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In this work we revisit constraints on k-inflation with a Dirac-Born-Infeld (DBI) kinetic term and a
power-law kinetic term from reheating. For the DBI kinetic term we choose monomial potentials, V ∝ ϕn

with n ¼ 2=3, 1, 2, and 4, and natural inflaton potential, and for the power-law kinetic term we choose
quadratic, quartic, and exponential potentials. The phase of reheating can be parametrized in terms of the
reheating temperature, Tre, the number of e-folds during reheating Nre, and the effective equation of state
during reheating wre. These parameters can be related to the spectral index ns and other inflationary
parameters depending on the choice of inflaton kinetic term and potential. By demanding that wre should
have a finite range and Tre should be above the electroweak scale, one can obtain bounds on ns that can
provide bounds on the tensor-to-scalar ratio, r. We find, for k-inflation with a DBI kinetic term, and
quadratic and quartic potentials, that the upper bound on r for the physically plausible value of 0 ≤
wre ≤ 0.25 is slightly larger than the Planck 2018 and BICEP2/Keck array bound, and for n ¼ 2=3 and 1,
the reheating equation of state should be less than 0 to satisfy Planck 2018 joint constraints on ns and r.
However, natural inflation with the DBI kinetic term is compatible with Planck 2018 bounds on r and joint
constraints on ns and r for the physically plausible range 0 ≤ wre ≤ 0.25. The quadratic and quartic
potential with a power-law kinetic term are also compatible with Planck 2018 joint constraints on ns and r
for 0 ≤ wre ≤ 1. However, for an exponential potential with a power-law kinetic term, the equation of state
during reheating, wre, should be greater than 1 for r − ns predictions to lie within 68% C.L. of joint
constraints on ns and r from Planck 2018 observations.
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I. INTRODUCTION

The idea of inflation [1] is now awell-accepted solution to
the horizon and flatness problem of big bang cosmology. It
also provides seeds for anisotropy of cosmic microwave
background and structures in the Universe [2–4]. The
predictions of inflation, i.e., nearly scale-invariant,
Gaussian and adiabatic density perturbations are confirmed
by the various cosmic microwave background (CMB)
observations such as COBE [5] WMAP [6], Planck [7]
etc. In the standard scenario the potential energy of a scalar
field, named as inflaton, dominates the energy density of the
Universe during inflation and provides quasiexponential
expansion. Inflaton rolls slowly through its potential during
inflation, and the quantum fluctuations in this field,which are
coupled to the metric fluctuations, generate the primordial
density perturbations (scalar perturbations). The vacuum
fluctuations in the tensorial part of the metric generated
during inflation are responsible for the primordial gravita-
tional waves (tensor perturbations). The power spectra for
scalar and tensor perturbations generated during inflation
depend on the inflaton potential, which can be obtained from
particle physics models and string theory. Many models of
inflation have been explored in recent years (see [8] for
details). Although the predictions of inflation are in excellent

agreement with the CMB observations, we still lack a unique
model. Themost popular quadratic and quartic potentials are
ruled out by recent Planck observations [7] as they give a
large tensor to scalar ratio.
There is an alternative to the standard scenario of

inflation, named as k-inflation [9,10], where inflation is
achieved by the nonstandard kinetic term of the inflaton.
The nonstandard kinetic term in the action of the inflaton
can have monomial and polynomial forms [9,11] or a
Dirac-Born-Infield (DBI) form [12], which arises in string
theory [13–16] (see [17–20] for various choices of non-
cannonical kinetic terms and potentials derived from
string theory). In [21–23] it was shown that the tensor
to scalar ratio can be lowered for quadratic and quartic
potentials with a noncanonical kinetic term. k-inflation
with the pseudo-Nambu-Goldstone boson (PNGB) has
also been studied in [21,24,25] and it was shown that
natural inflation with a noncanonical kinetic term is
compatible with the Planck and CMB observations.
Power-law kinetic terms with an exponential potential
have also been studied in [23] and it was found that this
model is also compatible with the CMB observations. In
[26] the power-law kinetic term has also been studied with
deformed steepness exponential potentials.
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Several generalizations of k-inflation have been studied
in the literature such as the inflaton with nonminimal
coupling with Ricci scalar [27,28], the inflaton coupled
with Gauss-Bonnet invariant [29], and k-inflation with
fðRÞ gravity [30]. k-inflation with constant-roll conditions
has also been studied in [31]. It has been shown in [32] that
the action of R2-inflation in the framework of Palatini
gravity resembles k-inflation models in the Einstein frame.
All these models of noncanonical inflation are in agree-

ment with the current bounds on the spectral index and the
tensor to scalar ratio from Planck 2018 observations, and
there is no unique choice for noncanonical kinetic term and
inflaton potential.
At the end of inflation, the Universe reaches a cold and

highly nonthermal state without any matter content.
However, for baryogenesis and big bang nucleosynthesis
the Universe needs to be in a thermalized state at a very high
temperature. This is achieved by reheating a transition phase
between the end of inflation and start of the radiation
dominated era. During this phase the inflaton energy is
transferred to radiation, baryons, and leptons, leaving the
Universe at a reheating temperature Tre at the onset of
radiation epoch. In the simplest models of reheating [33–35]
inflaton oscillates around the minimum of its potential and
decays perturbatively into the standard model particles
through various interactions of inflaton with other scalars
and fermions. However, perturbative reheating is model
dependent and cannot give a correct description of the
process at various states; it also does not take into account
the coherent nature of the inflaton field [36,37]. In other
scenarios the reheating is preceded by preheating, during
which the classical inflaton field decays into massive
particles via nonperturbative processes such as parametric
resonance [38,39], tachyonic instability [40,41], and instant
preheating [42]. After preheating these massive particles
decay perturbatively into the standard model particles, which
are then thermalized and the Universe enters into radiation
dominated era with a blackbody spectrum at a temperature
Tre, called the reheating temperature.
Although the physical processes involved during reheat-

ing are complex, this phase can be parametrized in terms of
three parameters; reheating temperature Tre, the effective
equation of state of matter during reheating wre, and
duration of reheating that is given in terms of the number
of e-foldings Nre. The reheating temperature cannot be
constrained from CMB and LSS observations, but it is
assumed that Tre should be above the electroweak scale so
that weak-scale dark matter can be produced. In a more
conservative approach Tre should be above 10 MeV for
successful big bang nucleosynthesis. The reheating temper-
ature can be as low as 2.5 MeV to 4 MeV, for late-time
entropy production by massive particle decay [43,44]. By
considering instant reheating we can also put an upper
bound on the reheating temperature Tre to be of the order of
the scale of inflation, which is 1016 GeV for current upper

bounds on tensor to scalar ratio from Planck. The second
parameter of reheating is an effective equation of state wre
representing the evolution of energy density of the cosmic
fluid during reheating. This parameter is, in general, time
dependent and its value changes from − 1

3
to 1

3
from the end

of inflation to the onset of the radiation dominated era. For
reheating occurring due to the perturbative decay of the
massive inflaton, wre is 0 and for instant reheating it is 1

3
.

The evolution of the equation of state during preheating and
the early thermalization state was studied in [45] by using
lattice numerical simulation for quadratic potential inter-
acting with light fields, and it was found that the equation
of state starts from wre ¼ 0 after inflation and saturates
around wre ∼ 0.2–0.3 long before the thermalization of the
Universe. This analysis was generalized in [46,47] for
inflaton potentials behaving as jϕj2n near jϕj ¼ 0, and
flatter beyond some scale jϕj ¼ M by taking into account
the fragmentation of the inflaton field and ignoring cou-
pling to massless fields. It was found that the equation of
state wre reaches 1=3 for n > 1 after a sufficiently long
time, while it remains 0 for n ¼ 1. The third parameter
needed to describe reheating is its duration which can be
defined in terms of number of e-foldings from the end of
inflation to the beginning of the radiation dominated epoch.
This duration is incorporated in the number of e-foldings
Nk during inflation from the time, when the Fourier mode k
corresponding to the horizon size of the present observable
Universe leaves the Hubble radius during inflation, to the
end of inflation. The e-foldingsNk depend on the potential of
inflatonand it should bebetween46 to 70 to solve thehorizon
problem. The upper bound on Nk arises from assuming that
the Universe reheats instantaneously, and the lower bound
comes from considering the reheating temperature at the
electroweak scale. In [48,49] a detailed analysis of the upper
bound on Nk that we performed for various scenarios it was
shown that, for some cases, Nk can be as large as 107.
In [50–52] it was shown that the above mentioned

reheating parametrization can be used to constrain various
models of inflation. The reheating temperature Tre and the
e-folds during reheating Nre can be expressed in terms of
spectral index ns by assuming wre is constant during
reheating [50–52]. By imposing that the effective equation
of state during reheating lies between 0 and 0.25 and the
temperature at the end of reheating is T > 100 GeV, one
can obtain bounds on spectral index ns and Nk, which
translates to bounds on tensor to scalar ratio. As various
models of inflation predict similar values of ns and r, it has
been shown in [53] that by imposing constraints on these
reheating parameters this degeneracy can be removed. The
bounds on reheating parameters were also used to constrain
tachyon inflation [54], where inflaton has a DBI kinetic
term with inverse cosh and exponential potential. It was
shown that one requires an effective equation of state
during reheating wre > 1 to satisfy the Planck 2018
observations.
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In this work we use these reheating parameters to
constrain k-inflation with a DBI kinetic term, monomial
potentials, PNGB potential, and k-inflation with a power-
law kinetic term with monomial and exponential potentials.
Reheating constraints on noncanonical inflation with infla-
tons having a DBI kinetic term and PNGB potential are
already considered in [24] using Planck 2015 data. Here we
revisit tachyon natural inflation with Planck 2018 data
along with other potentials with a DBI kinetic term.
The work is organized as follows. In Sec. II we discuss

the dynamics of k-inflation and present expressions for
power spectra. In Sec. III we discuss the parametrization of
the reheating phase. We obtain expressions for Tre and Nre
in terms of the spectral index by assuming a constant
effective equation of state during reheating. In Sec. IV we
discuss noncanonical inflation with a DBI kinetic term and
obtain expressions for Tre and Nre for monomial and
PNGB potential for various choices for wre. We use these
three parameters to constrain k-inflation with a DBI kinetic
term. In Sec. V we discuss dynamics of noncanonical
inflation with a power law kinetic term, and obtain Tre and
Nre for monomial and exponential potential with various
choices of wre. We again use these three parameters to
constrain k-inflation with a power-law kinetic term. In
Sec. VI we conclude our work.

II. k-INFLATION: General framework

In k-inflation the inflaton field has a noncanonical
kinetic term. The action for inflaton is given as

S ¼
Z ffiffiffiffiffiffi

−g
p �

−
1

16πG
Rþ LðX;ϕÞ

�
; ð1Þ

where LðX;ϕÞ is the Lagrangian of scalar field, which is a
function of the kinetic term X ¼ 1

2
∂μϕ∂μϕ and the field ϕ.

We can obtain the energy-momentum tensor by varying this
action with respect to the metric as

Tμν ¼
∂LðX;ϕÞ

∂X ∂μϕ∂νϕ − LðX;ϕÞgμν: ð2Þ

This energy-momentum tensor is equivalent to that of a
perfect fluid with pressure

p ¼ LðX;ϕÞ; ð3Þ

energy density

ρ ¼ 2X
∂L
∂X − L; ð4Þ

and four-velocity

uμ ¼ σ
∂μϕffiffiffiffiffiffi
2X

p ; ð5Þ

where σ refers to the sign of _ϕ. The evolution of the
Universe is described using the Friedmann equations

H2 ¼ 1

3M2
P
ρ; ð6Þ

_H ¼ −
1

2M2
P
ðρþ pÞ: ð7Þ

Here MP ¼ 1ffiffiffiffiffiffi
8πG

p is the reduced Planck mass. For inflation

the second derivative of the scale factor should satisfy the
condition ä

a ¼ _H þH2 > 0, which can be expressed in
terms of the slow-roll parameter

ϵ ¼ −
_H
H2

< 1: ð8Þ

For our analysis we define slow-roll parameters in terms of
the Hubble flow parameters as [55]

ϵ0 ≡Hk

H
; ð9Þ

and

ϵi ≡ d ln jϵij
dN

; i ≥ 0; ð10Þ

whereHk is the Hubble constant during inflation at the time
when a particular mode k leaves the horizon and N is the
number of e-foldings

N ¼ ln
�
a
ai

�
; ð11Þ

where ai is the scale factor at the beginning of inflation.
The first derivative of the Hubble flow parameter with
respect to time can be expressed as

_ϵi ¼ ϵiϵiþ1: ð12Þ

The first two Hubble flow parameters ϵ1 and ϵ2 can be
obtained in terms of energy density and pressure as

ϵ1 ¼ ϵ ¼ 3

2

ρþ p
ρ

; ð13Þ

and ϵ2 ¼
3

2H
d
dt

�
ρþ p
ρ

�
: ð14Þ

The power spectra for scalar and tensor perturbations,
scalar spectral index ns, and tensor to scalar ratio r for
k-inflation are computed in [10], and can be expressed in
terms of the Hubble flow parameters as
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Pζ ¼
H2

8π2M2
Pcsϵ

����
cSk¼aH

; ð15Þ

Ph ¼
2

π2
H2

M2
P
jcSk¼aH; ð16Þ

ns ¼ 1 − 2ϵ1 − ϵ2; ð17Þ

r ¼ 16cSϵ1; ð18Þ

where

c2S ¼
∂p=∂X
∂ρ=∂X ð19Þ

is the sound speed for perturbations. These power spectra
are evaluated at the Hubble crossing during inflation for the
Fourier mode k of curvature perturbation and tensor
perturbation. In k-inflation the condition for Hubble exit
is modified as cSk ¼ aH for scalar perturbations. For CMB
analysis the power spectrum for curvature perturbation is
expressed as Pζ ¼ ASð kk0Þns−1, where the amplitude of
scalar perturbations AS is given by Eq. (15). All the three
quantities AS, ns, and r are evaluated at pivot scale k0,
which is 0.05 Mpc

−1 for Planck observations, and they
depend on the choice of noncanonical kinetic terms and the
potential of inflaton. Bounds on these quantities are
provided by CMB and LSS observations, which can be
used to put constraints on parameters of the potential and
the noncanonical kinetic term of inflaton. Again all these
inflationary parameters also appear in the reheating temper-
ature and number of e-folds during reheating, which can,
along with CMB constraints, be used to analyze models of
inflation. In this work we analyze k-inflation having a
noncanonical kinetic term of DBI form in section and
power-law form. In the next section we obtain a relation-
ship between reheating parameters, Tre and Nre, and
inflationary parameters.

III. PARAMETRIZING REHEATING

As mentioned earlier, the reheating phase can be para-
metrized in terms of thermalization temperature Tre at the
onset of the radiation dominated epoch after reheating,
effective equation of state of cosmic fluid wre during
reheating, and the number of e-folds Nre for which
reheating lasts. In our analysis we consider wre to be
constant during reheating. Its value should lie between − 1

3

to 1. The lower bound on wre comes from the fact that it
should be − 1

3
when inflation ends, and the upper bound

arises from the fact that it should be smaller than 1 to satisfy
the dominant energy condition of general relativity, ρ ≥ jpj
for the causality condition to be preserved [51,56,57].

In this section we express the reheating parameters
(Nre, Tre, and wre) in terms of the quantities that are
derivable from inflation models [50,58–60]. Assuming a
constant equation of state during reheating and using
ρ ∝ a−3ð1þwÞ, the reheating epoch can be expressed as

ρend
ρre

¼
�
aend
are

�
−3ð1þwreÞ

; ð20Þ

where the subscript “end” refers to the quantity evaluated at
the end of inflation, and the subscript “re” denotes the
quantity evaluated at the end of reheating. The number of
e-foldings during reheating is obtained using (20) as

Nre ¼ ln

�
are
aend

�
¼ 1

3ð1þ wreÞ
ln

�
ρend
ρre

�

: ¼ 1

3ð1þ wreÞ
ln

�
3

2

Vend

ρre

�
; ð21Þ

where we have used ρend ¼ 3
2
Vend in the last expression as

w ¼ − 1
3
at the end of inflation. At the end of reheating the

Universe enters into the radiation era, hence the energy
density at the end of reheating can be expressed in terms of
the reheating temperature as

ρre ¼
π2

30
greT4

re; ð22Þ

where gre is the number of relativistic species at the end of
reheating. We will use gre ¼ 100 (the value for standard
model of particle physics) for our analysis. Using Eqs. (21)
and (22) Nre can be expressed in terms of reheating
temperature as

Nre ¼
1

3ð1þ wreÞ
ln
�
30: 3

2
Vend

π2greT4
re

�
: ð23Þ

Since the entropy remains conserved between the end of
reheating and today, the reheating temperature can be
related to the CMB temperature today as

Tre ¼ T0

�
a0
aeq

��
43

11gre

�
1=3

¼ T0

�
a0
aeq

�
eNRD

�
43

11gre

�
1=3

;

ð24Þ

where “0” in the subscript denotes the values of the
quantities evaluated at the present epoch, and “eq” refers
to the values evaluated at matter-radiation equality. NRD in
Eq. (24) refers to the number of e-foldings during the
radiation era, e−NRD ≡ are

aeq
. The ratio a0

aeq
is expressed as

a0
aeq

¼ a0
ak

ak
aend

aend
are

are
aeq

¼ a0Hk

cSk
e−NkeNree−NRD: ð25Þ
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Here the subscript “k” denotes that the quantity is evaluated at the time when the Fourier mode k crosses the Hubble radius
during inflation. Nk represents the number of e-folds from this time to the end of inflation, and the condition for horizon
crossing cSk ¼ akHk is also used. Substituting Eq. (25) into Eq. (24), we obtain

Tre ¼
�

43

11gre

�
1=3

�
a0T0

cSk

�
Hke−Nke−Nre : ð26Þ

Again substituting Eq. (26) into Eq. (23), one can find

Nre ¼
4

3ð1þ wreÞ
�
1

4
ln

�
32:5
π2gre

�
þ ln

�
V1=4
end

Hk

�
þ 1

3
ln

�
11gre
43

�
þ ln

�
cSk
a0T0

�
þ Nk þ Nre

	
: ð27Þ

This, on solving for Nre, with the assumption wre ≠ 1
3
, gives

Nre ¼
4

ð1 − 3wreÞ
�
−1
4

ln

�
32:5
π2gre

�
−
1

3
ln

�
11gre
43

�
− ln

�
cSk
a0T0

�
− ln

�
V1=4
end

Hk

�
− Nk

	
: ð28Þ

The reheating process is instantaneous for wre ¼ 1
3
and the reheating temperature is at grand unification scale for this case.

Hence the parameters of reheating can not be used for constraining models of inflation. Now we use Eq. (26) to obtain the
final expression for Tre

Tre ¼
��

43

11gre

�1
3 a0T0

cSk
Hkexp−Nk

�
32:5Vend

π2gre

	− 1
3ð1þwreÞ

	3ð1þwreÞ
3wre−1

: ð29Þ

The expressions for the number of e-folds during reheating
Nre, (28), and the reheating temperature Tre, (29), are the
main results of this section. It is evident that these two
quantities depend on inflationary parameters Hk, Nk, and
Vend, which can be expressed in terms of the amplitude of
scalar perturbations As and spectral index ns. Hence bounds
on the reheating temperature, and demanding wre to lie
between − 1

3
and 1 provide bounds on ns. In subsequent

sections we use these reheating parameters Nre and Tre to
constrain noncanonical inflation with a DBI kinetic term
and the power-law kinetic term.

IV. k-INFLATION WITH A DBI KINETIC TERM

In this section we consider k-inflation with a DBI kinetic
term, andmonomial potentials andnatural inflationpotential.
The Lagrangian for the scalar field in this case is given as

L ¼ −VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2gμν∂μϕ∂νϕ

q
g: ð30Þ

Here η has the dimension of ½length�2 and the field ϕ has the
dimension of mass. Using this Lagrangian we can obtain the
energy density (4), and pressure (3), for the background part
of the scalar field in a homogeneous and isotropic universe as

ρ ¼ VðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − η2 _ϕ2Þ

q ; ð31Þ

P ¼ −VðϕÞð1 − η2 _ϕ2Þ12: ð32Þ
Using Eq. (32) we can write the Friedmann equations for the
Hubble parameter and its first derivative as

H2 ¼ 1

3MP
2

VðϕÞ
ð1 − η2 _ϕ2Þ12 ; ð33Þ

_H ¼ −
VðϕÞη2 _ϕ2

2MPð1 − η2 _ϕ2Þ12 : ð34Þ

The equation of motion for the background part of the
scalar field can be obtained from the energy-momentum
tensor (2) as

ϕ̈

ð1 − η2 _ϕ2Þ þ 3H _ϕþ V 0ðϕÞ
η2VðϕÞ ¼ 0: ð35Þ

Here “ 0” refers to the derivativewith respect toϕ. TheHubble
flow parameters ϵ1 and ϵ2, for k-inflation with DBI kinetic
term, can be obtained by substituting the expressions for
energy density and pressure (32) in Eq. (13) and Eq. (14) as

ϵ1 ¼
3

2
η2 _ϕ2; ð36Þ

ϵ2 ¼ 2
ϕ̈

H _ϕ
: ð37Þ
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Under the slow-roll approximation, ϕ̈ in Eq. (35) should be
smaller than the friction term 3H _ϕ, and η2 _ϕ2 can be neglected
in Eq. (33). Hence we obtain

_ϕ ¼ −
V 0ðϕÞ

3η2HVðϕÞ ; H2 ∼
V

3M2
P
; ð38Þ

during inflation. Using these approximations, slow-roll
parameters ϵ1 and ϵ2 can be written in terms of the inflaton
potential as

ϵ1 ¼
M2

P

2

�
V 02

η2V3

�
; ð39Þ

ϵ2 ¼
M2

P

η2

�
−2

V 00

V2
þ 3

V 02

V3

�
: ð40Þ

The amplitude of scalar perturbations AS, spectral index ns
and tensor to scalar ratio can now be obtained in terms of
the parameters of inflaton potential using these equations.
Another parameter depending on inflaton potential is the
number of e-foldings from the time when the Fourier mode k
leaves the Hubble radius during inflation to the end of
inflation, which can be obtained using Eq. (38) as

Nk ¼
Z

Hdt ¼ −
η2

M2
P

Z
ϕend

ϕk

V2

V 0 dϕ: ð41Þ

We now impose reheating constraints on k-inflation
having a DBI kinetic term with a monomial potential
and PNGB potential.

A. Monomial potential

We consider the following potential

VðϕÞ ¼ 1

2
m4−nϕn: ð42Þ

We choose n ¼ 2
3
; 2; and 4 for our analysis. This potential,

for canonical single-field inflation, in the context of
reheating is studied in [8,50,52,56]. Using Eqs. (39) and
(40) for potential (42), the slow-roll parameters can be
obtained as

ϵ1 ¼
M2

Pn
2

η2m4−nϕnþ2
; ð43Þ

ϵ2 ¼
2M2

Pnðnþ 2Þ
η2m4−nϕnþ2

: ð44Þ

At the end of inflation ϵ1 ¼ 1 and hence the value of the
scalar field at this time can be obtained using Eq. (43) as

ϕend ¼
�
MP

2n2

η2m4−n

� 1
nþ2

: ð45Þ

The number of e-foldingsNk for monomial potential can be
obtained using Eq. (41) as

Nk ¼ −
η2m4−n

2M2
Pnðnþ 2Þ ðϕ

nþ2
end − ϕnþ2

k Þ: ð46Þ

Here ϕk is the value of the inflaton field at the time when
mode k leaves the horizon during inflation. The spectral
index ns can be obtained by substituting values of ϵ1 and ϵ2
from Eq. (43), Eq. (44) in Eq. (17) at ϕ ¼ ϕk as

ns ¼ 1 −
4M2

Pnðnþ 1Þ
η2m4−nϕnþ2

k

: ð47Þ

Using this equation we get

ϕk ¼
�

4M2
Pnðnþ 1Þ

ð1 − nsÞη2m4−n

� 1
nþ2

; ð48Þ

and the slow-roll parameter ϵ1, (43) at ϕ ¼ ϕk is given as

ϵ1 ¼
n2ð1 − nsÞ
4nðnþ 1Þ : ð49Þ

Putting the values of ϕend and ϕk from Eq. (45) and Eq. (48)
in Eq. (46), the number of e-foldings Nk can be expressed
in terms of spectral index ns as

Nk ¼
n2ð3þ nsÞ þ 4n
2nðnþ 2Þð1 − nsÞ

: ð50Þ

The inflation potential at the end of inflation will be

Vend ¼
1

2
m4−nϕn

end; ð51Þ

which can be expressed in terms of Hk using Eq. (38) as

Vend ¼ 3M2
PH

2
k
ϕn
end

ϕn
k
: ð52Þ

Putting the values of ϕend and ϕk from (45) and (48) we
obtain

Vend ¼ 3M2
PH

2
k

�
n2ð1 − nsÞ
4nðnþ 1Þ

� n
nþ2

: ð53Þ

The speed of sound cS for monomial potential with a DBI
kinetic term can be found using Eq. (19) as
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cS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

n2ð1 − nsÞ
6nðnþ 1Þ

s
: ð54Þ

The Hubble constantHk at the timewhen the mode k leaves
the horizon during inflation can be expressed in terms of
scalar amplitude AS using Eq. (15) as

Hk ¼ πMP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ASϵ1cS

p
; ð55Þ

which can be written in terms of spectral index ns and AS
using Eq. (49) and Eq. (54) as

Hk ¼ πMP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8AS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

n2ð1 − nsÞ
6nðnþ 1Þ

�s
n2ð1 − nsÞ
4nðnþ 1Þ

vuut : ð56Þ

Using the expressions for Nk (50), Vend (53), and Hk
(56), we can evaluate the reheating temperature Tre (29)
and the e-folds during reheating Nre in terms of the spectral
index for various equations of state. Figure 1 depicts the

variation of the reheating temperature Tre and Nre with
respect to ns for n ¼ 2=3, n ¼ 1, n ¼ 2, and n ¼ 4. We
choose four values of effective equation of states during
reheating wre ¼ −1=3, 0, 0.25, and 1. The Planck 2018
bounds on ns ¼ 0.9853� 0.0041 are also shown in the
figure. We have used Planck 2018 value AS ¼ 2.20 × 10−9

for the scalar amplitude for our analysis. The point where
the curves of all wre meets corresponds to instant reheating,
Nre → 0. The curve for wre would pass through this point
and be vertical.
By demanding that the reheating temperature should be

above 100 GeV for weak-scale dark matter production, we
obtain bounds on spectral index by solving Eqs. (29) and
(50) and assuming − 1

3
≤ wre ≤ 1 for various choices of n.

These bounds on ns provide bounds on the number of
e-foldingsNk from Eq. (50). The tensor to scalar ratio r can
be expressed in terms of ns using Eqs. (18) and (49) as

r ¼ 4n2ð1 − nsÞ
nðnþ 1Þ

�
1 −

n2ð1 − nsÞ
6nðnþ 1Þ

	1
2

: ð57Þ

FIG. 1. Nre and Tre as function of ns for four different values of n of monomial potential. The vertical pink region shows Planck 2018
bounds on ns and the dark pink region represents a precision of 10−3 from future observations [61]. The horizontal purple region
corresponds to Tre of 10 MeV from BBN and the light purple region corresponds to 100 GeVof the electroweak scale. The red dotted
line corresponds to wre ¼ − 1

3
, the blue dashed lines corresponds to wre ¼ 0, the green solid line corresponds to wre ¼ 0.25 and the black

dot-dashed line is for wre ¼ 1.

REHEATING CONSTRAINTS ON k-INFLATION PHYS. REV. D 104, 083526 (2021)

083526-7



Using this expression the bounds on ns, obtained using the
reheating temperature and the effective equation of state
during reheating, can be transferred to the bounds on tensor
to scalar ratio r.
The bounds on ns, Nk, and r, thus obtained, are listed in

Table I. It can be seen from Table I and Fig. 1 that, for
n ¼ 2=3 and 1, the bounds on ns lie outside the Planck
2018 bounds, if we demand that the effective equation of
state lies between the physically plausible range
0 ≤ wre ≤ 0.25. With this range of wre the tensor to scalar
ratio r for the quadratic and quartic potential is slightly
greater than joint BICEP2/Keck Array and Planck bounds,
r < 0.06 [62].
The plots between Nk and ns are shown in the left panel

of Fig. 2 for various values of n and wre. The tensor to
scalar ratio r as a function ns for the four choices of
monomial potentials, is shown in the right panel of Fig. 2
along with joint 68% and 95% C.L constraints from Planck
2018. It can be seen from Fig. 2 that the r vs ns predictions

for the quadratic and quartic potential with a DBI kinetic
term lie within 95% C.L. but lie outside 68% C.L. of the
Planck 2018 data for the physically plausible range of
0 ≤ wre ≤ 0.25. However, THE potential with n ¼ 2

3
and

n ¼ 1 lie well within 68% of the Planck 2018 observations,
but, for this the equation of state during reheating should be
less than 0.

B. Natural inflation potential

The potential for pseudo-Nambu-Goldstone boson, natu-
ral inflation is given as [63]

VðϕÞ ¼ Λ4

�
1þ cos

�
ϕ

f

�	
; ð58Þ

where f is the spontaneous symmetry breaking scale and Λ
is the explicit symmetry breaking scale for the pseudo-
Nambu-Goldstone boson. Reheating constraints on this

FIG. 2. Nk vs ns, and r − ns predictions along with joint 68% C.L. and 95% C.L. Planck 2018 constraints for monomial potentials
with DBI kinetic term. Here in both panels the orange region corresponds to wre ≤ 0, the green region corresponds to 0 ≤ wre ≤ 0.25,
the yellow region shows 0.25 ≤ wre ≤ 1, and the purple region corresponds to wre > 1. (a) Nk vs ns plot for n ¼ 2

3
; 1; 2; 4. (b) r vs ns

plot for n ¼ 2
3
; 1; 2; 4.

TABLE I. The allowed values of spectral index ns and the number of e-folds Nk for various values of n for
monomial potential by demanding Tre ≥ 100 GeV.

n Equation of state ns Nk r

n ¼ 2=3 −1=3 ≤ wre ≤ 0 0.9497 ≤ ns ≤ 0.9728 24.72 ≤ Nk ≤ 45.79 0.0804 ≥ r ≥ 0.0435
0 ≤ wre ≤ 0.25 0.9728 ≤ ns ≤ 0.9769 45.79 ≤ Nk ≤ 54.16 0.0435 ≥ r ≥ 0.0368
0.25 ≤ wre ≤ 1 0.9769 ≤ ns ≤ 0.9813 54.16 ≤ Nk ≤ 66.68 0.0368 ≥ r ≥ 0.0300

n ¼ 1 −1=3 ≤ wre ≤ 0 0.9468 ≤ ns ≤ 0.9711 24.89 ≤ Nk ≤ 45.97 0.1062 ≥ r ≥ 0.0577
0 ≤ wre ≤ 0.25 0.9711 ≤ ns ≤ 0.9755 45.97 ≤ Nk ≤ 54.34 0.0577 ≥ r ≥ 0.0489
0.25 ≤ wre ≤ 1 0.9755 ≤ ns ≤ 0.9801 54.34 ≤ Nk ≤ 66.84 0.0489 ≥ r ≥ 0.0398

n ¼ 2 −1=3 ≤ wre ≤ 0 0.9411 ≤ ns ≤ 0.9678 25.21 ≤ Nk ≤ 46.28 0.1566 ≥ r ≥ 0.0858
0 ≤ wre ≤ 0.25 0.9678 ≤ ns ≤ 0.9727 46.28 ≤ Nk ≤ 54.63 0.0858 ≥ r ≥ 0.0728
0.25 ≤ wre ≤ 1 0.9727 ≤ ns ≤ 0.9777 54.63 ≤ Nk ≤ 67.11 0.0728 ≥ r ≥ 0.0593

n ¼ 4 −1=3 ≤ wre ≤ 0 0.9355 ≤ ns ≤ 0.9645 25.50 ≤ Nk ≤ 46.56 0.2055 ≥ r ≥ 0.1135
0 ≤ wre ≤ 0.25 0.9645 ≤ ns ≤ 0.9698 46.56 ≤ Nk ≤ 54.89 0.1135 ≥ r ≥ 0.0963
0.25 ≤ wre ≤ 1 0.9698 ≤ ns ≤ 0.9754 54.89 ≤ Nk ≤ 67.33 0.0963 ≥ r ≥ 0.0786
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potential with noncanonical kinetic term having DBI form
are discussed in [24]. Here we revisit these constraints with
Planck 2018 data. Defining β≡ η2f2Λ4M−2

P , the slow-roll
parameters for the potential given in Eq. (58) can be
obtained using Eqs. (39) and (40) as

ϵ1 ¼
1

2β

1 − cosðϕfÞ
f1þ cosðϕfÞg2

; ð59Þ

ϵ2 ¼
1

β

3 − cosðϕfÞ
f1þ cosðϕfÞg2

: ð60Þ

The value of the inflaton field at the end of inflation can be
obtained by setting ϵ1 ¼ 1 as

cos

�
ϕend

f

�
¼ −ð4β þ 1Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 16βÞp

4β
: ð61Þ

The spectral index ns can be obtained by substituting values
of ϵ1 (59) and ϵ2 (60) in Eq. (17) as

ns ¼ 1 −
1

β

1 − cosðϕfÞ
f1þ cosðϕfÞg2

−
1

β

3 − cosðϕfÞ
f1þ cosðϕfÞg2

ð62Þ

¼ 1 −
2½2 − cosðϕfÞ�
β½1þ cosðϕfÞ�2

: ð63Þ

The number of e-foldings for potential (58) can be
expressed using Eq. (41) and as for natural inflation
potential Eq. (58), Nk can be written as

Nk ¼
β

f

Z
ϕend

ϕk

½1þ cosðϕfÞ�2
sinðϕfÞ

¼ β

�
cos

�
ϕend

f

�
− cos

�
ϕk

f

�	
þ 2β ln

�cosð: ϕend
f Þ − 1

cosðϕk
f Þ − 1

	
;

ð64Þ

where again ϕend and ϕk are the values of the inflaton field
at the end of inflation and at the time the mode k leaves
inflationary horizon during inflation, respectively. Defining
cosðϕend

f Þ ¼ x and cosðϕk
f Þ ¼ y, Eq. (64) for the number of

e-folds Nk can be written as

Nk ¼ βx − βyþ 2β ln ðx − 1Þ − 2β ln ðy − 1Þ: ð65Þ

The spectral index ns, (63), at ϕ ¼ ϕk will have the form in
terms of y as

ns ¼ 1 −
2

β

ð2 − yÞ
ð1þ yÞ2 : ð66Þ

To expressNk in terms of ns, Eq. (66) can be solved for y as

y ¼ 1þ 1þ 2β − 2nsβ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6β − 6nsβ

p
nsβ − β

; ð67Þ

and x is given by Eq. (61). The inflaton potential at the end
of inflation can be given as

Vend ¼ Λ4

�
1þ cos

�
ϕend

f

�	
; ð68Þ

which can be written using Eq. (38) as

Vend ¼ 3M2
PH

2
k

½1þ cosðϕend
f Þ�

½1þ cosðϕk
f Þ�

¼ 3M2
PH

2
k
ð1þ xÞ
ð1þ yÞ : ð69Þ

From Eq. (19), the speed of sound cS at ϕ ¼ ϕk can be
written as

cS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

3β

ð1 − cosðϕk
f ÞÞ

ð1þ cosðϕk
f ÞÞ2

vuut ;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

3β

ð1 − yÞ
ð1þ yÞ2

s
: ð70Þ

The value of the Hubble constant at the time when Fourier
mode k leaves the inflationary horizon during inflation can
again be expressed in terms of amplitude of scalar
perturbations AS by putting the values of ϵ1 (59), and
cS, (70), in Eq. (15) as

Hk ¼ πMP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8AS

1

2β

1 − y
ð1þ yÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

3β

ð1 − yÞ
ð1þ yÞ2

svuut : ð71Þ

We can express Nk, Vend, and Hk in terms of spectral index
by substituting the value of y from Eq. (67) and x from
Eq. (61) in Eq. (65), Eq. (69), and Eq. (71), and then using
these expressions the reheating temperature Tre and the
number of e-folds during reheating Nre can be obtained in
terms of the spectral index from Eqs. (28) and (29). We
have chosen β ¼ 35, 50, 100, and 125 for our analysis.
Increasing β beyond 125 does not affect the results. The
variation of Nre and Tre with respect to ns, along with
Planck 2018 bounds on ns ¼ 0.9853� 0.0041, is repre-
sented in Fig. 3 for various values of effective equation of
state during reheating. Again the curves for various values
of wre meet at the point corresponding to instant reheating,
Nre → 0. The curve for wre ¼ 1=3 would pass through this
point and be vertical.
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By imposing the bounds on Tre, i.e., Tre > 100 GeV for
weak-scale dark matter production, we obtain bounds on ns
for various equation of states wre by solving Eq. (29).

Again the tensor to scalar ratio for natural inflation
with a DBI kinetic term can be obtained from Eqs. (16),
(59), (70) as

FIG. 3. Nre andTre as function of ns for natural inflation potential. Thevertical pink region showsPlanck 2018 bounds on ns and the dark
pink region represents a precision of 10−3 from future observations [61]. The horizontal purple region corresponds to Tre of 10 MeV from
BBN and the light purple region corresponds to 100 GeVof the electroweak scale. The red dotted line corresponds to wre ¼ − 1

3
, the blue

dashed line corresponds to wre ¼ 0, the green solid line corresponds to wre ¼ 0.25 and the black dot-dashed line is for wre ¼ 1.

TABLE II. The allowed values of spectral index ns and number of e-folds Nk for various values of β for natural
inflation potential, obtained by imposing Tre ≥ 100 GeV.

α Equation of state ns Nk r

β ¼ 35 −1=3 ≤ wre ≤ 0 0.9369 ≤ ns ≤ 0.9631 25.08 ≤ Nk ≤ 46.06 0.1072 ≥ r ≥ 0.0480
0 ≤ wre ≤ 0.25 0.9631 ≤ ns ≤ 0.9678 46.06 ≤ Nk ≤ 54.37 0.0480 ≥ r ≥ 0.0377
0.25 ≤ wre ≤ 1 0.9678 ≤ ns ≤ 0.9725 54.37 ≤ Nk ≤ 66.78 0.0377 ≥ r ≥ 0.0274

β ¼ 50 −1=3 ≤ wre ≤ 0 0.9384 ≤ ns ≤ 0.9648 25.10 ≤ Nk ≤ 46.10 0.1159 ≥ r ≥ 0.0547
0 ≤ wre ≤ 0.25 0.9648 ≤ ns ≤ 0.9696 46.10 ≤ Nk ≤ 54.42 0.0547 ≥ r ≥ 0.0438
0.25 ≤ wre ≤ 1 0.9696 ≤ ns ≤ 0.9745 54.42 ≤ Nk ≤ 66.86 0.0438 ≥ r ≥ 0.0329

β ¼ 100 −1=3 ≤ wre ≤ 0 0.9398 ≤ ns ≤ 0.9665 25.13 ≤ Nk ≤ 46.16 0.1287 ≥ r ≥ 0.0645
0 ≤ wre ≤ 0.25 0.9665 ≤ ns ≤ 0.9713 46.16 ≤ Nk ≤ 54.49 0.0645 ≥ r ≥ 0.0529
0.25 ≤ wre ≤ 1 0.9713 ≤ ns ≤ 0.9764 54.49 ≤ Nk ≤ 66.95 0.0529 ≥ r ≥ 0.0412

β ¼ 125 −1=3 ≤ wre ≤ 0 0.9401 ≤ ns ≤ 0.9668 25.14 ≤ Nk ≤ 46.18 0.1318 ≥ r ≥ 0.0669
0 ≤ wre ≤ 0.25 0.9668 ≤ ns ≤ 0.9717 46.18 ≤ Nk ≤ 54.51 0.0669 ≥ r ≥ 0.0552
0.25 ≤ wre ≤ 1 0.9717 ≤ ns ≤ 0.9767 54.51 ≤ Nk ≤ 66.97 0.0552 ≥ r ≥ 0.0432
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r ¼ 8

2β

ð1 − yÞ
ð1þ yÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

3β

ð1 − yÞ
ð1þ yÞ2

s
: ð72Þ

The bounds on ns obtained from Tre and wre can give
bounds on Nk and r. These bounds for various choices of β
are given in Table II
It can be seen from Table II that with the physically

plausible range 0 ≤ wre ≤ 0.25 the bounds on ns and r are
compatible with Planck 2018 observations for β < 125. We
also showNk vs ns and r vs ns plots for the PNGB potential
with a DBI kinetic term in Fig. 4. It is evident from the
figure that the values of ns and r predicted in this model lie
within 1σ contour of Planck 2018 joint constraints for
physically plausible range 0 ≤ wre ≤ 0.25 shown by green
region in the figure. Our results for natural inflation with a
DBI kinetic term agree with [24].

V. k-INFLATION WITH A POWER-LAW KINETIC
TERM

In this section we will analyze k-inflation with a power-
law kinetic term. The Lagrangian density for this case is
given as [11,23]

LðX;ϕÞ ¼ X

�
X
M4

�
α−1

− VðϕÞ; ð73Þ

where M has dimension of mass and α is dimensionless.
For α ¼ 1 the Lagrangian reduces to usual canonical scalar
field. Using Eqs. (4) and (3) the energy density and pressure
can be obtained as

ρϕ ¼ ð2α − 1ÞX
�
X
M

�
α−1

þ VðϕÞ; ð74Þ

pϕ ¼ X

�
X
M

�
α−1

− VðϕÞ; X ≡ 1

2
_ϕ2: ð75Þ

Thus, the Friedman equations for Hubble constant and its
first derivative become

H2 ¼ 8πG
3

�
ð2α − 1ÞX

�
X
M4

�
α−1

þ VðϕÞ
	
; ð76Þ

_H ¼ −4πGðρϕ þ pϕÞ ¼ −
1

3M2
P
X

�
X
M4

�
α−1

: ð77Þ

The evolution equation for inflaton ϕ can be obtained by
the energy-momentum tensor (2) as

ϕ̈þ 3H _ϕ

2α − 1
þ
�

V 0ðϕÞ
αð2α − 1Þ

��
2M4

_ϕ2

�
α−1

¼ 0: ð78Þ

Using the definition of the slow-roll parameter
ϵ ¼ − _H=H2, along with Eq. (77), the Hubble constant
(76) can be written as

H2

�
1 −

�
2α − 1

3α

�
ϵ

	
¼ 1

3M2
P
VðϕÞ; ð79Þ

under slow-roll approximation ϵ ≪ 1 this reduces to

H2 ¼ VðϕÞ
3M2

P
: ð80Þ

For slow-roll ϕ̈ is much smaller than the friction term in
Eq. (78), hence using Eq. (80), we obtain

FIG. 4. Nk vs ns and r vs ns plots for natural inflation potential along with joint 68% C.L. and 95% C.L. Planck 2018 constraints. In
both the panels the orange region corresponds to wre < 0, the green region corresponds to 0 < wre < 0.25, the yellow region
corresponds to 0.25 < wre < 1, and the purple region corresponds to wre > 1. In the right panel of the figure the blue dashed line
corresponds to Nk ¼ 46, the black dashed line corresponds to Nk ¼ 55 and the red dashed line corresponds to Nk ¼ 67. These values of
Nk correspond to bounds on ns obtained by demanding Tre > 100 GeV for different values of wre. The solid black line in both the
panels of the figure corresponds to β ¼ 125 and the filled region corresponds to β < 125. (a) Nk vs ns plot for β < 125. (b) r vs nsplot
for β < 125.
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_ϕ ¼
��

MP

α
ffiffiffi
3

p
��

−V 0ðϕÞffiffiffiffi
V

p
�
ð2M4Þα−1

	 1
2α−1

: ð81Þ

The two Hubble flow parameters ϵ1 (13), and ϵ2 (14), for
this case can be obtained using Eqs. (74), (75), (80), and
Eq. (81), as

ϵ1 ¼
�
1

α

�
3M4

V

�
α−1�−MPV 0ffiffiffi

2
p

V

�
2α
	 1

2α−1
; ð82Þ

ϵ2 ¼
−2ϵ1
2α − 1

�
2α

�
V 00V
V 02

�
− ð3α − 1Þ

	
: ð83Þ

Now the number of e-foldings Nk from the time when
mode k leaves the horizon to the end of inflation, in case of
power-law kinetic term, can be obtained by using

Nk ¼ −
Z

ϕk

ϕend

�
H
_ϕ

�
dϕ; ð84Þ

and substituting the values of H and _ϕ from Eqs. (80) and
(81) respectively in this expression for various choices of
potentials. The speed of sound cS, defined in Eq. (19), can
be obtained using Eq. (74) and Eq. (75) as

c2S ¼
1

2α − 1
: ð85Þ

The speed of sound here is only function of α and is
independent of choice of potential.

A. Monomial potentials

We consider the following monomial potential with
power-law kinetic term

VðϕÞ ¼ 1

2
m4−nϕn; where n > 0: ð86Þ

The two Hubble-flow parameters for this potential can be
obtained using Eqs. (82) and (83)

ϵ1 ¼
�
1

α

�
6M4

m4−n

�ðα−1Þ�−nMPffiffiffi
2

p
�

2α 1

ϕ2αþnα−n

	 1
2α−1

; ð87Þ

ϵ2 ¼
2ϵ1γ

n
: ð88Þ

Here

γ ≡ 2αþ nðα − 1Þ
2α − 1

: ð89Þ

The value of the inflaton field at the end of inflation, ϕend,
can be obtained by setting ϵ1 ¼ 1 as

ϕend ¼
�
1

α

�
6M4

m4−n

�ðα−1Þ�−nMPffiffiffi
2

p
�

2α
	 1

γð2α−1Þ
: ð90Þ

We can obtain the values of H and _ϕ from Eqs. (80) and
(81) respectively for the monomial potential (86) and
substitute these values into Eq. (84) to obtain the number
of e-foldings Nk as

Nk ¼
ϕγ
k − ϕγ

end

γ

��
m4−n

12M4

�
α−1 α

nM2α
p
ð−1Þ2ðα−1Þ

	 1
2α−1

: ð91Þ

With ϕend from Eq. (90), we can obtain the expression for
the inflaton field ϕk when the mode k leaves the horizon as

ϕk ¼ C1=γ
1

�
Nkγ þ

n
2

�1
γ

; ð92Þ

where

C1 ¼
��

nð−MPÞ2α
α

��
12M4

m4−n

�
α−1� 1

2α−1
: ð93Þ

The first slow-roll parameter ϵ1 can be expressed as a
function of Nk by substituting Eq. (92) in Eq. (87) as

ϵ1 ¼
n

2Nkγ þ n
: ð94Þ

Putting values of ϵ1 and ϵ2 from Eq. (94) and Eq. (88) in the
definition of the scalar spectral index ns (17), we obtain

ns ¼ 1 − 2
ðnþ γÞ
2Nkγ þ n

; ð95Þ

which, on solving for the e-folds Nk becomes

Nk ¼
1

2γ

�
2ðγ þ nÞ
1 − ns

− n

�
: ð96Þ

Using Eq. (80) and Eq. (86), the value of the potential at the
end of inflation can be obtained as

Vend ¼ 3M2
PH

2
k

�
ϕend

ϕk

�
n
: ð97Þ

Substituting Eq. (90) and Eq. (92) in Eq. (97) we get

Vend ¼ 3M2
PH

2
k

�
n

2Nkγ þ n

�n
γ

: ð98Þ

By substituting the value of cS from Eq. (85) and ϵ1 from
Eq. (94) in Eq. (15), we can express the Hubble constant
HK (at the time when the Fourier mode k leaves the
inflationary horizon) as
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Hk ¼ πMP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8AS

�
n

2Nkγ þ n

��
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2α − 1
p

�s
: ð99Þ

Using Eq. (96) we can express Eq. (98) and Eq. (99) for
Vend and HK respectively in terms of ns. Further, these
expressions can be used to obtain the reheating temperature
Tre, given by (29), and the number of e-folds during
reheating Nre, given by (28), as a function of the spectral
index ns.
Here we choose quadratic n ¼ 2 and quartic n ¼ 4

potentials for our analysis. The variation of Nre and Tre
as a function of ns, for various values of effective equation of
states, is depicted inFig. 5 andFig. 6 for quadratic andquartic
potentials respectively along with Planck 2018 bounds
ns ¼ 0.9853� 0.0041. It is evident from Fig. 5 and Fig. 6
that, for both of these potentials, the variation of Tre andNre
with respect to ns is independent of the power of the kinetic
term α. Again we imposing the bounds on Tre, i.e., Tre >
100 GeV to obtain bounds on ns for various equation of

states wre by solving Eq. (29). Now the tensor to scalar ratio
r, (18), for the monomial potential with a power-law kinetic
term can be obtained using the expressions for cS, (85) and ϵ1
(94), as

r ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2α − 1

p
��

16n
2Nkγ þ n

�
: ð100Þ

Using the bounds on ns, obtained from the reheating
consideration, we get the bounds on Nk and the tensor to
scalar ratio r for various wre from Eqs. (96) and (100).
These bounds on ns, Nk, and r, thus obtained, for quadratic
and quartic potentials with a power-law kinetic term are
provided in Table III and Table IV. The bounds on ns
obtained from reheating are independent of α for quadratic
potentials. However, the bounds obtained on tensor to
scalar ratio r depend on α for both the potentials. It can be
seen from Table IV that, with α ¼ 4, the bounds on the
tensor to scalar ratio 0.086 ≥ r ≥ 0.0740 lie slightly higher
than the joint BICEP2/Keck array and Planck 2018 bound

FIG. 5. Nre and Tre as a function of ns for four different values of α of quadratic potential with a power-law kinetic term. The vertical
pink region shows Planck 2018 bounds on ns and the dark pink region represents a precision of 10−3 from future observations [61]. The
horizontal purple region corresponds to Tre of 10 MeV from BBN and the light purple region corresponds to 100 GeVof the electroweak
scale. The red dotted line corresponds to wre ¼ − 1

3
, the blue dashed line corresponds to wre ¼ 0, the green solid line corresponds to

wre ¼ 0.25, and the black dot-dashed line is for wre ¼ 1.
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FIG. 6. Nre and Tre as function of ns for four different values of α of quartic potential with a power-law kinetic term. The vertical pink
region shows Planck 2018 bounds on ns and the dark pink region represents a precision of 10−3 from future observations [61]. The
horizontal purple region corresponds to Tre of 10MeV fromBBN and light purple region corresponds to 100GeVof the electroweak scale.
The red dotted line corresponds towre ¼ − 1

3
, the blue dashed lines corresponds towre ¼ 0, the green solid line corresponds towre ¼ 0.25,

and the black dot-dashed line is for wre ¼ 1.

TABLE III. The allowed values of spectral index ns and number of e-folds Nk for various values of α for quadratic
potential with power-law kinetic term considering Tre ≥ 100 GeV.

α Equation of state ns Nk r

α ¼ 4 −1=3 ≤ wre ≤ 0 0.9273 ≤ ns ≤ 0.9586 27.02 ≤ Nk ≤ 47.85 0.1098 ≥ r ≥ 0.0625
0 ≤ wre ≤ 0.25 0.9586 ≤ ns ≤ 0.9640 47.85 ≤ Nk ≤ 56.07 0.0625 ≥ r ≥ 0.0534
0.25 ≤ wre ≤ 1 0.9640 ≤ ns ≤ 0.9709 56.07 ≤ Nk ≤ 68.33 0.0534 ≥ r ≥ 0.0439

α ¼ 10 −1=3 ≤ wre ≤ 0 0.9287 ≤ ns ≤ 0.9589 27.53 ≤ Nk ≤ 48.27 0.0655 ≥ r ≥ 0.0376
0 ≤ wre ≤ 0.25 0.9589 ≤ ns ≤ 0.9649 48.27 ≤ Nk ≤ 56.45 0.0376 ≥ r ≥ 0.0322
0.25 ≤ wre ≤ 1 0.9649 ≤ ns ≤ 0.9710 56.45 ≤ Nk ≤ 68.67 0.0322 ≥ r ≥ 0.0265

α ¼ 50 −1=3 ≤ wre ≤ 0 0.9307 ≤ ns ≤ 0.9596 28.38 ≤ Nk ≤ 48.96 0.0278 ≥ r ≥ 0.0163
0 ≤ wre ≤ 0.25 0.9596 ≤ ns ≤ 0.9653 48.96 ≤ Nk ≤ 57.09 0.0163 ≥ r ≥ 0.0140
0.25 ≤ wre ≤ 1 0.9653 ≤ ns ≤ 0.9713 57.09 ≤ Nk ≤ 69.22 0.0140 ≥ r ≥ 0.0115

α ¼ 100 −1=3 ≤ wre ≤ 0 0.9315 ≤ ns ≤ 0.9598 28.73 ≤ Nk ≤ 49.25 0.0194 ≥ r ≥ 0.0114
0 ≤ wre ≤ 0.25 0.9598 ≤ ns ≤ 0.9654 49.25 ≤ Nk ≤ 57.36 0.0114 ≥ r ≥ 0.0098
0.25 ≤ wre ≤ 1 0.9654 ≤ ns ≤ 0.9714 57.36 ≤ Nk ≤ 69.45 0.0098 ≥ r ≥ 0.0081
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r < 0.06 [62] for the physically plausible range 0 ≤ wre ≤
0.25 for effective equation of states during reheating. But,
for larger values of α the bounds on r are in agreement with
BICEP2/Keck array bound.
Plots for Nk vs ns for quadratic and quartic potentials are

shown in Fig. 7. Here we have chosen only one value
(α ¼ 4) for the quadratic potential, as the variation of Nk
with respect to ns is independent of α. In case of the quartic
potential we have also chosen only the smallest and largest
values of α, because the variation of functional dependence
of Nk on ns with respect to α is very small. Figure 8 depicts
the r vs ns predictions for quadratic and quartic potentials
for different values of α and wre, along with joint 68% C.L.
and 95% C.L. constraints from Planck 2018. It can be seen
from Fig. 8 that r vs ns predictions for the quadratic
potential with a power-law kinetic term lie within 68% C.L.
of Planck 2018 constraints for the physically plausible
range of 0 ≤ wre ≤ 0.25. However, for the quartic potential
the equation of state during reheating should be greater than
0.25 for r − ns predictions to lie within 68% C.L. of Planck
2018 constraints.

B. Exponential potential

We now consider the exponential potential with power-
law kinetic term. This potential have the following form

VðϕÞ ¼ V0 exp

�
−

ffiffiffi
2

q

s
ϕ

MP

�
: ð101Þ

In case of inflation with a canonical scalar field this
potential provides a power-law expansion, aðtÞ ∝ tq, for

a flat universe [64–66]. The power-law solutions can also
be obtained with this potential in DBI framework [67].
We can obtain the slow-roll parameters ϵ1 and ϵ2 for this

potential using Eq. (82) and Eq. (83) as

ϵ1¼
"
1

α

�
3M4

V0

�
α−1� 1ffiffiffi

q
p

�
2α 1

exp


−

ffiffi
2
q

q
ϕðα−1Þ
MP

�
# 1

2α−1

; ð102Þ

ϵ2 ¼ 2ϵ1

�
α − 1

2α − 1

�
: ð103Þ

Now we evaluate ϕend, the value of inflaton field at the end
of inflation, by setting ϵ1 ¼ 1 as

ϕend ¼ −
MP

α − 1

ffiffiffi
q
2

r
ln

"
1

α

�
3M4

V0

�
α−1� ffiffiffi

1

q

s �2α#
: ð104Þ

To obtain the number of e-foldings Nk from the time when
the Fourier mode k leaves the Hubble radius to the end of
inflation, for (101), we put values ofH and _ϕ from Eqs. (80)
and (81) into Eq. (84), and on integrating it we get

Nk ¼
ϕ

α−1
2α−1
k − ϕ

α−1
2α−1
end

2
α−1
2α−1

�
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� ffiffiffi
q
2
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α
1

2α−1: ð105Þ

Substitutingϕend fromEq. (104) and solving forϕk, the value
of the inflaton field at the horizon crossing, we obtain

ϕk ¼ −
ffiffiffi
q
2

r
MP

ðα − 1Þ ln
�
1

α

�
3M4

V0

�
α−1� ffiffiffi

2
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α
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þ Nk
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α−1
2α−1

�
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: ð106Þ

TABLE IV. The allowed values of spectral index ns and number of e-folds Nk for various values of α for the
quartic potential with a power-law kinetic term considering Tre ≥ 100 GeV.

α Equation of state ns Nk r

α ¼ 4 −1=3 ≤ wre ≤ 0 0.9152 ≤ ns ≤ 0.9510 27.62 ≤ Nk ≤ 48.36 0.1495 ≥ r ≥ 0.0863
0 ≤ wre ≤ 0.25 0.9510 ≤ ns ≤ 0.9581 48.36 ≤ Nk ≤ 56.53 0.0863 ≥ r ≥ 0.0740
0.25 ≤ wre ≤ 1 0.9581 ≤ ns ≤ 0.9654 56.53 ≤ Nk ≤ 68.69 0.0740 ≥ r ≥ 0.0610

α ¼ 10 −1=3 ≤ wre ≤ 0 0.9180 ≤ ns ≤ 0.9522 28.06 ≤ Nk ≤ 48.73 0.0867 ≥ r ≥ 0.0505
0 ≤ wre ≤ 0.25 0.9522 ≤ ns ≤ 0.9590 48.73 ≤ Nk ≤ 56.87 0.0505 ≥ r ≥ 0.0433
0.25 ≤ wre ≤ 1 0.9590 ≤ ns ≤ 0.9662 56.87 ≤ Nk ≤ 68.99 0.0433 ≥ r ≥ 0.0357

α ¼ 50 −1=3 ≤ wre ≤ 0 0.9209 ≤ ns ≤ 0.9533 28.88 ≤ Nk ≤ 49.10 0.0364 ≥ r ≥ 0.0215
0 ≤ wre ≤ 0.25 0.9533 ≤ ns ≤ 0.9598 49.10 ≤ Nk ≤ 57.48 0.0215 ≥ r ≥ 0.0185
0.25 ≤ wre ≤ 1 0.9598 ≤ ns ≤ 0.9667 57.48 ≤ Nk ≤ 69.52 0.0185 ≥ r ≥ 0.0153

α ¼ 100 −1=3 ≤ wre ≤ 0 0.9219 ≤ ns ≤ 0.9536 29.23 ≤ Nk ≤ 49.69 0.0253 ≥ r ≥ 0.0150
0 ≤ wre ≤ 0.25 0.9536 ≤ ns ≤ 0.9600 49.69 ≤ Nk ≤ 57.75 0.0150 ≥ r ≥ 0.0129
0.25 ≤ wre ≤ 1 0.9600 ≤ ns ≤ 0.9668 57.75 ≤ Nk ≤ 69.76 0.0129 ≥ r ≥ 0.0108
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Substituting Eq. (106) in Eq. (102), we can evaluate the first
slow-roll parameter ϵ1 at ϕ ¼ ϕk as

ϵ1 ¼
2α − 1

ð2α − 1Þ þ 2Nkðα − 1Þ : ð107Þ

Putting Eq. (107) and Eq. (103) into Eq. (17), we get the
expression for the spectral index

ns ¼ 1 − 2
ð3α − 2Þ

ð2α − 1Þ þ 2Nkðα − 1Þ : ð108Þ

Using this equation the number of e-folds Nk can be
expressed in terms of the spectral index ns as

Nk ¼
ð3α − 2Þ

ðα − 1Þð1 − nsÞ
−
ð2α − 1Þ
2ðα − 1Þ : ð109Þ

The value of the potential at the end of inflation can be
expressed in terms of Hk using Eqs. (80) and (101) as

Vend ¼ 3M2
PH

2
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2
64exp



−

ffiffi
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q

q
ϕend
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−

ffiffi
2
q

q
ϕk
MP

�
3
75: ð110Þ

Solving the above equation with Eq. (104) and Eq. (106)

Vend ¼ 3M2
PH

2
k

�
2α − 1

ð2α − 1Þ þ 2Nkðα − 1Þ
	2α−1

α−1
: ð111Þ

The Hubble constant at ϕ ¼ ϕk, can be obtained by
substituting the expression for the speed of sound cS, (85),
and the slow-roll parameter ϵ1, (107) in Eq. (15) as

Hk ¼ πMP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8AS

2α − 1

ð2α − 1Þ þ 2Nkðα − 1Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2α − 1
p

s
: ð112Þ

Using equation Eq. (112), Eq. (110), and Eq. (109), we
can obtainHk and Vend as a function of ns. Again, by using
these expressions for Hk and Vend, the reheating

FIG. 7. Nk as function of ns for quadratic potential and quartic potential with a power law kinetic term. Nk vs ns for quadratic potential
(b) Nk vs ns for quartic potential.

FIG. 8. r vs ns predictions for quadratic and quartic potentials with four different choice of α along with joint 68% C.L. and 95% C.L.
Planck 2018 constraints. Here the orange region corresponds to wre ≤ 0, the green region corresponds to 0 ≤ wre ≤ 0.25, the yellow
region shows 0.25 ≤ wre ≤ 1 and the purple region corresponds to wre > 1.
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temperature Tre and the number of e-folds during reheating
Nre can be obtained in terms of ns from Eqs. (29) and (28)
respectively. The variation of Nre and Tre with respect to ns
for various choices of α and effective equation of state
during reheating is shown in Fig. 9.
By demanding Tre > 100 GeV we obtain bounds on ns

using Eq. (29) for various values of wre. Again from these
bounds on ns, the bounds on Nk can be obtained using

Eq. (109). The tensor to scalar ratio r for the exponential
potential with a power-law kinetic term can be obtained by
substituting Eq. (85) and Eq. (107) in Eq. (18) as

r ¼ 16
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2α − 1

p

2α − 1þ 2Nkðα − 1Þ ; α > 1: ð113Þ

Using this expression we can get bounds on r from the
bounds on Nk, obtained by the reheating consideration.

FIG. 9. Nre and Tre as function of ns for four different values of α of the exponential potential with a power-law kinetic term. The
vertical pink region shows Planck 2018 bounds on ns and the dark pink region represents a precision of 10−3 from future observations
[61]. The horizontal purple region corresponds to Tre of 10 MeV from BBN and the light purple region corresponds to 100 GeVof the
electroweak scale. The red dotted line corresponds to wre ¼ − 1

3
, the blue dashed lines corresponds to wre ¼ 0, the green solid line

corresponds to wre ¼ 0.25, and the black dot-dashed line is for wre ¼ 1.

TABLE V. The allowed values of spectral index ns and the number of e-folds Nk for various values of α for
exponential potentials with a power-law kinetic term, considering Tre ≥ 100 GeV.

α Equation of state ns Nk r

α ¼ 4 −1=3 ≤ wre ≤ 0 0.8888 ≤ ns ≤ 0.9341 31.81 ≤ Nk ≤ 54.45 0.2353 ≥ r ≥ 0.1395
0 ≤ wre ≤ 0.25 0.9341 ≤ ns ≤ 0.9431 54.45 ≤ Nk ≤ 63.30 0.1395 ≥ r ≥ 0.1204
0.25 ≤ wre ≤ 1 0.9431 ≤ ns ≤ 0.9528 63.30 ≤ Nk ≤ 76.44 0.1204 ≥ r ≥ 0.0999

α ¼ 10 −1=3 ≤ wre ≤ 0 0.8967 ≤ ns ≤ 0.9385 30.1371 ≤ Nk ≤ 51.39 0.1286 ≥ r ≥ 0.0765
0 ≤ wre ≤ 0.25 0.9385 ≤ ns ≤ 0.9469 51.39 ≤ Nk ≤ 59.72 0.0765 ≥ r ≥ 0.0660
0.25 ≤ wre ≤ 1 0.9469 ≤ ns ≤ 0.9559 59.72 ≤ Nk ≤ 72.09 0.0660 ≥ r ≥ 0.0549

α ¼ 50 −1=3 ≤ wre ≤ 0 0.9020 ≤ ns ≤ 0.9410 30.01 ≤ Nk ≤ 50.53 0.0527 ≥ r ≥ 0.0317
0 ≤ wre ≤ 0.25 0.9410 ≤ ns ≤ 0.9489 50.53 ≤ Nk ≤ 58.58 0.0317 ≥ r ≥ 0.0274
0.25 ≤ wre ≤ 1 0.9489 ≤ ns ≤ 0.9575 58.58 ≤ Nk ≤ 70.54 0.0274 ≥ r ≥ 0.0229

α ¼ 100 −1=3 ≤ wre ≤ 0 0.9034 ≤ ns ≤ 0.9415 30.25 ≤ Nk ≤ 50.64 0.0366 ≥ r ≥ 0.0221
0 ≤ wre ≤ 0.25 0.9415 ≤ ns ≤ 0.9493 50.64 ≤ Nk ≤ 58.63 0.0221 ≥ r ≥ 0.0192
0.25 ≤ wre ≤ 1 0.9493 ≤ ns ≤ 0.9578 58.63 ≤ Nk ≤ 70.52 0.0192 ≥ r ≥ 0.0159
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These bounds on ns, Nk, and r for the exponential potential
are listed in Table V. It can be seen from Table V that,
with α ¼ 4, the bounds r, i.e., 0.139 ≥ r ≥ 0.12 are higher
than the joint BICEP2/Keck array and Planck 2018 bounds
r < 0.06 [62] for the physically plausible range
0 ≤ wre ≤ 0.25. However, for this range of wre, the bounds
on r are compatible with joint BICEP2/Keck array and
Planck 2018 bounds for larger values of α.
The plots between Nk and ns are shown in left panel of

Fig. 10 for various values of α and wre. The r − ns
predictions, along with joint 68% C.L. and 95% C.L.
Planck 2018 constraints, for this case are shown in the right
panel of Fig. 10. It can bee seen from the figure that, for all
values of α, the effective equation of state during reheating
wre should be greater than 1 to satisfy the Planck-2018 joint
constraints on r and ns, which violates causality.

VI. CONCLUSION

k-inflation [9,10] is an alternative to the standard single
field slow-roll inflation. In this case the noncanonical
kinetic term of the scalar field drives inflation. This
scenario has an advantage over the canonical single field
inflation as it increases the viability of various inflaton
potentials, ruled out from Planck CMB observations, by
reducing the tensor to scalar ratio. In this work we analyze
models of k-inflation in the light of reheating. The phase of
reheating can be parametrized in terms of three parameters,
namely reheating temperature Tre, the effective equation of
state of cosmic fluid during reheating wre, and the number
of e-folds during reheating Nre. These three parameters can
be related to the amplitude of scalar perturbations, the
spectral index and other inflationary parameters depending
on the inflaton kinetic term and potential, and can be used
to constrain models of inflation (see [50–52] for constraints
on canonical single-field inflation). We derive expressions

for Tre and Nre in terms of wre, ns and other inflationary
parameters, and then we use these expressions to constrain
models of k-inflation having a kinetic term of DBI form and
power-law form. With a DBI kinetic term we choose a
monomial and a natural inflation potential and with a
power-law kinetic term we choose a monomial and an
exponential potential. In [45] it was shown that the equation
of state during reheating wre should lie between 0 to 0.25
for various reheating scenarios. By imposing 0 ≤ wre ≤
0.25 and demanding that the reheating temperature Tre >
100 GeV for weak-scale dark matter production, we find
bounds on ns and number of e-foldings Nk from the time
when the mode k corresponding to the pivot scale, k0 ¼
0.05 Mpc

−1 leaves the Hubble radius during inflation to the
end of inflation. These bounds on ns and Nk can be
transferred the bounds on tensor to scalar ratio r, and hence
the allowed region in ns − r plane for models of inflation is
restricted.
The bounds obtained for Nk and r for k-inflation with a

DBI kinetic term and monomial potentials V ∼ ϕn are
shown in Table I and the r − ns predictions for various
equation of states during reheating are shown in Fig. 2. We
find that the tensor to scalar ratio r > 0.0786 for wre ≤ 1 in
case of the quartic potential, which is greater than the joint
BICEP2/Keck array and Planck 2018 bound r < 0.06 [62].
The r − ns predictions for n ¼ 2=3 and n ¼ 1 lie within the
Planck 2018 1σ constraints for wre < 0. The bounds on Nk
and r for natural inflation potentials are shown in Table II
and the predictions for r − ns are represented in Fig. 4. We
find that the natural inflation with a DBI kinetic term is
compatible with Planck 2018 observations for the physi-
cally plausible range 0 ≤ wre ≤ 0.25.
In case of k-inflation with a power-law kinetic term (73)

the bounds on Nk and r for quadratic and quartic potentials
are shown in Table III and Table IV, respectively. We find

FIG. 10. In the left panel Nk as function of ns is shown for α ¼ 4, 50, and 100 of exponential potentials with a power law kinetic term.
In the right panel predictions of r vs ns for exponential potentials with a power-law kinetic term along with joint 68% C.L. and 95% C.L.
Planck 2018 constraints is shown for four choices of α (α ¼ 4, 10, 50, and, 100). Here, in both panels the orange region corresponds to
wre ≤ 0, the green region corresponds to 0 ≤ wre ≤ 0.25, the yellow region shows 0.25 ≤ wre ≤ 1, and the purple region corresponds to
wre > 1. (a) Nk vs ns for exponential potential for α ¼ 4, 10,100. (b) r vs ns for exponential with α ¼ 4, 10, 50, 100.
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that, with α ¼ 4 for a quadratic potential, the tensor to
scalar ratio r > 0.0740 for wre ≤ 0.25 and r > 0.0610 for
wre ≤ 1, which is slightly greater than the joint BICEP2/
Keck array and Planck 2018 bound r < 0.06 [62].
However, this potential is compatible with Planck 2018
bounds on r for the physically plausible range 0 ≤ wre ≤
0.25 with larger values of α. The r − ns predictions for
these potentials are shown in Fig. 8. It can be seen from the
figure that, for these predictions to lie within Planck 2018
1σ constants, the reheating equation of state is wre ≥ 0.25
for quartic potential. The bounds on Nk and r for an
exponential potential with a power-law kinetic term are
shown in Table V. We find that, for α ¼ 4, the tensor to
scalar ratio 0.1395 ≥ r ≥ 0.1204 for the physically plau-
sible range 0 ≤ wre ≤ 0.25 and r ≥ 0.0999 for wre ≤ 1,
which are much larger than the joint BICEP2/Keck array
and Planck 2018 bounds r < 0.06 [62]. Again, bounds on r

are compatible with Planck 2018 bounds for larger values
of α. The r − ns predictions for exponential potential are
shown in Fig 10. It is evident from the figure that, for these
predictions to lie within joint 68% constraints from Planck
2018 observations, the effective equation of state during
reheating should be greater than 1.
These models of k-inflation are well motivated from

string theory, and they have similar r − ns predictions. By
imposing constraints from reheating we can remove this
degeneracy. In [53,68] it is shown that the spectrum of
gravitational waves generated during inflation is sensitive
to the equation of state during reheating. We find different
allowed values of wre for different models to satisfy joint
68% C.L. and 95% C.L. constraints on r − ns from Planck
2018 observations. Hence, our analysis with future detec-
tion of gravitational waves can help us to find suitable
model of inflation with a noncanonical kinetic term.

[1] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[2] V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33, 532

(1981).
[3] A. A. Starobinsky, Phys. Lett. 117B, 175 (1982).
[4] A. H. Guth and S.-Y. Pi, Phys. Rev. D 32, 1899 (1985).
[5] G. F. Smoot, C. L. Bennett, A. Kogut, E. L. Wright,

J. Aymon, N. W. Boggess, E. S. Cheng, G. De Amici
et al., Astrophys. J. 396, L1 (1992).

[6] E. Komatsu et al. (WMAP Collaboration), Astrophys. J.
Suppl. Ser. 192, 18 (2011).

[7] Y. Akrami et al. (Planck Collaboration), Astron. Astrophys.
641, A10 (2020).

[8] J. Martin, C. Ringeval, and V. Vennin, Phys. Dark Universe
5–6, 75 (2014).

[9] C. Armendariz-Picon, T. Damour, and V. F. Mukhanov,
Phys. Lett. B 458, 209 (1999).

[10] J. Garriga and V. F. Mukhanov, Phys. Lett. B 458, 219
(1999).

[11] V. F. Mukhanov and A. Vikman, J. Cosmol. Astropart. Phys.
02 (2006) 004.

[12] G.W. Gibbons, Phys. Lett. B 537, 1 (2002).
[13] A. Sen, J. High Energy Phys. 10 (1999) 008.
[14] G.W. Gibbons, K. Hori, and P. Yi, Nucl. Phys. B596, 136

(2001).
[15] A. Sen, J. Math. Phys. (N.Y.) 42, 2844 (2001).
[16] A. Sen, J. High Energy Phys. 04 (2002) 048.
[17] Y. S. Piao, R. G. Cai, X. M. Zhang, and Y. Z. Zhang, Phys.

Rev. D 66, 121301 (2002).
[18] A. Mazumdar, S. Panda, and A. Perez-Lorenzana, Nucl.

Phys. B614, 101 (2001).
[19] P. Chingangbam, S. Panda, and A. Deshamukhya, J. High

Energy Phys. 02 (2005) 052.
[20] S. Choudhury and S. Panda, Eur. Phys. J. C 76, 278 (2016).
[21] N. C. Devi, A. Nautiyal, and A. A. Sen, Phys. Rev. D 84,

103504 (2011).

[22] S. Li and A. R. Liddle, J. Cosmol. Astropart. Phys. 10
(2012) 011.

[23] S. Unnikrishnan, V. Sahni, and A. Toporensky, J. Cosmol.
Astropart. Phys. 08 (2012) 018.

[24] N. Rashidi and K. Nozari, J. Cosmol. Astropart. Phys. 05
(2018) 044.

[25] S. Bhattacharya and M. R. Gangopadhyay, Phys. Rev. D
101, 023509 (2020).

[26] S. Lola, A. Lymperis, and E. N. Saridakis, Eur. Phys. J. C
81, 719 (2021).

[27] V. K. Oikonomou, Eur. Phys. J. Plus 136, 155 (2021).
[28] A. A. Sen and N. C. Devi, Gen. Relativ. Gravit. 42, 821

(2010).
[29] S. D. Odintsov, V. K. Oikonomou, and F. P. Fronimos, Nucl.

Phys. B963, 115299 (2021).
[30] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Nucl. Phys.

B941, 11 (2019).
[31] S. D. Odintsov and V. K. Oikonomou, Classical Quantum

Gravity 37, 025003 (2020).
[32] I. D. Gialamas and A. B. Lahanas, Phys. Rev. D 101,

084007 (2020).
[33] L. F. Abbott, E. Farhi, and M. B. Wise, Phys. Lett. 117B, 29

(1982).
[34] A. D. Dolgov and A. D. Linde, Phys. Lett. 116B, 329

(1982).
[35] A. Albrecht, P. J. Steinhardt, M. S. Turner, and F. Wilczek,

Phys. Rev. Lett. 48, 1437 (1982).
[36] J. H. Traschen and R. H. Brandenberger, Phys. Rev. D 42,

2491 (1990).
[37] A. D. Dolgov and D. P. Kirilova, Sov. J. Nucl. Phys. 51, 172

(1990).
[38] L. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Rev.

Lett. 73, 3195 (1994).
[39] L. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Rev.

D 56, 3258 (1997).

REHEATING CONSTRAINTS ON k-INFLATION PHYS. REV. D 104, 083526 (2021)

083526-19

https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)90541-X
https://doi.org/10.1103/PhysRevD.32.1899
https://doi.org/10.1086/186504
https://doi.org/10.1088/0067-0049/192/2/18
https://doi.org/10.1088/0067-0049/192/2/18
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1016/j.dark.2014.01.003
https://doi.org/10.1016/j.dark.2014.01.003
https://doi.org/10.1016/S0370-2693(99)00603-6
https://doi.org/10.1016/S0370-2693(99)00602-4
https://doi.org/10.1016/S0370-2693(99)00602-4
https://doi.org/10.1088/1475-7516/2006/02/004
https://doi.org/10.1088/1475-7516/2006/02/004
https://doi.org/10.1016/S0370-2693(02)01881-6
https://doi.org/10.1088/1126-6708/1999/10/008
https://doi.org/10.1016/S0550-3213(00)00716-1
https://doi.org/10.1016/S0550-3213(00)00716-1
https://doi.org/10.1063/1.1377037
https://doi.org/10.1088/1126-6708/2002/04/048
https://doi.org/10.1103/PhysRevD.66.121301
https://doi.org/10.1103/PhysRevD.66.121301
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1088/1126-6708/2005/02/052
https://doi.org/10.1088/1126-6708/2005/02/052
https://doi.org/10.1140/epjc/s10052-016-4072-2
https://doi.org/10.1103/PhysRevD.84.103504
https://doi.org/10.1103/PhysRevD.84.103504
https://doi.org/10.1088/1475-7516/2012/10/011
https://doi.org/10.1088/1475-7516/2012/10/011
https://doi.org/10.1088/1475-7516/2012/08/018
https://doi.org/10.1088/1475-7516/2012/08/018
https://doi.org/10.1088/1475-7516/2018/05/044
https://doi.org/10.1088/1475-7516/2018/05/044
https://doi.org/10.1103/PhysRevD.101.023509
https://doi.org/10.1103/PhysRevD.101.023509
https://doi.org/10.1140/epjc/s10052-021-09516-8
https://doi.org/10.1140/epjc/s10052-021-09516-8
https://doi.org/10.1140/epjp/s13360-020-01012-4
https://doi.org/10.1007/s10714-009-0882-y
https://doi.org/10.1007/s10714-009-0882-y
https://doi.org/10.1016/j.nuclphysb.2020.115299
https://doi.org/10.1016/j.nuclphysb.2020.115299
https://doi.org/10.1016/j.nuclphysb.2019.02.008
https://doi.org/10.1016/j.nuclphysb.2019.02.008
https://doi.org/10.1088/1361-6382/ab5c9d
https://doi.org/10.1088/1361-6382/ab5c9d
https://doi.org/10.1103/PhysRevD.101.084007
https://doi.org/10.1103/PhysRevD.101.084007
https://doi.org/10.1016/0370-2693(82)90867-X
https://doi.org/10.1016/0370-2693(82)90867-X
https://doi.org/10.1016/0370-2693(82)90292-1
https://doi.org/10.1016/0370-2693(82)90292-1
https://doi.org/10.1103/PhysRevLett.48.1437
https://doi.org/10.1103/PhysRevD.42.2491
https://doi.org/10.1103/PhysRevD.42.2491
https://doi.org/10.1103/PhysRevLett.73.3195
https://doi.org/10.1103/PhysRevLett.73.3195
https://doi.org/10.1103/PhysRevD.56.3258
https://doi.org/10.1103/PhysRevD.56.3258


[40] B. R. Greene, T. Prokopec, and T. G. Roos, Phys. Rev. D 56,
6484 (1997).

[41] J. F. Dufaux, G. N. Felder, L. Kofman, M. Peloso, and
D. Podolsky, J. Cosmol. Astropart. Phys. 07 (2006) 006.

[42] G. N. Felder, L. Kofman, and A. D. Linde, Phys. Rev. D 59,
123523 (1999).

[43] M. Kawasaki, K. Kohri, and N. Sugiyama, Phys. Rev. Lett.
82, 4168 (1999).

[44] M. Kawasaki, K. Kohri, and N. Sugiyama, Phys. Rev. D 62,
023506 (2000).

[45] D. I. Podolsky, G. N. Felder, L. Kofman, and M. Peloso,
Phys. Rev. D 73, 023501 (2006).

[46] K. D. Lozanov and M. A. Amin, Phys. Rev. Lett. 119,
061301 (2017).

[47] K. D. Lozanov and M. A. Amin, Phys. Rev. D 97, 023533
(2018).

[48] A. R. Liddle and S. M. Leach, Phys. Rev. D 68, 103503
(2003).

[49] S. Dodelson and L. Hui, Phys. Rev. Lett. 91, 131301 (2003).
[50] L. Dai, M. Kamionkowski, and J. Wang, Phys. Rev. Lett.

113, 041302 (2014).
[51] J. B. Munoz and M. Kamionkowski, Phys. Rev. D 91,

043521 (2015).
[52] J. L. Cook, E. Dimastrogiovanni, D. A. Easson, and L. M.

Krauss, J. Cosmol. Astropart. Phys. 04 (2015) 047.

[53] S. S. Mishra, V. Sahni, and A. A. Starobinsky, J. Cosmol.
Astropart. Phys. 05 (2021) 075.

[54] A. Nautiyal, Phys. Rev. D 98, 103531 (2018).
[55] D. J. Schwarz, C. A. Terrero-Escalante, and A. A. Garcia,

Phys. Lett. B 517, 243 (2001).
[56] J. Martin and C. Ringeval, Phys. Rev. D 82, 023511 (2010).
[57] P. H. Chavanis, Phys. Rev. D 92, 103004 (2015).
[58] J. Martin, C. Ringeval, and V. Vennin, Phys. Rev. Lett. 114,

081303 (2015).
[59] J. Mielczarek, Phys. Rev. D 83, 023502 (2011).
[60] R. Easther and H. V. Peiris, Phys. Rev. D 85, 103533

(2012).
[61] L. Amendola, S. Appleby, A. Avgoustidis, D. Bacon,

T. Baker, M. Baldi, N. Bartolo, A. Blanchard, C. Bonvin,
S. Borgani et al. Living Rev. Relativity 21, 2 (2018).

[62] P. A. R. Ade et al. (BICEP2 and Keck Array Collabora-
tions), Phys. Rev. Lett. 121, 221301 (2018).

[63] K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. Lett.
65, 3233 (1990).

[64] F. Lucchin and S. Matarrese, Phys. Rev. D 32, 1316 (1985).
[65] J. J. Halliwell, Phys. Lett. B 185, 341 (1987).
[66] J. Yokoyama and K. I. Maeda, Phys. Lett. B 207, 31 (1988).
[67] L. P. Chimento, R. Lazkoz, and M. G. Richarte, Phys. Rev.

D 83, 063505 (2011).
[68] V. Sahni, Phys. Rev. D 42, 453 (1990).

POOJA PAREEK and AKHILESH NAUTIYAL PHYS. REV. D 104, 083526 (2021)

083526-20

https://doi.org/10.1103/PhysRevD.56.6484
https://doi.org/10.1103/PhysRevD.56.6484
https://doi.org/10.1088/1475-7516/2006/07/006
https://doi.org/10.1103/PhysRevD.59.123523
https://doi.org/10.1103/PhysRevD.59.123523
https://doi.org/10.1103/PhysRevLett.82.4168
https://doi.org/10.1103/PhysRevLett.82.4168
https://doi.org/10.1103/PhysRevD.62.023506
https://doi.org/10.1103/PhysRevD.62.023506
https://doi.org/10.1103/PhysRevD.73.023501
https://doi.org/10.1103/PhysRevLett.119.061301
https://doi.org/10.1103/PhysRevLett.119.061301
https://doi.org/10.1103/PhysRevD.97.023533
https://doi.org/10.1103/PhysRevD.97.023533
https://doi.org/10.1103/PhysRevD.68.103503
https://doi.org/10.1103/PhysRevD.68.103503
https://doi.org/10.1103/PhysRevLett.91.131301
https://doi.org/10.1103/PhysRevLett.113.041302
https://doi.org/10.1103/PhysRevLett.113.041302
https://doi.org/10.1103/PhysRevD.91.043521
https://doi.org/10.1103/PhysRevD.91.043521
https://doi.org/10.1088/1475-7516/2015/04/047
https://doi.org/10.1088/1475-7516/2021/05/075
https://doi.org/10.1088/1475-7516/2021/05/075
https://doi.org/10.1103/PhysRevD.98.103531
https://doi.org/10.1016/S0370-2693(01)01036-X
https://doi.org/10.1103/PhysRevD.82.023511
https://doi.org/10.1103/PhysRevD.92.103004
https://doi.org/10.1103/PhysRevLett.114.081303
https://doi.org/10.1103/PhysRevLett.114.081303
https://doi.org/10.1103/PhysRevD.83.023502
https://doi.org/10.1103/PhysRevD.85.103533
https://doi.org/10.1103/PhysRevD.85.103533
https://doi.org/10.1007/s41114-017-0010-3
https://doi.org/10.1103/PhysRevLett.121.221301
https://doi.org/10.1103/PhysRevLett.65.3233
https://doi.org/10.1103/PhysRevLett.65.3233
https://doi.org/10.1103/PhysRevD.32.1316
https://doi.org/10.1016/0370-2693(87)91011-2
https://doi.org/10.1016/0370-2693(88)90880-5
https://doi.org/10.1103/PhysRevD.83.063505
https://doi.org/10.1103/PhysRevD.83.063505
https://doi.org/10.1103/PhysRevD.42.453

