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We study the dynamics of a homogeneous, isotropic, and positively curved universe in the presence of a
SU(2) gauge field or a triplet of mutually orthogonal vector fields. In the SU(2) case we use the previously
known ansatz for the gauge-field configuration, but the case without non-Abelian symmetries is more
nontrivial and we develop a new ansatz. We in particular consider axion-SU(2) inflation and inflation with
vector fields having Uð1Þ × Uð1Þ × Uð1Þ symmetry, and analyze their dynamics in detail numerically.
Novel effects of the spatial curvature come into play through vector fields, which causes unconventional
preinflationary dynamics. It is found that the closed universe with vector fields is slightly more stable
against collapse than that filled solely with an inflaton field.
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I. INTRODUCTION

Inflation [1–3] is an accelerated expansion that occurred in
the early Universe. It can explain homogeneity, isotropy, and
spatial flatness of theUniverse in a natural way. Furthermore,
it can give rise to primordial fluctuations that are consistent
with observations of theCMBand large-scale structure of the
Universe. Inflation was thus introduced to resolve the
problems on the initial conditions in the standard big-bang
model. This does not, however, necessarily mean that the
Universe is homogeneous, isotropic, and spatially flat at
around thebeginningof inflation. Therefore, it is important to
assess to what extent inflation is likely to occur and thus to
erase inhomogeneity, anisotropy, and spatial curvature start-
ing from generic initial conditions.
In spite of its importance, not somanypapers (as compared

to a huge number of papers on inflation) have been devoted to
the problem of the initial conditions for inflation. For
example, Ref. [4] showed that homogeneous and anisotropic
Bianchi models except Bianchi type-IX universes always
evolve toward an isotropic attractor in the presence of a
positive cosmological constant. The exceptional case corre-
sponds to the universe with positive spatial curvature; the
universe would collapse if the spatial curvature is as large as
the cosmological constant. As shown in Ref. [5], the positive
spatial curvature reduces (but not significantly1) the fraction

of the initial conditions that lead to successful inflation in the
case of a massive scalar inflaton field (see also Ref. [6]). The
effect of the initial inhomogeneity on the onset of inflation
has been addressed in Refs. [7–16]. More recently, the
problem of the initial inhomogeneity was investigated in
the context of multi-field inflation, with somewhat nontrivial
results [17].
While most of the inflationary models are based on one

or more scalar fields, models with a triplet of vector fields
have been proposed recently. Vector fields are apparently
incompatible with isotropic cosmology, but by assuming a
triplet of mutually orthogonal vector fields one can achieve
an isotropic configuration. An earlier model of inflation
driven by such vector fields nonminimally coupled to gravity
is given in Ref. [18]. An interesting example in this class of
models motivated by particle physics is chromo-natural [or
axion-SU(2)] inflation [19] (see Ref. [20] for a review).
Cosmological models with multiple generalized Proca fields
[21–24] and three copies of U(1) vector fields [25] have also
been considered in the literature. See also Refs. [26–42] for
models of similar kinds.
The problem of initial conditions in the above infla-

tionary models with vector fields is more subtle and less
studied than that in usual inflation where only a scalar field
participates in the dynamics. In the context of the axion-
SU(2) model, Bianchi type-I anisotropic cosmology has
been discussed [43,44], with the conclusion that the initial
anisotropies always dilute away immediately [45].
However, the dynamics of the other Bianchi types of the
axion-SU(2) system is still unclear (see however Ref. [46]
for the dynamics of Bianchi universes in the presence of an
SU(2) gauge field coupled to a particular scalar field
theory). The problem of initial conditions in the other
vector field models is also awaited to be explored.
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1The question of how much is significant is a difficult one

because in principle the phase space of initial conditions would be
infinite and a careful consideration is necessary. It is still interesting
to considerwhether certain fieldsmake the processmore robust, but
defining a fraction is difficult when the denominator is infinite. In
this sense, any change that does not render the whole phase space
stable could be considered insignificant.
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To take a step forward, in this paper, we explore the
spatially curved generalization of homogeneous and iso-
tropic cosmologies in the axion-SU(2) model and in
(certain variants of) multiple generalized Proca theories,
and study the dynamics of the preinflationary Universe. It is
not trivial to introduce a triplet of dynamical vector fields in
such a way that their configuration is consistent with
homogeneity and isotropy in a spatially curved universe.
In fact, the consistent ansatz for the SU(2) gauge field
configuration in a curved universe has long been known
[47–49]. However, the ansatz introduced in Ref. [47–49]
relies on the non-Abelian-specific structure, and hence it
cannot be extended straightforwardly to the case, for
example, of the vector field model with the Uð1Þ × Uð1Þ ×
Uð1Þ symmetry [25]. This point is also addressed in the
present paper.
The paper is organized as follows. In Sec. II, we add the

spatial curvature to the axion-SU(2) model, and then
discuss its consequences on the cosmological dynamics
on the basis of the analytic argument and the results of
numerical calculations. In Sec. III, we consider spatially
curved cosmological models in the presence of a triplet of
(generalized) Proca fields, with a focus on two particular
examples in the literature. Finally, we draw our conclusions
in Sec. IV, with a comment on the extension of the present
work to the Bianchi type-IX geometry.

II. AXION-SU(2) IN A CURVED UNIVERSE

A. Basic equations

The axion-SU(2) inflation model [19] is described by the
Lagrangian

LCN ¼ M2
Pl

2
R −

1

4
Fa
μνF

μν
a −

1

2
ð∂χÞ2 − VðχÞ

−
λ

4f
χF̃a

μνF
μν
a ; ð1Þ

where χ is the axion field.

VðχÞ ¼ μ4
�
1þ cos

χ

f

�
; ð2Þ

is its potential, and Fa
μν is the field strength defined as

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gAϵabcA

b
μAc

ν: ð3Þ

The last term in Eq. (1) is written more explicitly as

F̃a
μνF

μν
a ¼ 1

2
εμνρλFa

μνFa
ρλ; ð4Þ

with εμνρλ ¼ ϵμνρλ=
ffiffiffiffiffiffi−gp

being the Levi-Cività tensor
and ϵ0123 ¼ 1.

A flat Friedmann-Lemaître-Robertson-Walker (FLRW)
universe is compatible with the SU(2) gauge field con-
figuration

Aa
0 ¼ 0; Aa

i ¼ aðtÞψðtÞδai : ð5Þ

In contrast, it is not so straightforward to see whether a
curved universe is also compatible with the vector fields
having nonvanishing spatial components. However,
actually it has long been known that there is a homo-
geneous and isotropic SU(2) gauge field configuration for a
curved universe (see, e.g., Refs. [47–49]). Following these
previous works, here we derive the basic equations gov-
erning the axion and SU(2) gauge field dynamics in a
spatially curved universe.
The metric for a spatially curved FLRW universe is

given by

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞ½dr2 þ S2ðrÞðdθ2 þ sin2θdφ2Þ�;
ð6Þ

where

SðrÞ ¼ sinð ffiffiffiffi
K

p
rÞffiffiffiffi

K
p ;

sinhð ffiffiffiffiffiffiffi
−K

p
rÞffiffiffiffiffiffiffi

−K
p ð7Þ

for the closed (K > 0) and open (K < 0) cases, respec-
tively. In our notation, K has the dimension of ðlengthÞ−2.
We may always set N ¼ 1.
The gauge field configuration compatible with a homo-

geneous, isotropic, and spatially curved FLRW universe is
given as follows. First, we fix the gauge freedom so that the
time component vanishes. Then, following [48], we con-
sider the ansatz

gAAa
0 ¼ 0; ð8Þ

gAAa
1 ¼ aψLa

1; ð9Þ

gAAa
2 ¼ aψSLa

2 −
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −KS2

p �
La
3; ð10Þ

gAAa
3 ¼

h�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −KS2

p �
La
2 þ aψSLa

3

i
sin θ; ð11Þ

where ψ ¼ ψðtÞ is a function of t only and La
i is defined as

La
1 ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ; ð12Þ

La
2 ¼ ðcos θ cosφ; cos θ sinφ;− sin θÞ; ð13Þ

La
3 ¼ ð− sinφ; cosφ; 0Þ: ð14Þ

(See also [50] for a detailed derivation.) For this gauge field
configuration, we see that the following terms in the
Lagrangian depend only on t,
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Fa
μνF

μν
a ¼ −

6

g2AN
2

��
_ψ þ _a

a
ψ

�
2

− N2

�
ψ2 −

K
a2

�
2
�
; ð15Þ

F̃a
μνF

μν
a ¼ 12

g2AN

�
_ψ þ _a

a
ψ

��
ψ2 −

K
a2

�
; ð16Þ

showing that the above ansatz is indeed consistent with a
homogeneous, isotropic, and spatially curved FLRW uni-
verse. Here a dot denotes differentiation with respect to t.
Note that K appears directly in Eqs. (15) and (16), which
implies that the axion-SU(2) dynamics depends nontri-
vially on the spatial curvature. In other words, the effective
potential for ψ depends explicitly on K. The previous
spatially flat result can be reproduced by rescaling ψ as
ψ ¼ gAψprevious and settingK ¼ 0. In the spatially flat case,
the rescaling of ψ allows us to consider the gA → 0 limit.
However, in the case of K ≠ 0, one cannot take such a
smooth gA → 0 limit. In this sense, the fact that the vector
field is the SU(2) gauge field is crucial for the above ansatz.
From the Lagrangian (1) and our ansatz for the gauge

field, we obtain the field equations as

χ̈ þ 3H _χ −
μ4

f
sin

χ

f
¼ −

3λ

fg2A
ð _ψ þHψÞ

�
ψ2 −

K
a2

�
; ð17Þ

ψ̈ þ 3H _ψ þ ð _H þ 2H2Þψ ¼
�
λ

f
_χ − 2ψ

��
ψ2 −

K
a2

�
;

ð18Þ

whereH ≔ _a=a is the Hubble parameter and we set N ¼ 1.
The Einstein equations read

3M2
Pl

�
H2 þ K

a2

�
¼ ρχ þ ρψ ; ð19Þ

−2M2
Pl

�
_H −

K
a2

�
¼ ρχ þ ρψ þ pχ þ pψ ; ð20Þ

where

ρχ ¼
_χ2

2
þ μ4

�
1þ cos

χ

f

�
; ð21Þ

pχ ¼
_χ2

2
− μ4

�
1þ cos

χ

f

�
; ð22Þ

ρψ ¼ 3

2g2A

�
ð _ψ þHψÞ2 þ

�
ψ2 −

K
a2

�
2
�
; ð23Þ

pψ ¼ ρψ
3
: ð24Þ

We will solve these equations numerically to see the
nontrivial dynamics brought by the spatial curvature.

B. Numerical results

For a given set of parameters we impose the initial
conditions ðχ0;ψ0; _χ0; _ψ0; H0Þ at a ¼ a0 ¼ 1 so that they
satisfy the Friedmann equation (19). We then solve numeri-
cally the dynamical equations (17), (18), and (20). We
confirm that the Friedmann equation is satisfied at each
time step. The parameters used in our numerical calcu-
lations (except for the ones in which gA is varied) are listed
in Table I. (In the actual numerical calculations we adopt
the units MPl ¼ 1.) Here we introduce for convenience the
scale of the (would-be) inflationary Hubble parameter, H�,
defined asH� ≔ μ2=MPl. We setH� to be the grand unified
theory scale.
We are interested in particular in the case of a closed

universe. To clarify the role of the gauge field in the
inflationary dynamics with K > 0, let us first consider the
case without the gauge field. In this case, the curvature term
acts as effective negative energy density. Suppose that at
some initial moment the curvature term is as large as
M2

PlK=a2 ∼ V ∼ μ4. Such a universe would typically col-
lapsewithin one e-fold. If the kinetic energyof the axion field
is sufficiently large (i.e.,M2

PlH
2 ∼ _χ2 ≫ M2

PlK=a2 ∼ V), the
universe could avoid to collapse, but the axion would then
roll down to the potential minimum very rapidly, preventing
prolonged inflation.
Let us next switch on the gauge field and investigate the

axion-SU(2) dynamics in a flat universe [19]. It is assumed
that _H, χ̈, and ψ̈ can be ignored in Eqs. (17) and (18) (with
K ¼ 0). We can then rearrange these equations so that _χ
and _ψ are expressed in terms of χ and ψ , and find

3H _ψ ≃ −Veff;ψ ; ð25Þ

with

Veff;ψ ¼ 3H2ψ −
g2Aμ

4H sinðχ=fÞ
λψ2

; ð26Þ

where we assumed that

fgAH ≪ λψ2: ð27Þ

Although this effective potential is obtained by making
some approximations and assumptions, it is useful for
understanding roughly the evolution of the system. The
minimum of the effective potential is given by

TABLE I. Parameters.

f μ λ gA H�

10−2MPl 10−3MPl 2 × 102 2 × 10−6 10−6MPl
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ψmin ¼
�
g2Aμ

4

3λH
sin

χ

f

�
1=3

: ð28Þ

One usually assumes that ψ takes this value from the
beginning, ψ ≃ ψmin, and study the dynamics of the axion
χ. However, the actual dynamics of the axion depends on
the initial condition for ψ. If ψ ≳ ψmin initially, it rolls down
to the minimum of the effective potential within a few e-
folds, leading to successful ψ -assisted inflation as proposed
originally in [19]. If ψ is displaced from ψmin to the left to
some extent initially, then the axion field quickly falls down
into the minimum of its potential without sufficient
inflation. The reason is as follows. For sufficiently small
ψ , the right-hand side of Eq. (17) (with K ¼ 0), i.e., the
interaction term between the axion and the gauge field, is
much smaller than the bare potential of χ. Thus, χ quickly
rolls down to the minimum before ψ becomes sufficiently
large to assist slow-roll inflation. This occurs when the
condition (27) is violated.
Figure 1 shows the e-folding number,

N ≔
Z

tf

ti

Hdt; ð29Þ

calculated for different initial conditions for the gauge field.
Here, ti is the initial time and tf is defined as the time at
which the energy density of χ becomes as small as
ρχ ¼ 10−3M2

PlH
2�. If this does not occur and inflation lasts

for 60e-folds, we stop the calculation and just set N ¼ 60.
The initial condition for the axion is fixed as

�
χ0

_χ0

�
¼

�
πf × 10−2

0

�
: ð30Þ

For our choice of the parameters, we have ψmin=gA ≃ 0.07,
and we can see from Fig. 1 the aforementioned behavior,
though the dynamics depends also on the initial value of _ψ .
We now move to the discussion on the case with K > 0.

The evolution of the system would be more complicated
due to the various K-dependent terms in the basic

equations. Now positive spatial curvature does not simply
act as effective negative energy density, and hence large
positiveK does not necessarily make the universe collapse.
Spatial curvature also modifies the shapes of the effective
potentials for χ and ψ , as seen from Eqs. (17) and (18), and
thus affects directly the evolution of these fields.
Let us estimate the effect of spatial curvature in Eq. (19).

Assuming that the curvature is large and the kinetic energy
of the fields is small enough, Eq. (19) reduces to

3M2
PlH

2 ≃
3

2g2A

K2

a4
− 3M2

Pl
K
a2

þ V; ð31Þ

and V ≃ 2μ4 ¼ 2M2
PlH

2�. This can be recast into a dimen-
sionless form as

1 ≃
1

2

�
H

gAMPl

�
2
�

K
a2H2

�
2

−
K

a2H2
þ 2

3

�
H�
H

�
2

: ð32Þ

We consider the case where H ∼H� and K=a2H2� ∼ 1. It
can then be seen that if gA ∼H�=MPl, the first term in the
right-hand side can cancel the second term, supporting the
universe against collapse. For larger gA, the first term
becomes less important. Note that gA cannot be too small in
order for the Friedmann equation to be satisfied in the
universe with large spatial curvature.
The above argument can be verified by the numerical

result shown in Fig. 2. We run the numerical code for
different values of K and gA. The initial conditions for the
axion and the Hubble parameter are given respectively by
Eq. (30) and H0 ¼ H�, while the initial value of the gauge
field is given by ψ0 ¼ 0.05 × gA. The initial velocity of the
gauge field, _ψ0, is then determined from the Friedmann
equation (19), which is different for different ðgA;KÞ. ForK
above a certain value the universe immediately collapses. In
Fig. 2 this critical value of K is shown as a function of gA.
We see that the universe with smaller gA is more stable
against the inclusion of positive spatial curvature.

FIG. 1. Initial condition dependence of the e-folding number in
the flat model. The parameters are given in Table I.

FIG. 2. The critical values of K are shown as black dots, above
which the universe immediately collapses.
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The initial condition dependence of the e-folding num-
ber is also altered by the presence of spatial curvature, as
can be seen by comparing Fig. 1 with Fig. 3. We find that,
as long as the initial velocity of ψ is small, we have a
sufficient duration of the inflationary phase for a wide
range of initial conditions ψ0. Note here that the initial
conditions plotted in Fig. 3 all satisfy ψ2

0 ≪ K=H2�. The
typical dynamics of the axion and gauge fields in this case
is shown in Fig. 4, which is different from the conventional

one in the early stage, but leads in the end to prolonged
inflation. In the early stage, the interaction term in the right-
hand side of Eq. (17) is maintained even for tiny ψ0 for
Oð1Þ e-folds, because we have ψ2 −K=a2 ≃ −K=a2. Then,
both fields change their values rapidly at around H�t ≃ 3.
This corresponds to the moment at which the right-hand
sides of Eqs. (17) and (18) vanishes, ψ2 ≃K=a2. After that,
ψ-assisted slow-roll inflation occurs at the different side of
the potential from the one where the axion field is initially
placed. We thus have the unconventional preinflationary
dynamics leading to successful inflation.
So far we have considered the case where the axion is the

inflaton field. Let us briefly comment on the case where
there is another scalar field that plays the role of the inflaton
and the axion is a spectator field [51]. Suppose in this
spectator axion-SU(2) model that the inflaton’s potential
energy is given by V inf ∼ 2αμ4 (α > 1). This amounts to
rescaling H� asH� → ð1þ αÞ1=2H� in Eq. (31). Therefore,
for larger inflaton’s contribution (i.e., for larger α), gA=H�
becomes effectively smaller, rendering the universe more
stable against the inclusion of positive spatial curvature.

III. MULTIPLE VECTOR FIELDS WITHOUT THE
NON-ABELIAN-SPECIFIC STRUCTURE

Let us move to the case of multiple generalized Proca
fields [21,23]. In this case, the vector fields do not have the
non-abelian-specific structure and hence we cannot use the
same ansatz in a spatially curved universe as in the case of
the SU(2) gauge field. In this section, we therefore start
from reconsidering the metric and vector field ansatz.
The Lagrangian for the model considered in Ref. [23]

contains three vector fields Aa
μ (a ¼ 1, 2, 3) and is given by

L ¼ L2 þ L4; ð33Þ

with

L2 ¼ G2ðX; Y; Z;W1;W2;W3Þ; ð34Þ

L4 ¼ G4ðXÞRþG4;X½∇μA
μ
a∇νAa

ν −∇μAa
ν∇νAμ

a�; ð35Þ

where

X ≔ −
1

2
Aa
μA

μ
a; Y ≔ −

1

4
Fa
μνF

μν
a ;

Z ≔ −
1

4
Fa
μνF̃

μν
a ; W1 ≔ Aa

μAν
aF

μρ
b Fb

νρ;

W2 ≔ Aa
μAν

bF
μρ
a Fb

νρ; W3 ≔ Aa
μAν

bF
μρ
b Fa

νρ; ð36Þ

and note that in the present case

Fa
μν ≔ ∂μAa

ν − ∂νAa
μ: ð37Þ

FIG. 3. Initial condition dependence of the e-folding number in
the closed model with K ¼ 0.5H2�. The initial condition for the
axion field is given by Eq. (30).

FIG. 4. The evolution of the axion and gauge fields with
the curvature K ¼ 0.5H2� for the initial condition given by
Eq. (30), ψ0 ¼ 10−7MPl, and _ψ0 ¼ −10−12M2

Pl (for which
H0 ¼ 0.555H�).
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To explore the configuration of the vector fields, we first
note that the metric of a closed universe can be written
using the left-invariant 1-forms as

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞ
4

δabω
aωb; ð38Þ

where

ω1 ¼ − sin ð
ffiffiffiffi
K

p
x3Þdx1 þ sin ð

ffiffiffiffi
K

p
x1Þ cos ð

ffiffiffiffi
K

p
x3Þdx2;

ð39Þ

ω2 ¼ cos ð
ffiffiffiffi
K

p
x3Þdx1 þ sin ð

ffiffiffiffi
K

p
x1Þ sin ð

ffiffiffiffi
K

p
x3Þdx2; ð40Þ

ω3 ¼ cos ð
ffiffiffiffi
K

p
x1Þdx2 þ dx3: ð41Þ

Notice that this expression can be used only for a closed
universe. We then assume that the vector fields take the
form2

Aa
0 ¼ 0; Aa

i dx
i ¼ a

2
ψðtÞωa; ð42Þ

where we set Aa
0 ¼ 0 because it is indeed a trivial solution.

Under the above ansatz we have

X ¼ −
3

2
ψ2; ð43Þ

Y ¼ 3

2

�
1

N2

�
_ψ þ _a

a
ψ

�
2

−
4K
a2

ψ2

�
; ð44Þ

Z ¼ 6

N
ψ

�
_ψ þ _a

a
ψ

� ffiffiffiffi
K

p

a
; ð45Þ

W1 ¼ −3ψ2

�
1

N2

�
_ψ þ _a

a
ψ

�
2

−
8K
a2

ψ2

�
; ð46Þ

W2 ¼ −
9

N2
ψ2

�
_ψ þ _a

a
ψ

�
2

; ð47Þ

W3 ¼ −3ψ2

�
1

N2

�
_ψ þ _a

a
ψ

�
2

þ 8K
a2

ψ2

�
; ð48Þ

and

∇μA
μ
a∇νAa

ν −∇μAa
ν∇νAμ

a ¼ −
6

N2

_a
a
_ψψ þ 6K

a2
ψ2: ð49Þ

We see that each piece in the Lagrangian depends only on t,
and therefore the above assumed configuration of the vector

fields is consistent with a closed universe. In contrast to the
spatially flat case [23], Z is no longer vanishing in a
positively curved universe.
Let us present two applications of the our result. The first

example is the vector inflation model proposed in Ref. [18],
whose Lagrangian is given by

L ¼
�
M2

Pl

2
− ξX

�
Rþ Y þm2X; ð50Þ

where ξ and m are constants, and below we will set
ξ ¼ 1=6. Strictly speaking, this does not belong to the
multiple generalized Proca theory, as the Lagrangian (50) is
obtained by omitting G4;X by hand [23]. Nevertheless, one
can use the ansatz (42) to analyze the dynamic of the vector
inflation model of [18] with K > 0, since, as seen from
Eqs. (43) and (44), both X and Y are dependent only on t.
Our field equations are given by

ψ̈ þ 3H _ψ þ
�
m2 þ 3K

a2

�
ψ ¼ 0; ð51Þ

3M2
Pl

�
H2 þ K

a2

�
¼ 3

2
ð _ψ2 þm2ψ2Þ þ 9K

2a2
ψ2; ð52Þ

2M2
Pl

�
_H −

K
a2

�
¼ −3 _ψ2 −

3K
a2

ψ2: ð53Þ

Open and closed FLRW models in the theory (50) have
been studied earlier in Ref. [52]. Our result disagrees with
that of Ref. [52]; it seems that the consistent ansatz for the
vector fields has not been employed in [52]. The sign of the
vector-field-induced curvature terms in Eqs. (51)–(53) is
opposite compared to the result of [52], and accordingly the
dynamics should be qualitatively different as compared
to [52].
The second example is the model with a triplet of vector

fields coupled to a scalar field. Obviously, the ansatz (42)
can be used in such a case as well. For example, the model
studied in Ref. [25] is described by the Lagrangian

L ¼ M2
Pl

2
R −

1

2
ð∂ϕÞ2 − VðϕÞ þ f2ðϕÞðY þ θZÞ; ð54Þ

where θ is a constant. In this case, the vector fields have the
Uð1Þ × Uð1Þ × Uð1Þ symmetry. (One may thus use this
symmetry to eliminate Aa

0 .) Let us investigate the cosmo-
logical background dynamics of this model in more detail.
The field equations are given by

ϕ̈þ 3H _ϕþ V 0 − 3ff0ð _ψ þHψÞ2

þ 12ff0ψ
�
K
a2

ψ þ θ

ffiffiffiffi
K

p

a
ð _ψ þHψÞ

�
¼ 0; ð55Þ

2In Appendix, we show that the same ansatz can also be used
for the SU(2) gauge field, reproducing the same result as in Sec. II
up to field redefinition.
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ψ̈ þ 3H _ψ þ ð _H þ 2H2Þψ þ 2f0

f
_ϕð _ψ þHψÞ

þ 4ψ

�
K
a2

− θ

ffiffiffiffi
K

p

a
f0

f
_ϕ

�
¼ 0; ð56Þ

3M2
Pl

�
H2 þ K

a2

�
¼

_ϕ2

2
þ V þ 6K

a2
f2ψ2

þ 3

2
f2ð _ψ þHψÞ2; ð57Þ

M2
Pl

�
_H −

K
a2

�
¼ −

_ϕ2

2
−
4K
a2

f2ψ2 − f2ð _ψ þHψÞ2; ð58Þ

where a prime stands for differentiation with respect to ϕ.
In the following, we will consider the particular form of the
potential and the coupling function given by

V ¼ 1

2
m2ϕ2; f ¼ f� exp

�
2M−2

Pl

1 − I

Z
ϕ

ϕ�

Vðϕ̃Þ
V 0ðϕ̃Þ dϕ̃

�
; ð59Þ

where m, I, f�, and ϕ� are constants. This particular case
was also studied in Ref. [25] and shown to admit an
inflationary attractor solution with nonvanishing vector
fields [53].
For a fixed value of K=a20H

2
0, we numerically solve the

field equations to see whether the universe continues to
expand toward the inflationary attractor or stops expanding at
a certainmoment and eventually collapses. Let us first switch
off the vector fields by setting f� ¼ 0 and consider the case
where K=a20H

2
0 ¼ 7.5 at the initial moment. We take

m ¼ 10−2MPl. It is easy to see that for the initial condition
ðϕ0; _ϕ0Þ ¼ ð10MPl;−0.1M2

PlÞ the universe stops expanding
within one e-fold and then collapses. We then include the
vector fields with fðϕ0Þ ¼ 0.1, I ¼ 0.1, and θ ¼ 0. For the
initial condition ðϕ0; _ϕ0;ψ0; _ψ0Þ¼ð10MPl;−0.1M2

Pl;MPl;0Þ,
we find that the universe expands toward the inflationary
attractor rather than collapses even in the presence of such a
large spatial curvature at the initialmoment. This implies that
the triplet of vector fields can save the universe from
collapsing.
Figure 5 shows the numerical results for different initial

conditions satisfying ð1=2Þ _ϕ2
0 þ Vðϕ0Þ ¼ 10−2M4

Pl, with
ðψ0; _ψ0Þ ¼ ðMPl; 0Þ. The parameters are the same as above:
K=a20H

2
0 ¼ 7.5,m ¼ 10−2MPl, I ¼ 0.1, and θ ¼ 0. For each

calculation we introduce f� and ϕ� so that fðϕ0Þ ¼ 0.1, We
see that the fraction of initial conditions leading to successful
inflation indeed increases with the help of the vector fields,
though the effect is not so significant.
In Fig. 6, we present typical phase space trajectories in

the presence of the vector fields. It can be seen that the
dynamics of the inflaton shows an oscillatory nature during
the early stage in which the effect of the spatial curvature is
large. This preinflationary dynamics is caused by the

interplay among the inflaton, the vector fields, and K. In
this phase, the inflaton equation of motion (55) is given
approximately by

ϕ̈þ 3H _ϕ ≃ 3ff0
�
_ψ2 −

4K
a2

ψ2

�
; ð60Þ

FIG. 5. The circles represent the initial conditions that result in
inflation both with and without the vector fields, while for the
initial conditions represented by the crosses the universe immedi-
ately collapses in any case. For the initial conditions represented
by the triangles, the universe without the vector fields collapses,
but with the help of the vector fields it avoids to do so, leading to
successful inflation. No initial conditions are found for which the
vector fields hinder inflation. Due to the symmetry only the cases
with ϕ0 > 0 are shown.

FIG. 6. Trajectories of the inflaton in the phase space. Black
points represent the initial conditions.
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and the sign of the right-hand side flips several times
because ψ oscillates around zero, yielding the oscillatory
dynamics as shown in Fig. 6.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have studied the dynamics of a
homogeneous, isotropic, and positively curved universe
in the presence of the SU(2) gauge field or a triplet of
mutually orthogonal vector fields, and obtained the follow-
ing results.
a. We have obtained the consistent ansatz for a triplet of

the generalized Proca fields in a closed universe,
which corrects the previous analysis of a certain
vector-field model of inflation in a curved universe.
Our ansatz can also be used to the SU(2) gauge field
and reproduces the known result up to field redefi-
nition.

b. In addition to the usual curvature terms in the
cosmological equations, new curvature-dependent
terms appear through the vector fields. In the cases
of axion-SU(2) inflation [19] and inflation with the
vector fields having Uð1Þ × Uð1Þ × Uð1Þ symmetry
[25], we have found that the vector fields support the
closed universe against collapse, though the effect is
not so significant.

c. In both models we have found nontrivial preinfla-
tionary dynamics caused by spatial curvature.

Let us discuss a possible extension of the present study. It
is easy to see that the ansatz we have introduced in Sec. III
can be generalized straightforwardly to include spatial
anisotropies

ds2 ¼ −N2ðtÞdt2 þ habωaωb; ð61Þ

hab ¼
a2

4
× diagðe−4σþ ; e2σþþ2

ffiffi
3

p
σ− ; e2σþ−2

ffiffi
3

p
σ−Þ; ð62Þ

Aa
i dx

i ¼
ffiffiffiffiffiffiffi
haa

p
ψaω

a ðno summation over aÞ; ð63Þ

ψa ¼ ψðtÞ × ðe−2βþ ; eβþþ
ffiffi
3

p
β− ; eβþ−

ffiffi
3

p
β−Þ; ð64Þ

where σ� ¼ σ�ðtÞ and β� ¼ β�ðtÞ characterize anisotro-
pies. It would therefore be interesting to explore the
Bianchi type-IX dynamics in the presence of mutually
orthogonal vector fields, which is left for further study.
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APPENDIX: ANSATZ (42) APPLIED TO THE
SU(2) GAUGE FIELD

In this Appendix let us confirm that the ansatz (42) can
also be used for the SU(2) gauge field and the same result
as in Sec. II is reproduced up to field redefinition (for
K > 0). Using Eqs. (38) and (42) we find

Fa
μνF

μν
a ¼ −6

�
1

N2

�
_ψ þ _a

a
ψ

�
2

− ψ2

�
gAψ þ 2

ffiffiffiffi
K

p

a

�2�
;

ðA1Þ

F̃a
μνF

μν
a ¼ −

12

N

�
_ψ þ _a

a
ψ

�
ψ

�
gAψ þ 2

ffiffiffiffi
K

p

a

�
: ðA2Þ

These are apparently different from Eqs. (15) and (16). It is
easy, however, to see that in terms of the new variable

ψnew ≔ −gAψ −
ffiffiffiffi
K

p

a
; ðA3Þ

Eqs. (A1) and (A2) coincide with Eqs. (15) and (16),
respectively.
In the context of FLRW cosmologies in the presence of

gauge sectors, the same ansatz for the gauge field has been
studied in Ref. [54] and its application can be found
in Ref. [55].
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