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2Mesoamerican Centre for Theoretical Physics, Universidad Autónoma de Chiapas,
Carretera Zapata kilometro 4, Real del Bosque (Terán), Tuxtla Gutiérrez 29040, Chiapas, México
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We study the evolution of nonlinear superhorizon perturbations in a universe dominated by a complex
scalar field. The analysis is performed adopting the gradient expansion approach, in the constant mean
curvature slicing. We derive general solutions valid to second order in the ratio H−1=L for scalar field
inhomogeneities of size L subject to an arbitrary canonical potential. We work out explicit solutions for the
quadratic and the quartic potentials and discuss their relevance in setting initial conditions required for the
simulations of primordial black hole formation.
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I. INTRODUCTION

For decades, cosmologists have been interested in scalar
fields (SFs) and their role in the evolution of our Universe
[1,2]. The dynamics of such fields is usually described
by the Einstein-Klein-Gordon (EKG) system of equations,
which can be regarded as the relativistic generalization
of Schrödinger-Poisson (SP) or Gross-Pitaesvkii-Poisson
(GPP) systems (the second case arising when a self-
interaction between particles is considered). The system
was initially studied in the context of boson stars [3–15],
inferred from the axion field—a pseudo–Nambu-Goldstone
boson of the Peccei-Quinn phase transition—which was
originally proposed to solve the strong CP problem in
QCD. Such SFs have shown a variety of dynamical
properties in a cosmological context, proving useful as
important components of the Universe, such as dark matter
[scalar field dark matter (SFDM); see Refs. [16–24] and
also Refs. [25–31] for comprehensive reviews of this
model], a variety of models acting as dark energy (DE)
[32–34], such as quintessence [35–38], or phantom DE
[39–42]. Tachyonic instabilities arise ubiquitously in SF
models [43–45] and, most successfully, the majority of
inflationary models [46–54] (see also Ref. [55] for a
comprehensive review), among other possible realizations
as components of the matter sector.
In the context of dark matter, it is usually assumed that

the SFDM could be a real or complex SF minimally
coupled to gravity. In the simplest scenario, the SFDM

is a real scalar field (RSF) subject to a quadratic or mass
potential. It has been demonstrated that the model is able
to reproduce all the predictions of the standard cosmologi-
cal model—the so-called Λ-cold dark matter (ΛCDM)
model—with the advantage of solving some of the prob-
lems at small scales that ΛCDM implies, namely, the
overproduction of satellite dwarf galaxies within the
local group [56–58] and the cusp-core problem [59,60].
Additional phenomenology appears when modifications of
the simplest model are considered. For example, the
complex scalar field (CSF) presents a cosmological evo-
lution at early times that departs from that of a real field
[61]. Moreover, its perturbations present a wider instability
band than its real field counterpart [62]. Despite all the
success of SFDM, formal solutions for large scales (super-
Hubble modes) are scarce and largely required for initial
conditions in simulations of structure formation. This is a
strong motivation for the present work.
A phase analogous to a universe dominated by SFDM

arises in the primordial Universe, at much higher energy
scales, in the reheating period—the transition period from
inflation to the standard hot big bang cosmology [63–67].
A few reheating models propose a stage where one or more
scalar fields oscillate around the bottom of their potential.
Just as in SFDM, the universe dominated by a fast-
oscillation field evolves effectively as a dust-dominated
space. In such a scenario, primordial compact structures
may form, analogous to those present in the SFDM model,
but at much earlier times. With this in mind, Ref. [68] (see
also Refs. [69,70]) argues that this “primordial structure
formation" process could be completely analogous to the
structure formation in SFDM, since from a computational
point of view the only difference between both processes is
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given by the region in the parameter space of the model (and
one may argue that the matter power spectrum differs in each
scenario). In this way, several of the results of SFDM have
been adopted for reheating models, showing that the
reheating process could have taken place in a universe filled
with inhomogeneities as a result of the fragmentation of the
inflaton and formation of inflaton clusters.
A strong motivation for the present work is the pos-

sibility of structure formation during the reheating period,
as well as the analogous process in the SFDM model. The
inhomogeneities seeding the structure right after primordial
inflation start their evolution on scales above the cosmo-
logical horizon (super-Hubble modes). Thus, the complete
dynamics cannot be captured through a Newtonian system.
In order to provide adequate solutions from the more
general EKG system, it proves useful to adopt a gradient
expansion of the evolution equations (although higher-
order perturbative KG equations are available [71]). The
gradient expansion formalism features an advantage over
the standard picture (the well-known linear theory of cos-
mological perturbations): the fact that the former is not
restricted to configurations with small amplitudes (linear).
Instead, the only requirement of the gradient expansion is
for inhomogeneities to be larger than the cosmological
horizon. This description is, thus, useful to model any kind
of superhorizon perturbations, including those which enter
the cosmological horizon with a large amplitude, typical of
configurations which form primordial black holes (PBHs).
In this paper, we study the initial evolution stages of CSF

inhomogeneities as solutions of the EKG system, which
serve as initial conditions for structure formation at, say, the
reheating period. While historically the inflaton has been
assumed as a RSF, several models consider instead a com-
plex field (see, for example, Refs. [72–82]). Complex fields
appear naturally in extensions of the standard model of
particle physics, and they could have played an important
role in the evolution of the Universe at high energies.
Furthermore, due to the well-known differences between
real and complex SFDM, it is natural to explore the
particularities that a CSF inflaton bring to the primordial
structure formation. Our study is relevant to the origin of
complex scalar field structures in a cosmological back-
ground, when the evolution of inhomogeneities can be
accounted for by the gradient expansion formalism [83], in
which spatial derivatives are assumed to be small compared
to time derivatives. Specifically, an expansion parameter ϵ
for coordinate derivatives is introduced in the EKG system
of equations, which is then solved order by order in powers
of this parameter. Our purpose is, thus, to formulate non-
linear solutions for a CSF which can later be used as initial
conditions for general relativistic evolution codes which
work with the EKG system, instead of the SP or GPP. The
gradient expansion for a RSF has been previously studied
in the literature in Ref. [84] (see also Refs. [85,86] for the
generalization to a general kinetic term for the RSF and
Refs. [87,88] for the multifield case). As for the CSF,

long-wavelength, but subhorizon and linear perturbations
of a CSF in the context of PðXÞ theories has been studied in
[89]. We intend here to generalize such analysis to the case
of a complex field.
The paper is organized as follows. In Sec. II, we present

the energy-momentum tensor and the evolution equations of
a CSF subject to an arbitrary potential Vðjφj2Þ. In that same
section, we rewrite the energy-momentum tensor of the CSF
as a perfect fluid, with a word of warning. Thereafter, we
adopt for our calculation the perfect fluid representation of
the CSF. In Sec. III, we present the constraints and evolution
equations we work with. Specifically, we present the EKG
system in the so-called 3þ 1 formalism to then decompose
our system of equations in a cosmological conformal decom-
position. In Sec. IV, we introduce the gradient expansion
formalism to derive theOðϵ2Þ equations valid for a CSF. We
then impose the constant mean curvature (CMC) slicing to
simplify our equations as the standard practice dictates
[84,90–92]. In that same section, we present the solutions
of our system of equations which describe the evolution of
superhorizon inhomogeneities of a CSF. In Sec. V, we apply
our findings to some simple realizations of the CSF
potential, namely, a quadratic and a quartic potential, while
Sec. VI is where we draw our conclusions.

II. COMPLEX SCALAR FIELD IN A PERFECT
FLUID FORM

Through this work, we consider a minimally coupled
CSF φ subject to a generic potential Vðjφj2Þ. Its energy-
momentum tensor is given by

Tμν ¼
1

2
∇μφ

�∇νφþ 1

2
∇νφ

�∇μφ

− gμν

�
1

2
∇σφ�∇σφþ Vðjφj2Þ

�
: ð1Þ

The equation of motion for φ is given by the KG equation:

∇μ∇μφ ¼ 2V 0ðjφj2Þφ
⇒ ∂μð

ffiffiffiffiffiffi
−g

p ∂μφÞ ¼ 2
ffiffiffiffiffiffi
−g

p
V 0ðjφj2Þφ; ð2Þ

where we have defined V 0ðjφj2Þ as

V 0ðjφj2Þ≡ dVðjφj2Þ
djφj2 ; ð3Þ

with g≡ DetðgμνÞ, and gμν is the 4-metric tensor.
Additionally, the CSF satisfies the 4-current conservation
equation

∇μJ μ ¼ 0; where J μ ≡ −i½φ�∇μφ − φ∇μφ��: ð4Þ

We can rewrite the energy-momentum tensor (1) in a
perfect fluid form:
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Tμν ¼ ðρþ pÞuμuν þ pgμν; ð5Þ

if we follow the correspondences

p ¼ −
�
1

2
∇σφ�∇σφþ Vðjφj2Þ

�
;

ρ ¼ −
1

2
∇σφ�∇σφþ Vðjφj2Þ; ð6aÞ

and with uμ satisfying the condition

uμuν ¼
1
2
∇μφ

�∇νφþ 1
2
∇μφ∇νφ

�

−∇σφ�∇σφ
: ð6bÞ

From this last correspondence, one can verify the normali-
zation uμuμ ¼ −1.
The hydrodynamic representation is a common prac-

tice in the study of cosmological scalar fields. It was
first introduced by Madelung in Ref. [93]. In his work,
Madelung managed to rewrite the Schrödinger equation—
which results from applying the nonrelativistic limit to
the KG equation—in a Euler-like system of equations
for an irrotational fluid with an additional quantum poten-
tial arising from the finite value of ℏ. Since then, this
hydrodynamic representation has been used in many
contexts to study the CSF such as a cosmological compo-
nent in the background [94–96], its linear perturbations
[58,97,98], or in stationary configurations describing gal-
axies [30,99–101], among others. In the present work, we
find it convenient to use this representation to study
nonlinear superhorizon perturbations for the CSF. We have,
in fact, verified that the correspondence is valid up to third
order in the gradient expansion featured here. The reader
must be warned, however, that the scalar field is not exactly
a fluid, and the analogy must be verified for each case. In
particular, the equation of state is an ill-defined concept for
a scalar field, in that one cannot, in general, write the
pressure as a linear function of the matter density, much less
propose a given relation. Instead, one has to solve the KG
equation [Eq. (2)], then construct the associated pressure
and density, and only then derive a relation between them
(see [96] as an example of this procedure). With this in
mind, it is clear that, despite the fact that in the first instance
we strongly rely on the hydrodynamical representation of
the scalar field, at some point in our analysis, when seeking
for solutions that govern the cosmological evolution of
nonlinear cosmological perturbations for the CSF, it will
be necessary to restore the equations to their form in terms
of the field variables, in order to close the system (in the
absence of an equation of state). The details of this
procedure are presented below.

III. BASIC EQUATIONS

A. 3 + 1 formalism

Before presenting the system of equations that describe a
CSF in a cosmological context, we start by rewriting the
EKG equations in a convenient form. That is, we shall
rewrite the EKG equations in a 3þ 1 formalism, where the
space-time line element is written in the following form:

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ: ð7Þ

Here α, βi, and γij are the lapse function, shift vector, and
spatial metric, respectively. Latin indices range from 1 to 3
denoting space coordinates and are dropped and raised by
γij and γij, unless otherwise specified, whereas Greek
indices range from 0 to 3 denoting space-time coordinates.
The space-time metric and its inverse are given by

gμν ¼
�−α2 þ βiβ

i βi

βj γij

�
; gμν ¼

 
− 1

α2
βi

α2

βj

α2
γij − βiβj

α2

!
:

ð8Þ
Then g ¼ −α2γ, where γ ≡ DetðγijÞ. The covariant and
contravariant components of the normal unit vector to the
t ¼ const hypersurface Σ are given by

nμ ¼ ð−α; 0; 0; 0Þ; nμ ¼
�
1

α
;−

βi

α

�
; ð9Þ

respectively. On the other hand, the projection tensor to Σ is
defined as hμν ≡ γμν þ nμnν.
In general, we can decompose the stress-energy tensor

for the matter field Tμν in the following form:

Tμν ¼ Enμnν þ Jμnν þ Jνnμ þ Sαβhαμh
β
ν ; ð10Þ

where

E≡ Tμνnμnν; Jα ≡ −Tμνh
μ
αnν; Sαβ ≡ Tμνh

μ
αhνβ:

ð11Þ
With these new definitions, the Einstein equations Gμν ¼
8πTμν can be written in the following set of equations:

(i) the Hamiltonian constraint Gμνnμnν ¼ 8πTμνnμnν
andmomentum constraintGμνnμhνi¼8πTμνnμhνi.—

Rþ K2 − KijKij ¼ 16πE ð12Þ

and

DjK
j
i −DiK ¼ 8πJi; ð13Þ

respectively, where Di and R denote the covariant
derivative and Ricci scalar, respectively, with respect
to γij, Kij is the extrinsic curvature of Σ, defined as

LONG-WAVELENGTH NONLINEAR PERTURBATIONS OF A … PHYS. REV. D 104, 083513 (2021)

083513-3



Kij ≡ −hμi hνjnμ;ν ¼ −
1

2α
ð∂tγij −Djβi −DiβjÞ;

ð14Þ

and K ≡ γijKij. In the above expression, and for the
rest of this work, a semicolon denotes covariant
derivative with respect to gμν. Observe also that the
above expression can be rewritten as

∂tγij ¼ −2αKij þDjβi þDiβj; ð15Þ

which represents an evolution equation for the spatial
part of the metric.

(ii) the evolution equationsGμνhμihνj ¼ 8πTμνhμihνj for
the metric variables.—

∂tKij ¼ αðRij þ KKijÞ − 2αKilKl
j

− 8πα

�
Sij þ

1

2
γijðE − SllÞ

�
−DjDiα

þ ðDjβ
mÞKmi þ ðDiβ

mÞKmj þ βmDmKij:

ð16Þ

As usual, the lapse α and shift βi remain undetermined
due to the covariant character of the theory, and one can
choose them as they better suit the specifics of the scenario
under study.1

Similarly, we can decompose the CSF equation of
motion in a 3þ 1 form. To do this, we could proceed in
two different ways, which would be to work directly with
the field representation of the energy-momentum tensor
and, therefore, rewrite the KG equation (2) in this 3þ 1
representation, while a second possibility would be to rely
on the perfect fluid representation of the CSF. In this work,
we proceed by adopting the second option. We must
emphasize that the hydrodynamic representation of the
CSF cannot always be applied to all kind of metrics.
However, as mentioned earlier, we verified that this
equivalence exist in our gradient expansion approximation
up to the order of Oðϵ3Þ (see later).
Given that our energy-momentum tensor is now written

in the perfect fluid form, we can define a 3-velocity vi as
vi ¼ ui=u0. We can express then uμ and uμ as

u0 ¼ ½α2 − ðvk þ βkÞðvk þ βkÞ�−1=2; ui ¼ u0vi; ð17aÞ

u0 ¼ −u0½α2 − βkðvk þ βkÞ�; ui ¼ u0ðvi þ βiÞ: ð17bÞ

From the conservation equation ∇μT
μ
ν ¼ 0, we obtain a

Euler-like system of differential equations (the same that
are valid for a perfect fluid):

uμ∂μρþ
ρþ p
α
ffiffiffi
γ

p ∂μðα ffiffiffi
γ

p
uμÞ ¼ 0; ð18aÞ

1ffiffiffi
γ

p ∂t½ ffiffiffiγp ðρþ pÞαu0ui� þDj½ðρþ pÞαu0vjui�

¼ −α∂ip − ðρþ pÞαu0½αu0∂iα − ujDiβ
j�: ð18bÞ

The first of these two equations represents the con-
servation law of mass, whereas the second one is the
conservation law of momentum. The different quantities
defined in Eq. (11) are then expressed as

E ¼ ðρþ pÞðαu0Þ2 − p; ð19aÞ

Ji ¼ ðρþ pÞαu0ui; ð19bÞ

Sij ¼ ðρþ pÞuiuj þ pγij; ð19cÞ

where we have used that uμuνnμnν ¼ uμuνnμnν ¼ ðαu0Þ2
in the above expression and ρ and p are given in terms of
the field variables as shown in Eq. (6a).

B. Cosmological conformal decomposition

In this section, we show how to rewrite the above
equations in a cosmological context. To this end, we review
the cosmological conformal decomposition as described in
Refs. [90,91]. The idea of this decomposition is to assume
an asymptotically spatially flat Friedmann universe; in
such a case, the spatial metric γij is decomposed as γij ¼
ψ4a2ðtÞγ̃ij, where γ̃ ≡ Detðγ̃ijÞ is time independent and
equal to η≡ DetðηijÞ, with ηij a time-independent metric of
the flat tree space. The function aðtÞ is a scale factor
of a reference universe, which we can assume to be at
our location, whereas ψ4 encrypts deviations from the
Friedmann universe. Also, the extrinsic curvature is decom-
posed as

Kij ¼ Aij þ
γij
3
K; ð20Þ

and then Aij is traceless by definition. Additionally, a new
tensor Ãij is also defined as

Aij ¼ ψ−4a−2Ãij; Aij ¼ ψ4a2Ãij: ð21Þ

With this new decomposition, we can rewrite Rij as
follows:

Rij ¼ R̃ij þRψ
ij; ð22Þ

1In the cosmological case, it is natural to choose a constant
lapse and a zero shift vector (see [102]), whereas in a black hole
scenario the 1þ log lapse and the Gamma driver shift are better
suited for the problem (see [103] for a discussion on this subject).
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where

Rψ
ij ≡ −

2

ψ
D̃iD̃jψ −

2

ψ
γ̃ij△̃ψ þ 6

ψ2
D̃iψD̃jψ −

2

ψ2
γ̃ijD̃kψD̃kψ ;

R̃ij ≡ 1

2
½−△̄γ̃ij þ D̄jD̄kγ̃ki þ D̄iD̄kγ̃kj þ 2D̄kðfklClijÞ − 2Cl

kjC
k
il�;

fkl ≡ γ̃kl − ηkl; Ck
ij ≡ 1

2
γ̃klðD̄iγ̃jl þ D̄jγ̃il − D̄lγ̃ijÞ:

In the above expressions, D̃i (D̄i) is the covariant derivative with respect to γ̃ij (ηij), and △̃≡ γ̃ijD̃iD̃j (△̄≡ ηijD̄iD̄j). Also,
indices for quantities with a tilde (hat) are lowered and raised by γ̃ij and γ̃ij (ηij and ηij), respectively. Then, we have

Rψ ≡ γijRψ
ij ¼ −

8

ψ5a2
△̃ψ ; ð23Þ

Rψ
ij −

1

3
γijRψ ¼ −

2

ψ

�
D̃iD̃jψ −

1

3
γ̃ij△̃ψ

�
þ 6

ψ

�
D̃iψD̃jψ −

1

3
γ̃ijD̃kψD̃kψ

�
: ð24Þ

With all these new definitions, Eqs. (12), (13), and (16) are
rewritten as follows.

(i) The Hamiltonian and momentum constraints:

Rk
k − ÃijÃ

ij þ 2

3
K2 ¼ 16πE; ð25Þ

DjÃ
j
i −

2

3
DiK ¼ 8πJi: ð26Þ

With the conformal decomposition, the above equa-
tions can be transformed into the form

△̃ψ ≡ R̃k
k

8
ψ − 2πψ5a2E −

ψ5a2

8

�
ÃijÃ

ij −
2

3
K2

�
;

ð27Þ

D̃jðψ6ÃijÞ −
2

3
ψ6D̃iK ¼ 8πJiψ6: ð28Þ

(ii) The evolution equations for the metric variables:

ð∂t − LβÞÃij ¼
1

a2ψ4

�
α

�
Rij −

γij
3
R
�
−
�
DiDjα −

γij
3
DkDkα

��
þ αðKÃij − 2ÃikÃ

k
jÞ

−
2

3
ðD̄kβ

kÞÃij −
8πα

a2ψ4

�
Sij −

γij
3
Skk

�
; ð29Þ

ð∂t − LβÞψ ¼ −
∂ta
2a

ψ þ ψ

6
ð−αK þ D̄kβ

kÞ; ð30Þ

ð∂t − LβÞK ¼ α

�
ÃijÃ

ij þ 1

3
K2

�
−DkDkαþ 4παðEþ SkkÞ; ð31Þ

with Lβ representing the Lie derivative along βi.
The evolution equation for the spatial metric (15) yields

ð∂t − LβÞγ̃ij ¼ −2αÃij −
2

3
γ̃ijD̄kβ

k: ð32Þ

The Euler-like system of Eqs. (18a) and (18b) are then rewritten as

ð∂t þ vi∂iÞρþ
ρþ p

ðaψ2Þ3αu0 f∂t½ðaψ2Þ3αu0� þ ∂i½ðaψ2Þ3αu0vi�g ¼ 0; ð33aÞ
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1

ðaψ2Þ3 ∂t½ðaψ2Þ3ðρþ pÞαu0ui� þDj½ðρþ pÞαu0vjui� þ ∂ipþ ðρþ pÞððαu0Þ2∂iα − αu0ujDiβ
jÞ ¼ 0: ð33bÞ

The system from (27) to (33) is then the differential
equations that govern the nonlinear evolution for a CSF in a
cosmological context and for the gradient expansion at the
order studied in this work. Observe then that, thanks to the
perfect fluid representation of the CSF, all these equations
are the same that are valid for a perfect fluid. The particular
way to move from the solutions that we will obtain for
the perfect fluid variables and the field variables will be
presented later in this work.

C. Understanding the cosmological
conformal decomposition

Given that this formalism is not the standard for
describing cosmological inhomogeneities, in this section
we provide a more familiar description of the above system.
In particular, we make contact with the standard approach
by showing how the well-known equations for a cosmo-
logical CSF are reproduced at the background level (we
leave the treatment of inhomogeneities for the next section,
in the context of a gradient expansion).
We start by considering a flat Friedmann-Lemaître

metric

ds2 ¼ −dt2 þ a2ðtÞηijdxidxj: ð34Þ

This metric fits the 3þ 1 representation (7) with α ¼ 1,
βi ¼ 0, and γij ¼ a2ðtÞηij. Furthermore, the cosmological
conformal decomposition takes in this case ψ ¼ 1 and
γ̃ij ¼ ηij. Observe that this also implies that Rij ¼ 0 given
that Rψ

ij has only terms of the form Diψ , and R̃ij can be

taken as dependent solely on factors of the form D̂iηjk,
which by definition are zero. Additionally, the different
quantities in Eq. (19) reduce to E ¼ ρ, Ji ¼ 0, and
Sij ¼ pa2ðtÞηij, where we have considered that ui ¼ 0

(the comoving velocity ui vanishes at the background level)
and αu0 ¼ 1, which can be easily seen from Eq. (6b) once
we impose that φ ¼ φðtÞ.
We now focus on the system of Eqs. (27)–(33), which

describe the evolution of the CSF in a cosmological
context. First, observe that Eq. (32) implies that Aij ¼ 0.
Similarly, Eq. (30) implies that K ¼ −3∂ta=a≡ −3H,
where H is the well-known Hubble parameter. On the
other hand, Eq. (27), which follows from the Hamiltonian
constraint, reduces to the Friedmann equation

H2 ¼ 8π

3
ρ; ð35Þ

whereas Eq. (31) reduces to the acceleration equation

∂2
t a
a

¼ −
8π

3
½ρþ 3p�; ð36Þ

where in the above expression ∂2
t ≡ ∂2=∂t2. Similarly,

from the mass conservation equation (33), it follows that

∂tρþ 3Hðρþ pÞ ¼ 0: ð37Þ

The reader can verify that all the other equations provide no
extra information. Thus, Eqs. (35)–(37) constitute the
system to describe a universe dominated by a CSF at the
background level. In fact, it is well known that only two of
these equations are independent of each other. Of course,
this system is well known to describe a universe dominated
by a perfect fluid, and the reason we arrived at this system is
because we are working with the perfect fluid representa-
tion of the CSF. In order to close the system of equations,
we might be tempted to define an equation of state for the
CSF, as is typically done when working with perfect fluids.
However, as we mentioned earlier, this fluid representation
of the scalar field is only an auxiliary representation, so the
definition of an equation of state should be taken with
caution. We remark that this problem does not arise in the
field representation, where the current conservation equa-
tion complements the system (we shall elaborate more
about the field variables in the following section). For the
meantime, we have shown that our formalism is capable of
reproducing the usual equations that describe a CSF at the
background level.

IV. LONG-WAVELENGTH SOLUTIONS FOR THE
COMPLEX SCALAR FIELD

A. Gradient expansion: Basic assumptions

The idea behind the gradient expansion formalism [83] is
to consider only those configurations with a scale larger
than the cosmological horizon size. To this end, we attach
to the spatial derivatives a fictitious parameter ϵ, which is
typically associated to the scale L of the inhomogeneities as
ϵ≡H−1=L. This yields a hierarchy of orders of ϵ asso-
ciated to each variable in the system [as shown in Eq. (38)
below]. Then the system of differential equations is solved
order by order in powers of ϵ. The formalism, thus, restricts
the validity of solutions to scales L much larger than the
Hubble horizon, i.e., L ≫ H−1, so that ϵ ≪ 1 is guaranteed
at all times. In this case, the lowest-order terms in ϵ are
sufficient to describe superhorizon inhomogeneities which,
on the other hand, are not restricted in amplitude.
Based on the above description, the gradient expansion

requires additional considerations. First, it is assumed that
ψ acquires the value of one in some asymptotic region of
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the universe (close to spatial infinity). This makes aðtÞ
the asymptotic scale factor of the universe and justifies
our notation. A second requirement is that when ϵ → 0
(a value particularly reached at spatial infinity) the uni-
verse becomes locally homogeneous and isotropic, i.e., a
Friedmann universe, which in our case is assumed to be
flat. This imposes the asymptotic values α ¼ Oðϵ0Þ,
βi ¼ OðϵÞ, and ∂tγ̃ij ¼ OðϵÞ in the limit ϵ → 0 [hereafter,
f ¼ OðϵnÞ means that f is at least of the order of ϵn and
admits higher-order contributions]. We guarantee such
limits through the more restrictive conditions βi ¼ Oðϵ3Þ
and ∂tγ̃ij ¼ Oðϵ2Þ. The condition α ¼ Oðϵ0Þ implies that α
must be a scale-independent quantity at the lowest order in
the gradient expansion (consistent with the cosmological
solution presented earlier). We can absorb at this order the
time dependence by rescaling the time coordinate without
loss of generality and set α ¼ 1. On the other hand,

imposing βi ¼ Oðϵ3Þ is a matter of coordinate choice,
which can be fulfilled, in general. Finally, demanding
∂tγ̃ij ¼ Oðϵ2Þ is a choice inherited from inflationary solu-
tions. Indeed, as pointed out in Ref. [84], taking ∂tγ̃ij ¼
OðϵÞ introduces a decaying mode at this order, which
affects all quantities at Oðϵ2Þ. That same reference shows
that the condition ∂tγ̃ij ¼ Oðϵ2Þ is satisfied for fluctuations
arising from vacuumperturbations. Therefore, given that one
of themainmotivations of this work is to study perturbations
valid for a reheating period, we expect that such a require-
ment should be sufficiently general for our case.
Since our energy-momentum tensor of the CSF has been

expressed in the form of a perfect fluid, the hierarchy in
powers of ϵ of the quantities defined in previous sections is
defined from that established for a perfect fluid. That is, by
assuming βi ¼ Oðϵ3Þ and ∂tγ̃ij ¼ Oðϵ2Þ, we have [91]

Ψ̄ ¼ Oðϵ0Þ; Ãij; fij; κ;Φ;Ψ; ∂tΨ; δ; δp ¼ Oðϵ2Þ; vi þ βi ¼ Oðϵ3Þ; αu0 ¼ 1þOðϵ6Þ; ð38Þ

where in the above expression ∂tΨ̄ ¼ 0 and we have defined

fij ≡ γ̃ij − ηij; κ ≡ K-K̄
K̄

; Φ≡ α − 1; δp≡ p − p̄; δ≡ ρ − ρ̄

ρ̄
; ψ ¼ Ψ̄ð1þ ΨÞ: ð39Þ

In all these expressions, quantities with a bar are used to
refer to Oðϵ0Þ, i.e., background, quantities. The above
estimations can be translated to the field variables, in which
case we obtain

δφ≡ φ − φ̄ ¼ Oðϵ2Þ; ∂tδφ ¼ Oðϵ2Þ: ð40Þ

B. Leading-order equations

1. Order Oðϵ0Þ
The first step to construct the leading-order solutions

valid for long-wavelength perturbations for a CSF is to
reproduce the Oðϵ0Þ equations that govern its evolution.
The reader may find some of the following expressions
redundant with those of Sec. III C; however, we present the
results here to be consistent with the gradient expansion
formalism and in order to show the additional equations
required to describe the field variables of the CSF.
First at all, from Eq. (30) we have

K̄ ¼ −3H þOðϵ2Þ: ð41Þ

If now we use the Hamiltonian constraint (27) and Eq. (19),
we obtain

H2 ¼ 8π

3
ρ̄þOðϵ2Þ; ð42Þ

ρ̄ being written in terms of the field representation as

ρ̄ ¼ j∂tφ̄j2
2

þ Vðjφ̄j2ÞþOðϵ2Þ; ð43Þ

and Vðjφ̄j2Þ is the part of the potential Vðjφj2Þ that isOðϵ0Þ.
From Eqs. (31), (19a), and (19c) follows

∂2
t a
a

¼ −
8π

3
½ρ̄þ 3p̄� þOðϵ2Þ; ð44Þ

where in the above expression p̄ is written in terms of the
field variables as

p̄ ¼ j∂tφ̄j2
2

− Vðjφ̄j2ÞþOðϵ2Þ: ð45Þ

Finally, the fluid equation (33) is reduced to

∂tρ̄þ 3Hðρ̄þ p̄Þ ¼ Oðϵ2Þ: ð46Þ

If we express the above expression in terms of the field
variables, it reduces to

∂2
t φ̄þ 3H∂tφ̄þ 2V 0ðjφ̄j2Þφ̄ ¼ Oðϵ2Þ; ð47Þ

which is the well-known evolution equation for a CSF in a
FL background. In the above expression, V 0ðjφ̄j2Þ is the
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part of V 0ðjφj2Þ that is Oðϵ0Þ [see Eq. (3)]. To complement
the equations at the background level, we need to specify
some information on the phase of the scalar field. This
information can be obtained from the 4-current conserva-
tion equation (4), which at Oðϵ0Þ reads (see the Appendix):

∂t½a3ðφ̄�∂tφ̄ − φ̄∂tφ̄
�Þ� ¼ Oðϵ2Þ: ð48Þ

Notice that this last equation is not presented for a RSF (or
it is trivially satisfied) and represents a key difference
between our scenario and that of a RSF.

2. Order Oðϵ2Þ
Let us continue by presenting the equations that are valid

up to Oðϵ2Þ. We adopt the CMC slicing, in which K ¼ K̄
and, thus, κ ¼ 0.
In the CMC slicing, the system (27)–(33) is expressed as

follows: The Hamiltonian constraint (27) is reduced to

Δ̄ Ψ̄ ¼ −2πΨ̄5a2ρ̄δþOðϵ5Þ: ð49Þ

Additionally, the momentum constraint (28) implies that
Ji ¼ Oðϵ3Þ. While the background Hamiltonian constraint
reduces to the Friedmann equation, at the second order it
represents a constraint equation for Ψ̄, which encodes
deviations from a Friedmann universe.
The evolution equations for the metric variables are

6∂tΨ − 3HΦ ¼ Oðϵ4Þ; ð50Þ

Φðρ̄þ p̄Þ þ δp ¼ −
ρ̄δ

3
þOðϵ4Þ; ð51Þ

∂tfij ¼ −2Ãij þOðϵ4Þ; ð52Þ

∂tÃij þ 3HÃij ¼
1

a2Ψ̄4

�
−
2

Ψ̄

�
D̄iD̄jΨ̄ −

1

3
ηij△̄ Ψ̄

�

þ 6

Ψ̄2

�
D̄iΨ̄D̄jΨ̄ −

1

3
ηijD̄kΨ̄D̄kΨ̄

��
þOðϵ4Þ: ð53Þ

Note that Eq. (51) shows no time derivatives. It is the result
of taking the evolution of the extrinsic curvature trace,
Eq. (31) in the CMC gauge, where derivatives of the
extrinsic curvature trace are zero.
Finally, the mass and momentum conservation equa-

tions, in terms of the fluid variables, are

ρ̄∂tδþ ðρ̄þ p̄Þð6∂tΨþDiviÞ þ 3Hðδp − p̄δÞ ¼ Oðϵ4Þ
ð54aÞ

and

1

a3
∂t½a3ðρ̄þ p̄Þui� þ ∂i½δpþ ðρ̄þ p̄ÞΦ� ¼ Oðϵ5Þ; ð54bÞ

respectively.
Observe that by substituting Eqs. (46) and (50) in the

above we obtain

∂tða2ρ̄δÞ ¼ Oðϵ4Þ;
1

a3
∂t½a3ðρ̄þ p̄Þui� ¼

1

3
ρ̄∂iδþOðϵ5Þ:

From this equation, we derive, in the next section, the
expression for the peculiar velocity. Note that, up to this
point, the above set of differential equations is valid for any
energy-momentum tensor which can be written in a perfect
fluid form. However, as we mentioned earlier, the hydro-
dynamic representation of the scalar field is incomplete, so
we must complement these equations with those that apply
to the field variables.
From Eq. (6a), we have

δp ¼ 1

2
ð∂tφ̄

�∂tδφþ ∂tφ̄∂tδφ
�Þ −Φ∂tφ̄

�∂tφ̄

− V 0ðjφ̄j2Þðφ̄δφ� þ φ̄�δφÞ þOðϵ4Þ: ð55Þ

Using the constraint (51) and substituting Eq. (47) for the
background field, we finally obtain

1

a3
∂t½a3ð∂tφ̄

�δφþ ∂tφ̄δφ
�Þ� ¼ −

2

3
ρ̄δþOðϵ4Þ; ð56Þ

which is a constraint for the field fluctuation. Equivalently,
from Eq. (6a), we also have p ¼ ρ − 2Vðjφj2Þ, and then

δp ¼ δρ − 2V 0ðjφ̄j2Þðφ̄δφ� þ φ̄�δφÞ þOðϵ4Þ: ð57Þ

Using the above expression and (51), we can express Φ in
terms of the field variables as

2V 0ðjφ̄j2Þ½φ̄δφ� þ φ̄�δφ� ¼ 4

3
ρ̄δþΦðρ̄þ p̄Þ þOðϵ4Þ:

ð58Þ

Finally, we can use the 4-current conservation equa-
tion (4) to obtain a particular constraint for the field
variables (see the Appendix):

∂tfa3½∂tðφ̄�δφ − φ̄δφ�Þ − 2ð∂tφ̄
�δφ − ∂tφ̄δφ

�Þ�g

− a3∂t

�
Φ
a3

�
½a3ðφ̄�∂tφ̄ − φ̄∂tφ̄

�Þ� ¼ Oðϵ4Þ; ð59Þ

which, again, it is not present in the case of a real SF.
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C. Solutions

It is well known that for a homogeneous and isotropic CSF
there are two well-defined regimes in which the system can
be simplified. As pointed out in Refs. [61,94,96], for the case
in which the oscillations of the CSF are slower than the
Hubble expansion (ω ≪ H), the CSF is equivalent to a
stifflike fluid (ρ̄ ¼ p̄), a behavior expected in the early
evolution of the CSF. On the other hand, when the expansion
rate of the universe is much larger than the period of
oscillations of the CSF (ω ≫ H), the CSF is dependent on
its particular potential. This last behavior is of particular
interest, since it is precisely in this regime that CSFswork for
different scenarios (e.g., a reheating phase in the early
Universe or a dark matter candidate at later stages). Since
the latter regime is of wider interest, wewill focus on finding
solutions in this fast-oscillating regime and also comment on
the solutions found in the slow-oscillating regime.

1. The fast-oscillating regime (ω ≫ H)

(a) Order Oðϵ0Þ.—Equation (48) can be solved immedi-
ately. For this, it is convenient to rewrite the background
CSF φ̄ in the polar form:

φ̄ ¼ jφ̄jeiθ; ð60Þ

where jφ̄j and θ are time-dependent functions. Substituting
the above expression in Eq. (48), we obtain

∂t½2ia3jφ̄j2ω� ¼ Oðϵ2Þ: ð61Þ

Here ω≡ dθ=dt is the angular oscillation frequency of the
CSF. Then

ω ¼ Q
a3jφ̄j2 þOðϵ2Þ; ð62Þ

where Q is the charge of the CSF and it is related to the
conservation of total number of particles [22,61,94,
104,105]. Recall that for a real field the previous equation
is trivially satisfied, which means that the RSF particle is
also its antiparticle.
At the background level, we find it more convenient to

solve Eq. (47) instead of the fluid equation (46) due to the
lack of an equation of state, as already argued. If we replace
Eq. (60) in Eq. (47), we obtain

∂2
t jφ̄j − jφ̄jω2 þ 3H∂tjφ̄j þ 2V 0ðjφ̄j2Þjφ̄j ¼ Oðϵ2Þ: ð63Þ

Following the same procedure as in Refs. [61,94,96], the
fast-oscillating regime applies by demanding the conditions

ω ≫ H and
∂tjφ̄j
jφ̄j ≪ ω: ð64Þ

In this case, Eq. (63) reduces to

jφ̄jω2 − 2V 0ðjφ̄j2Þjφ̄j ¼ Oðϵ2Þ: ð65Þ

Here ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ðjφ̄j2Þ

p
þOðϵ2Þ account for the two sol-

utions of the oscillation frequency of the CSF. Observe that,
from this last expression and Eq. (62), we have

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ðjφ̄j2Þ

q
jφ̄j2 ¼ Q

a3
þOðϵ2Þ; ð66Þ

that is, the solution of jφ̄j is given in terms of the scale
factor once Vðjφ̄j2Þ [and, thus, V 0ðjφ̄j2Þ] is specified. With
this at hand, we can immediately find the value of Vðjφ̄j2Þ
and V 0ðjφ̄j2Þ in terms of the scale factor.
From the above equation and (60), we have

φ̄ ¼ C

½2V 0ðjφ̄j2Þ�1=4a3=2 exp
�
i
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2V 0ðjφ̄j2Þ
q

dt

�
þOðϵ2Þ;

ð67Þ

where C is a complex constant that fulfills the condition
Q ¼ jCj2, and then C ¼ ffiffiffiffi

Q
p

eiθ0 , with θ0 a global phase.
Also, from Eq. (60), it follows immediately that

∂tφ̄ ¼
�
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ðjφ̄j2Þ

q
þ ∂tjφ̄j

jφ̄j
�
φ̄: ð68Þ

We use the above expressions to calculate the perfect
fluid variables. In that case, we obtain from Eqs. (43)
and (45)

ρ̄ ¼ V 0ðjφ̄j2Þjφ̄j2 þ Vðjφ̄j2ÞþOðϵ2Þ and

p̄ ¼ V 0ðjφ̄j2Þjφ̄j2 − Vðjφ̄j2ÞþOðϵ2Þ: ð69Þ

This implies that the Hubble parameter H evolves from
Eq. (42) as

H2 ¼ 8π

3
½V 0ðjφ̄j2Þjφ̄j2 þ Vðjφ̄j2Þ�þOðϵ2Þ: ð70Þ

We see that, in the regime of fast oscillations, the dynamics
produced by the CSF (the evolution of its energy density or
the expansion of the universe) is intimately related to its
potential. As we mentioned earlier, this is a well-known
result.
Order Oðϵ2Þ.—Given that Ψ̄ ¼ Oðϵ0Þ and ∂tΨ̄ ¼ 0, we

have that

Ψ̄ ¼ Lð0ÞðxkÞ; ð71Þ

where Lð0ÞðxkÞ is an arbitrary function of the spatial
coordinate xk and we have used the superscript (n) to
denote quantities that scale as ϵn. Recall that configurations
are subject to a size larger than the horizon. Equation (53)
can be easily solved to obtain
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Ãij ¼ pð2Þ
ij

1

a3

Z
a

0

dã
HðãÞ þOðϵ4Þ; ð72Þ

where

pð2Þ
ij ðxkÞ≡ 1

Ψ̄4

�
−
2

Ψ̄

�
D̄iD̄jΨ̄ −

1

3
ηij△̄ Ψ̄

�

þ 6

Ψ̄2

�
D̄iΨ̄D̄jΨ̄ −

1

3
ηijD̄kΨ̄D̄kΨ̄

��
;

and with H given by Eq. (42). The integration constant
in Eq. (72) was omitted, since it yields a decaying
mode, irrelevant for our purposes. Equation (52) yields
immediately

fij ¼ −2
Z

a

0

dãAijðãÞ
ãHðãÞ þOðϵ4Þ; ð73Þ

where the constant of integration is dropped in order that
fij → 0 when t → 0.
Next, the conservation equation (55) is easily integrated.

The density is integrated as

δ ¼ ρ̄0a20
ρ̄a2

Rð2ÞðxkÞ þOðϵ4Þ; ð74Þ

with Rð2ÞðxkÞ an arbitrary function of the spatial coordi-
nates xk, restricted only to represent a fluctuation of size
larger than the cosmological horizon, and with ρ̄0a20 a
constant. Using the above expression, the right-hand side
equation in (55) yields the peculiar velocity:

ui ¼
ρ̄0a20

3a3ðρ̄þ p̄Þ ∂iRð2ÞðxkÞ
Z

a

0

dã
HðãÞþOðϵ3Þ: ð75Þ

The functions Lð0ÞðxkÞ and Rð2ÞðxkÞ are related by
Eq. (49) as

Rð2ÞðxkÞ ¼ −
Δ̄Lð0ÞðxkÞ

2πρ̄0a20ðLð0ÞðxkÞÞ5þOðϵ5Þ: ð76Þ

Let us now solve Eq. (56) with the aid of Eq. (74). In this
case, we obtain

∂tφ̄
�δφþ ∂tφ̄δφ

� ¼ −
2ρ̄0a20
3a3

Rð2ÞðxkÞ
Z

a

0

dã
HðãÞ þOðϵ4Þ:

ð77Þ

Observe that in the fast-oscillating regime we can approxi-
mate ∂tφ̄ ≃ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ðjφ̄j2Þ

p
φ̄, from Eq. (68). Then

φ̄�δφ − φ̄δφ� ≃ −
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2V 0ðjφ̄j2Þ
p 2ρ̄0a20

3a3
Rð2ÞðxkÞ

Z
a

0

dã
HðãÞ þOðϵ4Þ: ð78Þ

Equivalently, from Eq. (58), we have

∂tφ̄
�δφ − ∂tφ̄δφ

� ≃ −
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2V 0ðjφ̄j2Þ
p �

4

3

ρ̄0a20
a2

Rð2ÞðxkÞ þΦðρ̄þ p̄Þ
�
þOðϵ4Þ: ð79Þ

Using these two expressions and Eq. (61) in Eq. (59), we obtain immediately

∂t

�
a3
�
∂t

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2V 0ðjφ̄j2Þ
p 2ρ̄0a20

3a3
Rð2ÞðxkÞ

Z
a

0

dã
HðãÞ

�
−

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ðjφ̄j2Þ

p �
4

3

ρ̄0a20
a2

Rð2ÞðxkÞ þΦðρ̄þ p̄Þ
���

þ 2Qa3∂t

�
Φ
a3

�
¼ Oðϵ4Þ: ð80Þ

By noticing from Eqs. (69) and (66) that ρ̄þ p̄ ≃ 2V 0ðjφ̄j2Þjφ̄j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ðjφ̄j2Þ

p
Q=a3, and using ∂t ¼ aH∂a, the above

expression is rewritten as

aH∂a

�
a3
�
aH∂a

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2V 0ðjφ̄j2Þ
p 2ρ̄0a20

3a3
Rð2ÞðxkÞ

Z
a

0

dã
HðãÞ

�
−

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ðjφ̄j2Þ

p 4

3

ρ̄0a20
a2

Rð2ÞðxkÞ
��

þ 2Q∂tΦ − 2Q∂tΦ − 6QHΦ ¼ Oðϵ4Þ: ð81Þ
Then

Φ ≃
a
6Q

∂a

�
a3
�
aH∂a

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2V 0ðjφ̄j2Þ
p 2ρ̄0a20

3a3
Rð2ÞðxkÞ

Z
a

0

dã
HðãÞ

�
−

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ðjφ̄j2Þ

p �
4

3

ρ̄0a20
a2

Rð2ÞðxkÞ
���

þOðϵ4Þ: ð82Þ
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We can use this last result to solve Eq. (50):

Ψ¼ 1

2

Z
a

0

Φ
dã
ã

¼ a3

12Q

�
aH∂a

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2V 0ðjφ̄j2Þ
p 2ρ̄0a20

3a3
Rð2ÞðxkÞ

Z
a

0

dã
HðãÞ

�
−

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ðjφ̄j2Þ

p �
4

3

ρ̄0a20
a2

Rð2ÞðxkÞ
��

þOðϵ4Þ: ð83Þ

Finally, by adding Eqs. (77) and (79), we can obtain the solution for δφ:

δφ ¼ −
1

∂tφ̄
�

�
2ρ̄0a20
3a3

Rð2ÞðxkÞ
�Z

a

0

dã
HðãÞ þ

i2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ðjφ̄j2Þ

p �
þ iΦðρ̄þ p̄Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2V0ðjφ̄j2Þ
p �

þOðϵ4Þ; ð84Þ

where Φ is given by Eq. (82).

2. The slow-oscillating regime (ω ≪ H)

Order Oðϵ0Þ.—In this regime, the solution obtained in
Eq. (62) holds valid given that Eq. (61) is general and
independent of any approximation. On the other hand,
following again Refs. [61,94,96], in the slow-oscillating
regime we consider ω ≪ H and ∂tjφ̄j=jφ̄j ≫ ω, in which
case Eq. (63) is rewritten as

∂2
t jφ̄j þ 3H∂tjφ̄j ¼ Oðϵ2Þ: ð85Þ

The above expression can be immediately integrated to
obtain

∂tjφ̄j ¼ ∂tjφ̄j0
�
a0
a

�
3

þOðϵ2Þ; ð86Þ

where ∂tjφ̄j0 is a constant.
The energy and pressure in this case are given by

ρ̄≃ p̄≃
ð∂tjφ̄jÞ2

2
þOðϵ2Þ ¼ ð∂tjφ̄j0Þ2

2

�
a0
a

�
6

þOðϵ2Þ: ð87Þ

The above equation yields the equation of state of a stifflike
fluid (defined only for background quantities), which is well
known to apply for a CSF at the earliest epoch and is
independent of the particular potential of the CSF, since at
this stage it is the kinetic energy of the scalar field particles
[the first term in the quantities defined in Eq. (6)] that
dominates the energy density. As pointed out in Ref. [61],
this stifflike behavior of theCSF implies that the sound speed
associated to it almost reaches the speed of light (the
maximum value allowed), which is an analog to the incom-
pressible fluid in Newtonian gas dynamics, where the sound
speed is infinite. Substituting the above expression in
Eq. (42), we obtain the Hubble parameter H evolution as

H2 ¼ 4πð∂tjφ̄j0Þ2
3

�
a0
a

�
6

þOðϵ2Þ: ð88Þ

Using the above equation in Eq. (86), we obtain an
expression for jφ̄j, namely,

jφ̄j ¼ jφ̄j0 þ
ffiffiffiffiffiffi
3

4π

r
ln
�
a
a0

�
þOðϵ2Þ: ð89Þ

It is easy to see that in the slow-oscillating regimewewill
have that ∂tφ̄ ¼ eiθ∂tjφ̄j, so to complete this subsection at
the background level we need to calculate the value of the
phase of the CSF. We can do this easily with the help of
Eq. (62) and the above two expressions as follows:

θ − θ0 ¼
Z

a

0

ω
dã

ãHðãÞ
¼ −

Q
a30∂tjφ̄j0

1

jφ̄j0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð4πÞp

lnða=a0Þ
þOðϵ2Þ;

ð90Þ
where θ0 is the global constant phase defined in the
paragraph just after Eq. (67). Notice that the above result
can be expressed as θ − θ0 ∼ −ωjφ̄j=H, and, given that
H ∼ ∂tjφ̄j, we have θ − θ0 ∼ −ωjφ̄j=∂tjφ̄j ≪ 1, since we
are in the slow-oscillating regime. This last result then
allows us to approximate

φ̄ ≃ jφ̄jeiθ0 ; ∂tφ̄ ≃ ∂tjφ̄jeiθ0 : ð91Þ
This is consistent with the physical picture of the slow-
oscillating regime, in which the Hubble time is much
smaller than the oscillation period, so that the CSF rolls
down the potential well, before completing a cycle of spin.
It is worth mentioning that, in the slow-oscillating

regime, a RSF would be expected to feature a subsequent
attractor solution of an effective cosmological constant
[106] (see also Refs. [94,107]). For a CSF, however, such
behavior demands specific conditions, so the inflationary
models that would arise from a CSF are not as generic as in
the case of real fields.
Order Oðϵ2Þ.—Before presenting the solutions for this

regime at second order, the reader should note that some of
the solutions found in the fast-oscillating regime are also
valid in the present case. This is because the background
solutions are the same up to time derivatives of the field.
Such factors are not present in the solutions provided by
Eqs. (71)–(77). As for the rest of the solutions, we note
that, by using Eqs. (86), (88), and (91), Eq. (77) can be
expressed as
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e−iθ0δφþ eiθ0δφ� ¼ −
1

4
ffiffiffiffiffiffiffiffi
12π

p
�
a
a0

�
4

Rð2ÞðxkÞ þOðϵ4Þ; ð92Þ

where in the above expression we have used that ρ̄0 ¼ ð∂tjφ̄j0Þ2=2. Using the last equation, we can solve Φ by using
Eq. (58). In such a case, we obtain

Φ ¼ −
Rð2ÞðxkÞ
ð∂tjφ̄jÞ2

�
a
a0

�
6
�

1

4
ffiffiffiffiffiffiffiffi
12π

p
�
a
a0

�
4

2V 0ðjφ̄j2Þ
�
jφ̄j0 þ

ffiffiffiffiffiffi
3

4π

r
ln

�
a
a0

��
þ 2

3

ð∂tjφ̄j0Þ2a20
a2

�
þOðϵ4Þ: ð93Þ

It is interesting to notice that the value of Φ will depend on the particular value of the potential under which the CSF is
subject. Then, from Eq. (50), we have

Ψ¼
Z

a

0

Φ
dã
ã
þOðϵ4Þ ¼ −

Rð2ÞðxkÞ
ð∂tjφ̄jÞ2

Z
a

0

ã5

a60

�
1

4
ffiffiffiffiffiffiffiffi
12π

p
�
ã
a0

�
4

2V 0ðjφ̄j2Þ
�
jφ̄j0 þ

ffiffiffiffiffiffi
3

4π

r
ln
�
ã
a0

��
þ 2

3

ð∂tjφ̄j0Þ2a20
ã2

�
dãþOðϵ4Þ:

ð94Þ

While the slow-oscillating regime is not usually featured
in reheating models, it is plausible to consider a stiff-fluid
component at early times given its dependence with the
scale factor. In such a scenario, the formation of PBHs has
been studied in previous papers (e.g., Refs. [108,109]) but
with no rigorous criterion for the threshold amplitude for
their formation. The present study serves as a first step in
the determination of such an amplitude.
To close this section, let us note from Eq. (76) that all

inhomogeneities present a spatial dependence related to
Rð2ÞðxkÞ and its derivatives. This means that a single spatial
distribution governs all quantities in the system. This is
consistent with the picture in which our solutions take into
account only the growing mode, which is the case of
structure formation preceded by an inflationary period
which erased all decaying modes. In particular, keeping
exclusively this mode is crucial in the study of the
formation of PBHs, since the incorporation of the decaying
mode brings uncertainties to the determination of the
threshold amplitude (at horizon crossing), with which an
overdensity may collapse gravitationally and form a PBH.

V. CHARACTERIZATION OF TWO
EXPLICIT POTENTIALS

We have written the Einstein equations in Sec. IV B in
the gradient expansion approximation and presented sol-
utions for a generic canonical potential in Sec. IV C for
both the fast- and the slow-oscillating regime. We now
proceed to derive explicit solutions for some particular
potentials, namely, a quadratic and a quartic potential.
Since the fast-oscillating regime is of most interest in
cosmology, we will focus on studying examples only in this
regime (considering also that solutions in the regime of
slow oscillations are immediately recovered by simply
substituting the quantities in the general solutions presented
above).

Our choice of potentials responds to our focus on cases
of interest for reheating, where our solution is suitable to
model the evolution of perturbations generated during
inflation and that lie outside the cosmological horizon.
The idea is that, immediately after the end of inflation, the
CSF quickly rolled down to its minimum, where, in the
case of large field models, the potential is approximated as
Vðjφj2Þ ≃ C2

njφj2n, with Cn a suitable constant. With this in
mind, we shall analyze the cases n ¼ 1 and n ¼ 2. Also, for
our purposes, we must remember that inflation typically
ends when ϵ≡ Mpl

2
ðdV=dφV Þ2 ≃ 1. Assuming for simplicity

that the transition from the domain of the inflationary
behavior to the behavior of oscillations around the mini-
mum is instantaneous, we can use the above potential in the
end-of-inflation condition, which means that inflation ends
when φ ∼Mpl and Cn ∼H. Subsequently, at some point
soon after the end of inflation,

Cn ≫ H: ð95Þ

Then the CSF experiences fast oscillations around the
minimum of its potential until interaction with other fields
results in its decay to standard model fields.

A. The quadratic potential

We first consider the following simple harmonic potential:

Vðjφj2Þ ¼ μ2

2
jφj2; ð96Þ

where C1 ¼ μ2=2. This can be used to describe a mass term
associated to the CSF particles, and this potential is the
minimumnecessary that is usually used for theCSF to have a
dust-like behavior at late times, so it is precisely this potential
that is used to consider the CSF as a candidate for darkmatter
or to describe a type of reheating process. Observe that in this
case
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Vðjφ̄j2Þ ¼ μ2

2
jφ̄j2 and V 0ðjφj2Þ ¼ μ2 ¼ V 0ðjφ̄j2Þ: ð97Þ

Then, in this example, the fast-oscillating regime is fulfilled
when the conditionμ ≫ H applies, which is equivalent to the
condition in Eq. (95).

1. Order Oðϵ0Þ
We can start by finding the solutions that are valid to

Oðϵ0Þ. Observe that from Eq. (65) we have ω ¼ �μ. From
Eq. (66), this yields

jφ̄j2 ¼ � Q
μa3

þOðϵ2Þ: ð98Þ

Equation (67) follows immediately:

φ̄ ¼ C

μ1=2a3=2
eiμtþOðϵ2Þ: ð99Þ

The frequency μ brings naturally an associated character-
istic length scale, which appears explicitly in the stability
analysis of linear perturbations, namely, the instability
scale linst ≈ a=μ, which divides fluctuation sizes into two
regimes. For inhomogeneities of size L ≫ linst, the back-
ground behaves like pressureless dust and perturbations
can grow without limit [62,110], while, in the opposite
regime, the scalar field fluctuations dilute and are, there-
fore, irrelevant for structure formation. Note that, since
linst ≪ 1=H, the configurations in the long-wavelength
approximation lie well within the regime relevant for
structure formation.2

From the above equation, we have

∂tφ̄ ¼ μ

�
i −

3

2

H
μ

�
φ̄ ≃ iμφ̄: ð100Þ

We substitute these expressions in Eqs. (43) and (45) or in
Eq. (69), to obtain

ρ̄ ≃
μQ
a3

þOðϵ2Þ and p̄ ≃Oðϵ2Þ: ð101Þ

This implies that the Hubble parameter H evolves from
Eq. (42) or (70) as

H2 ¼ 8π

3

μQ
a3

þOðϵ2Þ; ð102Þ

i.e., as a dustlike component, as expected.
The constants Q and C are determined in each specific

example. In our case, a reheating scenario, we assume
that reheating started immediately after the end of inflation.
Then Eq. (102) sets

Q ¼ 3H2
0

8πμ
a30; ð103Þ

where the subscript “0” refers to quantities evaluated at the
end of inflation. Correspondingly, C is given by

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3H2

0a
3
0

8πμ

s
eiθ0 : ð104Þ

2. Order Oðϵ2Þ
Now, we proceed by finding the solutions that are valid

up to the order of Oðϵ2Þ. First of all, by substituting our
background solutions in Eq. (72), we obtain

Ãij ¼ pð2Þ
ij

ffiffiffiffiffiffiffiffiffiffiffiffi
3

2πμQ

s
1

5a1=2
þOðϵ4Þ: ð105Þ

Replacing the above expression into Eq. (73) results in

fij ¼ −pð2Þ
ij

3

10πμQ
aþOðϵ4Þ: ð106Þ

We can also substitute our background quantities in
Eqs. (74) and (75), in which case we have

δ ¼ a
a0

Rð2ÞðxkÞ þOðϵ4Þ;

ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

6πμQ

s
a5=2

5a0
∂iRð2ÞðxkÞ þOðϵ5Þ; ð107Þ

where in the above expression we substituted ρ̄0a20 ¼
μQ=a0.
In Fig. 1, we show the evolution of the above two

solutions in terms of the scale factor, normalized at the end
of inflation. Note that, as expected, the density contrast and
velocity of the CSF subject to a potential of the form (96)
evolve as those of a dustlike component [91].
The next step is to find Φ from Eq. (82). In that case, we

found

Φ ¼ −
7

15

a
a0

Rð2ÞðxkÞ þOðϵ4Þ: ð108Þ

If we use this result in Eq. (83), it follows that

2The linear instability scale is found in the analysis of the
Mukhanov-Sasaki equation and is often dubbed the Jeans
instability of the scalar field [62,110]. The growth of inhomo-
geneities above the instability scale is observed in the nonlinear
regime both through numerical simulations (with the formation of
soliton structures, e.g., [69]) and in the long-wavelength approxi-
mation of nonlinear fluctuations in a real scalar field [87].
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Ψ ¼ −
7

30

a
a0

Rð2ÞðxkÞ þOðϵ4Þ: ð109Þ

Finally, we compute the solution of the CSF perturbation
(84). In this case, we obtain

δφ¼
�
13

15

ffiffiffiffi
Q

pffiffiffi
μ

p
a0

ffiffiffi
a

p − i
4

15

ffiffiffiffiffiffi
3

8π

r
a
a0

�
Rð2ÞðxkÞeiμtþiθ0 þOðϵ4Þ:

ð110Þ

If we use Eqs. (103) and (104), the above expression is
reduced to

δφ ¼ 1

15

ffiffiffiffiffiffi
3

8π

r �
13

H0

μ

ffiffiffiffiffi
a0
a

r
− i4

a
a0

�
Rð2ÞðxkÞeiμtþθ0þOðϵ4Þ:

ð111Þ

In Fig. 1, we show the evolution of the real part of the
field fluctuation as a function of the scale factor, with
the numerical value μ=H0 ¼ 10 (which fulfills the fast-
oscillating condition μ ≫ H) and t0 ¼ 2=ð3H0Þ. In the
figure, we have multiplied δφ for this case by a factor of 10
to ease the comparison with the quartic case presented
below. As expected, the CSF experiences fast oscillations
in both the background and its fluctuation (the reader may,
in fact, verify that the oscillation frequency of δφ coincides
with the one for φ̄). In addition to the oscillating behavior,
the value of the amplitude of δφ grows with the scale factor.
This is, of course, a hallmark of the growing mode of the
CSF configuration.

B. The quartic potential

We now consider the quartic potential

Vðjφ̄j2Þ ¼ λ

4
jφj4; ð112Þ

with λ > 0. Then

Vðjφ̄j2Þ ¼ λ

4
jφ̄j4; V 0ðjφj2Þ ¼ λ

2
jφj2;

and V 0ðjφ̄j2Þ ¼ λ

2
jφ̄j2: ð113Þ

The fast-oscillating behavior, in this case, is guaranteed as
long as the condition

ffiffiffi
λ

p jφ̄j ≫ H holds.
It is well known that this potential undergoes a radiation-

like era in its fast-oscillating regime [61,94]. It has been used
as an intermediate epoch for the SFDM; that is, a potential
term like this could dominate before the mass term does, or it
could take place in the reheating process. In this sense, our
results may be valid for potentials which contain both terms,
Eqs. (96) and (112), in the limit of large values of φ.

1. Order Oðϵ0Þ
Following the same procedure as with the quadratic case,

we start by finding the solutions that are valid at zeroth
order. Observe that from Eq. (65) we have ω ¼ � ffiffiffi

λ
p jφ̄j,

and then, from Eq. (66), we find

jφ̄j ¼ � ðQ=
ffiffiffi
λ

p Þ1=3
a

þOðϵ2Þ: ð114Þ

We use the above expression and Eq. (113) in Eq. (69) to
obtain

FIG. 1. Left: normalized contrast density and velocity fields for the quadratic and quartic scenarios in terms of the scale factor. Right:
evolution of the real parts of δφ=δφ0 for the quadratic and quartic scenarios in terms of the scale factor. In the plots δ0, u0i , and δφ0 are the
contrast density, velocity, and CSF inhomogeneity, respectively, measured at the end of inflation.
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ρ̄ ≃
3

4

ðλQ4Þ1=3
a4

þOðϵ2Þ and p̄ ≃
1

4

ðλQ4Þ1=3
a4

þOðϵ2Þ:
ð115Þ

Observe that from the above expression p̄ ¼ ρ̄=3, which
thus mimics a radiationlike fluid. This implies that the
Hubble parameter H evolves from Eq. (42) or (70) as

H2 ¼ 2π
ðλQ4Þ1=3

a4
þOðϵ2Þ: ð116Þ

Using the above expressions, we can finally solve for the
homogeneous scalar field. If we replace Eqs. (113) and
(114) in Eq. (67), we get

φ̄ ¼ C

ðλQÞ1=6a exp
�
iðλQÞ1=3

Z
a

0

dã
ã2HðãÞ

�
þOðϵ2Þ: ð117Þ

Substituting Eq. (116) in the above expression, we obtain

φ̄ ¼ C

ðλQÞ1=6a exp
�
i

1ffiffiffiffiffiffi
2π

p
� ffiffiffi

λ
p

Q

�1=3

a

�
þOðϵ2Þ: ð118Þ

Considering a reheating stage, the values of Q and C set
the initial conditions at the end of inflation:

Q ¼
�
a40H

2
0

2πλ1=3

�
3=4

; C ¼
�
a40H

2
0

2πλ1=3

�
3=8

eiθ0 : ð119Þ

2. Order Oðϵ2Þ
Let us now find the solutions that are valid up to the order

of Oðϵ2Þ. By substituting Eq. (116) in Eq. (72), we obtain

Ãij ¼ pð2Þ
ij

1ffiffiffiffiffiffi
2π

p ðλQÞ1=6 þOðϵ4Þ: ð120Þ

Equation (73) yields immediately

fij ¼ −pð2Þ
ij

a2

πðλQ4Þ1=3 þOðϵ4Þ: ð121Þ

Substituting our background quantities (115) in Eqs. (74)
and (75) gives

δ ¼ a2

a20
Rð2ÞðxkÞ þOðϵ4Þ;

ui ¼
1

4
ffiffiffiffiffiffi
2π

p ðλQ4Þ1=6
a4

a20
∂iRð2ÞðxkÞ þOðϵ5Þ; ð122Þ

where we used ρ̄0a20 ¼ 3ðλQ4Þ1=3=ð4a20Þ.
In Fig. 1, we show the evolution of the two expressions

above as a function of the scale factor, normalized at the
end of inflation. As mentioned earlier, the density contrast
and velocity of the CSF subject to a quartic potential evolve
like a pure radiation fluid [91], which results in a faster
growth with respect to the quadratic case. This implies that
the size of the perturbations (and, in general, their behavior)
when they enter the Hubble horizon will be strongly
affected by its potential. In the specific case of our two
examples, for a common initial power spectrum, we expect
a CSF subject to a quartic potential to have a larger value of
the amplitude of the overdensity when reentering the
Hubble horizon than for the massive field case.
Let us finally derive Φ from Eq. (82). In this particular

case, we find

Φ ≃ −
1

2

a2

a20
Rð2ÞðxkÞþOðϵ4Þ: ð123Þ

If we use this result in Eq. (83), then

Ψ ¼ −
1

8

a2

a20
Rð2ÞðxkÞþOðϵ4Þ: ð124Þ

Thus, the solution of the CSF perturbation up to the order
of Oðϵ2Þ is, from Eq. (84),

δφ ¼
�
1

2

�
Q2

λ

�
1=6 1

aa20
−

i

2
ffiffiffiffiffiffi
2π

p a2

a20

�
Rð2ÞðxkÞ exp

�
i

1ffiffiffiffiffiffi
2π

p
� ffiffiffi

λ
p

Q

�1=3

aþ iθ0

�
þOðϵ4Þ: ð125Þ

Using the parameters in Eq. (119), the above expression is

δφ ¼
�
1

2

�
H2

0

2πλ

�
1=4 a0

a
− i

1

2
ffiffiffiffiffiffi
2π

p
�
a
a0

�
2
�
exp

�
i

1ffiffiffiffiffiffi
2π

p
�
2πλ

H2
0

�
1=4 a

a0
þ iθ0

�
þOðϵ4Þ: ð126Þ

In Fig. 1, we show the evolution of the real part of δφ as
a function of the scale factor. The fast-oscillating condition
is fulfilled as long as ð2πH2=λÞ1=4 ≪ 1, which turns out
to be the condition imposed in Eq. (95). In our plots, we

specifically set ðλ=2πH2
0Þ1=4 ¼ 10.Weremark that thegrowth

and oscillating frequency differ from the quadratic case.
However, just as in the quadratic scenario, the background
φ̄ and the fluctuation δφ share the same oscillating frequency.
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C. Comparison between models

We reproduced the dustlike behavior of the background
quadratic potential [Eq. (101)], as well as the radiationlike
behavior of the quartic potential in Eq. (115). These are
well-known properties of the cosmological evolution of
homogeneous scalar fields (zeroth order in the gradient
expansion), as the solutions in Eqs. (107) and (122) show
(see also Fig. 1). Additionally, the growth rate of inhomo-
geneities in the superhorizon scale is faster for the density
contrast in the quartic case (∝ t) than for the quadratic
potential (∝ t2=3).
We must emphasize that the solutions of this section

show that the matter fields present the same time depend-
ence as their equivalents from linear cosmological pertur-
bation theory. In fact, the continuity and Euler equations
[Eq. (54)] are equivalent to Eqs. (8.32) and (8.33) in
Ref. [111], expressed for an arbitrary gauge. On the other
hand, the dominant contribution of the metric fluctuations
at superhorizon scales comes from the zeroth-order, time-
independent profiles of ψ , expressed in Eq. (71). This term
is responsible for the conservation of the curvature pertur-
bation on superhorizon scales at all orders in a perturbative
expansion in a (multiple) fluid-dominated universe (see,
e.g., [112–115]) and in a scalar-field-dominated universe
(see, e.g., [88,116–118]). The zeroth-order metric fluc-
tuation is the source of the second-order matter fields, since
they are related through the relativistic version of the
Poisson equation (see, e.g., [119–121]).

VI. DISCUSSION

After showing in Sec. II how the energy-momentum
tensor of a CSF can be expressed in terms of perfect fluid
variables, in Sec. III we presented the EKG system of
equations in a 3þ 1 formalism. Also, in Sec. III, we
showed how to rewrite the system in the cosmological
scenario, by reexpressing it in terms of a (cosmological)
conformal decomposition. In Sec. IV, we presented the
gradient expansion, employed to obtain the system of
equations and the solutions valid to zeroth and second
order in the ratioH−1=L. The solutions derived here may be
used to describe a universe dominated by a CSF at the
background with superhorizon inhomogeneities. Finally, in
Sec. V, we applied our results to two simple examples,
namely, a quadratic and a quartic potential. They both have
been proved useful in the description of dark matter models
and reheating scenarios. At the background level, we were
able to reproduce the results previously obtained in the
literature. We also found the solutions of the inhomo-
geneous variables of the system for each of these potentials,
which have not been previously reported in the literature.
The perfect fluid description of the complex scalar field

is a common practice [30,61,94,97,99–101,104,122–126].
However, the use of this description is valid as long as
there are no nodes in the distribution of the CSF

inhomogeneities. Typically, these nodes are expected dur-
ing the structure formation process, at highly nonlinear
stages. The regime of the solutions we obtained in this
article pertains to much larger scales, and, therefore, the
solutions remain valid.
As mentioned earlier, the solutions here provided are

valid for cosmological fluctuations much larger in size than
the cosmological horizon. Moreover, the gradient expan-
sion formalism we used has the advantage of not imposing
any restriction on the amplitude of the inhomogeneities, as
opposed to the standard, linear theory of cosmological
perturbations, which is valid only for small amplitudes. In
this way, our description allows the study of inhomoge-
neities of any amplitude, ideal to assess the formation of
PBHs. Our solutions are useful as initial conditions of
numerical codes solving the EKG system which encodes
all the relativistic effects at play. This is crucial in the
accurate study of the origin supermassive and/or primordial
black holes.
The above results bring important consequences for the

evolution of fluctuations in a universe dominated by a
canonical CSF. In the reheating scenario, setting initial
conditions at the inflationary stage, fluctuations may reach
an amplitude at the horizon-crossing time, dependent on
the potential of the dominating field at the fast-oscillation
period. Typically, a critical amplitude of fluctuations at
horizon crossing is defined as a criterion to reach either the
formation of structures (for amplitudes above the threshold)
or a dilution of fluctuations. The difference in the evolution
of matter fluctuations at superhorizon scales implies that
the critical amplitude for collapse must strongly depend on
the model.
The existence of a critical amplitude can be inferred from

the fact that a scalar field modeling dark matter usually
shows characteristic dilution scales (the instability scale
for each particular model). In the case of an oscillating
scalar field, the numerical values for the threshold ampli-
tude are, to the best of our knowledge, still to be determined
(for perturbative analytical approximations to the matter
density threshold amplitude, in the RSF scenario, see, e.g.,
[127–129], and for a numerical study see [130]). We shall
explore this aspect for the complex scalar field in a follow-
up study.
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APPENDIX: THE 4-CURRENT CONSERVATION EQUATION

The 4-current conservation equation (4) can be reexpressed as

∇μJ μ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
J μÞ; where J μ ¼ −i½φ�∇νφ − φ∇νφ��: ðA1Þ

Expanding the above equation, and using that
ffiffiffiffiffiffi−gp ¼ α

ffiffiffi
γ

p
and the conformal cosmological decomposition

ffiffiffi
γ

p ¼ ψ6a3
ffiffiffi
η

p
,

we have

−
1

αψ6a3
ffiffiffi
η

p
�
∂t

�
αψ6a3

ffiffiffi
η

p �
−

1

α2
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�Þ þ βi

α2
ðφ�∂iφ − φ∂iφ
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þ ∂i
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αψ6a3
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η
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βi

α2
ðφ�∂tφ − φ∂tφ
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þ
�
γij −

βiβj

α2

�
ðφ�∂jφ − φ∂jφ
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���

¼ 0: ðA2Þ

The Oðϵ0Þ of the above equation results in

∂t½a3ðφ̄�∂tφ̄ − φ̄∂tφ̄
�Þ� ¼ Oðϵ2Þ: ðA3Þ

On the other hand, the Oðϵ2Þ of Eq. (A2) is given by

∂tfð6Ψ −ΦÞa3ðφ̄�∂tφ̄ − φ̄∂tφ̄
�Þ þ a3½ððφ̄�∂tδφ − φ̄∂tδφ

�ÞÞ þ ðδφ�∂tφ̄ − δφ∂tφ̄
�Þ�g ¼ Oðϵ4Þ: ðA4Þ

Using Eq. (50), we have 6∂tΨ ¼ 3HΦ, and then 6∂tΨ − ∂tΦ ¼ 3HΦ − ∂tΦ ¼ −a3∂tðΦ=a3Þ. Then, we can rewrite the
above equation as

∂tfa3½∂tðφ̄�δφ − φ̄δφ�Þ − 2ð∂tφ̄
�δφ − ∂tφ̄δφ

�Þ�g − a3∂t

�
Φ
a3

�
½a3ðφ̄�∂tφ̄ − φ̄∂tφ̄

�Þ� ¼ Oðϵ4Þ; ðA5Þ

where in the above equation we have used Eq. (A3) to simplify the expression.
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