detectability of our synthetic catalog of signals is

estimated as follows. We first create an ensemble (several
thousands) of such fiducial systems, distributed uniformly
in sky location, orientation, and volume (∝ DL

2). We then
say that a fiducial system can be detected if the network
signal to noise ratio (SNR) is above eight using the
appropriate noise spectral densities for the detectors of
in each era. For the O5 era, we use the noise curve from
Ref. [50].5 For the Voyager and CE era, we use noise curves
from Ref. [51].6 Some of these noise curves are also present
as package data in BILBY. The distribution of detected
distances and inclination angles are shown in the right
panels of Fig. 3 for each era. We can see that the detected
distance distribution is peaked at a certain distance depend-
ing on the era, due to the combination of the prior

distribution and the detector sensitivity. We also see the
preference towards detecting face-on sources, as opposed
to edge-on sources at the same distance. However, the
marginalized distribution of detected inclination angles are
universal (see Fig. 4 of Ref. [52]). We have verified this for
each of our eras. We focus on distance and inclination
because of the distance-inclination degeneracy during
parameter recovery. The detectability, in general, also
depends on the mass-distribution of BNSs in the universe,
which we ignore for this work. But, this dependence is
weak due to the narrow distribution of BNSmasses [18,49].
In Appendix C, we show effect on distance recovery based
on the true inclination angle of the source.
During an observing run, we expect a sample of detected

BNS events, Ndet, whose true values of distance and
inclination are based on this distribution. In reality, the
value of Ndet will depend on the volumetric rate of BNS
mergers, and also the redshift evolution of the rate. Here,
we will simplify the problem, considering the following
representative cases Ndet ¼ 101; 102, and 103 correspond-
ing to expected numbers for the O5, Voyager, and CE
detector eras i.e., Ndet events are drawn from the distribu-
tions shown in Fig. 3. Since the computational cost of
performing Bayesian parameter estimation on all Ndet
systems is high, we instead simulate the fiducial source
at certain representative points on a grid of distances and
inclination angles. These are represented by the solid points
overlayed on the heatmap in Fig. 3. We then count each
representative run based on the relative probability of the
heatmap, pdet, normalizing the total count to Ndet. Thus,
Ndet is approximated as

Ndet ¼
X
α

Nα; ð8Þ

where the summation index runs over all the grid points,
and Nα ∝ pdetðDα

L; ι
αÞ. In Appendix D we consider alter-

nate physically motivated distance distributions from dif-
ferent rate models. We find that the choice does not affect
the answer.
The combined H0 posterior is given by

pðH0jfd1;…; dNdet
gÞ

∝ pðH0Þ
YNdet

i¼1

1

βðH0Þ
×
Z

½dΘiδ½z − ẑðDL;H0Þ�

× pðdijmdet1;2; a1;2;…; DL; z; λ̄
ð0Þ
0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Θi

ÞpðΘiÞ� ð9Þ

∝ pðH0Þ
YNdet

i¼1

LiðH0Þ ð10Þ

where Θi ¼ fmdet1;2; a1;2;…; DL; z; λ̄
ð0Þ
0 gi is the set of GW

parameters for an individual event now parametrized by λ̄ð0Þ0

5https://dcc.ligo.org/LIGO-T2000012/public.
6https://dcc.ligo.org/LIGO-T1500293/public.
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FIG. 3. Left: Individual (dotted) and stacked (solid) H0 likelihoods obtained for the representative runs in the O5 (top), Voyager
(middle) and CE (bottom) observing eras. Due to distance-inclination degeneracy, the individual posteriors are sometimes peaked away
from the true value. However, after stacking the posteriors based on a sample ofNdet events from the detected population, the distribution
converges to the true simulated value, shown by the vertical line, H0 ¼ 70 km s−1=Mpc. For illustration, we choose Ndet ¼ 10, 50, 70
for the top, middle, and bottom panels, corresponding to the O5, Voyager, and CE era, respectively. Right: The normalized number count
of of distances and inclinations of the systems that would be detectable in a specific observing era is shown by the contour map. This was
obtained by simulating an ensemble (several thousands) of binaries with ðm1; m2Þ ∼ ð1.42; 1.27ÞM⊙ distribution uniform in sky,
volume, and inclination, and requiring that each produce network SNR ≥ 8. The grid of overlayed points represents the true distance/
inclination of synthetic systems chosen for performing Bayesian parameter estimation. We observe that the H0 measurement converges
irrespective of the shape of grid as long as it covers the distances and inclinations that would be detected.
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and z in place of λ̄1;2. The likelihood function of a single
event is given by pðdijΘiÞ. The prior distributions for
individual parameters are given by pðΘiÞ. The constraint
between DL and z is represented by the δ-function term.
With this constraint, marginalizing over all parameters Θi,
leads to a posterior of H0 from an individual event.
Although, a explicit prior on H0 is not applied, any
reasonable prior on the distance and redshift for the
individual events results in an implied prior on H0,

βðH0Þ ∝
Z

dΘipðΘiÞδ½z − ẑðDL;H0Þ�: ð11Þ

By “dividing out” this prior in Eq. (9), we get the individual
semimarginalized likelihoods LiðH0Þ. These are then
multiplied together to obtain the joint H0 likelihood, and
the stacked posterior in Eq. (10). This “dividing out”
procedure guarantees that in the absence of any signal,
the likelihood is flat (see Appendix E). Equation (10) can
be simplified through our counting method to obtain

pðH0jfd1;…; dNdet
gÞ ∝ pðH0Þ

×

�
ðLα¼1ðH0Þ ×…|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Nα¼1 times

Þ × ðLα¼2ðH0Þ ×…|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Nα¼2 times

Þ ×…

�
; ð12Þ

where α ¼ 1; 2;… goes over the representative grid points
in distance and inclination, and each likelihood is counted
based on its relative probability of detection. In practice, the
implementation of Eq. (12) is simpler, so we adopt it
henceforth.
With all of this at hand, let us now estimate the accuracy

to which the Hubble parameter could be inferred in the
future as follows. For each of the representative grid points,
we inject a nonspinning waveform corresponding to the
fiducial system mentioned above in a noise realization
based on the observing scenario. We then perform Bayesian
parameter estimation using the PARALLEL_BILBY
inference library [53], and the same waveform model,
IMRPhenomPv2_NRTidal, for both injection and recovery.
We inject BNS waveforms represented at the grid points
above in a noise realization. We sample in the detector-
frame chirp mass and mass-ratio while ignoring spins since
they have a negligible effect in our analysis. We also keep
the sky location fixed to the injected value for simplicity.
We have checked that setting these free does not impact the
result. We also fix the coalescence time to the injected
value. This is motivated since in practice GW compact
binary search pipelines report the coalescence time. We put
a uniform in comoving-volume prior for the luminosity
distance, and a uniform in cosine prior for the inclination
angle. We also sample in the redshift, z, with a uniform
prior, convert the detector-frame quantities to source

frame, and use the λ̄ð0Þ0 − λ̄ðkÞ0 relations to obtain the tidal

deformabilities. More details about PARALLEL_BILBY
settings are give in Appendix F.
Given the analysis described above at each grid point,

we then obtain the individual H0 posteriors as a post-
processing step. First, we divide out the individual like-
lihoods by any implied prior due to the DL and z prior
combination mentioned in Eq. (11) to obtain the like-
lihoods Lα in Eq. (12). We have repeated this analysis by
sampling directly on H0 and using a flat prior on this
quantity, in which case the additional “dividing out” step is
not required (in both cases we obtain the same results).
With the individual likelihoods at hand we then multiply
the individual likelihoods together based on their relative
detection counts, normalizing to Ndet events. We then use
an overall flat prior on the stacked Hubble parameter to get
the stacked H0 posterior.
The results are shown in Fig. 3, where the upper middle

and lower panels represent the O5, Voyager, and CE eras.
The grid points in the right panel are the true DL and ι for
which we obtain representative Parameter Estimation (PE)
runs, and count them based on the relative values of the
heatmap at the grid points.7 We use a generic choice for the
representative points for the grid and find that our final
stacked posteriors are agnostic of the choice made (observe
the difference between the middle panel and the other two)
since we count the relative occurrence based on the
detectability of that particular injection. The individual
H0 likelihoods are shown in dashed curves in the left
panels. The likelihood, after combining Ndet events, is
shown with a thick, solid curve. Although the individual
likelihoods may be peaked away from the true value
(shown by the vertical line), they still have support at
the true value. Combining the results via stacking leads
to a stacked posterior that peaks at the injected value.
For illustration, in Fig. 3, the middle and bottom panels
use Ndet ¼ 50, 70 for Voyager and CE era, respectively.
To obtain the uncertainty in the measurement of the H0

constant with Ndet ¼ 102; 103 events, we use a ∼1=
ffiffiffiffiffiffiffiffi
Ndet

p
scaling and find thatΔH0=H0 ∼ 10% for Voyager and ∼2%
for CE respectively.

V. ROBUSTNESS OF FORECASTS

In the previous section we made several assumptions to
arrive at a forecast of how wellH0 could be measured in the
future through the stacking of multiple events. In this
section we investigate the robustness of these forecasts by
relaxing some of our assumptions. One of this assumptions

was that λ̄ð0Þ0 had been measured perfectly, i.e., we used a

fixed delta-function prior for λ̄ð0Þ0 peaked at the injected

7Repeating the same analysis to obtain the relative counts by
integrating over a small patch around each grid point does not
change our conclusions.
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value. Even though this is a justified assumption as more
BNS mergers with counterparts are discovered (since each

individual event will constrain the value of λ̄ð0Þ0 more and

more tightly), the posterior on λ̄ð0Þ0 will never be a delta
function centered at the true value and this will deteriorate
our measurements of H0. Another assumption was that
the binary-Love relations were exactly EoS independent.
Although these relations are indeed EoS insensitive, they
are not exactly universal, and this could lead to a systematic
bias in the estimates of H0. We will investigate each of
these issues in turn.

A. Effect of statistical uncertainty in λ̄ð0Þ0

Equation (7) tells us that the effect of statistical meas-

urement uncertainty in λ̄ð0Þ0 directly affects the measurement
of the redshift, z. To estimate this effect, we perform a
Fisher analysis similar to that of Ref. [10]. For the signal
model we use a restricted post-Newtonian(PN) waveform,
where we include terms up to 3.5 PN for the point particle
contribution [54] and up to 7.5 PN in the tidal contribution
in the phase of the waveform [11]. We parametrize our
waveform as

h̃ðfÞ ¼ h̃ðf;A;Mc; η; DL; tc;ϕc; λ̄
ð0Þ
0 ; zÞ; ð13Þ

where tc and ϕc are the coalescence time and phase and A
is the amplitude of the waveform (similar to Ref. [10]). We
parametrize the tidal piece of the waveform using the
parametrization mentioned in Eq. (1). We use the above

signal model and a Gaussian prior on λ̄ð0Þ0 with few choices

of standard deviation to see how the width in the λ̄ð0Þ0 prior
affects the accuracy in the extraction of the redshift z. The

injected value of λ̄ð0Þ0 is equal to 200. The result for the
fractional uncertainty in redshift is shown in the top panel
of Fig. 4. We observe a similar trend in the fractional error

in recovery of the redshift as Ref. [10] (the δλ̄ð0Þ0 ¼ 0 case).
When we have a measurement uncertainty, represented by

the δλ̄ð0Þ0 ¼ 10, 30 cases, we find that it does not affect the
measurement uncertainty of the redshift at larger distances.
We note, however, that the Fisher approximation holds true
only in the high signal-to-noise limit. In the top panel of
Fig. 4 we use a value of SNR≳ 30, shown by the shading,
as representing the region where the Fisher approximation
is valid.
To verify these Fisher estimates, we repeat some of the

representative, parameter-estimation runs in the CE era

using a Gaussian prior on λ̄ð0Þ0 , around the true value of 200
with a standard deviation of 30. This would correspond to

∼15% statistical uncertainty from the value of λ̄ð0Þ0 ¼ 200.
We show the fractional uncertainty in H0, DL, and z in the
bottom panel of Fig. 4. In this case we mean 90% intervals
by Δz;ΔDL;ΔH0. We observe that the redshift error trends

from the full parameter-estimation runs are in agreement
with the trends of the Fisher estimates. In particular, the
fractional error in H0 does not change significantly, even

when we include a Gaussian prior in λ̄ð0Þ0 . This analysis also
agrees with the Fisher uncertainties reported in Messenger
and Read. Given these results, we do not expect that a

prior statistical uncertainty in the measurement of λ̄ð0Þ0 will
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FIG. 4. Top Panel: The fractional error in z as a function of the

width in λ̄ð0Þ0 prior obtained using Fisher analysis on the model in
Eq. (13). We see that the fractional uncertainty in z follows the

trends found in Ref. [10] (analogous to the δλ̄ð0Þ0 ¼ 0 case). We
see that, the fractional error in redshift does not change

significantly with change in the width of λ̄ð0Þ0 prior at large
distances from the source. The Fisher approximation is however
valid in the high SNR regime, which we assume to be the region
of SNR≳ 30 shown by the shading. We find similar trends from
Bayesian parameter estimation results shown in the bottom panel.
Bottom Panel: Fractional statistical uncertainty in the measure-
ment of the redshift, z, the luminosity distance,DL, and H0 when

using a Gaussian prior on λ̄ð0Þ0 versus when using a δ-function
prior (fixed) are shown for a few representative parameter
estimation runs in the CE era.
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significantly affect the final H0 measurement, especially
since most detections will be at larger distances in the third-
generation detector era.

B. Effect of a systematic bias in λ̄ð0Þ0

Following Eq. (7), a systematic bias in the measurement

of λ̄ð0Þ0 will lead to a biased measurement of z, and hence a
bias in the inferred value of H0. We can estimate this in
the following way. Assume first that there is no bias in
the measurement of quantities that depend directly on the
signal, like masses and tidal deformabilities. If so, any
systematic bias in H0 will be solely due to an induced bias

in z due to the bias in λ̄ð0Þ0 given the parametrization in

Eq. (7). If one considers then a systematic bias shift δλ̄ð0Þ0 ,
one finds from Eq. (7) that

δλ̄ ¼ δλ̄ð0Þ0 þ δ

�X3
k¼1

λ̄ðkÞ0

k!

�
1 −

mdet=m0

1þ z

�
k
�
: ð14Þ

A covariance then arises between δH0 and δλ̄
ð0Þ
0 that can be

explored by setting δλ̄ ¼ 0 ¼ δmdet. The quantity δH0 ¼
ðδH0=δλ̄

ð0Þ
0 Þδλ̄ð0Þ0 is plotted in Fig. 5 with δλ̄ð0Þ0 ¼ 30, where

the upper (lower) limits of the shading correspond to
msource ¼ 1.3ð1.5ÞM⊙. Observe that the induced error in
H0 is much smaller than any statistical error reported
earlier.
In order to verify this estimate, we repeat some of the

representative parameter estimation studies, but this time
with models that either have a delta-function or a Gaussian
prior that are both peaked at a shifted location of

λ̄ð0Þ0 ¼ 230. With these priors, the redshift measurement
shifts from its true values. An example is shown in the
top panel of Fig. 5 where we observe that the recovered
redshift is systematically lower for the case when we

use the δðλ̄ð0Þ0 − 230Þ prior. The distance measurement is
unchanged since its information comes from the amplitude

which is not affect due to a biased λ̄ð0Þ0 measurement. The
shift in z shows up as a bias in H0. We perform parameter
estimation for a few more such injections at different
distances with this shifted prior and simply use the differ-
ence in means as a benchmark for a systematic error. In the
bottom panel of Fig. 5 we denote this shift in the means
using the dotted line with filled circle markers. We find that
it roughly follows the analytic trend from Eq. (14), shown
by the shaded region in the bottom panel of Fig. 5.
In reality, we expect the total uncertainty to be more a

combination of statistical and systematic, but as more
events are stacked, the statistical error will decrease (as
1=

ffiffiffiffiffiffiffiffi
Ndet

p
or faster), while the systematic error will not. This

then means the latter acts as an uncertainty floor that we
must contend with when extracting H0. One can then
roughly determine how many detections would be needed
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FIG. 5. Top panel: Comparison of distance, redshift, and H0

measurements for an example parameter estimation run injected
at a DL ¼ 2 Gpc in the CE era. Two cases of recovery are

shown—one using a prior at the true value δðλ̄ð0Þ0 − 200Þ and

another shifted δðλ̄ð0Þ0 − 230Þ prior. We observe no significant
change in the distance recovery, but a systematic shift in the
recovery of the redshift; the latter impacts the H0 measurement.
Bottom panel: The difference in means of the H0 measurements
between the true and shifted cases by doing a few more parameter
estimation runs as above. This is shown by the dotted line with
filled circles. We repeat the runs, putting a Gaussian prior with

standard deviation of 30 for λ̄ð0Þ0 , centered at the true value of 200,
and plot half of the 90% credible interval for H0 in dotted line
with a plus marker. We repeat one more time with the same width
but now centered at 230, and plot half credible region in using
dotted lines with inverted triangles. We find that the credible

region is not affected by a systematic shift in λ̄ð0Þ0 . Therefore, we
consider the former, and show improvements (∝ 1=

ffiffiffiffiffiffiffiffi
Ndet

p
) as we

increase the number of detections, using solid lines. Observe that
for Ndet ∼ 30, the statistical improvement hits the boundary of
systematic error, shown in blue. We also show the analytical
estimate for the systematic error from Eq. (14) using the shading,
which roughly agrees with the parameter estimation runs.
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to reach this floor. In Fig. 5 we consider half of the
90% confidence interval of the H0 measurement for our
runs here (shown in dotted lines with inverted triangle and
plus markers) as the statistical uncertainty, and consider an
improvement by 1=

ffiffiffiffiffiffiffiffi
Ndet

p
for Ndet ¼ 10, 30 represented by

solid lines in the figure. We see then that the statistical error
will become smaller than the systematic error after we have
stacked Ndet > 30 events. However, it is to be noted that
this is only illustrated as an example where there is a
systematic bias of 30 from the true value of 200 when

measuring λ̄ð0Þ0 .

C. Effect of uncertainty in binary-Love relations

We end this section with an estimate of the systematic
error in the inference of H0 induced by our assumption that
the binary-Love relations are exact and EoS independent. In
order to arrive at a rough estimate, we consider how a bias

in λ̄ðkÞ0 , given a value of λ̄ð0Þ0 , would affect our measurements
of H0. In order to separate this effect from those discussed

in the previous subsections, we assume now that λ̄ð0Þ0 has
been measured perfectly. With this in mind, the bias in the

λ̄ðkÞ0 for k ≥ 1 inside the summation in Eq. (14) leads to a
bias in the inferred redshift and hence a bias inH0. This can
be estimated by taking a variation of the individual terms as

δ

�
λ̄ðkÞ0

k!

�
1 −

mdet=m0

1þ z

�
k
�
¼ 0: ð15Þ

This expression can be solved for δH0=δλ̄
ðkÞ
0 and multiplied

by δλ̄ðkÞ0 to obtain the bias in H0. This is shown in Fig. 6.
Here, we choose the residuals for the MPA1 EoS as the

values for δλ̄ðkÞ0 ; k ≥ 1. Observe that the systematic error
introduced in the extraction of H0 is much smaller than the
statistical error. From this we conclude that only after more
than a certain number of events are stacked (∼30 in this
case), will this systematic error be of any importance.
Observe also that the systematic error due to the binary-
Love relations is smaller for the higher-order terms in the
Taylor expansion.

VI. CONCLUSION

This work demonstrates yet another application of
universal relations in NSs. Following the proposition by
Messenger and Read [10], previous attempts at measuring
the distance-redshift relation solely using GWs have relied
on the knowledge of the specific NS EoS.8 The expansion
of the tidal deformability in terms of the source mass is
particularly interesting since it breaks the degeneracy
between GW frequency and redshift. However, in absence
of a priori EoS information, all of the expansion coef-

ficients are free parameters. The λ̄ð0Þ0 − λ̄ðkÞ0 relations greatly
constrain this degree of freedom. By employing these
relations, knowing only a single coefficient determines
the rest. This can be particularly useful for setting physi-
cally motivated priors on the tidal deformability. In GW
astrophysics, previous literature has considered putting flat
priors on λ̄1;2 or Λ̄. However, another option which is a
physically motivated prior is an uninformative prior on the

free universal expansion coefficient, λ̄ð0Þ0 , which in turn
restricts the priors on λ̄1;2, or Λ̄. In this work, we employ
this technique to GW170817 strain data, and obtain the
measurement of λ̄ð1.4 M⊙Þ that is consistent with previous
measurements by the LIGO/Virgo collaboration.

The advantage of using the λ̄ð0Þ0 − λ̄ðkÞ0 relations is that the
tidal deformability is only parametrized by two quantities;

λ̄ð0Þ0 and msource (or equivalently, z). Future multimessenger
observations of GWs from BNSs with simultaneous
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FIG. 6. An analytic estimate of the bias in H0 caused by
assuming the nonuniversality of the binary-Love relations (see
Sec. V C). As an example, here we consider the true EoS to be
MPA1 which has the largest residual among the 29 EoSs from the
fit in Eq. (3). We see that the error due to loss of universality

reduces for λ̄ðkÞ0 as we increase k.

8For other techniques that use population properties see
Refs. [55–57].
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identification of the redshift would lead to measurements of

λ̄ð0Þ0 that can be combined to give a constrained measure-
ment for this fundamental quantity. Such observations are
well motivated based on forecasting studies of different
observing scenarios of GW observations [50] combined
with development of current and next-generation synoptic
surveys, and cyber-infrastructure developments.9 With a

constraint on λ̄ð0Þ0 , the use case can be flipped to now
measure the redshift of BNS signals from the tidal
deformability measurements. This is advantageous since
the method does not rely on any prompt follow-up
operations, and is also free from selection effect of host
galaxy identification or galaxy-catalog incompleteness that
has been used in the literature till date.
We demonstrate this technique of measuring the

Hubble constant, H0, using a synthetic population of
detected NS binaries. We also analyze the impact of
error in measurement of H0 due to the statistical and
systematic errors in this prescription. However, aside
from GW observations constraining allowed NS EoSs,
there are other missions which are also putting stringent
measurement of the mass and radii of NSs. Recently, the
NICER team reported the discovery of x-ray pulses
from massive millisecond pulsars, PSR J0740þ 6620
and PSR J1614-2230 [58]. The data from PSR J0740þ
6620 has been used to measure the mass-radius relation
of the NS [59–61]. Such measurements are expected
to rule out representative EoSs from the literature that
are inconsistent with observables, further reducing the

uncertainty in the λ̄ð0Þ0 − λ̄ðkÞ0 relations presented here.
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APPENDIX A: IMPLIED PRIOR
ON λ̄1;2 BY λ̄ð0Þ0

In Sec. III, we did not set an explicit prior on
the individual tidal deformabilities, λ̄1;2 independently.
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FIG. 7. The implied (marginal) priors on the individual tidal
deformability parameters due to the uniform prior in λ̄ð0Þ0 in
Sec. III. The prior on λ̄1 is shown in the hatched histogram, and λ̄2
is shown in the filled histogram. The λ̄ð0Þ0 prior is shown in the
unfilled histogram.9For example, SCiMMA (https://scimma.org/).
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However, the uniform prior on the λ̄ð0Þ0 parameter
along with the prior on the individual compo-
nent masses imply a prior on the individual tidal
deformabilities, λ̄1;2. We show this in Fig. 7. It should
be noted that there are correlations between the two
tidal deformabilities based on the priors on the masses.
We show this in Fig. 8. On the left panel therein, we
see the correlation between the λ̄1;2. Here, for the mass
priors, we use the same mass priors as Sec. III. The
correlation is motivated from the fact that in the limit of
equal mass components, we expect the tidal deform-
abilities to be equal. We also note that the prior implied
in this work differs from that used in Ref. [16] where
instead the symmetric tidal deformability, λ̄s ¼ ðλ̄1 þ λ̄2Þ=2
was sampled uniformly, and then λ̄a ¼ ðλ̄1 − λ̄2Þ=2 was
obtained using another universal relation, λ̄a ¼ λ̄aðλ̄s; qÞ,
reported in YY17. We reproduce the implied prior obtained
using the latter technique in the right panel of Fig. 8. We

attributed the differences in the upper limit value for λ̄ð0Þ0

between this work and Ref. [16] (mentioned in Sec. III) as
being due to the difference in priors.

APPENDIX B: PARAMETER ESTIMATION
FROM GW170817 DATA

In Sec. II we showed the marginalized posterior on

the universal quantity, λ̄ð0Þ0 , from performing Bayesian
parameter estimation. Here, we show pair plots and
marginalized distributions (corner plot) of some of the
other parameters in Fig. 9. The priors on the masses are
the marginalized posterior of the detector-frame values
reported in GWTC-1. For the luminosity distance, we use
a uniform in comoving volume up to 75 Mpc. For the
spins, we use the low-spin prior from GWTC-1. The
bottom right block is the same as Fig. 2 in the main body
of the text. For the BILBY configuration we use the
nested sampling algorithm, DYNESTY, with number of
live points nlive = 1500, and number of autocorre-
lation lengths to reject before accepting a new point,
nact = 10. These settings are motivated from settings
used in the validation of BILBY against GWTC-1
events [66].
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FIG. 8. Left panel: Nonmarginalized version of Fig. 7. Here, we have used the parameterization using λ̄ð0Þ0 − λ̄ðkÞ0 relations from Sec. II.
Observe the correlation between λ̄1;2, which is expected due to the prior information about the masses when imposing a common EoS.
Right panel: The prior on implied λ̄1;2 when using the universal relation between the symmetric and anti-symmetric tidal deformability,
λ̄s − λ̄a, relations from YY17. This was used in the EoS-insensitive results reported previously in Ref. [16].
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APPENDIX C: TRENDS IN H0 RECOVERY
WITH INCLINATION

In this section we illustrate how the inclination angle
affects the distance recovery which impacts the posterior of
H0. In Fig. 10, we show the distance, redshift, and H0

recovery considering injections at a fixed distance but

varying inclination angles. We observe that the recovered
distance has support for larger values as the true inclination
angle increases. This is expected since edge-on sources
have lower SNR compared to face-on sources, and there-
fore are degenerate with a larger distance recovery. On the
other hand, since the redshift is recovered from the phase of
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FIG. 9. Extended (corner) plot showing pair and marginal parameters from performing Bayesian parameter estimation on GW170817
data discussed in Sec. III. The parametrization of the tidal deformabilities follows Eq. (1). The redshift of the source is fixed to 0.0099.
The bottom right posterior for λ̄ð0Þ0 is the same as Fig. 2 in the main text. We show the distribution of parameters in both cases—when
using the fit in Eq. (1) directly and when including the residual errors from the fit mentioned in Sec. II.
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the waveform, it is not affected. This implies that the H0

recovery is affected in the opposite sense, having support
for higher than true values for face-on sources and vice
versa. However, in all cases, there is support for the true
value of 70 km s−1=Mpc.

APPENDIX D: CONSIDERING ALTERNATIVE
REDSHIFT PRIORS

In this Appendix we show the effect of using alternative
choices for distances/redshift compared to distributing
them uniformly in volume, ∝ D2

L, used in the main body
of the text for Fig. 3. We consider the Cosmic Explorer
example from Sec. IV. We consider two cases; (1) redshift
distribution such that the rate is uniform in comoving
volume, and (2) it follows the cosmic star formation history
[following Eq. 15 from Ref. [67]]. We reweight the
luminosity distance of recovered binary systems in
Sec. IV using the two priors as shown in Fig. 11. For
Bayesian parameter estimation, we consider the same
representative distance/inclination gridpoints as in the
Cosmic Explorer panel of Fig. 3, but count them based
on the reweighted heatmap in Fig. 11. We find that the
combined H0 measurement is not affected by the choice of
the priors. We also would like to note that while the redshift
evolution of the BBH rate has been modeled [68], the BNS

rate has not been constrained strongly due to lack of BNS
observations and their relative low distances compared to
BBHs. Hence, we feel that our choice made here is
justified. The analysis can be redone as further constraints
are put on the same.

APPENDIX E: REWEIGHTING THE H0
POSTERIOR

In Sec. IV we employ the λ̄ð0Þ0 − λ̄ðkÞ0 relation, to para-
metrize the tidal deformability in terms of the redshift z.
Therefore, one can either sample in z, or with the other
cosmological parameters fixed in a ΛCDM universe,
sample directly in the H0. In the former case, putting a
prior on z and the luminosity distance, DL, implies a prior
onH0, while in the latter, we directly put a prior on the H0.
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FIG. 10. This is an example ofDL, z, andH0 measurements for
different combinations of the true inclination angle, θJN , at a fixed
distance of 3 Gpc in the Cosmic Explorer era. Note that with
increasing true inclination angle there is increasing support for
larger distance values. This is expected since a larger inclination
implies a lower injected amplitude, which is recovered as a larger
distance. The redshift measurement is not affected since it comes
from the phase of the waveform.
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FIG. 11. Upper panel: The combined measurement of the H0,
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Bottom panel: The contour plot showing the normalized number
counts similar to Fig. 3 for the two alternative priors. We observe
that the combined measurement ofH0 is not significantly affected
due to the prior on redshift.
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In either case, when combining multiple observations, we
need to multiply the likelihoods, dividing out by any
imposed or implied prior. In practice, putting a uniform
prior when sampling (ensuring that the posterior does not
rail against the prior boundaries) is equivalent of the
likelihood up to a constant factor. We illustrate this using
a low signal to noise ratio (SNR ∼ 1) event. We put a prior
onDL that is uniform in comoving volume up to 5 Gpc, and
a uniform prior on redshift ∈ ½0; 0.5�. The implied prior on
H0 due to this prior choice is shown in Fig. 12 by the solid,
unfilled histogram. Due to the low SNR of the injection in
this case, we expect the posterior to be similar to the prior
onH0. To obtain the likelihood we need to divide out by the
prior or reweight the samples such that the new prior onH0

is flat. In practice this is done by binning the posterior
samples and weighting them by the inverse count of the
prior distribution. The new reweighted posterior is shown
by the hatched histogram. As expected, this measurement is
uninformative i.e., the reweighted posterior, which in this
case is the likelihood, is flat.

APPENDIX F: PARALLEL_BILBY
CONFIGURATION FOR BNS SIMULATIONS

For Sec. IV, we make use of the PARALLEL_BILBY
framework [53] which is an extension of BILBY to scale
out the analysis using message passing interface (MPI)12 to
an entire high-performance cluster. We use a fiducial binary
with a source-frame chirp mass of Mc ¼ 1.17 M⊙ and
mass-ratio, q ¼ 0.9, for all of our synthetic injections.
The signal duration is 128 s. While BNS signals will last
much longer during the CE era, the 5PN tidal terms only
become pronounced close to merger. The injected red-
shifted chirp mass is obtained as, ð1þ zinjÞMc

inj, where
zinj is determined from the injected luminosity dis-
tance that assumed true flat-ΛCDMðH0 ¼ 70 km s−1=
Mpc;Ωm0 ¼ 0.3Þ cosmology. For sampling, we use a prior
that is uniform in detector-frame chirp mass between
ð1þ zinjÞMc

inj � 0.1 M⊙, and a prior uniform in mass-
ratio ∈ ½0.65; 1�. We ignore spins (set them to zero), and use
delta function priors at zero on spin when sampling. We
also fix the sky location of the source. The prior for distance
is uniform in comoving volume up to twice the injected
distance. We use a stationary Gaussian-noise realization for
each of our detector era. For the O5 and CE results in Fig. 3,
we impose a uniform prior on the redshift, and get the
individual likelihoods using the technique mentioned in
Appendix E. For the Voyager results, we sample directly in
H0 using a uniform prior ∈ ½1; 300� km s−1=Mpc.
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