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We study how inhomogeneities of the cosmological fluid fields backreact on the homogeneous part of
energy density and how they modify the Friedmann equations. In general, backreaction requires to go
beyond the pressureless ideal fluid approximation, and this can lead to a reduced growth of cosmological
large-scale structure. Since observational evidence favors evolution close to the standard growing mode in
the linear regime, we focus on two-component fluids in which the nonideal fluid is gravitationally coupled
to cold dark matter and in which a standard growing mode persists. This is realized, e.g., for a baryonic
fluid coupled to cold dark matter. We calculate the backreaction for this case and for a wide range of other
two-fluid models. Here the effect is either suppressed because the nonideal matter properties are
numerically too small, or because they lead to a too stringent UV cutoff of the integral over the power
spectrum that determines backreaction. We discuss then matter field backreaction from a broader
perspective and generalize the formalism such that also far-from-equilibrium scenarios relevant to late
cosmological times and nonlinear scales can be addressed in the future.
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I. INTRODUCTION

The evolution equations used in cosmology are usually
obtained under the assumption of a spatially homogeneous
and isotropic distribution of matter. Although these sym-
metries remain preserved at all times in a statistical sense,
the deviations from homogeneity and isotropy become
locally sizable during cosmological large-scale structure
formation at late times. Here we ask whether this can have
any influence on the cosmological evolution equations.
Because Einstein’s gravitational field equations are non-

linear, this question amounts to asking whether the Einstein
equations for spatially averaged fields are affected by so-
called backreaction effects, i.e., averages of second and
higher orders in spatial inhomogeneities. Arguments that
such backreaction effects are always irrelevant for cosmol-
ogy have been made [1] and have been contested [2,3], the
discussion focusing mainly on inhomogeneities of the

metric. The smallness of the gravitational coupling constant
GN makes it plausible that terms nonlinear in inhomoge-
neities of the metric remain negligible for cosmological
evolution [4,5].
However, the Einstein equations contain also the energy-

momentum tensor of the matter distribution which develops
large inhomogeneities. Starting from an approximation of
matter fields as a nonideal fluid, it was demonstrated in
Ref. [6] how such inhomogeneities give rise to back-
reaction effects in late-time cosmology where nonlinear
terms in metric inhomogeneities and their temporal varia-
tions are negligible compared to those of inhomogeneities
in the matter fields.
The purpose of the present paper is two-fold. First, we

provide within the formalism of Ref. [6] the first explicit
calculations of backreaction effects in dynamical model
scenarios. Second, we generalize the formalism of Ref. [6]
to systems in which a Navier-Stokes fluid description
cannot be taken for granted.

II. BACKREACTION FORMALISM

As derived in Ref. [6], backreaction effects in a
Friedmann-Robertson-Walker (FRW) universe can be
encoded in a time- or scale-factor dependent source term
DðaÞ for the evolution of the spatially averaged energy
density ε̄,

*stefan.floerchinger@thphys.uni-heidelberg.de
†ntetrad@phys.uoa.gr
‡urs.wiedemann@cern.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW D 104, 083522 (2021)

2470-0010=2021=104(8)=083522(12) 083522-1 Published by the American Physical Society

https://orcid.org/0000-0002-3428-4625
https://orcid.org/0000-0003-4933-3503
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.083522&domain=pdf&date_stamp=2021-10-08
https://doi.org/10.1103/PhysRevD.104.083522
https://doi.org/10.1103/PhysRevD.104.083522
https://doi.org/10.1103/PhysRevD.104.083522
https://doi.org/10.1103/PhysRevD.104.083522
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


1

a
_̄εþ 3Hðε̄þ p̄effÞ ¼ DðaÞ: ð1Þ

Here, the Hubble constant H ¼ _a=a2 is expressed in terms
of the scale factor aðτÞ of the FRW metric ds2 ¼
a2½−dτ2 þ δijdxidxj� and the dot denotes a derivative with
respect to conformal time τ. The effective pressure p̄eff ¼
p̄þ π̄bulk contains thermal pressure and a possible bulk
viscous modification. Equation (1) holds irrespective of
whether a fluid description of the matter distribution with
inhomogeneities is applicable (see Sec. IV for details), but
the explicit form of D depends on it.
The spatial average of the trace of the Einstein field

equations can be shown to be free of backreaction effects,

ä
a3

¼ 1

a
_H þ 2H2 ¼ 4πGN

3
ðε̄ − 3p̄effÞ: ð2Þ

Combined with the energy conservation (1), this closes
the evolution equations for background fields. The two
equations combine to

aD ¼ 1

a4
d
dτ

½a4ε̄� − 3

8πGN

1

a4
d
dτ

½ _a2�: ð3Þ

Integrating over τ, one finds the modified Friedmann
equation:

H2ðτÞ ¼
�

_aðτÞ
a2ðτÞ

�
2

¼ 8πGN

3

�
ε̄ðτÞ − 1

a4ðτÞ
Z

τ

τi

dτ0a5ðτ0ÞDðτ0Þ
�
; ð4Þ

where we have assumed that the backreaction Dðτ0Þ
vanishes for sufficiently early times τ0 < τi. We emphasize
that (4) holds irrespective of whether a fluid approximation
applies.
Further consequences of (4) are explored in the

Appendix. In particular, we show that if backreaction
arises in a purely radiative sector, the D-dependent con-
tribution to ε̄ðτÞ in Eq. (4) cancels exactly the second term
on the right-hand side, so that HðτÞ is in this sense D
independent. For other equations of state, however, the D
dependence does not cancel in Eq. (4), i.e., the Friedmann
equation is modified.

III. LINEARIZED INHOMOGENEITIES AND
BACKREACTION IN COSMOLOGICAL FLUIDS

In this section, we first consider cosmological matter
fields in dynamical scenarios for which fluid dynamics
applies and where inhomogeneities can be followed by
linearized fluid equations. The backreaction formalism of
Sec. II can then be elaborated on in detail.

A. The backreaction term for a fluid

For the case that matter fields can be described as
nonideal fluids with finite pressure and/or nonvanishing
shear- and bulk viscosities ζ̄ and η̄, the backreaction term
DðaÞ can be written explicitly as [6]

D ¼ −
1

a

Z
d3qPθpðq⃗Þ þ

1

a2

�
ζ̄ þ 4

3
η̄

�Z
d3qPθθðq⃗Þ

þ 1

a2
η̄

Z
d3qðPwÞjjðq⃗Þ: ð5Þ

Here, hθ̃ðq⃗1Þθ̃ðq⃗2Þi ¼ δð3Þðq⃗1 þ q⃗2ÞPθθðq⃗1Þ defines the
power spectrum Pθθ in terms of a spatial average h…i
of the expansion scalar θðxÞ ¼ R

d3qθ̃ðqÞeiqx. The spectra
for vorticity w and pressure p are defined analogously.
To understand how to arrive at (5), one may consider the

case of a fluid with pressure but with vanishing viscosities.
The fluid dynamic equation for the energy density takes
then the form

_εþ v⃗ · ∇⃗εþ ðεþ pÞ
�
3
_a
a
þ ∇⃗ · v⃗

�
¼ 0: ð6Þ

Here, the flow field uμ ¼ ðγ; γv⃗Þ with γ ¼ 1=a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
allows for small inhomogeneities jv⃗j ≪ 1 on top of the

Hubble flow. The combination v⃗ · ∇⃗εþ ε∇⃗ · v⃗ is a total
derivative with vanishing spatial average, and therefore

1

a
_̄εþ 3Hðε̄þ p̄Þ ¼ 1

a
hv⃗ · ∇⃗pi ¼ −

1

a
hδp∇⃗ · v⃗i: ð7Þ

The spatial average hδp∇⃗ · v⃗i over second-order perturba-
tions can then be expressed in terms of an integral over the
power spectrum Pθpðq⃗Þ. This is the first line of (5). One
obtains the last two lines in (5) by including the shear- and
bulk viscous contributions in the Navier-Stokes approxi-
mation in Eq. (6) and following the same derivation.

B. Nonideal fluids with standard growing modes

The main aim of the present section is to calculate D
explicitly for model scenarios of large-scale structure
formation in which cosmological matter is treated in the
fluid approximation. To this end, we expose first some
qualitative considerations which inform our choice of
model scenarios:
The growth of large-scale structure after photon decou-

pling is thought to follow a growing mode approximately
∝ a. This growing mode is realized, e.g., when cold dark
matter (CDM) is described as an ideal fluid. However, the
term D in (5) vanishes for a pressureless and nonviscous
ideal fluid. On the other hand, one-component fluids with
pressure and/or viscosity are known to show a modified
growth of cosmological large-scale structure [7–11]. For
instance, for a one-component fluid with pressure, the Jeans
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criterion implies that overdensities oscillate rather than
grow if their mass is below the Jeans mass. This shows that
it is not easy to generate any backreaction without
modifying the late-time power-law growth of cosmological
large-scale structure.
In building cosmological models with backreaction, one

bold approach could be to start without taking into account
any constraint from the approximately linear growth of large-
scale structure; onemay hope that at least some of themodels
constructed this way evade existing constraints or indicate
modifications that will be supported by future observations.
Alternatively, a very conservative approach would be to
restrict the study to cosmologicalmodelswhich showa linear
growing mode at all scales and which are therefore designed
to pass observational constraints on large-scale structure. In
the following, we adopt this conservative approach.
Two-component fluids in which a fluid with pressure

and/or viscosity is coupled gravitationally to a pressureless
fluid show a standard linear growing mode in linear
perturbation theory. One well-known case is a fluid with
pressure coupled to a pressureless fluid. This is realized,
e.g., in the ΛCDM model where baryonic matter retains
after recombination a small ionization and thus a small
pressure. It is then the gravitational coupling to pressureless
cold dark matter that ensures the growth ∝ a of the density
contrast of baryonic matter on all scales, while the baryonic
pressure does some work during the same epoch. We
calculate the very small backreaction effect for this ΛCDM
scenario in Sec. III D before investigating other two-
component models that allow for somewhat larger back-
reaction effects.

C. Gravitationally coupled two-component fluids

For a one-component fluid with pressure and finite
viscosity, the equations of motion for the expansion scalar
θk and the energy density contrast δk ≡ δεk=ε̄ read at linear
order and for subhorizon fluctuations

_δk ¼ −ð1þ wÞθk − 3Hðc2s − wÞδk; ð8Þ

_θk ¼ −ð1 − 3c2adÞHθk þ k2Ψk

þ c2s
1þ w

k2δk −
4

3
k2

η

ð1þ wÞε̄a θk; ð9Þ

k2Φk ¼ −
3

2
H2δk; ð10Þ

k2Ψk ¼ −
3

2
H2

�
δk þ 4

η

ð1þ wÞε̄a θk
�
: ð11Þ

Here, the subscript k denotes Fourier modes of wavelength
2π=k and Eqs. (10) and (11) are the Poisson equations for
the two Newtonian potentials Φk and Ψk. We have para-
metrized the equation of state in terms of

w¼ p̄
ε̄
; c2s ¼

dp
dε

; c2ad ¼
_̄p
_̄ε
¼w−

_w
3ð1þwÞH; ð12Þ

where H ¼ H=a and where cs denotes the velocity of
sound. We assume in the following that w, cs, cad, ηH=ðε̄aÞ
are much smaller than 1, so that we can set them equal to 0,
apart from terms in which they are multiplied by k2. In this
approximation, the shear viscous difference between the
two Newtonian potentials is neglected, Φk ¼ Ψk.
We now consider two sectors: one with pressure and/or

shear viscosity that gives rise to a backreaction D (we
denote it therefore by a subscript D), and one which is
standard pressureless and nonviscous cold dark matter
(subscript C). The spatially averaged energy densities of
both sectors evolve independent of each other, but it is the
sum of their gravitational attractions that enters the trace of
Einstein’s field equations and that determines the expansion
history. This is seen in the background equations:

1

a
_̄εD þ 3Hε̄D ¼ D; ð13Þ

1

a
_̄εC þ 3Hε̄C ¼ 0; ð14Þ

ä
a3

¼ 1

a
_H þ 2H2 ¼ 4πGN

3
ðε̄D þ ε̄CÞ: ð15Þ

We denote matter inhomogeneities in the two sectors by δk,
θk and dk, ϑk, respectively. To linear order, these inho-
mogeneities are coupled gravitationally via the Poisson
equation,1

_δk ¼ −θk; ð16Þ

_θk ¼ −Hθk þ k2Ψk þ c2sk2δk −
4

3
k2

η

ε̄Da
θk; ð17Þ

_dk ¼ −ϑk; ð18Þ

_ϑk ¼ −Hϑk þ k2Ψk; ð19Þ

k2Ψk ¼ −
3

2
H2ðΩCdk þ ΩDδkÞ; ð20Þ

where ΩD ≡ εD=ðεD þ εCÞ is the energy fraction of the
sector with pressure and/or viscosity, and ΩD þ ΩC ¼ 1.

1For nonviscous and pressureless cold dark matter, the
dynamics at the mildly nonlinear scales of baryon-accoustic
oscillations can be described by matching to a nonideal fluid
description where the effective viscosity and pressure are para-
metrically small OðH2=k2mÞ, with km ∼ 1 h

Mpc being the matching
scale [10,12]. Here, we neglect these small contributions although
they can be as large as the smallest effects invoked in the
following discussion.
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Within this section, we consider a matter-dominated
Einstein universe with H ∼ a−1=2 and approximately con-
stant energy fractions ΩD, ΩC. To linear order in inhomo-
geneities, this two-component system does not develop
vorticity and with δpk ¼ c2sδεDk ¼ c2s ε̄Dδk, its backreac-
tion reads

D ¼ −
1

a
ε̄D

Z
d3qc2sPθδðqÞ þ

1

a
ε̄D

Z
d3q

4

3

η

ε̄Da
PθθðqÞ:

ð21Þ

It is helpful to rewrite the evolution of the linear
perturbations (16)–(20) in the standard two-component
fields:

�
ϕ1

ϕ2

�
≡

�
δk
−θk
H

�
;

�
ϕ3

ϕ4

�
≡

� dk
−ϑk
H

�
: ð22Þ

One finds

ϕ0
1 ¼ ϕ2; ð23Þ

ϕ0
2 ¼ −

1

2
ϕ2 þ

3

2
ðΩDϕ1 þ ð1 − ΩDÞϕ3Þ

− c2sak̃
2ϕ1 − c2ηak̃

2ϕ2; ð24Þ

ϕ0
3 ¼ ϕ4; ð25Þ

ϕ0
4 ¼ −

1

2
ϕ4 þ

3

2
ðΩDϕ1 þ ð1 −ΩDÞϕ3Þ; ð26Þ

where the prime denotes a derivative with respect to ln a,
and where we used ð1þH0=HÞ ¼ 1=2 for an Einstein
universe. In Eq. (24), the velocity of sound enters in the

combination c2s
k2

H2 ϕ1 ¼ c2s
H2

0

H2
k2

H2
0

ϕ1 ¼ c2sak̃
2ϕ1, where we

used H2
0=H

2 ¼ a for an Einstein universe and

k̃≡ k
H0

: ð27Þ

Similarly, the viscous corrections are written in terms of

c2η ¼
4ηH
3ε̄Da

: ð28Þ

In the absence of pressure and viscosity, c2s ¼ c2η ¼ 0,
the evolution equations have the growing mode ϕ1 ¼
ϕ2 ¼ ϕ3 ¼ ϕ4 ∝ a. In more general two-fluid models
discussed below, this generalizes to

ϕ1 ¼ ϕ2 ∝ a; ϕ3 ¼ ϕ4 ∝ a: ð29Þ
As a consequence of the relative minus sign between the
growth of δk and the growth of θk, it is then clear that the

pressure-induced backreaction term in the first line of (5) is
always positive if evaluated on the growing mode. This can
be made more explicit by rewriting

D¼ΩDε̄H

�Z
d3qc2sPϕ1ϕ2

ðqÞþ
Z

d3qc2ηPϕ2ϕ2
ðqÞ

�
: ð30Þ

D. Baryons coupled to CDM

The solutions of the linear evolution equations (23)–(26)
depend on the material properties c2s and c2η and their scale
dependence. In this subsection, we consider first the case of
normal baryonic matter gravitationally coupled to CDM
shortly after the era of recombination. The square of the
baryon sound velocity is [13]

c2s ¼
_Pb

_ρb
¼ kBTb

μmol

�
1 −

1

3

d lnTb

d ln a

�
; ð31Þ

where μmol is the mean molecular weight (including
electrons and all ions of H and He), Tb is the temperature
of the baryon fluid, and kB is Boltzmann’s constant. For a
rough estimate, we use μmol ¼ 1 g=mol and we assume a
matter-dominated universe with Tb¼T∘a−1 and T∘¼2.7K.
This yields c2sa ¼ 4kBT∘

3μmol
¼ 3 × 10−13, which corresponds to

cs ≈ 2 × 10−5 at recombination (a ≈ 0.001). Consistent
with the approximations leading to (8)–(11), this sound
velocity is small enough to be neglected in the equations of
motion except where c2s is enhanced by a factor k̃2. The
shear viscous contribution ∝c2η of the baryonic fluid is
much smaller, so that we can set c2η ¼ 0 in the following.
Since Tb ∼ a−1 in a matter-dominated universe, Eq. (31)

allows us to set in the evolution equations (23)–(26)

c2sak̃
2 ¼ 3α

2
; ð32Þ

where α is constant in time but depends on the wave
number k. The resulting system has been considered in
Chap. 8.3 of Weinberg’s Cosmology book [14]. For
the ansatz ϕi ¼ ϕ∘;iða=a∘Þμ, i ¼ 1, 2, 3, 4, ϕ1 ¼ ξϕ3,
Eqs. (23)–(26) lead to

ξ

�
μ2 þ μ

2
þ 3α

2

�
¼ μ2 þ μ

2
; ð33Þ

μ2 þ μ

2
¼ 3

2
þ ΩBξ −

3

2
ΩB: ð34Þ

Here, we have renamed the energy fractionΩD in (23)–(26)
by ΩB, since it is the baryonic fluid that exhibits pressure in
the example of this subsection.
Equations (33) and (34) have four solutions that char-

acterize the different eigenmodes with which the fields ϕi
evolve. Only one of these four solutions is a growing mode,
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μ > 0, for which perturbations increasewith time. The three
other solutions are decaying modes (μ < 0) that become
numerically unimportant at late times. Since all conceivable
initial conditions yield negligible backreaction effects at
times comparable to photon decoupling, and since we are
interested in backreaction at later times, we can safely
neglect the decaying modes in the following discussion.
ForΩB ≪ 1, the growing-mode solution of (34) is μ ¼ 1,

i.e., the small pressure contribution leaves the a-dependent
growth of the density contrast (almost) unaffected, while
the amplitude of the pressure-full fluid component is
somewhat reduced by [14]

ϕ1 ¼ ξϕ3; with ξ ¼ 1

1þ α
: ð35Þ

To calculate from this solution the backreaction (30), we
need to know the power spectrum Pϕ1ϕ2

ðqÞ. Since ϕ2 ¼
ϕ0
1 ¼ ϕ1 on the growing mode, we have Pϕ1ϕ2

ðqÞ ¼
Pϕ1ϕ1

ðqÞ ¼ PδδðqÞ. The solution (35) relates the energy
density fluctuations of the baryonic fluid to those of cold
dark matter, δk ¼ ξdk, and therefore PδδðqÞ ¼ ξ2PddðqÞ.
The power spectrum PddðkÞ of cold dark matter is given by
hdk1

dk2
i ¼ δð3Þðk1 þ k2ÞPddðk1Þ. A very simple paramet-

rization that is sufficient for our purposes is

PddðqÞ¼N a2
��

q
qeq

�
Θðqeq−qÞþ

�
q
qeq

�
−3
Θðq−qeqÞ

�
;

ð36Þ

with qeq ¼ 0.02 h
Mpc and N ¼ 102ðMpc

h Þ3. This allows us to
write (30) as

D ¼ ΩBε̄Hc2s

Z
d3q

PddðqÞ
ð1þ 2

3
c2sa

q2

H2
0

Þ2
; ð37Þ

where the denominator of the integrand arises from the
factor ξ2 in PδδðqÞ ¼ ξ2ðqÞPddðqÞ. This factor ξ2 is scale
independent but it depends on the wave number q; see
Eq. (32). This is important: without the factor ξ2ðqÞ, the
integral (37) would be logarithmically UV divergent. The
pressure-induced correction ξ2ðqÞ is the physics effect that
regulates this UV divergence. Changing in (37) to the
dimensionless integration variable x ¼ q=qeq,

D ¼ ΩBε̄4πHc2sq3eq

Z
x2dx

PddðqeqxÞ
ð1þ Ax2Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡F ðAÞ=Na2

; ð38Þ

and accounting for the overall normalization N a2 of (36),
the integral is seen to become a function

F ðAÞ ¼
Z

x2dx
xΘð1 − xÞ þ x−3Θðx − 1Þ

ð1þ Ax2Þ2

¼ Að−1þ A ln ½1þ 1
A�Þ þ ln ½1þ A�

2A2
; ð39Þ

of a single dimensionless quantity

A ¼ 2

3
c2sa

q2eq
H2

0

: ð40Þ

We think of this variable as characterizing the velocity of

sound cs in the particular units 2
3
a q2eq

H2
0

relevant for the UV

regularization of (37). We therefore rewrite also the explicit
prefactor c2s in terms of A, so that the entire c2s dependence
of backreaction is parametrized by the factor AF ðAÞ,

D ¼ 6πΩBε̄HN qeqH2
0aAF ðAÞ: ð41Þ

For the Hubble constant H0 ¼ 1
3000

h
Mpc, the prefactor in

Eq. (41) is 6πN qeqH2
0 ¼ 4.2 × 10−6 and A ¼ 7.9 × 10−10.

This yields F ðAÞ ¼ 10.2 and

D ¼ λε̄BHa with λ ≈ 3.4 × 10−14: ð42Þ

Given the smallness of the prefactor λ, this backreaction is
negligible and cannot affect the evolution (13) of cosmo-
logical background fields in a measurable way.

E. An explicit example of a modified
Friedmann equation

How would the background fields and the Friedmann
equation be modified in the presence of a more sizable
backreaction of the form (42)? As this would not be the
physically realized baryonic matter, we switch notation
ε̄B → ε̄D in this section. InsertingD ¼ λε̄DHa into (13), we
find with d

dτ ¼ Ha2 d
da the equation of motion

a
d
da

ε̄D þ 3ε̄D ¼ λaε̄D; ð43Þ

which has the analytic solution

ε̄D ¼ ε̄i;D

�
ai
a

�
3

eλða−aiÞ: ð44Þ

Here, ε̄i;D is the energy density at the initial time τi at which
ai ¼ aðτiÞ. Since a ≤ 1, the factor eλða−aiÞ isOð1Þ through-
out the evolution and the correction to the characteristic
power-law decay of cold dark matter becomes negligible
for very small λ. The factor eλða−aiÞ is always larger than
unity, which is consistent with the general expectation that
the work done by backreaction increases the energy density
of the corresponding matter component.
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In the modified Friedmann equation (4), the energy
density (44) enters in the combination

ε̄D −
1

a4ðτÞ
Z

τ

τi

dτ0a5ðτ0ÞDðτ0Þ

¼ ε̄D −
λ

a4

Z
a

ai

da0a04ε̄Dða0Þ

¼ ε̄i;D

�
ai
a

�
3
�
eλða−aiÞ − 1þ λai

λa

�
: ð45Þ

For a ≫ ai, this allows us to write (4) in the form

H2ðτÞ ¼ 8πGN

3

�
ΩC þ ΩD

eλa − 1

λa

�
ðε̄ðτÞjλ¼0Þ: ð46Þ

Compared to the standard Friedmann equation H2 ¼
8πGN
3

ðΩC þ ΩDÞε̄jλ¼0, backreaction thus increases
Hubble’s constant ( ddλH

2ðτÞ > 0). Starting from a d
da ε̄D þ

3ð1þ wÞε̄D ¼ λaε̄D instead of Eq. (43), one can obtain
analytic results also for a warm dark matter component
(p̄ ¼ wε̄) supplemented by a backreaction of the form (42).
For all w < 1

3
, backreaction leads to an increase of H2ðτÞ;

see the Appendix.

F. Two-component fluids with
increased backreaction

For baryons gravitationally coupled to cold dark matter,
we had found in Sec. III D a truly minute backreaction of
Oð10−13ΩBε̄HÞ. To what extent could backreaction in
gravitationally coupled two-component fluids be larger if
the material properties were different from those of
standard baryonic matter?

1. Backreaction as a function of c2s for c2s a = const.

To address this question, let us consider first a two-
component system of the kind described in Sec. III D, but
where the sound velocity c2s of the pressure-full matter
component takes a value different from that of the baryonic
fluid. Since the backreactionD in (30) is proportional to c2s ,
one may try to increase the backreaction D by increasing
c2s . However, there is a tight upper bound to any such effort:
the amplitude ξ of the growing mode in (35) is reduced by
increasing c2s . This reduction is larger for higher wave
number q and it thus regulates the integral (37) that
determinesD. The resulting c2s dependence ofD is encoded
in the dependence of the factor AF ðAÞ in (41). Plotting this
factor in Fig. 1, we see that backreaction reaches its
maximum for A ≈ 1 which corresponds to c2sa ¼
4 × 10−4 and that it decreases for larger c2s. The value
c2sa ¼ 4 × 10−4 still lies within the range of validity of our
approximation scheme (c2s ≪ 1) in which only terms
proportional to c2sk2 were kept.

For the baryonic fluid, we had determined AF ðAÞ ¼
8.1 × 10−9. According to Fig. 1, max ½AF ðAÞ� ¼ 0.2 is a
factor 2.5 × 107 larger. Therefore, a dark matter component
with minimal pressure (c2s ≪ 1) that couples gravitationally
to cold dark matter and that participates in the growth of
large-scale structure with standard growing mode could
exhibit a backreaction term as large as

D ≈ 10−6ΩDε̄Ha: ð47Þ

While this is much larger than the value (42) obtained for
the baryonic fluid, it still falls short of being detectable.

2. Backreaction for pressure and viscosity
with arbitrary scale dependence

So far, we have considered only dark matter components
which exhibit negligible viscosity and whose sound veloc-
ity has a particular a dependence, c2sa ¼ const. We next ask
to what extent other material properties could yield back-
reactions that are even larger than Eq. (47). To this end, we
explore now cosmological two-component fluids in which
one of the two components shows material properties of
arbitrary scale κs, κη and with arbitrary power-law scale
dependence

c2sa ¼ κsaνs ; ð48Þ

c2ηa ¼ 4

3

ηH
ε̄

¼ κηaνη : ð49Þ

We introduce the shorthand ϕi ≡ ϕin
ain

ϕ̃i for i ¼ 1, 2, 3, 4.
Equations (23)–(26) can be cast into two second-order
differential equations for the growth of the density contrasts
ϕ̃1 and ϕ̃3,

FIG. 1. The function AF ðAÞ defined in (39) determines the
entire c2s dependence of the backreaction D (37). Here, this c2s
dependence is characterized by plotting against A ∝ c2s
defined in (40).

FLOERCHINGER, TETRADIS, and WIEDEMANN PHYS. REV. D 104, 083522 (2021)

083522-6



a2
d2ϕ̃1

da2
þ
�
3

2
þ κηk̃

2aνη
�
a
dϕ̃1

da

−
�
3

2
ΩD − κsk̃

2aνs
�
ϕ̃1 ¼

3

2
ð1 − ΩDÞϕ̃3; ð50Þ

a2
d2ϕ̃3

da2
þ 3

2
a
dϕ̃3

da
−
3

2
ð1 −ΩDÞϕ̃3 ¼

3

2
ΩDϕ̃1: ð51Þ

We consider again the case ΩD ≪ 1 in which the growing
mode is (almost) unperturbed. In the limit ΩD → 0,
Eq. (51) has the solution ϕ̃3 ¼ a, so that Eq. (50) becomes

a2
d2ϕ̃1

da2
þ
�
3

2
þ κηk̃

2aνη
�
a
dϕ̃1

da
þ κsk̃

2aνs ϕ̃1 ¼
3

2
a: ð52Þ

For the viscosity-free case (κη ¼ 0) with constant c2sa (i.e.,
νs ¼ 0), the solution ϕ̃1 ¼ ξa of this equation reduces to
Eq. (35). A numerical solution of the general case (52) is
possible. We find it more instructive, however, to consider
two special cases that illustrate the generic properties of the
solution.

a. Case I: κs ¼ 0, κη ¼ finite. For this case, it is convenient
to use the evolution equation ϕ̃2 ¼ ϕ̃0

1 ¼ adϕ̃1=da and to
rewrite Eq. (52),

a
dϕ̃2

da
þ 1

2
ϕ̃2 þ κηk̃

2aνη ϕ̃2 ¼
3

2
a: ð53Þ

The solution is

ϕ̃2ðaÞ ¼ e
κη k̃2

νη
ðaνηi −aνη Þ

ffiffiffiffi
ai
a

r
ϕ̃2i þ

3

2νη
a−

1
2

�
−

νη
κηk̃

2

� 3
2νη
e−

κη k̃2

νη
aνη

×

�
Γ
�
3

2νη
;−

κηk̃
2a

νη
i

νη

�
− Γ

�
3

2νη
;−

4κηk̃
2aνη

νη

��
:

ð54Þ

The first term in the above expression can be neglected for
ϕ̃2i ¼ ai ≪ 1. For νη > 0, a useful approximate solution
can be obtained if one observes that the evolution is
characterized by two regimes. During the early evolution,
for small a, the last term in the rhs of Eq. (53) is negligible
and the solution is ϕ̃2 ¼ a. At late times, for a ∼ 1, this
last term becomes dominant and the solution is
ϕ̃2 ≃ 3a1−νη=ð2κηk̃2Þ. A good fit of both regimes, giving
also the correct order of magnitude for the short inter-
mediate region, is given by the relation

ϕ̃2ðaÞ ¼
a

1þ 2
3
κηk̃

2aνη
: ð55Þ

b. Case II: κη ¼ 0, κs ¼ finite. For this case the analytical
solution is complicated and not very useful because of the
presence of strong oscillations for large k̃. However, if one
averages over the oscillations, the average field hϕ̃1i can be
described by a simple expression. In analogy with the
viscous case, for small a, the solution is ϕ̃1 ¼ a, while for
a ∼ 1, the last term in the rhs of the averaged equation (52)
dominates and hϕ̃1i ≃ 3a1−νv=ð2κsk̃2Þ. For νs > 0, a rela-
tion of sufficient accuracy for our purposes is

hϕ̃1iðaÞ ¼
a

1þ 2
3
κsk̃

2aνs
: ð56Þ

3. Numerical results

The denominators of (55) and (56) are scale-dependent
generalizations of the factor ξ in (35) that regulates the UV
divergence of the integral over the power spectrum (37). In
close analogy to the discussion in Sec. III F 1, this limits the
possible growth of backreaction with pressure or viscosity.
To be specific, let us consider for the case I the integral
that determines the viscous contribution to the backreaction
in (30),

IηðκηÞ≡
Z

d3qc2ηPϕ2ϕ2
ðqÞ

¼ κηaνη−1
Z

d3q
PddðqÞ

ð1þ 2
3
κη

q2

H2
0

aνηÞ2

¼ ð6πNH2
0q̄eqÞaCF ðCÞ: ð57Þ

Here, the prefactor 6πNH2
0qeq ¼ 4.2 × 10−6 is the same as

in (41), and the solution ∝ CF ðCÞ of the integral is of the
same functional form as (41), but with the a-dependent
argument

C ¼ 2

3
κη

q2eq
H2

0

aνη : ð58Þ

We know from Fig. 1 that max ½CF ðCÞ� ≈ 0.2 and there-
fore, the viscous backreaction in (30) has a tight upper
bound

D ¼ ΩDε̄HIη ≤ 10−6ΩDε̄Ha; ð59Þ

for the entire class of two-component fluid models con-
sidered here. This is consistent with the κη dependence of Iη
plotted in Fig. 2.
We finally write the corresponding contribution to

the backreaction (30) for the case II when viscosity
vanishes but sound velocity has an arbitrary a dependence,
c2s ∼ aνs−1.
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IsðκsÞ≡
Z

d3qc2sPϕ1ϕ2
ðqÞ

¼ κsaνs−1
Z

d3q
1þ 2

3
ð1−νsÞ q2

H2
0

κsaνs

ð1þ 2
3
q2

H2
0

κsaνsÞ3
PddðqÞ: ð60Þ

While this integral differs somewhat from (57), the UV cut
on the spectrum PddðqÞ is set by a similar q-dependent
denominator. This explains why the numerical evaluation
of (60) in Fig. 3 yields also in this case a tight upper bound
of the backreaction D ≤ Oð10−6ÞΩDε̄Ha.

IV. BACKREACTION FOR COSMOLOGICAL
MATTER BEYOND THE LINEAR

FLUID APPROXIMATION

Our discussion so far was based on describing matter in
terms of ideal or Navier-Stokes fluid dynamics, and on
following only scalar perturbations that were assumed to
propagate in a linear way. These assumptions become
questionable at late times and on small scales when cosmo-
logical structure formation becomes nonlinear. Here, we
provide a formulation of backreaction that remains valid
beyond this linearized fluid-dynamic regime and that reduces

to the formalism of Sec. III in the limit in which Navier-
Stokes fluid dynamics applies.
The need to go beyond a fluid-dynamic formulation is

particularly clear for the modeling of cold dark matter at
late times and sufficiently small scales. At early times and
very large scales, CDM is well described by the single
stream approximation which is equivalent to a description
in terms of an ideal and pressureless fluid. At late times,
however, deviations from local equilibrium grow large, and
the velocity dispersion induced by shell crossing modifies
the dynamics [15–17]. In addition to scalar perturbations,
also vector perturbations (e.g., vorticity) are generated by
nonlinear terms. Also, the effect of dark matter self-
interactions would show up in this regime. At even smaller
scales, our current understanding of cosmological evolution
is incomplete.
To understand cosmological evolution, we are particu-

larly interested in the energy density εðxÞ. In a particle
picture, it receives contributions from rest masses, from
interactions, and from the kinetic motion of particles
(internal energy). For a one-component fluid with a single
(at least approximately) conserved particle quantum num-
ber, the differential of this energy density is

dε ¼ Tdsþ μdn; ð61Þ

with temperature T, entropy density s, chemical potential μ,
and particle density n. Equation (61) holds even if the fluid
evolution is highly nonlinear or turbulent and can be seen as
a definition of T and μ. Such more general dynamical
scenarios also allow for the definition of an entropy current
sμ, as well as a particle number current Nμ, so that one can
write

sμ ¼ suμ þ 1

T
qμ −

μ

T
νμ; Nμ ¼ nuμ þ νμ; ð62Þ

with fluid velocity uμ, heat current qμ, and diffusion current
νμ. The heat current qμ and diffusion current νμ are
orthogonal to the fluid velocity, uμqμ ¼ uμνμ ¼ 0.
Depending on the precise definition of the fluid velocity,
there is an additional relation for qμ and νμ (e.g., qμ ¼ 0 in
the Landau frame or νμ ¼ 0 in the Eckart frame), but we
keep this frame definition open.
Combining Eqs. (61) and (62) and using εþ p ¼

Tsþ μn, we obtain

uμ∂μεþ ðεþ pÞ∇μuμ ¼ σ̃; ð63Þ

with

σ̃ ¼ T∇ρðsρ − qρ=TÞ þ μ∇ρNρ þ Tνρ∂ρðμ=TÞ: ð64Þ

Entropy production ∇ρsρ and the change ∇ρNρ of particle
number vanish in global equilibrium, and so does the heat
current qμ and the diffusion current νμ. Therefore, the term
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10–10

10–9

10–8

10–7

10–6
I

a=0.01
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a=1

FIG. 2. The integral Iη in (57) determines the relative size of
backreaction for a viscous dark matter component in units of
ΩDε̄H. The plot is obtained for c2η ¼ κηaνη−1 with νη ¼ 1.
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FIG. 3. The integral Is in (60) determines in units of ΩDε̄H the
relative size of backreaction for a dark matter component with
sound velocity c2s ¼ κsaνs−1. The plot is for νs ¼ 1.
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σ̃ is proportional to gradients and it vanishes in equilibrium
or for an ideal fluid.
Amongst all possibilities for gradient terms to contribute

to (63), the combination ∇μuμ is distinguished in the
cosmological context, because it is nonvanishing already
for a homogeneous and isotropic fluid with Hubble
expansion. We define therefore

σ ¼ σ̃ þ πbulk∇μuμ; ð65Þ
where πbulk is defined such that σ vanishes for a homo-
geneous and isotropic but expanding or contracting fluid.
Alternatively, and equivalently, it is defined through the
tensor decomposition of the energy-momentum tensor with
respect to the fluid velocity uμ,

Tμν ¼ εuμuνþðpþπbulkÞΔμνþπμνþqμuνþuμqν: ð66Þ

Equation (63) becomes then

uμ∂μεþ ðεþ pþ πbulkÞ∇μuμ ¼ σ: ð67Þ

By construction, the right-hand side of Eq. (67) vanishes
for a homogeneous and isotropic fluid with FLRW expan-
sion. In that case, Eq. (67) gives the standard energy
conservation law. However, for an inhomogeneous fluid for
which homogeneity and isotropy are only symmetries in a
statistical sense, the right-hand side of Eq. (67) can be, and
will be, nonvanishing, for example due to terms quadratic
in perturbations.
Assuming that metric perturbations are negligible, we

can rewrite Eq. (67) in terms of deviations v⃗ from the local
Hubble flow. Using uμ ¼ ðγ; γv⃗Þ, γ ¼ 1=a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v⃗2

p
, we find

_εþ v⃗ · ∇⃗εþ ðεþ pþ πbulkÞ
�
3
_a
a
þ ∇⃗ · v⃗

�
¼ σ

γ
: ð68Þ

As the combination v⃗ · ∇⃗εþ ε∇⃗ · v⃗ is a total derivative with
vanishing spatial average, the spatial average of Eq. (68)
reads

1

a
_̄εþ 3Hðε̄þ p̄þ π̄bulkÞ ¼ D; ð69Þ

where

D ¼ 1

a
hv⃗ · ∇⃗ðpþ πbulkÞi þ

D
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v⃗2

p E
: ð70Þ

We stress again that D vanishes by construction in an
exactly homogeneous and isotropic universe and that it
starts quadratically in fluctuations. The form of (70) is more
general than the derivation given in Ref. [6] and used in
Sec. III, since it does not assume that the fluctuations are
small or that D is dominated by terms that are second order
in fluctuations. For illustration, we consider some special
cases for this general formula:

(i) For an ideal fluid with pressure one has σ¼πbulk¼0,
and

D ¼ −
1

a
hδp∇⃗ · v⃗i: ð71Þ

This is the case of our illustrative introductory
example (7) that describes a modification of energy
density due to work done in an imhomogeneous
fluid by contraction against local pressure gradients.
In Fourier space, δpðxÞ ¼ R

d3qδpðqÞeiqx, it can be
written as an integral over the power spectrum
D ¼ − 1

a

R
d3qPθpðq⃗Þ, which is the first term of (5).

(ii) In a first-order gradient expansion (Navier-Stokes
approximation) in the Landau frame one has qρ ¼ 0
and the local entropy production

∇μsμ ¼ −
1

T
½πbulk∇αuα þ παβ∇αuβ� − να∂α

�
μ

T

�
:

ð72Þ

For ∇μNμ ¼ 0, this leads to the simple expression

σ ¼ −παβ∇αuβ: ð73Þ

For exactly homogeneous and isotropic fields with-
out inhomogeneities but with FLRW expansion, the
only nonvanishing term in h∇μsμi is proportional to
the spatially averaged bulk viscous pressure,

π̄bulk ¼ −3ζ̄H: ð74Þ

According to the definition (65), this term cancels in
σ and therefore D ¼ 0 in the absence of inhomo-
geneities. However, (74) appears also on the left-
hand side of (69). The resulting bulk viscous
cosmologies without inhomogeneities have received
much attention in model studies [7–9,18–24].

Keeping in (72) terms up to second order in
inhomogeneities, one recovers the dissipative terms
derived in [6] and given in the second and third line
of Eq. (5),

D ¼ 1

a2

�
ζ̄ þ 4

3
η̄

�Z
d3qPθθðq⃗Þ

þ 1

a2
η̄

Z
d3qðPwÞjjðq⃗Þ: ð75Þ

These terms correspond to the contribution to energy
evolution from the entropy production (dissipation)
in fluid velocity perturbations.

(iii) The backreaction term D in Eq. (70) can also be
evaluated in far-from-equilibrium situations. One
particularly explicit example is given by a system

BACKREACTION FROM INHOMOGENEOUS MATTER FIELDS … PHYS. REV. D 104, 083522 (2021)

083522-9



without conserved particle number, Nμ ¼ 0, in the
Landau frame qμ ¼ 0, when (64) reduces to

σ̃ ¼ T∇ρsρ: ð76Þ

In this case, the term hσ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v⃗2

p
i in (70) is the

spatial average over local entropy production times
temperature and an inverse gamma factor. In any
kinetic theory description, even far from equilib-
rium, local entropy production ∇ρsρ ≥ 0 follows
from Boltzmann’sH theorem and is nonvanishing as
a result of collisions away from detailed balance. By
working in kinetic theory, or in nonequilibrium
quantum field theory, one can therefore evaluate
D beyond the simple first-order fluid approximation
entering Eq. (5).

(iv) From the decomposition (66) and the covariant
conservation law ∇μTμν ¼ 0, one obtains the alter-
native relation

σ ¼ −παβ∇αuβ −∇αqα þ uβuα∇αqβ: ð77Þ

This is formulated in terms of the energy-momentum
tensor only and it does not make reference to entropy.
For any form of out-of-equilibrium dynamics that
follows the energy momentum tensor and that asso-
ciates local flow fields (such as, e.g., a kinetic theory
formulation), all terms entering (77) are then given.

(v) Relaxing covariant particle number conservation,
∇μNμ ≥ 0, Eq. (70) allows for an increase in the
energy density by backreaction involving inelastic
processes.

These remarks illustrate the general point that working
within the framework of a fluid-dynamic evolution with
linearized treatment of inhomogeneities does not exhaust
scenarios in which backreaction can occur. We would find
it particularly interesting to understand whether increased
backreaction effects can be realized in far-from-equilibrium
scenarios that are accompanied by significant entropy
production or significant violations of particle number
conservation.

V. CONCLUSIONS

This work analyzed the combined evolution equations for
the homogeneous part of the cosmological energy density
and the growth of inhomogeneities, accounting for back-
reaction from the latter to the former. The evolution equations
for the spatial averages [see Eqs. (1) and (68)] and for the
linearized inhomogeneities [seeEqs. (8) to (11)] combine to a
set of integrodifferential equations that are difficult to solve in
general. However, for perturbatively small inhomogeneities,
one can solve the linearized evolution equation for pertur-
bations in the absence of backreaction, and then determine
the backreaction from the solutions. Based on this

approximation, we gave in the present paper novel, explicit,
and compact expressions for how backreaction modifies
Friedmann’s equation in late-time cosmology.
A basic conclusion that can be drawn is that backreaction

on the cosmological evolution is not necessarily linked to
large metric perturbations, such as (post-) Newtonian
potentials. The original proposal of Ref. [6] had already
emphasized this point. We discussed here an explicit
realization, which has the appealing property that it makes
use of two fundamental ingredients of the cosmological
model: baryonic and dark matter. In Sec. III we saw that the
growth of structure proceeds in the gravitationally coupled
systems of baryons and dark matter, despite the pressure
that develops in the baryonic sector because of the small
amount of ionization that it retains even after recombina-
tion. The simultaneous presence of pressure and significant
structure growth makes the first contribution to the back-
reaction term of Eq. (5) nonvanishing. The second impor-
tant conclusion is that the sign of the backreaction term is
such that the effect leads to the enhancement of the
averaged energy density that drives the expansion. For
backreaction through pressure, this growth arises through
the work done against perturbations. A similar conclusion
can be reached for the backreaction through viscosity.
In the above example, the known baryon sound velocity is

too small for the effect to be detectable. Replacing baryons
by a hypothetical second dark matter sector with nonzero
pressure or viscosity enlarges the parameter range and leads
to the enhancement of the effect by several orders of
magnitude. However, the standard cosmological expansion
is still not modified significantly. The analysis of Sec. III
reveals the reason by providing a refined general picture of
what limits the maximal size of backreaction effects from
inhomogeneities of matter fields. The backreaction terms in
Eq. (5) are integrals over measured or measurable power
spectra. They are multiplied by the velocity of sound or by a
viscous transport coefficient, respectively. One may thus
have expected that themaximal size of backreaction is set by
the current phenomenological constraints on warm dark
matter or viscousmatter. But, this is not the case. The growth
of large-scale structure is certainly known to put significant
constraints on nonideal fluid alternatives to CDM, but our
choice of nonideal fluids gravitationally coupled to CDM
was designed to evade possible constraints from large scale
structure. In doing so, we have encountered an even tighter
and more generic constraint: any pressure or viscous
correction gives rise to a physical UV cutoff of the
(logarithmically divergent) integral over the power spectrum
that determines backreaction; see Eqs. (37), (57), and (29).
This reduces backreaction below the conceivably detectable
level for arbitrary choices of sound velocity or viscosity.
The analysis in Sec. III has concentrated on cosmologi-

cal times and regimes of scales where the evolution of
inhomogeneities is close to linear. This allowed us to make
progress with analytical methods, but also implies—almost
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by construction—that backreaction terms remain small
(and perturbation theory remains consistent). On the other
side it is also clear that cosmological perturbation theory
breaks down at late times and on small scales. The
evolution of matter fields is then modified for example
by the generation of velocity dispersion generated by
stream crossing, or by nonlinear terms in the evolution
equations for scalar perturbations. Also, vector and even
tensor perturbations, like vorticity or shear stress, are
generated by nonlinear terms and can play an interesting
role at small scales. Dark matter self-interactions could
modify the dynamics in the nonlinear regime as well.
Backreaction terms can be written as integrals over equal-
time power spectra of inhomogeneities, and it is well
possible that these integrals are dominated by small scales
where nonlinear effects are large. It would therefore be
particularly interesting to extend our analysis into that
regime. Of course this is technically challenging and needs
a good understanding of nonlinear physics.
In order to prepare for a future extension into the nonlinear

and out-of-equilibrium regime, we have formulated the
backreaction terms for the evolution of energy density in
very general terms in Sec. IV. This new formulation does not
rely on the Navier-Stokes fluid approximation and can also
be applied for example in the context of far-from-equilibrium
quantum field or kinetic theory. It would be interesting to
establish in the future an understanding of backreaction
effects from the nonlinear regime of matter field inhomo-
geneities to the overall cosmological expansion.

ACKNOWLEDGMENTS

We thank Kfir Blum and Mathias Garny for discussions.
Thework of N. T. was supported by the Hellenic Foundation
for Research and Innovation (H. F. R. I.) under the “First Call
for H. F. R. I. Research Projects to support Faculty members
and Researchers and the procurement of high-cost research
equipment grant” (Project No. 824). The work of S. F. is
supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s
Excellence Strategy Grants No. EXC 2181/1—390900948
(the Heidelberg STRUCTURES Excellence Cluster),
No. SFB 1225 (ISOQUANT), as well as No. FL 736/3-1.

APPENDIX: FURTHER REMARKS ON THE
MODIFIED FRIEDMANN EQUATION

In this Appendix, we further explore general conse-
quences of the modified Friedmann equation (4). To this
end, we first define the critical total energy density ε̄c by

H2 ¼ 8πGN

3

�
ε̄c −

Z
τ

τI

dτ0
�
aðτ0Þ
aðτÞ

�
4

aðτ0ÞDðτ0Þ
�
: ðA1Þ

When the integral over D is positive, the total average
energy density today ε̄0;c, for vanishing spatial curvature, is

larger than the value usually taken for the critical energy
density,

ε̄0;c >
3H2

0

8πGN
: ðA2Þ

If the dissipative term D is nonzero during some time
interval, a part of the total background energy density ε̄c
has been produced by dissipative processes. It might be
useful to separate that part and to decompose the total
background energy density additively as

ε̄c ¼ ε̄þ ε̄D; ðA3Þ
where ε̄ is the conventional contribution of matter and
radiation that does not result from backreaction and ε̄D is
the part of the internal energy that results from the
dissipation of perturbations. The part ε̄D has the evolution

_̄εD þ 3
_a
a
ðε̄D þ p̄D þ π̄bulk;DÞ ¼ aD; ðA4Þ

for suitably defined pressure p̄D and bulk viscous pressure
π̄bulk;D. We assume now for simplicity the relation

p̄D þ π̄bulk;D ¼ ŵDε̄D; ðA5Þ

where ŵD is some constant. After integrating, one finds

ε̄DðτÞ ¼
Z

τ

τI

dτ0
�
aðτ0Þ
aðτÞ

�
3þ3ŵD

aðτ0ÞDðτ0Þ: ðA6Þ

Using this, as well as the decomposition (A3) in the
modified Friedmann equation, yields

HðτÞ2 ¼ 8πGN

3

�
ε̄ðτÞ

þ
Z

τ

τI

dτ0
��

aðτ0Þ
aðτÞ

�
3þ3ŵD

−
�
aðτ0Þ
aðτÞ

�
4
�
aðτ0ÞDðτ0Þ

�
:

ðA7Þ
One first notes that one recovers the conventional
Friedmann equation for Dðτ0Þ ¼ 0 or if ŵD ¼ 1=3. The
latter condition would correspond to ε̄D consisting of pure
radiation. If ŵD is smaller than 1=3, the Friedmann equation
is modified and in particular, today’s value of the energy
density ε̄ not produced by backreaction becomes

ðε̄Þ0 ¼
3H2

0

8πGN

−
Z

τ

τI

dτ0
��

aðτ0Þ
aðτÞ

�
3þ3ŵd

−
�
aðτ0Þ
aðτÞ

�
4
�
aðτ0ÞDðτ0Þ;

ðA8Þ
which for D > 0 is smaller than the conventional value
because the integral is positive.
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