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Indirect detection of gravitons through quantum entanglement
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We propose an experiment that the entanglement between two macroscopic mirrors suspended at the end
of an equal-arm interferometer is destroyed by the noise of gravitons through bremsstrahlung. By
calculating the correlation function of the noise, we obtain the decoherence time from the decoherence
functional. We estimate that the decoherence time induced by the noise of gravitons in squeezed states
stemming from inflation is approximately 20 s for 40 km long arms and 40 kg mirrors. Our analysis shows
that observation of the decoherence time of quantum entanglement has the potential to detect gravitons
indirectly. This indirect detection of gravitons would give strong evidence of quantum gravity.
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I. INTRODUCTION

It is widely believed that gravity should be quantized
because other forces are quantized. Nevertheless, there is
no satisfactory quantum theory of gravity. Some physicists
think that gravity may not be quantized after all [1]. Thus,
to find experimental evidence of quantum gravity is quite
important. A clear consequence of quantum theory of
gravity would be the existence of gravitons. Hence, it is
desired to come up with a novel way to observe gravitons
experimentally.

It has been known that gravitons are imperceptible. In
fact, Dyson has conjectured that no conceivable experiment
in our Universe can detect a single graviton [2,3]. If it is
true, we need to seek alternative ways for confirming the
existence of gravitons. One possible way is to focus on an
inflationary scenario. It is believed that primordial gravi-
tational waves can be generated during inflation from
quantum fluctuations of geometry. If we succeed in
observing the primordial gravitational waves, it would
imply a discovery of gravitons [4-6]. However, even if
the primordial gravitational waves arrive at the interfer-
ometers, the direct detection of the gravitons is difficult
with current experimental techniques. Another possible
way is to focus on the statistical property of primordial
gravitational waves. The state of the primordial gravita-
tional waves becomes squeezed during inflation [7,8].
Unfortunately, it is pointed out that observing the squeezed
states is also practically impossible [9].

Let us recall the history of discovery of atoms. Einstein
used Brownian motion to deduce the existence of atoms. In
the same way, instead of direct detection of gravitons,
indirect search for gravitons might be possible. Recently,
the noise induced by gravitons has been discussed in
Refs. [10-13]. An indirect detection of gravitons by
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making use of the process of decoherence through the
noise of gravitons is also proposed in Refs. [14-16].
However, no feasible experiment has been proposed yet.
The goal of this paper is to propose a feasible experimental
setup for indirect detection of gravitons in the squeezed
states stemming from inflation. In the following, we work
in the natural unit: ¢ = 7 = 1.

II. EXPERIMENTAL SETUPS

The proposed setup, shown in Fig. 1 consists of an equal-
arm Michelson interferometer which has a macroscopic
suspended mirror at the end of each arm. An incident
photon (photon beam with very low intensity) is injected
from left, and the beam splitter converts the photon into a
superposition state of being in both the upper and lower
arms simultaneously until it is detected by the oscillation of
either mirror [17]." In this study, we assume that the upper
and lower mirrors (2 and 1) are in position eigenstates.
Then, the oscillations of two mirrors are specified by their
positions as

&(1) = (£.0,0), & =Acosar,
5—2)(1) =(0,¢,,0), & = Acoswt, (1)

where the amplitude of the oscillation A and the angular
frequency @ of both mirrors are set to the same value for
simplicity. Let H; and H, denote each Hilbert space of
mirrors. Then, the Hilbert space for the combined system of
the two mirrors is H; @ H,. Let H; be spanned by a basis

'Here, we considered an incident photon for simplicity. In fact,
photon beams with high intensity create the entangled mirrors in
laboratory [18,19].
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FIG. 1. The proposed setup: an equal-arm Michelson interfer-
ometer for a single photon where there is a macroscopic
suspended mirror at the end of each arm.

{]0),1€)} and H, be spanned by {[0).|&,)}, where |0) is

the vacuum state in equilibrium and \éj) (a=1, 2)
represents a coherent state as an excited state induced by
a single photon. After an incident photon is injected, the
state of both mirrors with mass m is described by the
maximally entangled state where mirror 1 oscillates and
mirror 2 is in equilibrium or mirror 1 is in equilibrium and
mirror 2 oscillates,

) ®10) +—=[0) ® |&,). (2)

15 =0
V2 V2

Now, let us consider the influence of environmental
quantum gravitational fields (gravitons) on the system of
the mirrors. We assume that the initial total system is given
by |0) ® |0) ® |h), where |h) represents the initial state of
gravitons. As we will explain later, we consider squeezed
states of gravitons stemming from inflation. After the
incident photon is injected, the system of the mirrors gets
entangled, and the total system becomes

wm:kga®m+%M®@ﬁ®m 3

where f is the initial time. We impose normalization
conditions as

—

(&) = (&1&6) = (0[0) = (hlh) = 1. (4)

If we focus on the system of the mirrors, the reduced
density operator is obtained by tracing out the degree of
freedom of environmental gravitons such as

pm(ti) = Trgrav|l//(ti)><l//(ti)|
= % [p11(ti) + poa(ti) + pra(ti) + par ()], (5)

where we defined

(1) = & ()]0)(E (H](0],
pia(1) = & (1)]0) (0 (& (1)),
pan (1) = [0)|& ())& (0)](0],
pan(t) = 0)| & (1)) (0 (& (1)]-

The presence of interference term p, + p,; shows the
initial entangled state between the mirrors.

Next, let us consider the time evolution. Since gravitons
couple to each mirror as we will see in Eq. (16), the
quantum state of gravitons changes due to bremsstralung in
accordance with the oscillation of the mitror on either side.
The quantum state of the total system at the time ¢ > t; is
then formally written as

ww=§?QM®M®w§>

.i%m®3W®M£% (6)

where h;é_;) represents the state of gravitons which is
labeled by the oscillations of each mirror a = 1, 2. The

norm of | A; é_a)) is normalized to unity. We ignored the force
of radiation reaction of the mirror because the gravitational
backreaction is negligible and then the state of each mirror
remains unchanged. The point here is that the system of
mirrors gets entangled with environmental gravitons due to
the matter-gravity interaction. The effect of the bremsstra-
lung of gravitons is expressed by the reduced density
operator of the form

pu(t) = 31911 (1) + p2a(0)
+ exp(i®)p1a(1) + exp(=i®*)px (1)), (7)

where the influence functional ®(¢) is defined in terms of
h: &) as

exp(i®) = (h; & |h; ). (8)

The functional @ expresses the influence of the gravitons
on the reduced system. The imaginary part of the influential
functional suppress the interference term,” and that is
referred to as the decoherence functional I' =Im®
[20,21]. Once I' is calculated, we can read off the
decoherence timescale, which is given by I'(#;) = 1.

The decoherence leads to the loss of the entanglement
between the mirror 1 and the mirror 2. To quantify the time

’As we will see in Sec. V, this decoherence is induced by the
noise of gravitons. The presence of the noise leads to the
Langevin equation of geodesic deviation of the mirrors [10,16].
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evolution of the entanglement, the entanglement negativity
N as a measure of entanglement is useful. The negativity
N is defined by summing over all the negative eigenvalues
of pI (1), where p[,(¢) denotes a partial transpose of p,, (7).
To compute N, we express the density matrix in the form of
4 x 4 matrix as

0 0 0 O

110 1 e® 0
Pm(f)zg 0 e-i® 0
0 0 0 O

Taking a partial transpose with respect to the subsystem of
mirror 1, we have

0 0 0 €°
1 0 1 0 O
e 00 0

Then, by computing eigenvalues of pl (), we obtain
1
szexp(—l“). (10)

By observing the decoherence time or the change of
entanglement over time, we could detect gravitons indi-
rectly. This is the key idea of this paper. In the next section,
we see how the mirrors interact with gravitons.

ITII. ACTION FOR THE TOTAL SYSTEM

Let us consider the action for gravitational waves in the
Minkowski space first. The metric describing gravitational
waves in the transverse traceless gauge is expressed as

ds* = —di* + (5;; + h;;)dx'dx/, (11)

where 7 is the time, x; are spatial coordinates, and 6;; and h;;
are the Kronecker delta and the metric perturbations which
satisfy the transverse traceless conditions h;; ; = h;; = 0.
The indices (i, j) run from 1 to 3. Substituting the metric
Eq. (11) into the FEinstein-Hilbert action, we obtain the
quadratic action for the metric perturbations,

M g 40 (5] ij.k
Sg—?/d x iy — W) (12)
where the reduced Planck mass is defined by M 2 = 872G
and a dot denotes the derivative with respect to the time. We
can expand the metric field &;;(x, r) in terms of the Fourier
modes

1 2 B ik-x ,B
(') =3 SRR, (13)

where we introduced the polarization tensor ef;(k) nor-

malized as e} (k)ef;(k) = 6°. Here, the index B denotes
the linear polarization modes B = +, X. Note that we
consider finite volume V = L,L,L, and discretize the
k-mode with a width k = (2zn,/L,,2zn,/L,,2zn /L)
where n = (n,,n,,n,) are integers. Note that we used
k = |k|. We then see that a gravitational wave consists of
an infinite number of harmonic oscillators.

Next, we consider the action for two mirrors. In this study,
we regard the mirror as a point particle effectively because
the dynamical degree of the center of mass is essential for
discussing the noise of gravitons later. Then, we consider
how the particle feels gravitational waves. A single particle
does not feel the gravitational waves because of Einstein’s
equivalence principle at least classically. We need to con-
sider geodesic deviation between the two particles in order to
see the effect of gravity on them. We introduce the Fermi
normal coordinates for calculating the geodesic deviation
between the timelike geodesics of two particles y, and y,.
The Fermi normal coordinates are local inertial coordinates
that are adapted to a geodesic. We expand the coordinate
along the timelike and spacelike geodesics that are ortho-
gonal to each other at the position of the beam splitter as
shown in Fig. I, in which the spacelike geodesics are
simplified as the (x,y) plane. The dynamics of the y, and
v is described by the position £,(¢), a = 1, 2, respectively,
in the vicinity of the origin of the beam splitter. The action
for a particle along y, is given by

Sp——m/dr
2

= [ an/g.nemEE. (4)

where 7 is proper time and the position of the particle is
represented by & = (¢,&/(t)). The metric g,, up to the
second order of arbitrary position x’ in the Fermi normal
coordinates is computed as

o 4 . .
ds? ~ (=1 = Ryjo;x'x’)dt* — §R0jikxkadtdx’

1 oo
+ <5U —§Rikjka.xf> dx’dx/. (15)

Here, the Riemann tensor is evaluated at the origin x' = 0 in
the Fermi normal coordinate system. Because the Riemann
tensor Ry;o; is gauge invariant at the leading order in the metric
fluctuation /;;, we can evaluate it in the transverse traceless
gauge and obtain Ry, (0, t) = —h;;(0, ) /2. Substituting the
metric (15) into the action (14), we can read off the interaction
between the particles and gravitational waves as
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Simﬁ/dt |:Zh|](0, l)§{2+zh22(0, [) %2 , (16)

where x, y components are expressed by 1,2, respectively.
We can then derive the Langevin equation of geodesic
deviation of the mirrors in the presence of gravitons from
this action [10,16]. Note that the geodesic deviation of particles
in the graviton background is studied in Refs. [22,23]. Also
note that a particle motion in the graviton background is
discussed in Ref. [24,25], in which a different form of
interaction is used.

IV. DECOHERENCE FUNCTIONAL AND THE
DECOHERENCE TIME

A. Quantization and the noise induced by gravitons
Now, we canonically quantize the total system. We work
in the interaction picture below. We promote the free metric
field #*(k,?) to the operator /i*(k,7) in terms of the
creation and annihilation operators such as

Ak, 1) = ay(K)ug(r) + al (=k)ui (1), (17)

where the creation and annihilation operators satisfy the
standard commutation relations [a, (K), &}, (K')] = 8 ydau
and u, () denotes a mode function properly normalized
as uy (1) ug(t) —uy(1)ig(t)=—i. The Minkowski vacuum
|0) is defined by a4 (k)|0) = 0, with choosing the mode

function as u;(t) = ﬁe_ikt = u}!(7). From the Langevin

equation of geodesic deviation of the mirrors in the
presence of gravitons, the noise of gravitons is identified
as [16]

N 1

Nij(n) = > Ref(k)h* (k. 1),
M,V

k<Q,

(18)

where ) 0, o represents the mode sum with the UV cutoff.

This noise of gravitons always exists if the gravitational
waves are quantized.

B. Decoherence functional

Since we found that gravitons are quantum fluctuations
of gravitational waves in the form of the noise Eq. (18), we
calculate the decoherence functional and then find the
necessary experimental setups for obtaining a measurable
time of decoherence due to the noise of gravitons. The
decoherence functional reads’® [16,21]

3Strigtly speaking, when gravitons have nonzero expectation
value (N;;) # 0, we need to replace N;; by 6N;; = N;; — (N;;) as
discussed in Ref. [16]. We have (Nij> # 0 when considering
squeezed-coherent state, for instance.

m2

X

Atfth(figj)Q) Atf dt’A(fkf"ﬂ)(t,)
<{Nij<t)vﬁ]kf(t/)}>'

Here, A(EE) (1) = & (1)& (1) — & (1)&, (1) denotes a differ-
ence of & (£)&/ (1) in the superposition. The bracket (O)
denotes an expectation value of an arbitrary operator O for
a given quantum state. This expression shows that one can
compute the decoherence rate due to gravitons once the
anticommutator correlation function of N;;(¢) is given.
Because the state of the primordial gravitational waves
becomes squeezed during inflation [7,8], we consider
squeezed states |{) below. Although the precise functional
form of the anticommutator correlation function of N,;(t)
depends on inflationary models, we evaluate it in conven-
tional inflationary scenarios for illustration.

The anticommutator correlation function of N;;(¢) in the
squeezed state can be computed in the infinite volume limit
LX,Ly,LZ — 00 as

(19)

(CHNG (0, Nee ()30

2 F(Q,(t-1))
= 5ik5 it + 5,’/5 ik — —5,'.'5/%) TN a0 (20)
< / co3 1072 M}

where we defined the anticommutator symbol {-,-} as
(X, ¥} =XV +¥X)/2 and

F(Q,(t— 1)) = A " RS Re[u (H)u (1], (21)

Here, the mode function in the squeezed state is given in
terms of the squeezing parameter r; and the phase ¢, as

w () = ud (1) cosh ry — e ul (1) sinh ry. (22)
In the conventional inflationary scenario, as to short-
wavelength primordial gravitational waves shorter than

10716 Hz, the expected number density in terms of the
physical frequency at present is given by [26]

. 1 /f\*
Niliazy = sinh® r; = 1 <70> .

where f . is the cutoff frequency of primordial gravitational
waves given by

(23)

| H
=10’ Hz. 24
f c 10_4 Mp Z ( )
Then, the graviton density parameter today reads
H 2
Q, ~10714 . 25
£ (10‘4Mp) 25)
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Note that the bounds become f,<4.3x10'° Hz
for alternatives to inflation [26]. Equation (23) leads to
ry > 1 for f < f., which explains the large squeezing of
primordial gravitons. We then have sinh2r; ~ cosh 2r;~
(f./f)*. In general, the phase ¢, depends on k, but in this
study, we assume ¢, = x for simplicity. Depending on the
actual dependence of ¢, the effect of the noise correlation
may become small. Then, in terms of parameters intro-
duced above, we can evaluate the integral (21) as

i -1
Q2 ysmy + (2:05 y . (26)

F(y) = (ZHfC) y

This result clearly shows the non-Markovian nature of the
decoherence process, F(y) # 0 for y > 0, meaning that we
have nonlocal time correlations.

By substituting Eq. (26) into Eq. (19), we have the
decoherence functional (19) in our setup,

2

m Iy Iy
F=——— [ dtA&(¢ At AE (I VF(t—1
e |, 40 [ aeagiore 1)
L / " dAB (1) / " A AB () F (1 - 1)
12072M3 /o o >
o / " dA2 (1) / A AR () F (1 - 1)
12071'2M[2) 0 ! 0 2 ’
(27)
where A& and A& are given by
A& (1) = (L +Acoswt)? — L2, (28)
A&(1) = L* — (L + Acos wt)?. (29)

Here, we stress that the decoherence process we considered
is non-Markovian; that is, nonlocal time correlations of
graviton noise are taken into account in (27). This is in
contrast to the computation done in the literature [27,28].

Let us evaluate the integrals in Eq. (27). Because the
amplitude of oscillation induced by a photon is much smaller
than the arm length A < L, |A&%| ~ 2LA cos wt, we obtain

2

m
I'=——5—(AL)%I, 30
107z2Mf,( ) (30)
where
1 Xt Xt
I:Q_z/ dxcosﬁx/ dx' cos pxX'F(x —x').  (31)
m J0

0

Here, we defined the dimensionless time and frequency
xp = Quts, p = w/Qy, respectively. In our setup, we have
f < 1. Under this condition, we perform the integration and
find the following terms become dominant for large x;,

1(x;)
(2zf.)*

[bd

1
- Eﬂxf Si((1+ p)x¢)

P Si((1 = Bx) + BrSif),

(32)
where the sine integral is defined by Si(x) = [i ¥ dr whose
value atx = oo is z/2. Then, by picking up the leading-order
terms of (32) at large x;, the decoherence functional is found

to be
473 (m 2 4 (A2
P (5r) @ ()

where we defined N = wt;. The resultant decoherence
functional I" is independent of the UV cutoff €. This is
expected from the observation that the current setup is
insensitive to gravitons whose frequency is higher than
w/2n, the frequency of mirrors. This €, independence
suggests that the analysis based on the Fermi-normal
coordinates is good enough at least in the current setup.
Also, we find the linear growth of I in N. Although the
decoherence is correlated in time (non-Markovian), the
decoherence appears Markovian on a timescale larger than
the correlation time. This result is expected from the fact that
the number of gravitons excited by the mirror oscillations is
proportional to the number of oscillations at a late time.

(33)

C. Decoherence time

Now, let us estimate the decoherence time. When
considering conventional inflation and taking the param-
eters, @ = 1 kHz, L = 40 km, m = 40 kg, f. = 10° Hz,
and N = 2 x 10*, we obtain I" ~ 1, where the amplitude of
oscillation is supposed to be about ten times zero-point
fluctuations A = 10/v/2mw [29]. Then, the decoherence
time f; is approximately 20 s. In this case, the time
evolution of negativity is plotted in Fig. 2. If we increase
the arm length L by 107 the decoherence time becomes
2 ms. For alternatives to inflation (f, = 4.3 x 10'° Hz

L 1 L 1 L L
0 10 20 30 40 50

FIG. 2. Time evolution of negativity normalized by the initial
value NV for @ =1kHz, L =40km, m=40kg, and f, = 10° Hz.
The negativity decays with the decoherence time 20 s.
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[26]), the decoherence time becomes 6 us with the same
parameters.

V. DISCUSSIONS

In this section, we compare the decoherence time due to
gravitons with that due to other possible sources of
decoherence. Let us consider decoherence due to inter-
actions with thermal photons and air molecules. The typical
wavelength of the thermal photons in room temperature
(T =300 K) is much shorter than the size of mirrors. In
this case, the decoherence induced by scattering thermal
photons is much smaller than the one induced by scattering
air molecules. Hence, scattering air molecules becomes the
dominant source of decoherence in our setup. In this
situation, the decoherence time 7 is written as [30]

(34)

where Ax is a separation of a coherent superposition of the
mirror, which is supposed to be about ten times zero-point
fluctuations 10/v/2m® in our setup. A parameter A is
defined by

A= 3%2 nV2zMR? (kg T)?. (35)
Here, n, M, T, and kg are the number density of air
molecules, the mass of an individual air molecule, the
temperature of the environment, and the Boltzmann con-
stant, respectively. The number density is n ~ 10'? per
1 m? for ultrahigh vacuum 1070 Pa. Let us consider the
mirror with the radius R = 0.17 m and m = 40 kg weight
just for reference, which mimics the setups of advanced
LIGO (aLIGO) [31]. Then, the decoherence time due to the
scattering air molecules is estimated as

R \2/ T \—
TNlZOO(o.nm) (101{) >

By contrast, the decoherence time due to gravitons is 20 s in
the conventional scenario of inflation and 2 ms in scenarios
alternative to inflation with the same values of parameters.
The difference between the decoherence time induced by
gravitons and the one by air molecules becomes more
significant if we perform these experiments in space
where space pressure will be on the order of 107! Pa.
In this case, the scattering-induced decoherence time is
longer than the one in Eq. (36) by factor 10°. Hence, our
setup is not disturbed by the common scattering-induced
decoherence, which is usually regarded as dominant
sources of decoherence.

(36)

We found that the noises of primordial gravitons can
dominate over other decoherence sources such as air
molecules. This suggests that one can detect primordial
gravitons via a loss of entanglement between the mirror 1
and the mirror 2, in principle. As a measure of entangle-
ment, we computed the entanglement negativity A. We
need to study how to measure the entanglement. In fact,
over the past few years, quantum optomechanics has
emerged as a new research field, coupling mechanical
oscillators to optical fields. This field makes it possible to
create matter entanglement by using interferometers. As the
witness of the entanglement, a bell test is performed in
Ref [32], and the second-order coherence is measured in
Ref. [33], and the authors experimentally observe entan-
glement between the two remote mechanical oscillators
with a confidence level above 99.8%. Also, logarithmic
negativity of order 1072 has been observed between
mechanical motion and microwave cavity in Ref. [34].
This resolution is equivalent to the detection of negativity
of order 10~!. More recently, some more experimental
setups are proposed in Ref. [35]. Hence, although their
setups are not the same as ours, we expect that it would be
possible to witness the entanglement via negativity using
such methodology. We will study how to measure the
negativity in our setup in the future.

VI. CONCLUSION

We proposed the experimental setup for detecting
gravitons indirectly by observing the decoherence time
of the entanglement between two macroscopic mirrors
suspended at the end of an equal-arm interferometer. It
is found that longer arms or heavier mirrors make the
decoherence time shorter. In particular, the decoherence
time induced by the noise of primordial gravitons stemming
from inflation reads approximately 20 s for 40 km long
arms and 40 kg mirrors when assuming the conventional
inflationary scenario. This timescale can be much shorter
than the timescale of the decoherence induced by scatter-
ings between mirrors and air molecules/thermal photons.
Our result opens the possibility of detecting gravitons
indirectly by using the proposed setup.
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