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We study in some detail an interacting cosmological model based on two canonical scalar fields starting
from a Lagrangian description. Contrary to other more phenomenological approaches where nonrelativistic
matter and dark energy are cosmological perfect fluids, and where a source term is added by hand at the
level of the continuity equations, here within Einstein’s theory we model the dark sector, which dominates
the evolution of the universe, as two minimally coupled scalar fields, out of which the first play the role of
dark matter and the second plays the role of dark energy. We compute both the deceleration parameter and
the distance modulus versus redshift, and we demonstrate that the model is capable of explaining the
current cosmic acceleration. We find that a negative coupling constant implies two distinctive features,
which comprise two robust predictions of the model studied in the present work, and which are the
following: (a) a transient acceleration phase, and (b) a collapsing Universe, or in other words an initial
expansion which is followed by a contraction leading eventually to a big crunch.
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I. INTRODUCTION

Over the last 25 years or so, thanks to advances in
modern technology and sophisticated space-based detec-
tors and telescopes, we have entered an era of precision
cosmology. Currently, a plethora of astrophysical and
cosmological probes provide us with strong evidence that
we live in a spatially flat Universe, which undergoes an
accelerating expansion dominated by dark matter and dark
energy [1]. Unveiling the origin and nature of the dark
sector comprises one of the major challenges in modern
theoretical cosmology. Einstein’s general relativity (GR),
despite its mathematical beauty and successful confronta-
tion with a series of experimental and observational data
[2], cannot provide us with accelerating solutions if the
energy content of the universe includes radiation and
nonrelativistic matter only. The simplest and most eco-
nomical model capable of explaining the current cosmic
acceleration is the concordance cosmological model—
Lambda cold dark matter (ΛCDM), which is based on
cold dark matter combined with a positive and tiny
cosmological constant [3], and which overall is in a very
good agreement with a great deal of current observational
data. Cosmological constant may be viewed as a perfect
fluid with an equation-of-state parameter w ¼ p=ρ ¼ −1,
with p, ρ being the pressure and energy density of the

fluid, respectively. Since, however, it suffers from the
cosmological constant problem [4] as well as the “why
now” (or coincidence) problem, other alternatives have
been proposed and studied over the years. A dynamical
dark energy [5] characterized by an evolving equation-of-
state parameter, wðaÞ, with a being the scale factor,
interacting with cold dark matter may alleviate the afore-
mentioned two problems related to the cosmological
constant, and therefore interacting dark energy models
have attracted a lot of attention over the years. For an
incomplete list see e.g., [6–12] and references therein.
Although a phenomenological approach based on differ-

ent dark energy parameterizations [13,14] is quite simple
as it is straightforward to obtain an analytic expression of
the Hubble parameter as a function of the redshift, HðzÞ,
a more fundamental description based on a Lagrangian
formulation is desirable and more advantageous. The
simplest choice is to introduce scalar fields, since they
carry no indices and therefore (i) they are compatible with
isotropy and homogeneity of the Universe, and (ii) their
study is less complicated from the mathematical point of
view. After the discovery of the Standard Model Higgs
boson almost 10 years ago [15,16], we know that funda-
mental scalars do exist in nature. What is more, scalar
fields arise in many different contexts in modern particle
physics. Some well-known examples are the following:
(i) Higgs bosons required to break electroweak symmetry,
and give masses to particles [17,18], (ii) pseudo-Goldstone
bosons associated with explicit breaking of additional
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global symmetries [19], (iii) moduli coming from Super-
string theory compactifications [20–24], (iv) scalar fields
included in supermultiplets in supersymmetric models [25]
and theories of supergravity [26], to mention just a few.
In the present work we propose to study an interacting

dark energy model within GR starting from a Lagrangian
formulation based on two canonical scalars fields, where
one of the fields plays the role of dark matter and the other
plays the role of dark energy. It is well known after [27] that
coherent oscillations of a scalar field around the minimum
of a monomial potential of the form ϕ2 acts like a pressure-
less fluid, i.e., dust. This is the approach followed in a
similar work several years ago [28]. There is, however,
another way to reproduce a matter-dominated era, and this
is based on power-law solutions for the scale factor using a
scalar potential of exponential form [29]. In the present
work we shall follow the second approach. The interaction
term between the two scalar field, too, is different than the
one used in [28]. Here we adopt the simplest potential
compatible with renormalizability and a discrete Z2 parity.
The plan of work is the following: In the next section we

set the scene presenting briefly the cosmological equations
we shall be using throughout this work including scalar
field cosmology based on a single minimally coupled scalar
field. In the third section we introduce the interacting dark
sector model analyzed here, and in the Sec. IV we present
and discuss our numerical results. Finally, we finish with
some concluding remarks in Sec. IV. We adopt the mostly
positive metric signature −;þ;þ;þ, and we work in
geometrized units where c ¼ 1 ¼ 8πG.

II. THEORETICAL FRAMEWORK

A. Basic cosmological equations

The starting point is Einstein’s GR [30] based on the
Einstein-Hilbert term coupled to the matter content

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
þ LM

�
ð1Þ

where gμν is the metric tensor, g is its determinant, R is the
corresponding Ricci scalar, G is Newton’s constant and LM
is the Lagrangian of the matter content. Varying the action
with respect to the metric tensor one obtains the well-
known Einstein’s field equations, which read

Gμν ≡ Rμν −
1

2
Rgμν ¼ Tμν ð2Þ

where Rμν is the Ricci tensor, while Tμν is the matter
energy-momentum tensor.
The basic cosmological equations governing the expan-

sion of a homogeneous and isotropic Universe may be
found e.g., in [31]. If matter consists of a perfect fluid with
pressure p and energy density ρ, the energy momentum
tensor is given by

Tμν ¼ pgμν þ ðpþ ρÞuμ uν ð3Þ

where uμ is the four-velocity of the fluid satisfying the
condition uμuμ ¼ −1. The mixed component stress-energy
tensor takes the form [31]

Tμ
ν ¼ diagð−ρ; p; p; pÞ: ð4Þ

An isotropic and homogeneous universe (spatially flat
k ¼ 0) is described by a Robertson-Walker metric [31]

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj ð5Þ

where the scale factor aðtÞ is the only unknown quantity,
and all quantities depend on the cosmic time t only.
The cosmological equations are found to be the

continuity equation as well as the two Friedmann
equations [31]

H2 ¼ 1

3
ρ ð6Þ

ä
a
¼ −

1

6
ðρþ 3pÞ ð7Þ

0 ¼ _ρþ 3Hðρþ pÞ ð8Þ

where an over dot denotes differentiation with respect
to cosmic time, and H ¼ _a=a is the Hubble parameter.
The second Friedmann equation may be written down
equivalently as follows

_H ¼ ä
a
−H2 ¼ −

ρþ p
2

: ð9Þ

If there are several noninteracting fluid components, then

p ¼
X
i

pi ð10Þ

ρ ¼
X
i

ρi ð11Þ

0 ¼ _ρi þ 3Hðρi þ piÞ ð12Þ

For barotropic fluids p ¼ wρ, where w is the equation-of-
state parameter.
Let us now focus on an expanding Universe dominated

by dark energy and dark matter, allowing for an interaction
term between the two fluid components. The Friedmann
equations remain the same, but the continuity equations
take the form

−Q ¼ _ρm þ 3Hρm ð13Þ

Q ¼ _ρχ þ 3Hρχð1þ wÞ ð14Þ
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where Q is the source term describing the energy flow
between dark matter and dark energy, and the equation-
of-state for dark matter wm ¼ 0. A simple and concrete
interacting model in which analytic expressions may be
obtained is the following: Assuming that the source term is
proportional to the matter energy density, Q ¼ δHρm, with
δ being the coupling of the interaction, the fluid equations
take the form

−δHρm ¼ _ρm þ 3Hρm ð15Þ

δHρm ¼ _ρχ þ 3Hρχð1þ wÞ ð16Þ

In the following we shall assume for simplicity that both w
and δ are constants. In this case it is straightforward to
integrate the fluid equations, and obtain ρm, ρχ in terms of
the scale factor a. Finally, introducing the redshift,
1þ z ¼ a0=a, with a0 being the present value of the scale
factor, the Hubble parameter as a function of the redshift is
computed to be [32]

EðzÞ2 ≡ ðHðzÞ=H0Þ2 ¼ Ωχð1þ zÞ3ð1þwÞ

þ 1 −Ωχ

δþ 3w
½δð1þ zÞ3ð1þwÞ þ 3wð1þ zÞ3−δ� ð17Þ

The deceleration parameter, q, is defined to be

q≡ −
ä

aH2
ð18Þ

and as a function of redshift it is given by

qðzÞ ¼ −1þ ð1þ zÞH
0ðzÞ

HðzÞ : ð19Þ

B. Scalar field cosmology

A scalar field slowly rolling down its potential (quintes-
sence) [33,34] acts as an effective cosmological constant,
and tracker [35] or scaling solutions [36] may be obtained
to address the coincidence problem. In scalar field cosmol-
ogy, the starting point is a Lagrangian containing the usual
Einstein-Hilbert term coupled to a canonical (minimally
coupled) scalar field, ϕ, with a kinetic term and a potential
term VðϕÞ. The Lagrangian of the scalar field has the form

LM ¼ −
1

2
ð∂ϕÞ2 − VðϕÞ≡ K − VðϕÞ ð20Þ

The stress-energy tensor of the scalar field is computed
to be

Tμν ¼ ∂μϕ ∂μϕþ LM gμν ð21Þ

and it can be written down equivalently as the energy-
momentum tensor of a perfect fluid provided that

ρϕ ¼ K þ VðϕÞ ð22Þ

pϕ ¼ K − VðϕÞ ð23Þ

uμ ¼
∂μϕffiffiffiffiffiffiffi
2K

p ð24Þ

while for a FRW Universe they are simply given by

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ ð25Þ

pϕ ¼ 1

2
_ϕ2 − VðϕÞ: ð26Þ

Therefore the continuity equation for a fluid is equivalent to
the Klein-Gordon equation

ϕ̈þ 3H _ϕþ V;ϕ ¼ 0 ð27Þ

while the two Friedmann equations now take the form

H2 ¼ 1

3

�
1

2
_ϕ2 þ VðϕÞ

�
ð28Þ

_H ¼ −
_ϕ2

2
: ð29Þ

It is not difficult to show that a power-law solution for the
scale factor, aðtÞ ∝ ts, is an exact analytic solution to the
cosmological equations, provided that the scalar potential
takes the exponential form [29]

VðϕÞ ¼ V0 expð−λϕÞ ð30Þ

where the exponent, λ, is directly related to the power s as
follows

λ ¼
ffiffiffiffiffiffiffi
2=s

p
: ð31Þ

Any power s > 1 corresponds to accelerating solutions,
whereas s < 1 corresponds to decelerating solutions. In
particular, matter dominated era with s ¼ 2=3 may be
reproduced in scalar field cosmology adopting a scalar
potential of exponential form with exponent λ ¼ ffiffiffi

3
p

.

III. INTERACTING DARK SECTOR:
LAGRANGIAN FORMULATION

A. System of coupled equations

Finally, in this section we introduce a model for the dark
sector where a nonvanishing interaction between dark
energy and dark matter is allowed. This possibility may
be realized introducing two canonical scalar fields, ϕ, χ,
with a total scalar potential of the form
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Wðϕ; χÞ ¼ V1ðϕÞ þ V2ðχÞ þ V intðϕ; χÞ ð32Þ

where the first term is the scalar potential of the first scalar
field alone, the second term of the second scalar field alone,
while the last term is responsible for the interaction
between the two scalar fields. Defining for each field a
momentum as follows [37]

Pϕ ≡ a3 _ϕ ð33Þ

Pχ ≡ a3 _χ ð34Þ

the complete system of coupled equations may be written
down as follows [37]

_a ¼ aH ð35Þ

_ϕ ¼ Pϕ

a3
ð36Þ

_χ ¼ Pχ

a3
ð37Þ

_Pϕ ¼ −a3W;ϕ ð38Þ

_Pχ ¼ −a3W;χ ð39Þ

_H ¼ −H2 þ P2
ϕ þ P2

χ

3a6
−
W
3

ð40Þ

where in the numerical analysis we have considered the
case

ViðzÞ ¼ V0;i exp ½−λiz� ð41Þ

V intðϕ; χÞ ¼
g
4
ϕ2 χ2 ð42Þ

with g being a dimensionless coupling constant, which is
essentially the strength of the interaction. The interacting
potential is the simplest one compatible with renormaliz-
ability and a Z2 symmetry, ϕ → −ϕ and χ → −χ, or in
other words it treats both fields on equal footing. Since we
follow the evolution of the Universe starting from the
matter era, we impose for the scale factor the initial
condition [38]

aðtiÞ ∼ ð9Ωm;0=3Þ1=3t2=3i ð43Þ

while for the scalar fields we assume the following initial
conditions

ϕðtiÞ ¼ ϕi ð44Þ

_ϕðtiÞ ¼ 0 ð45Þ

χðtiÞ ¼ χi ð46Þ

_χðtiÞ ¼ 0: ð47Þ

Finally, the first Friedmann equation is used as a constraint
to fix the initial condition for the Hubble parameter.

B. Numerical results

Once the solution to the system of coupled cosmological
equations is obtained, a number of useful quantities may be
computed. First, the dark energy equation-of-state, wϕ, by
definition is given by

wϕ ¼ pϕ

ρϕ
¼

1
2
_ϕ2 − V1ðϕÞ

1
2
_ϕ2 þ V1ðϕÞ

: ð48Þ

The equation-of-state parameter of a canonical scalar
field evolves with time remaining always in the range
−1 < wϕ < 1. This may be easily seen considering two

limiting cases where the kinetic term, _ϕ2=2, is much larger
or much lower than the potential term, V1ðϕÞ, and the dark
energy equation-of-state wϕ reduces to 1 or −1, i.e.,

wϕ ≈ −1; _ϕ2=2 ≪ V1ðϕÞ ð49Þ

wϕ ≈ 1; _ϕ2=2 ≫ V1ðϕÞ ð50Þ

Moreover, the distance modulus μ ¼ m −M, where m
and M are the apparent and absolute magnitude, respec-
tively, is given by [13,39]

μðzÞ ¼ 25þ 5log10

�
DLðzÞ
Mpc

�
ð51Þ

where the luminosity distance, DLðzÞ, is given by [13,39]

DLðzÞ ¼ ð1þ zÞ
Z

z

0

dx
1

HðxÞ : ð52Þ

Our main numerical results are summarized in the
figures below. It is demonstrated that the model studied
here exhibits the expected behavior of any viable dark
energy model. Although we have not performed a detailed
comparison between the predictions of the model and
current data, at this level of discussion it is shown that
the model at least meets the minimum requirements. In
particular, in Fig. 1 we show the evolution of the nor-
malized densities as a function of the cosmic time. Initially
the evolution of the Universe is dominated by matter,
whereas later on dark energy started to dominate the
expansion of the Universe. Finally, today the normalized
densities of dark energy and matter acquire the values
0.7,0.3, respectively.
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Next, in Fig. 2 we show the deceleration parameter, q,
versus redshift, z, for positive (red and magenta curves),
negative (orange and brown curves) and zero (black curve)

coupling constant g and δ. The upper panel corresponds to
the phenomenological description based on two perfect
fluids, whereas the lower panel corresponds to the
Lagrangian formulation based on two canonical scalar
fields. The following features are observed: (a) in both
cases the Universe passes from a decelerating era to an
accelerated era at late times, (b) when the interacting dark
sector is described introducing scalar fields the decelerating
parameter changes its sign at somewhat higher redshift,
(c) in the case of the Lagrangian formulation a negative
coupling constant slightly slows down the current accel-
eration, and (d) in the fluid description of the dark sector, all
curves become indistinguishable during the accelerating
phase, q < 0, whereas in the Lagrangian formulation the
opposite holds. Future measurements of the present value
q0 may discriminate between several different dark energy
models.
Furthermore, in Fig. 3 we show the distance modulus, μ,

versus redshift, z (upper panel), as well as the dark energy

FIG. 3. Dark energy models based on two canonical scalar
fields. Top: distance modulus μ versus redshift z. The data of the
Union2 compilation are shown as well. Shown are: g ¼ 0 (in
black), g > 0 (in red and magenta) and g < 0 (in orange and
brown). Bottom: dark energy equation-of-state parameter,
wχ ¼ pϕ=ρϕ, versus dimensionless time, τ ¼ H0t for g ¼ 0 (in
black), g > 0 (in red and magenta) and g < 0 (in orange
and brown).

FIG. 1. Dark sector modeled introducing two canonical scalar
fields. The figure shows the evolution of the normalized densities
of dark energy (solid) and nonrelativistic matter (dashed) versus
cosmic time for a noninteracting model, g ¼ 0.

FIG. 2. Deceleration parameter q versus redshift z for positive
(red and magenta), negative (orange and brown) and zero (black)
coupling constants. Top: case of phenomenological description
based on fluid components. Bottom: case of Lagrangian formu-
lation based on canonical scalar fields.
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equation-of-state, wχ (lower panel), in the case of the
Lagrangian formulation based on two canonical scalar
fields for zero (black curve), positive (cyan curve) and
negative (red curve) coupling constant g. The supernovae
data points from the Union2 compilation [40] are shown as
well for comparison reasons. Clearly, there is a very good
agreement between the models considered here and the data
points.
Finally, let us comment on a couple of interesting

features (shown in the last figure) observed when the
coupling constant is negative. The top panel of Fig. 4
shows the deceleration parameter as a function of the
dimensionless time, τ ¼ H0t, with H0 being the Hubble
constant, H0 ¼ Hðt0Þ, and the age of the Universe is
determined by aðt0Þ ¼ 1. The current cosmic acceleration
is slowing down, and in the future the Universe eventually
enters a second decelerating phase. What is more, the lower
panel of the same figure shows the scale factor versus
cosmic time for a collapsing Universe, where the expansion
is followed by a contraction leading finally to a big crunch
at t� ¼ 2.1 t0. This possibility for the fate of the Universe
depending on the nature of the dark energy model has been
discussed in [41,42]. A transient acceleration phase was

observed in [28] as well, although nothing regarding a
collapsing Universe was mentioned there.
Before we summarize our work, a final remark is in

order. A nonvanishing interaction between matter and dark
energy violates weak equivalence principle, and it modifies
the well-known virial theorem, see e.g., [43,44]. In the
nonrelativistic limit, if K is the Newtonian kinetic energy,
and W is the gravitational potential energy, then the
modified virial theorem, irrespectively of the interaction
model, takes the form [43]

2ρK þ ρW ¼ ζρW ð53Þ

where ζ is the coupling constant of the matter-DE inter-
action, while the quantities ρK , ρW are defined to be

ρK ≡M
dK
dV

; ρW ≡M
dW
dV

: ð54Þ

Clearly, when there is no interaction between matter
and dark energy one obtains the usual virial ratio,
ρK=ρW ¼ −0.5.
It turns out that suitable gravitationally bounded astro-

nomical objects may be used to probe the validity of the
above expression. A relaxed cluster, characterized by an
approximately spherically symmetric mass profile, is in fact
the Abell Cluster A586 [45]. For that particular distribu-
tion, the densities ρK , ρW are computed to be [43]

ρK ¼ 9Mσ2

8πR3
; ρW ¼ −

3GM2

8πR3hRi ; ð55Þ

where M and R are the total mass and the radius of the
object, respectively, while σ is the dispersion velocity, and
hRi is the mean intergalactic distance [45].
In particular for the Abell Cluster those quantities are

computed to be [45]

M ¼ 4.3 × 1014 M⊙ ð56Þ

σ ¼ 1243 km=s ð57Þ

hRi ¼ 309 kpc ð58Þ

with M⊙ being the solar mass, and therefore the coupling
constant ζ is found to be

−0.774 ¼ ρK
ρW

¼ ζ − 1

2
; ζ ¼ −0.548: ð59Þ

Therefore, the Abell Cluster A586 provides strong evi-
dence for a nonvanishing, in fact negative, coupling
constant between the components of the dark sector.

FIG. 4. Dark energy models based on two canonical scalar
fields and negative coupling constant. Top: an expanding Uni-
verse exhibiting a transient acceleration phase between two
decelerating phases. Bottom: scale factor versus dimensionless
time τ ¼ H0t for a collapsing Universe. The big crunch occurs at
t� ¼ 2.11 t0.

GRIGORIS PANOTOPOULOS and ILÍDIO LOPES PHYS. REV. D 104, 083512 (2021)

083512-6



IV. CONCLUSIONS

In summary, we have studied within Einstein’s gen-
eral relativity an interacting dark energy model based
on a Lagrangian formulation. Two canonical (minimally
coupled to gravity) scalar fields, ϕ, χ, have been intro-
duced, which play the role of dark energy and dark matter,
respectively. Each scalar field comes with its own self-
interaction potential of exponential form, while at the same
time we have included an interaction potential of the form
gϕ2χ2, characterized by a dimensionless coupling constant
g, that can be either positive or negative. with two proper-
ties, namely (a) it is of renormalizable type, and (b) it treats
both fields on equal footing, or in other words it has a Z2

parity, ϕ → −ϕ, χ → −χ. We have written down the
cosmological equations as a system of first order differ-
ential equations, where the second Friedmann equations is
a dynamical equations, whereas the first Friedmann equa-
tion is a constraint. The system of equations has been
integrated numerically, and the effect of the sign of the
coupling constant is investigated in some detail. Our
numerical results indicate that a negative coupling constant
is more interesting. It has been demonstrated that the model
is capable of describing the cosmic current acceleration,
and that it is in a very good agreement with available

supernovae data. In particular, we have computed (i) the
deceleration parameter as a function of the redshift, where a
decelerating phase is followed by an accelerating one, and
(ii) the distance modulus as a function of redshift, where the
data from the Union2 compilation are shown as well. Our
main numerical results may be summarized as follows:
(i) the passage from deceleration to acceleration takes
place at higher redshift compared to the concordance
ΛCDM model (at least for the numerical values of the
parameters considered here), (ii) a negative coupling
constant is more interesting, since on the one hand seems
to be slowing down the current acceleration, and on the
other hand it leads to a big crunch (contraction followed by
an expansion).
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