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Lambda cold dark matter (ΛCDM) is increasingly facing challenges in late-time cosmology, notably in
the Hubble parameter HðzÞ at redshift zero known as H0-tension. Extensions to ΛCDM have been
approached mostly by models with an extra parameter. In this work, we provide a framework for evaluating
the viability of models of late-time cosmology by investigating unparticle cosmology as a case study.
Unparticle cosmology proposes a scale invariant contribution by a dimensionless parameter δ. We focus on
H0-tension in comparison with scale invariant and ΛCDM models. The dynamical behavior of unparticle
cosmology with and without a cosmological constant shows that for most values of δ ∈ ½−6; 1�
(corresponding to du ∈ ½−2; 3=2�), the late-time Universe will be Λ and matter dominated, respectively,
with negligible contribution of unparticles. It predicts HðzÞ in the future to be zero or constant, the latter
pointing to a stable de Sitter phase for our Universe. Our data analysis shows δ ¼ −2.06� 0.46 as the best
fit to the data. Consequently, the conventional value of du ¼ 3=2≡ δ ¼ 1 is ruled out by 6.6σ. However,
there is a pronounced gap between the models and what is demanded by observational data in the qQ-
diagram for all δ. We conclude that unparticle cosmology fails to come to the rescue of challenges to late-
time ΛCDM, but it provides a pointer to holographic dark energy.
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I. INTRODUCTION

Our Universe is currently experiencing an accelerated
expansion phase and the Lambda cold dark matter
ðΛCDMÞ paradigm is a successful model for describing
a vast majority of Universe evolution process from early
times to the current phase [1]. Therefore, this model is
known as the standard cosmological theory, but there are
some observational features that cannot be explained by
ΛCDM prompting an increasing interest to look beyond
ΛCDM or perhaps replacing it with a different model [2,3].
As for ΛCDM challenges, we can mention the original

cosmological constant problem arising from quantum field
theory as a large gap of 120 orders in magnitude between
predictions and observational data [4,5]. This is not strictly
a ΛCDM issue, as it comes out of the assumption that
vacuum energy scales with classical volume. As the most
compact objects, black holes of massM and Schwarzschild
radius Rs ¼ 2Rg, Rg ¼ GM=c2 introduce a maximum
energy density ρM ¼ 3Mc2=8πR2

sG, where c is the velocity
of light and G is the Newton constant. In the holographic
interpretation [6–9], this would be universal suggesting the
closure density ρc ¼ 3H2=8π to be a corresponding bound
in cosmological space-time with Hubble parameter H and

Hubble radius RH ¼ c=H. By this correspondence,
Zel’dovich’s integral is immediately ruled out [10,11]
rendering this cosmological constant problem to be moot.
We further encounter H0-tension: the discrepancy

between measurements of H0 by the cosmic microwave
background and local distant ladder. The first gives
H0 ≅ 68 kms−1Mpc−1, while the latter one gives
H0 ≅ 73 kms−1Mpc−1, currently distinct at a level of
confidence better than 4.4σ [12–17]. Riess et al.’s inter-
pretation of type Ia supernova observational data is not
without critique, however [18], leaving some ambiguity in
this level of confidence.
ΛCDM predictions also give inconsistent results for

galaxy properties. A critical challenge for ΛCDM in this
regard is the “missing satellite” problem. ΛCDM simu-
lations point to large numbers of subhaloes including their
satellite galaxies, but observations indicate that the number
of satellite galaxies is much smaller than the predictions.
Also, the angular momentum of baryons is calculated to be
much smaller than the observed ones, and the actual speed
of structure formation seems to be much larger than ΛCDM
predictions [2,19].
These challenges to ΛCDM are motivating us to look

beyond or to renew the theory. In the past few decades,
many attempts have addressed some of the ΛCDM prob-
lems [4,20–26] including gravitational theories containing*mvp@sejong.ac.kr
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dark energy and various approaches to modified gravity.
Scale invariant cosmology and unparticle physics are two
of many that we aim to investigate in this work.
Scale invariant cosmology suggests that empty space is

scale invariant at large scales. This assumption leads to
additional terms in the field equations that are supposed to
replace the cosmological constant [22]. This model recog-
nizes Minkowski space-time as a solution for Einstein
equations, thus predicting the future value of the Hubble
parameter to be zero. However, there are some indications
that this model is inconsistent with the observational data
and it should be ruled out [22,27].
Unparticles, on the other hand, represent nontrivial scale

invariant “stuff” at low energy scales. First proposed by
Georgi in 2007 [21], such couples with standard model
particles at quite high energy scales as Banks-Zaks fields
(Sec. II). But at low energy scales (i.e., the IR limit), Banks-
Zaks fields are decoupled from standard model particles and
their newphase known as the unparticle has some interactions
with standard matter. Unparticles are defined by an energy
cutoff scale [21], which invites us to study the model using
H0-tension as a novel diagnostic.What they have in common
with Maeder’s scale invariant model [22] is that unparticles
likewise are scale invariant at sufficiently low energy scales.
A main objective of this work is to provide a framework

for evaluating the viability of such models. In this way, the
viability of unparticle cosmology will be examined by
considering the main required features of the theory.
Our starting point is the dynamical properties of unpar-

ticle cosmology. As a cosmological model, it must produce
the cosmological epochs consecutively. We will see that
unparticle cosmology has some challenges in creating the
various cosmological epochs. In particular, big bang
nucleosythesis (BNS) and Hubble parameter evolution will
be investigated.
To study Hubble parameter evolution, we consider, quite

generally, three possible scenarios for the future of the
Hubble parameter. The value of the Hubble parameter may
drop to zero in the distant future (z ¼ −1) or decrease to a
constant value in the same limit. Another possibility is that
the Hubble parameter blows up. Each of these scenarios
might be satisfied in some gravitational theories, but our
Universe selects just one of them.
A key objective of our approach is the development of an

effective diagnostic distinguishing between theses three
scenarios based on the data in the present late-time Universe.
Our classification of the Hubble parameter with respect to

redshift is presented in Fig. 1. Note that each of these three
classes has their distinct footprint on the current value of
Hubble parameter H0. We will identify the future evolution
of our models and categorize them accordingly in a
comparison with the observational data, both for unparticle
and scale invariant cosmology alongside ΛCDM.
While we mostly focus on the late-time behavior of the

Universe, one may find exotic scenarios in each model in

the early Universe. Yet, all the models should conform to
BNS. This common requirement may not always be
satisfied, as some of the proposed models do not tend to
follow it for all or any of their parameter values.
The paper is organized as follows: A brief introduction to

unparticles and their main features is presented in Sec. II. In
Sec. III, we determine the fixed points of unparticle
dynamics and their stability. This provides us an overview
to see if the theory can describe the proper ordering of the
cosmological epochs. To have a general consideration of its
early-time behavior, Sec. IV briefly shows the inconsis-
tency of unparticle physics with BNS. A detailed discus-
sion on the evolution of Hubble parameter for the unparticle
and scale invariant model in comparison with ΛCDM is
presented in Sec. V. The Hubble parameter turning point
and radius of convergence are two key concepts that will be
explained to perform a reliable confrontation between the
theoretical results and available datasets. These two are
presented in Secs. VA and V B. We also discuss the
consistency between the common χ2 analysis method
and our use of polynomial fits as a reference for data
analysis in Sec. V B 3. The comparison with the data based
on these considerations is presented in the rest of the
section. The results are summarized in Sec. VI.

II. MAIN FEATURES OF UNPARTICLES

The prototype of unparticles derives from a low energy
limit of Banks-Zaks fields [28]. Banks-Zaks fields have a
nontrivial conformal IR fixed point at low energy scales. At
high energy, above the energy scaleMU , they interact with
standard model particles by exchanging particles with mass
scale MU . But below this scale, their interaction is sup-
pressed. Moreover, below the energy scale ΛU , the scale

FIG. 1. Different theoretical possibilities for Hubble parameter
behavior in the future, −1 < z < 0. Based on the model speci-
fication, the Hubble parameter may blow up (class A) which
implies a dynamical instability on the Hubble timescale, goes to a
finite value (class B), the case which proposes a stable de Sitter
phase in a distant future, or drops to zero (class C), suggesting
asymptotically Minkowski space-time for the future of the
Universe. These three classes are anchored by BNS at high z,
but distinct futures imply different predictions for H0 ¼ Hð0Þ.
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invariance feature of Banks-Zaks field appears. This is
where dimensional transmutation of the Banks-Zaks field
occurs due to their renormalizable coupling. In fact, at
energy scales below ΛU (i.e., the IR regime), Banks-Zaks
fields match that of unparticles. At this energy scale,
Banks-Zaks fields are completely decoupled from standard
model particles with interactions between standard model
particles and unparticles (see Fig. 2).
Self-consistency implies kBT < ΛU , where kB is the

Boltzmann constant [29], and as the interactions of unpar-
ticles are yet to be discovered, the lower limit on the energy
cutoff must satisfy ΛU ≥ 1 Tev [30]. Unparticles have
somewhat unconventional features. They lack a definite
mass because a scale transformation multiplies all dimen-
sional quantities of this stuff. Thus, in a scale invariant sector,
there is no particle with constant nonzero mass: Unparticles
have no definite mass unless this definite mass is equal
to zero.
To derive the field equations of a cosmological model

which includes unparticles, we begin with a thermodynamic
description. For a gauge theory and in a situation where all
renormalized masses disappear, the trace anomaly for the
energy-momentum tensor is defined as [31]

θμμ ¼ β

2g
N½Fμν

a Faμν�; ð1Þ

where β is the beta function for coupling g, andN represents
the normal product [32]. For unparticles, the beta function
has a nontrivial IR fixed point at g ¼ g� ≠ 0, where the scale
invariant feature of these species appears. So at low enough
energy scales, one can write the beta function as

β ¼ aðg − g�Þ; ða > 0Þ ð2Þ
comprising a fixed point at g ¼ g�. This implies a running
coupling g, which can be defined as

gðμÞ ¼ g� þ uμa; β½gðμÞ� ¼ auμa; ð3Þ

with μ as the renormalization scale and u an integration
constant. Here the lowest order corrections to the conformal
limit (θμμ ¼ 0) are demanded, where the system is isotropic,
homogeneous, in thermal equilibrium, and has no conserved
charge. In this situation, the thermal average of θμμ

(hN½Fμν
a Faμν�i) can be taken equal to its conformal value

because β vanishes at the conformal limit. With μ ¼ T at
temperature T, one will have

hN½Fμν
a Faμν�i ¼ bT4þγ; ð4Þ

where γ is the anomalous dimension of the unparticle
operator. γ can be negative for scalar unparticles, but for
vector unparticles, it should be non-negative [33].
Let hθμμi denote the expectation value of the trace of the

energy-momentum tensor for unparticles, and we will then
have

hθμμi ¼ ρU − 3PU ; ð5Þ

with ρU and PU the energy density and pressure of unpar-
ticles, respectively. The expectation value of Eq. (1) is
obtained by using Eq. (5) on the left hand side and Eqs.
(3)–(4) on the right hand side of Eq. (1). Therefore, the lowest
order correction to the conformal limit (T ¼ μ) of hθμμi due to
the unparticles contribution satisfieses

ρU − 3PU ¼ AT4þδ; A ¼ aub
2g�

; δ ¼ aþ γ: ð6Þ

Here, δ is a parameter which depends on the scaling
dimension of unparticles by the equation

δ ¼ 2ðdu − 1Þ ð7Þ
inferred from [32,34].
Valid values of du have been discussed pertaining to

different physical features. The most conventional interval
is 1 < du < 2, while 0<du<2 and du > 1 have also been
considered for the unparticle operator [34–43]. Negative
values for du have also been considered [33,44,45],
although this may be at odds with the unitarity of the
model [46,47]. The value of du perturbs the entropy of
black holes away from the Bekenstein value corresponding
to du ¼ 1 [48,49].
Here, to cover all the proposed values ofdu, the theorywill

be investigated for δ ∈ ½−6; 1� corresponding todu ∈ ½−2; 3
2
�.

Combining Eq. (6) with the first law of thermodynamics,
the expressions for energy density and pressure of the
unparticles satisfies

FIG. 2. Schematic view of the energy scales in which the Bank-Zaks (BZ) field, standard model (SM) particles, and unparticles can
have interaction with each other. At high energy scales (above MU ), Bank-Zaks fields have interactions with standard model particles,
but at low energy scales they are completely decoupled (below ΛU ). At this energy scale, the interaction exists between standard model
particles and unparticles as low energy, scale invariant stuff.
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ρU ¼ σT4 þ A

�
1þ 3

δ

�
T4þδ;

PU ¼ 1

3
σT4 þ

�
A
δ

�
T4þδ; ð8Þ

where we follow the conventional definition for σ [32,44].
δ ¼ 0 is a special case related to logarithmic correction to
standard radiation and should be calculated directly from
the first thermodynamic law.
Three other interesting values are δ ¼ −2 which is the

holographic limit, where the extra contribution Tδþ4

reduces to T2. We will see that this is the most important
one for unparticle cosmology (Sec. V C), δ ¼ −3 is
responsible for some apparent singularities, and δ ¼ −4
puts the theory at the boundary ofΛCDM. As the value of δ
decreases, the decay rate of unparticles slows down, and
this fact secures the role of unparticles at the late-time
Universe. Therefore, if unparticles are to govern the late-
time Universe, δ must be negative.
The idea of an additional fluid with unknown barotropic

index (w ¼ p=ρ) is mostly used to describe properties of
dark energy [50–57] and only occasionally applied to dark
matter [58,59]. Here, however, we use this concept more
broadly which extends to unparticles with presumably
matterlike properties. According to Eq. (8), the barotropic
index of unparticles w ¼ PU=ρU satisfies

w ¼
1
3
σT4 þ ðAδÞT4þδ

σT4 þ Að1þ 3
δÞT4þδ ¼

1

δþ 3
; ð9Þ

where the second equality holds at late-time cosmology
when radiation energy density is safely neglected. We note
that a constant w in Eq. (9) implies that unparticles carry an
adiabatic index 1 associated with infinite degrees of free-
dom in a classical fluid dynamics perspective.
Furthermore, theremight be a concern regarding the ability

of the unparticle model to produce positive energy density in
the late-time Universe, Aðδþ 3Þ=δ > 0. In the absence of a
complete theory that would determine δ andA, we have taken
δ andΩU0

as free parameters in our comparison with the data
(Sec. V C), the combination of which fixes A.
We assume our Universe to be flat, isotropic, and

homogeneous, which is governed by the Friedmann-
Robertson-Walker metric

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2Þ ð10Þ
with aðtÞ the Friedmann scale factor. Using Eqs. (8)–(10),
we write the field equations of unparticle cosmology as

3H2 ¼ ρ ¼ ρU þ
X
i

ρi;

_H ¼ −
1

2
ðρþ pÞ

¼ −
1

2
ððρU þ PUÞ þ

X
i

ðρi þ piÞÞ; ð11Þ

where the “i” index stands for other species alongside
unparticles, e.g., radiation, matter, cosmological constant,
etc., and H is the Hubble parameter H ¼ _a=a.
We next investigate different aspects of unparticle

cosmology by dynamical behavior analysis and stability
of fixed points.

III. DYNAMICAL BEHAVIOR OF UNPARTICLE
COSMOLOGY

Our Universe is described by a dynamical system with
energy components changing in time. By (10), ultimately
the effectiveness of this model derives from the consistency
of its dynamical behavior with observational data. In
standard cosmology and according to observations, our
Universe has experienced different epochs ever since its
journey from early times. It passed a radiation-dominated
epoch followed by a matter-dominated epoch and, more
recently, reached accelerated expansion indicative of dark
energy or modified gravitational theories. By now, radia-
tion- and matter-dominated epochs have already faded. A
conventional two-dimensional dynamical system analysis
can be used to explore if a theory can satisfy the ordering of
these epochs [60,61].
In this section, we will study the dynamical properties of

unparticle cosmology by fixed points and associated
stability. We will employ Eqs. (11) as the main ingredients.
Illustrative for the possible role of unparticles in cos-

mological evolution is to consider their content as a
perturbation to ΛCDM. To this end, we write Eqs. (11) as

3H2 ¼ ρU þ ρr þ ρm þ ρΛ;

_H ¼ −
1

2
ðρþ pÞ ¼ −

1

2
ððρU þ PUÞ

þ ðρr þ pr þ ρm þ pm þ ρΛ þ pΛÞÞ; ð12Þ

where indices r and m refer to radiation and matter,
respectively. As usual, pr ¼ 1

3
ρr, pm ¼ 0, and

ρΛ ¼ −pΛ. Also, the continuity equation holds for all four
species

_ρr þ 3Hðρr þ prÞ ¼ 0;

_ρm þ 3Hðρm þ pmÞ ¼ 0;

_ρU þ 3HðρU þ PUÞ ¼ 0: ð13Þ

At energy scales where different species interact, there
will be additional interaction terms on the right-hand side
of the continuity equations (13), most likely in the form of
ζHρi, where ζ is the coupling constant. Here we have
assumed no such interactions between the species.
One of the present challenges of ΛCDM is that it does

not describe the late-time Universe properly. It implicitly
assumes the Universe to settle down to a stable de Sitter
phase with constant Hubble parameter. This model
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assumption is conceivably challenged by late-time cosmo-
logical evolution. Here, we primarily focus on the role of
unparticles in late-time cosmology, when radiation can be
effectively neglected.
Equations (12) and (13) govern the evolution of a

universe which includes unparticles in addition to common
species. To proceed, we define some dimensionless param-
eters for the energy density of each energy component
(ρ ¼ ρm þ ρΛ þ ρU ):

ΩΛ ¼ ρΛ
3H2

; Ωm ¼ ρm
3H2

; ΩU ¼ ρU
3H2

: ð14Þ

These densities change as time passes, and accordingly
the dynamics of the Universe is governed by dimensionless
content. The time derivative of the parameters in Eq. (14)
can be reexpressed by the number of e-folding (N),

Ω0
m ¼ dΩm

dN
¼ −3Ωm −

�
2 _H
H2

�
Ωm;

Ω0
Λ ¼ dΩΛ

dN
¼ −2ΩΛ

�
_H
H2

�
;

Ω0
U ¼ dΩU

dN

¼ −3ΩU −
3

δþ 3
ΩU −

�
2 _H
H2

�
ΩU ;

_H
H2

¼ −1
2

�
3Ωm þ 3ΩU

�
1þ 1

δþ 3

��
; ð15Þ

where the prime denotes the derivative with respect to N.
Although it is not common to use N as a measure of time in
the late-time Universe, mathematically it is convenient to
employ it for dynamical system analysis. This makes our
dynamical system to be expressed purely as a function of
energy densities. For a three-flat universe, one of the above
three equations depends on the other two

1 ¼ Ωm þΩΛ þ ΩU : ð16Þ

We eliminate Ωm. The remaining equations are solved
jointly (Ω0

U ¼ 0;Ω0
Λ ¼ 0). We thus identify the fixed points

to be

Matter∶ → ðΩΛ → 0;ΩU → 0Þ;
Unparticle∶ → ðΩΛ → 0;ΩU → 1Þ;

Λ∶ → ðΩΛ → 1;ΩU → 0Þ: ð17Þ

The first fixed point represents a matter-dominated phase
of the Universe while in the second, unparticles are
dominant. The third refers to a de Sitter state defined by
a cosmological constant.

Assuming unparticle cosmology as a perturbation to
ΛCDM, one is required to investigate the ordering of these
three epochs. A Jacobian matrix for Eqs. (15) will reveal
the stability of our fixed points by the associated eigen-
values of

J ¼

0
B@

∂Ω0
Λ∂ΩΛ

∂Ω0
Λ∂ΩU

∂Ω0
U∂ΩΛ

∂Ω0
U∂ΩU

1
CA: ð18Þ

The stability of each fixed point is defined by the
eigenvalues of Eq. (18). Here we have a two-dimensional
dynamical system, so there will be two eigenvalues for each
fixed point. In the case where both eigenvalues are positive,
the corresponding fixed point is unstable. If both are
negative, the fixed point is stable representing an attractor;
if one is positive and one is negative, we have a saddle
point. In our case, as the expressions forΩΛ andΩU depend
on the value of δ, naturally the components of the Jacobian
matrix will also be the same. We have performed the above
procedure for the second and third equations of Eqs. (15)
by using Eqs. (17) as fixed points. Our results show some
unexpected features for an unparticle universe.
In standard cosmology, the matter-dominated epoch

corresponds to a saddle fixed point, while the cosmological
constant epoch is responsible for a stable fixed point at late
times. Here, unparticles also have their fair share in the
dynamics of the Universe.
Figure 3 shows the stability of each fixed point for

δ ∈ ½−6; 1Þ. The results show that for −3 < δ < 0 (and
0 < δ < 1), the matter-dominated fixed point is a saddle
point, the unparticle fixed point is unstable, and the
cosmological constant epoch is stable (as in ΛCDM). In
fact, in this situation, the unparticles’ role in the Universe is
similar to ordinary radiation. This implies that there should
be an epoch of unparticle physics followed by a matter
epoch, and a cosmological constant governs the late-time
Universe. In this case, any contribution from unparticles is
sub-dominant at late times.
For δ < −3, the matter-dominated epoch is unstable, the

unparticle fixed point represents a saddle point, and again
the cosmological constant regulates the late-time Universe.
An interesting feature of these results is in the middle of the
δ interval, where the unparticle fixed point is stable and the
other two are saddle and unstable nodes. In a dynamical
system, we often refer to fixed points as nodes when
discussing stability. Thus, unparticles can be the ultimate
states of our Universe only if δ is naturally chosen to be in
that middle interval (−4 < δ < −3).
It is notable that δ ¼ −3 acts as the transition value for

stability originating in the definition of unparticle energy
density and pressure [Eqs. (8)]. In Fig. 4, the flux lines are
presented for δ ¼ −2 and δ ¼ −6. The fixed points and

LATE-TIME UNIVERSE, H0-TENSION, AND … PHYS. REV. D 104, 083511 (2021)

083511-5



their stability indicate that ΩU cannot be dominant at the
late-time Universe unless δ takes the value −4 < δ < −3.
In all other cases, the cosmological constant governs the
late-time Universe.
It is useful for our further purpose to have a glance at the

case which considers unparticles as an energy component
of the Universe in the absence of a cosmological constant.
In this case, the field equations are

3H2 ¼ ρr þ ρm þ ρU ;

_H ¼ −
1

2
ðρþ pÞ

¼ −
1

2
ððρU þ PUÞ þ ðρr þ pr þ ρm þ pmÞÞ: ð19Þ

Here also, the contribution of radiation is considered to be
quite small at late times, and the continuity equation is
satisfied for all three species separately.
Defining dimensionless energy densities as before gives

us the fixed points and their stability of this model. We now
find for −3 < δ < 0 the radiation-dominated fixed point is
a saddle point, the matter-dominated epoch is a stable fixed
point, and finally, unparticles are responsible for an
unstable fixed point. For 0 < δ < 1, the results are the
same, but the radiation- and unparticle-dominated epochs
will exchange the position. Therefore, unparticles cannot
have any contributions at late times in these two intervals,
but for δ < −3, these fixed points are unstable, saddle, and
stable fixed points, respectively. Thus, if nature demands
δ < −3, unparticles contribute to the late-time Universe and
can be considered a replacement for Λ.

FIG. 4. The phase space diagram for the unparticle cosmology with δ ¼ −2 (left) and δ ¼ −6 (right). The blue, yellow, and red dotes
correspond to unstable, saddle, and stable fixed points, respectively. The flux lines are consistent with the explanation of stability of the
fixed points in Fig. 3. For δ > −3, unparticle fixed point (ΩU → 1;ΩΛ → 0) is an unstable point, while it is a saddle point for δ < −3,
and vice versa for a matter fixed point (ΩU → 0;ΩΛ → 0). In both cases, the model will not allow the unparticle to rule the late-time
Universe.

UnparticleUnparticle

FIG. 3. Stability of each fixed point, Eq. (17). Left panel: matter-dominated epoch is a saddle fixed point for −3 < δ < 0 and an
unstable fixed point for δ < −3. Middle panel: cosmological-constant-dominated epoch is a stable fixed point for all the values of δ,
except for a narrow interval where it becomes a saddle fixed point. Right panel: unparticle fixed point is unstable for −3 < δ < 1 and is a
saddle point for δ < −3. Unparticle epoch is stable only for −4 < δ < −3.
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IV. UNPARTICLE COSMOLOGY BIG BANG
NUCLEOSYNTHESIS

Big bang nucleosynthesis happens at early times of the
Universe. Unparticle cosmology should be checked to see
if its BNS and the evolution of the scale factor is compatible
with the radiation-dominated era. To this end, an analytical
solution for the scale factor, which is consistent with BNS,
is derived from Eq. (12). At this early epoch, there is no
matter component or cosmological constant, so Eq. (12)
will be reduced to

3H2 ¼ ρ ¼ ρU þ ρr; ð20Þ

which leads to

dt ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
0ðΩr0a

−4 þ ΩU0
a−3ð

δþ4
δþ3

ÞÞ
q

da: ð21Þ

The first term of Eq. (21) shows the presence of radiation at
early times, as usual, and the second term is due to the
presence of unparticles. For radiation only a ∝ t

1
2, and for

combined radiation and unpaticles we can evaluate the
above integral explicitly. For the latter, we derive

t ¼
2ðδþ 3Þa4δþ15

δþ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−

δ
δþ3Ωr0
ΩU0

þ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−

δþ6
δþ3ΩU0

þ Ωr0
a2

q
2F1ð12 ;− 3ðδþ4Þ

2δ ;− 1
2
− 6

δ ;−
a−

δ
δþ3Ωr0
ΩU0

Þ
3ðδþ 4Þðaδþ6

δþ3Ωr0 þ a2ΩU0
Þ

; ð22Þ

where F1 is the hypergeometric function type [62], andΩr0 ,
ΩU0

refer to present densities of the unparticle and radiation
energy components.
In an early universe containing both radiation and

unparticles with no coupling, a scale factor aðtÞ will
deviate from that of a radiation universe depending on
the value of δ. Therefore, generally the model cannot be
anchored as doesΛCDM at BNS.Wewill come back to this
point in the next section.

V. HUBBLE PARAMETER EVALUATION

Up to now, we have some specifications and challenges
of unparticle cosmology. A comparison between the
evolution of the Hubble parameter and its properties for
the three models will be performed (i.e., ΛCDM, scale
invariant, and unparticle).
First, we review the deceleration parameter qðzÞ in

unparticle cosmology and its first derivative with respect
to redshift QðzÞ. The quantities H, q, and Q can give us
complete information about cosmological evolution. In
addition, these will facilitate our understanding of the
model in comparison with the data. The deceleration
parameter q ¼ −äa= _a2 is

qðzÞ ¼ −1þ ð1þ zÞH−1ðzÞH0ðzÞ;
a ¼ a0

1þ z
: ð23Þ

Currently, our Universe is in an accelerated expansion
phase with q < 0. By Eq. (23), one can detect the behavior
of H0ðzÞ during this time, which is important when HðzÞ
changes the slope. Q, the first derivative of qðzÞ, captures
the curvature of the graph of the HðzÞ diagram and maybe
the inflection point. qðzÞ and its first derivative hereby

effectively characterize the proposed model, here in late-
time cosmology.
To apply these functions to our models, we start with the

first Friedmann equation. The most general form of this
equation for unparticle cosmology is

3H2 ¼ ρr þ ρm þ ρΛ þ ρU : ð24Þ

The corresponding Hubble parameter satisfies

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩrðzÞ þ ΩmðzÞ þ ΩΛðzÞ þ ΩUðzÞ

p
; ð25Þ

with

ΩrðzÞ ¼ Ωr0ðzþ 1Þ4;
ΩmðzÞ ¼ Ωm0

ðzþ 1Þ3;
ΩUðzÞ ¼ Ωu0ðzþ 1Þ3ð1þ 1

δþ3
Þ: ð26Þ

As before, Ωr0 , Ωm0
, and ΩU0

represent the densities of
radiation, matter, and unparticle energy components,
respectively, at z ¼ 0. The third term in Eq. (25) is present
only if we assume unparticle cosmology as a perturbation
to ΛCDM, wherein ΩrðzÞ is ignored. Otherwise, the
Universe is governed only by radiation, matter, and
unparticles. For ΛCDM and scale invariant cosmology,
HðzÞ satisfies [63]

HΛðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −ΩmÞ þ Ωmð1þ zÞ3

q
;

HscðzÞ ¼ H0ðΩmð1þ zÞ94 þ ð1 −ΩmÞð1þ zÞ34Þ23; ð27Þ

where “sc” and Λ subscription stand for the scale invariant
model and ΛCDM, respectively. In some sense, these two
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set boundaries for unparticle cosmology. According to
Eq. (27), ΛCDM predicts a constant HðzÞ for the future
of the Universe—a de Sitter universe. But scale invariant
cosmology expects the Universe to have zero expansion
rate in the future—a Minkowski space-time. Roughly
speaking, unparticle cosmology as a perturbation to
ΛCDM predicts a future with constant Hubble parameter
(z ¼ −1), while in the absence of a cosmological constant,
where unparticles are supposed to be responsible for the
late-time Universe, the model predicts the Hubble param-
eter will vanish in the future. It is in this situation that the
local observations measure H0 larger than the one from the
cosmic microwave background (CMB), and there are some
arguments indicating that there should be a moment close
to the present day for which H0ð0Þ ≃ 0 and any proposed
model requires this condition to be satisfied.
The exact expressions of the Hubble parameter for

unparticles, scale invariant, and ΛCDM in Eqs. (25)–
(27) clearly show that at high redshifts where z becomes
large, the ΛCDM and scale invariant model obey
HðzÞ ∝ z

3
2, but for unparticle cosmology, the overall behav-

ior of HðzÞ depends on the value of δ in

HðzÞ ≃H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0

ð1þ zÞ3 þ ΩU0
ð1þ zÞ3ð4þδ

3þδÞ
q

: ð28Þ

Generally, for δ < −3, the first term is dominant, and
unparticle cosmology shows HðzÞ ∝ z

3
2 at the large z limit.

For δ > −3, the same limit yields HðzÞ ∝ z
3
2
ðδþ4
δþ3

Þ showing
deviation from ΛCDM and scale invariant cosmology,
making reconciliation with BNS difficult.
On the other hand, at low redshifts the behavior of these

three models will be determined by the first order expan-
sion of Hubble parameters which are

HΛðzÞ ¼ 1þ 3

2
ΩmzþOðz2Þ;

HscðzÞ ¼ 1þ 1

2
ð1þ 2ΩmÞzþOðz2Þ;

HUðzÞ ¼ 1þ 1

2

�
3Ωm þ 3ΩUð4þ δÞ

3þ δ

�
zþOðz2Þ: ð29Þ

As mentioned before, a divergent HðzÞ in the future
implies HðzÞ at low redshift to have a turning point,
H0ð0Þ ≃ 0. Equation (29) gives the following current values
of H0ð0Þ:

H0
Λð0Þ ≃ 0.5H0;

H0
scð0Þ ≃

5

6
H0;

H0
Uð0Þ ≃

H0

2

�
1þ 2ΩUð4þ δÞ

3þ δ

�
: ð30Þ

As inferred from Fig. 1, the first two models have no
turning points. The same appears for unparticle cosmology

except for a special case when −4 < δ < −3. According to
Eq. (30), in this case a balance between the values of ΩU
(0 < ΩU < 1) and δ may support the existence of a turning
point at small z. The future behavior of the Hubble
parameter for these models is depicted in Fig. 5. Based
on Fig. 1, these models can be classified according to their
Hubble evolution in the future. Scale invariant and unpar-
ticle cosmology without a cosmological constant for some
values of δ sit in class C, while ΛCDM and unparticle
cosmology for the majority of δ values take place in class
B, and unparticle cosmology for δ values close to −3,
unparticle without a cosmological constant for some
specific δ values, and the model proposed by van Putten
[23] are in class A. Unparticle cosmology without a
cosmological constant takes place in class B for δ ¼ −4.

A. The importance of a Hubble turning point

We are in a Universe in an accelerating expansion phase.
While it may suggest a future de Sitter phase, the eternity of
this de Sitter phase is questionable; it may or may not last
forever [64–68]. ΛCDM, the standard cosmological model,
implicitly assumes that the future de Sitter phase of the
Universe is stable and consequently eternal [69]. At the
same time, the existence of plentiful vacua has been
challenging to string theory, and the insufficient de Sitter
vacua in the theory have given rise to a new conjecture [70]:
de Sitter vacua may be inconsistent with low energy
effective theories and live in the swampland [70,71].
The swampland conjectures put two criteria on scalar

FIG. 5. The evolution of the Hubble parameter as a function of
the redshift for −1 < z < 1 for unparticle cosmology (with and
without a cosmological constant), the scale invariant model, and
ΛCDM. We also added the graph for the model proposed in [23]
because of its turning point. According to Fig. 1 and the evolution
of the Hubble parameter for each model, scale invariant is in class
C and ΛCDM is categorized in class B. Unparticle cosmology is
in class B for the majority of δ values, while for some
−4 < δ < −3, it classifies as class A. Unparticle without Λ
might take place either in class A or C, each for some values of δ.
This model will be in class A for δ ¼ −4 as it shows a constant
Hubble parameter in the future.

ABCHOUYEH and VAN PUTTEN PHYS. REV. D 104, 083511 (2021)

083511-8



fields and their corresponding potential. The cosmological
consequence is that, as a solution, dark energy might be a
dynamic instead of a cosmological constant. As a result,
swampland conjectures hereby directly challenge ΛCDM
due to its constant dark energy and assumed stable de Sitter
phase in the future.
Based on the swampland conjectures, de Sitter is

unstable and, as a consequence, the Hubble parameter
would bear a change of slope at a redshift close to z ¼ 0, in
the close past or close future. Thus, there will be a turning
point in such a way that H0ð0Þ ≃ 0 [23,70]. Looking at
Fig. 1, the existence of the Hubble turning point is an
inevitable consequence of class A whenever the future of
the Universe is unstable. The highlighted point is that the
presence of a turning point is in agreement with the available
observational data, as the datasets indicate that the Universe
is in favor of the situation wherew < −1 [70]. This equation
of state violates the null energy condition (and will auto-
matically put aside numerous models, but there will still be
some theories that can satisfy this condition [23,72]).
The concept of a turning point for Hubble parameter at a

redshift close to zero was first directly introduced in [23],
where the author proposed a gravitational theory which is
in agreement with observational data and offers the
existence of a Hubble turning point. As the theory does
not have any additional free parameters, the author con-
cludes that it can be a replacement for ΛCDM, since it
shares essentially the same HðzÞ for z≳ 1.
The standard model of cosmology does not have a Hubble

turning point as itsHubble parameter goes to a constant value
in a distant future (Fig. 1, caseB),which comes later in Fig. 5.
The scale invariant model also offers a zero Hubble param-
eter likewise [Eq. (27), Fig. 1 case C]. Thus, a turning point
easily rules out theΛCDM and scale invariant model as they
expect a constant Hubble parameter in the future.
Unparticle cosmology has a longer story on this matter.

For the vast majority of δ values, the model suggests the
H0ð0Þ > 0 and Hubble parameter will have a constant future
HðzÞ (when considered as a perturbation to ΛCDM) or zero
(when considered in the absence of a cosmological constant),
which means it has no turning point. But there is a very
narrow interval of δ values around δ ¼ −3, where theHubble
parameter would experience a turning point at a moment
close to z ¼ 0, or will have H0ð0Þ < 0, indicating that there
exists a turning point in the close past and might be
observable. For some values of δ, the Hubble parameter of
unparticle cosmology will blow up in the distant future. The
last two are consistent with the results of [73]. They have
predicted a phase transition for the future of the Universe
within a time on the order of a Hubble time by assuming the
swampland conjectures. The presence of a turning point in
Hubble evolution is qualitatively similar to this implication
of the swampland conjectures.
Although the existence of a turning point is uncertain, it

nevertheless serves to put two scenarios on the table; if it

occurred in the close past 0 < z ≪ 1, it may perhaps be
falsified or identified in the coming years with
improved data.
A Hubble turning point, if present, can distinguish

different models which are anchored by BNS at high
redshifts yet are distinct at late times and in the future.
It also opens a new window for alleviatingH0-tension, as it
can explicitly explain the increased value of H0 measured
by local observations compared to the CMBmeasurements.

B. Comparison with the data

During the last decade, there have been numerous efforts
to measure the expansion rate of the Universe and the
Hubble parameter from low to intermediate redshifts
slightly more than 2. Various methods has been employed
for these measurements with different results [74–77]. We
will use data onHðzÞ provided by Ryan et al. [78], which is
the updated version of the data by Farooq et al. [76,79].
This dataset includes 31 data points for redshifts from
z ¼ 0 today, back to z ¼ 2.36. But these data points are not
entirely independent. There are some correlations in the
data which have been taken from Blake et al. [80] and Alam
et al. [81]. Also the Baryon Acoustic Oscillations (BAO)
used for observations used for measuring HðzÞ needed to
apply a prior for sound horizon radius [79]. We will use this
dataset in the rest of this work without making any
correction for these dependences. There are many other
HðzÞ compilations provided in the literature which can be
used similarly.
To do analysis using observational data, we first need to

know which data points are applicable. The concept of
radius of convergence (RC) is what makes restrictions on
the data points that we are allowed to use in estimating
Taylor series coefficients.

1. Radius of convergence

Any analytic function can be expressed as a Taylor series
around a pivot point z0, and HðzÞ is no exception. On the
other hand, a Taylor series may converge or diverge for
certain intervals of the variable. The interval of the variable
in which the series converges to a finite value is the RC. In
practice, the RC is defined as the shortest distance from the
pivot point (z0) to a singularity or branch point.
Mathematically, it can be calculated by using a root test
[82], ratio test [83], or by the Cauchy integral formula in the
complex plane [84]. This means that the plot of HðzÞ in
the complex plane of z enables us to read the RC from the
figure by the distance to the singularity or a branch point
closest to the pivot point. Note that the value of the RC
depends of the choice of z0.
The RC is introduced here to fix the domain of data that

are allowed in analyzing a particular model by a Taylor
series. The results may be compared with an arbitrary
(unbiased) polynomial fit where the polynomial serves as a
truncated Taylor series. Furthermore, while HðzÞ is
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expected to be analytic in −1 < z < ∞, its Taylor series
about a finite z0 will have a finite RC: RC0. RC0 is positive
and cannot be infinity because if HðzÞ were entire,
cosmological space-time would reduce to an eternal de
Sitter phase. With z0 ¼ 0, a zero RC0 represents a singu-
larity for today, and a large RC0 indicates a de Sitter phase
for the current Universe. Therefore, we expect RC0 to be of
order unity around z0 ¼ 0. Ideally, for reliable results, we
need to remain inside the RC which is defined by

RC� ¼ minðRC0;RCmÞ; ð31Þ

whereRCm representsRC for themodelwe are investigating.
The data points outside RC� should be generally ignored in a
polynomial fit. We note that if RC� turns out to be small, a
very limited number of data points are left for a polynomial
fit. Since, as mentioned, RC0 is unknown but expected to be
of order unity, we shall take RC� ¼ RCm in what follows.
Using RCm for this purpose may lead to high sensitivity on
the order of a polynomial fit when RC0 < RCm.
In comparing two or more models alongside the poly-

nomial fit, we would use Eq. (31) for each model
independently.
Here, z0 ¼ 0 is a perfect choice because it enables us to

have better analysis according to the previous sections. On
the other hand, z0 ¼ 1 is beneficial because all the data
points will remain within the RC allowing us to look
broader. We will apply the unparticles’ RC (RCU ) for the
polynomial fit to the data.
To find the RC for unparticle cosmology, we take the

advantages of illustrating the behavior of HðzÞ in Eq. (25)
in the complex z plane. A small deviation from the current
values of Ωm, ΩΛ, and ΩU and even the vast majority of δ

values have no significant impact on RCU . So it would be
safe to use the common values of Ωm and ΩΛ with a three-
flat condition for calculating the radius of convergence. For
ΩΛ ¼ 0.7, Ωm ¼ 0.26, and δ ¼ −2, the branching points
and zeros of Eq. (25) are depicted in Fig. 6.
An interesting result is when δ → −3. For this case, there

is an unavoidable singularity at z ¼ −1, and the radius of
convergence is smaller than the cases where δ has consid-
erable deviation from δ ¼ −3 (Fig. 7).
To have the analytic value of RCU for unparticle

cosmology, HUðzÞ ¼ 0 has been solved for complex z.
The minimum distance from the solution to the pivot point
(z0 ¼ 0 and z0 ¼ 1) reads as the radius of convergence. It

FIG. 6. The branch points ofHðzÞ defined by the zerosHðzÞ ¼ 0 in ΛCDM [Eq. (27) left panel and Eq. (25) right panel]. These points
determine the radius of convergence of the Hubble parameter with respect to a pivot point, here z0 ¼ 0, 1 (black dots) for ΛCDM and
unparticle cosmology, respectively.
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FIG. 7. The value of the RC for unparticle cosmology as a
function of δ with z0 ¼ 0, 1. For z0 ¼ 1, the radius of con-
vergence is larger and covers the whole dataset considered in
this work.
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came out that RCU for unparticle cosmology is approx-
imately RCU ≃ 1.3 and 1.8 using z0 ¼ 0 and z0 ¼ 1,
respectively. Thus, z0 ¼ 0 allows us to cover the data up
to z ≃ 1.3 for reliable comparison of the results with a fit to
a polynomial, while for z0 ¼ 1 the whole dataset remains
inside the RC. We do our analysis for both z0 ¼ 0 and
z0 ¼ 1. As z0 ¼ 1 gives us a broader RC and consequently
more observational information, we will focus on this case
for our final conclusions.
For z0 ¼ 1, the ΛCDM and scale invariant models have

RCΛCDM ≃ 1.8 and RCsc ≃ 2, respectively, very similar
to RCU .

2. Unparticle cosmology: A four-parameter model

Looking back at Eq. (25), the explicit form of the Hubble
parameter for unparticle cosmology as a perturbation to
ΛCDM, will be

HU ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ0

þΩm0
ð1þ zÞ3 þΩU0

ð1þ zÞ34þδ
3þδ

q
; ð32Þ

with five free parameters. These five reduce by one by the
three-flat assumption (ΩU þ Ωm þ ΩΛ ¼ 1). For unparticle
cosmology, in the absence of a cosmological constant the
theory has three free parameters after reduction. This is
while scale invariant and ΛCDM have only two free
parameters. In comparing these models with the same
dataset, they are supposed to have equal numbers of free
parameters. Therefore, we study the unparticle cosmology
as a semi-two-parameter model by fixing two (one for
unparticle cosmology without Λ) of the parameters and
perform the numerical fit for the other two. In this way, δ
will be the parameter which is considered a fixed one, and
we will perform fitting with running δ in its interval (here,
−6 < δ < 1). This gives us an area of solutions for the
model. For unparticle cosmology as a perturbation to
ΛCDM, an extra fixed parameter is also needed. As we
are aiming to investigate the Hubble parameter evolution
and unparticle energy component, the extra fixed parameter
can be either Ωm0

or ΩΛ0
.

Keeping one of them fixed, unparticles share the remain-
ing energy portionwith the other one, satisfying the three-flat
condition. Our inspections show that the choice betweenΩm0

and ΩΛ0
will not significantly affect the final results.

3. χ 2 vs polynomial fit

Here we employ a polynomial fit of the data as an
unbiased reference for our data analysis. On the other hand,
χ2 analysis is the most common method for checking the
goodness of fit. Although χ2 analysis is a powerful method,
its result is only a bare number, but polynomial fits can give
more information about the data, the information which is
directly visual. Thus, it would be useful to examine this
method versus the common χ2 analysis. The common
expression for χ2 is

χ2i ¼
X
i

ðxoi − xthiÞ2
σ2i

; ð33Þ

with xo to be the observed value of the parameter, xthi to be
the theoretical value of x, and σ2 is the variance of each data
point. Basically, the denominator of this expression might
also be xo or xthi assuming it to be a Pearson or Neyman χ2,
respectively, but the choice of σ2 is more natural as it will
make the data points weighted according to their statistical
uncertainty indicated by their error bars.
Calculating a polynomial fit χ2 [Eq. (33)], we find that

the two give very consistent results where applied to each
proposed model (here ΛCDM, scale invariant, unparticle,
and van Putten). Doing so gives us confidence that the
polynomial fit can be applied reliably.
An additional investigation has been done using the best

polynomial and models fit within their 1σ band, which turn
out to highly overlap each other. This indicates the
reliability of the polynomial fit as a reference. It is also
possible to calculate χ2 for the models in comparison with
the data that can be manipulated from the polynomial
function best fit, which will give the same qualitative result
as before.

C. H0-tension deterioration

H0-tension can be a powerful diagnostic tool to check
the viability of a proposed Hubble evolution HðzÞ, given
distinct H0 values by means of CMB and the one obtained
at low redshifts by local distance ladders, namely, H0 ¼ 68
for the first and H0 ¼ 73 for the second [16,17]. The
literature present some models that can alleviateH0-tension
mostly with additional fields or interactions [23,85–88].
Here we study HðzÞ for unparticle cosmology in compari-
son with the data.
The dataset which we are going to use is a heterogeneous

set of tabulated ½z;HðzÞ� data that cover the redshift range
z ∈ ð0; 2Þ. As such, it extends well beyond the RC of
Hubble parameters of the three models for z0 ¼ 0 men-
tioned previously. We will keep our analysis inside the RC
for reliable results by also considering z0 ¼ 1.
Using the arbitrary polynomial regression over the

dataset extracts an unbiased estimate of the parameters.
To do so, we performed the analysis using a Taylor series of
the Hubble parameter about z0 ¼ 0 satisfying

HðzÞ ¼ H0 þ ð1þ q0Þzþ
1

2
ðQ0 þ q0ð1þ q0ÞÞz2 þ b3z3:

ð34Þ

Fitting this polynomial to the data and with no prior
assumptions for the coefficients, the values of H0, q0, and
Q0 derived are compared with the model fit to the
same data.
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Figure 8 showsHðzÞ for the polynomial fit alongside the
best fits ofΛCDM, scale invariant, unparticle cosmology as
a perturbation to ΛCDM and unparticle in the absence of a
cosmological constant, all within their RC. A key obser-
vation is that the (unbiased) polynomial fit points to a
turning point [H0ðzÞ ¼ 0] near redshift zero. None of these
models appear to follow this. Consequently, neither scale
invariant cosmology nor unparticle cosmology can relieve
H0-tension, as both suggest H0ð0Þ > 0. Though it is
notable that for some exceptional values of δ close to
−3 in unparticle cosmology, the Hubble parameter diverges
in the future. For these values of δ, unparticle cosmology
has a turning point and as such might conceivably alleviate
H0-tension somewhat.
Probing the estimated values of H0 for the range of data

with z ∈ ½0.07; zmax� and 0.09 < zmax < 2 confirms the
previous result by depicting that there are deviations
between H0 coming from the models and the value
predicted by the data (Fig. 9). The importance of remaining
inside the RC is also evident in this figure.

Repeating this analysis with standard errors of H0 and
Ωm0

shows that at lower redshifts, unparticle cosmology is
insensitive to the value of Ωm0

in comparison with the
dataset. This is a strange feature as we have a three-flat
assumption as a prior and unparticle cosmology is not
expected to be insensitive to the value of Ωm0

.
As δ is the model parameter, it is useful to do the same

procedure for the best δ values having 0.09 < zmax < 2. For
unparticle cosmology as a perturbation to ΛCDM, the best
fit to δ½zmax� reveals a preference for

δ ≃ −2.06� 0.46; ð35Þ

which is essentially the holographic limit of this model
(Fig. 9). We note one outlier with δ ¼ −6 that strongly
violates the unitarity [46,47]. Repeating our procedure
excluding this data point yields δ ¼ −1.7� 0.41, consistent
withEq. (35). Thus, takingEq. (8) as an ansatz inherited from
unparticles with δ andA to be free parameters, we did a four-
parameter fit for unparticle cosmology (H0; δ;ΩU0

, and

FIG. 8. The evolution of the Hubble parameter for ΛCDM, scale invariant, unparticle cosmology as a perturbation to ΛCDM, and
unparticle cosmology in the absence of a cosmological constant, versus the model-independent polynomial fit to the data. Top left panel
is for the range of data inside the RC� for z0 ¼ 0, and the top right panel is an enlarged version of the left one, representing the
discrepancy between the polynomial fit and the models more evidently. There is a tendency for the Hubble turning point in the
polynomial fit which none of the models are going to follow. The bottom panels represent the results for z0 ¼ 1. The bottom left is
the same as the top left with z0 ¼ 1, which covers all the data points and shows a more evident gap between the polynomial fit and the
models. The bottom right figure is an enlargement of the left figure.
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Ωm0
). This takes us observationally to δ ≃ −2 in comparison

with the data andΩU0
fixesA in Eq. (8). Our results [Eq. (35)]

corroborate c1H2 in the discussion on entropic gravity
(holographic dark energy) with unknown coefficient c1.
It is different for unparticle cosmology without a

cosmological constant giving

δ ≃ −4.8� 0.5 ð36Þ

favored by the data, essentially pointing back to ΛCDM.
Therefore, it can be inferred that the holographic and
ΛCDM limits are two natural boundaries of the theory
in our Universe. Note that δ ¼ −4 is equivalent to du ¼ −1
which is at odds with unitarity mentioned previously.
We summarize our results in a qQ-diagram by data over

z < 2 (Fig. 10). The figure shows the evolution of QðzÞ
versus qðzÞ for the model fits inside their corresponding
RC. The models that are included are the unparticle as a
perturbation toΛCDM, the unparticle withoutΛ,ΛCDM as
the standard model, the scale invariant model, and poly-
nomial fits as a reference. We have also added the model
which was introduced by van Putten [23] to clarify the
effect of the Hubble turning point near z ¼ 0. It shows that
the models we investigated are quite far from a polynomial
fit to the data, while the model with a Hubble turning point
appears consistent with the polynomial fit.
In all of the above, unparticle cosmology has been

compared with models with only two free parameters,
while unparticle cosmology has three free parameters in the
absence of a cosmological constant and four if it is
considered as a perturbation to ΛCDM. Now let us inspect
unparticle cosmology as a semi-two-parameter model by
varying the δ value and plot the results in the qQ-diagram.
Running δ ∈ ½−5; 1� results in the qQ-diagram build up of a
region that covers the gap between the polynomial fit and
the best fit curve of unparticles. So if δ is not really a free

parameter, there is a possibility for unparticle cosmology to
satisfy the data, but this is in the region which is at odds
with unitarity. An interesting feature is that for δ ¼ −4,
unparticle cosmology without a cosmological constant falls
back to ΛCDM.
Figure 11 illustrates the evolution of the Hubble and

deceleration parameter with respect to redshift using differ-
ent values of δ in the range −5 < δ < 1 for unparticle
cosmology both with and without a cosmological constant.
For the earlier case, we fixed ΩΛ0

¼ 0.744 to have two free
parameters for the model. As δ ¼ −3 has some special
features and is the transition value of δ for the stability
properties, and because of exotic behaviors in

FIG. 10. qQ-diagram for unparticle cosmology, unparticle
without Λ, ΛCDM, scale invariant, polynomial fit of the data,
and the model proposed by van Putten for using their best fit
values. The best fit values for the model parameters applied for
this figure have been obtained using the data points inside the
radius of convergence for each model with z0 ¼ 1. Apart from the
model proposed by van Putten, the other four have obvious
distinction with the data demands.

FIG. 9. Estimated values of H0 (left panel) and δ (right panel) for the best fit of the models with data range z ∈ ½0.07; zmax� and
0.09 < zmax < 2 using a model-independent polynomial fit of the data, unparticle cosmology, the scale invariant model, and ΛCDM.
The right panel shows the average value of δ with various zmax to be δ ¼ −2.06� 0.46, indicating the holographic limit.
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−4 < δ < −3, the δ interval is divided into −5 < δ < −4,
−4 < δ < −3, and −3 < δ < 1. The brownish (light green)
area represents the result for −3 < δ < 1 and
−5 < δ < −4, while the blue area is to show the results
for −4 < δ < −3. Based on this figure, when δ considered
to be a running parameter, it will not have a unique value,
so there will be an area of solutions forHðzÞ and qðzÞ. Parts
of this solutions may satisfy H0ð0Þ ≃ 0, which is consistent
with available observational data. On the other hand, if δ is
assumed to be a free parameter which must be fitted using
the dataset, its best fit values show that the model is not in
favor of the observational data (polynomial fit), although it
shows a preference for a holographic limit [Eq. (35)] of
unparticle cosmology.

VI. CONCLUSION

ΛCDM is best known for its excellent fit to the CMB
power spectrum. A key feature that is singled out is Λ,
which accounts for accelerated expansion of our Universe
observed today. But, with the time passing and

observational data improving, serious inconsistencies in
the current observations emerged, notably, H0-tension, the
missing satellite problem, the speed of structure formation,
etc. These challenges stimulated the development of new
ideas to modify or even replace ΛCDM. A number of these
ideas seek to modify gravitation, each of them to alleviate at
least one of these challenges of ΛCDM.
Here, we provide a mixed theoretical-numerical frame-

work to evaluate a subclass of such models in late-time
cosmology according to Fig. 1. As a case study, we apply
our framework to unparticle cosmology in comparison with
ΛCDM and a scale invariant model of cosmology.
Unparticle and scale invariant models are two of several

modified gravity theories satisfying the scale invariant
feature at low energies. Scale invariance introduces no
cosmological constant, but it can take the role of Λ in late-
time evolution. Unparticles, on the other hand, have distinct
behavior across an energy scale ΛU . The first is supposed to
be a candidate to solve the cosmological constant problem,
while the second offers a potential explanation for the
discrepancy between late- and early-time measurements of

FIG. 11. The evolution of the Hubble parameter HðzÞ (left column) and deceleration parameter qðzÞ (right column) with respect to
redshift z using −5 < δ < 1, for unparticle cosmology without a cosmological constant (top row) and unparticle cosmology as
perturbation to ΛCDM (bottom row). For the latter, we fix ΩΛ0

¼ 0.744. The blue area represents the result for −5 < δ < −4 and
−3 < δ < 1, while the brownish (light green) area refers to −4 < δ < −3. The dashed line is the evolution ofH0 and q0 according to the
best fit value of δ when considered to be a free parameter. Although the left panels show turning points in Hubble parameter for
−4 < δ < −3, it cannot relax H0-tension because of violation of unitarity and our observational result on δ shown in Fig. 9.
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H0. Here we look at these theories because of their common
feature, taking up unparticle cosmology as a special case.
Unparticles were first introduced by Georgi [21] as a low

energy phase of the Banks-Zaks field in weak interaction
with the standard model particles. Banks-Zaks fields have a
nontrivial IR fixed point which causes the scale invariant
properties of the unparticle to arise below the energy scale
ΛU . At this scale, the field equations of unparticles can be
written by applying Eqs. (8) in Eqs. (12), in which δ is a
dimensionless parameter responsible for the scale invariant
feature of unparticles and is related to scaling dimension of
the unparticles operator by Eq. (7). As negative scaling
dimension violates the unitarity of the model, this equation
implies that δ cannot be lower than −2. On the other hand,
Eq. (8) requires negative δ for unparticles to govern the
late-time Universe. Therefore, it would be safer to take
−2 < δ < 0. However, as broader range of δ has been
considered in the literature, here we include the entire range
of δ ∈ ½−6; 1�.
Unparticle cosmology can be considered in two distinct

ways: as a perturbation toΛCDM, in which a small share of
total energy density of the Universe can be attributed to
unparticles, or as a pure cosmological model devoid of any
ab initio cosmological constant.
Our investigation of the dynamical behavior of unpar-

ticle cosmology shows that the stability of the fixed points
of the theory depends on the δ in both cases. Assuming that
there is no interaction between unparticles and matter, we
find that there are three fixed points for this model (a
perturbation to ΛCDM) which are either matter-, unpar-
ticle-, or cosmological-constant-dominated ones. For
unparticle cosmology without a cosmological constant,
the last one is replaced by a radiation-dominated universe.
The eigenvalues of the Jacobian matrix at fixed points show
that for unparticle cosmology as a perturbation to ΛCDM
and for δ < −3, a matter-dominated universe is an unstable
fixed point, while the unparticle fixed point is a saddle
point, and a cosmological-constant-dominated universe
is a stable fixed point. For δ > −3, matter and unparticle
fixed points represent exchanges between them. For
−4 < δ < −3, the unparticle fixed point is stable at late
times and the Λ-dominated universe is a saddle point.
In the case of unparticle cosmology without Λ, for

δ < −3, radiation, matter, and unparticle fixed points are

unstable, saddle, and stable, respectively. This ordering is
in accordance with already known cosmological epochs.
But −3 < δ < 0 gives an unparticle-dominated epoch that
is unstable, followed by a saddle radiation epoch, and then
a stable matter epoch. For positive δ, radiation and
unparticle epochs will exchange the position. In this
situation, unparticles have no contribution to the late-time
Universe. Our results are summarized in Table. I. In both
cases, δ ¼ −3 defines a change of stability arising from the
definition of unparticle energy density and pressure.
In discussing the stability of fixed points, we note that in

all cases the relevant timescale is the Hubble time. Stability
and instability of cosmological epochs, therefore, are
pertinent to temporal ordering. At the present epoch,
however, neither stability nor instability in a Hubble
timescale poses a prior constraint. To assess these stability
or instabilities precisely, a detailed comparison with the
data is required, which is elaborated in the main body of
this work beginning from Fig. 1 to obtain the results
of Fig. 10.
According to Eq. (21), unparticle cosmology also devi-

ates from standard BNS for all δ. This deviation prevents
the theory from being anchored with known theories at
BNS (Fig. 5). Although this theory has some exotic features
at the early Universe, we defer this to a future study, our
focus here being on the late-time Universe.
We compare the model predictions with the dataset

provided by Farooq et al. [78,79]. We employ a technique
different from conventional χ2 analysis by using an
unbiased polynomial fit to indicate a goodness of fit
because of its more visual properties. In Sec. V B 3, we
confirm that using a polynomial fit gives results in good
agreement with that of χ2 analysis. The RC for the models
at hand is also calculated. The RC is important when
employing polynomial fits to measure Taylor series coef-
ficients, as the RC fixes the domain of data which is
allowed to be taken into account. The pivot point for the RC
is considered to be z0 ¼ 0 and z0 ¼ 1 in our calculations,
but we present our results mostly based on z0 ¼ 1 as it
covers more data points, meaning more observational
information.
The number of free parameters is another concern when

comparing different models. The ΛCDM, the scale invari-
ant model, and the model proposed in [23] all have two free

TABLE I. Stabilities of fixed points in unparticle cosmology.

Model δ value Radiation Matter Unparticle Λ

Unparticle without Λ −3 < δ < 0 Saddle Stable Unstable � � �
0 < δ < 1 Unstable Stable Saddle � � �
δ < −3 Unstable Saddle Stable � � �

Unparticle −3 < δ < 1 � � � Saddle Unstable Stable
−4 < δ < −3 � � � Unstable Stable Saddle

δ < −4 � � � Unstable Saddle Stable
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parameters restricted to three-flat cosmologies, but unpar-
ticle cosmology is a four-parameter model (three in the
absence of a cosmological constant). When comparing
these models, it is better if we reduce the number of free
parameters to two. Taking δ andΩΛ0

(Ωm0
) fixed or running

(instead of free), it is possible to investigate the theory in
two parameter fits. In case of three free parameters, a
running δ is sufficient.
Starting with a polynomial fit of the data, one can see

that there is a turning point for the Hubble parameter. The
existence of this turning point is still uncertain, but if it is
confirmed by the future observation, it will be the explan-
ation for H0-tension [23]. Equations (29) show that the
ΛCDM and scale invariant model cannot propose such a
turning point, while according to Eqs. (29) and Fig. 11,
unparticle cosmology features a turning point for some
special values of δ. In contrast, the model proposed in [23]
has this feature in good consistency with the data. In Fig. 1,
the models that suggest the existence of a turning point is
classified in class A.
Figures 8 and 5 represent the evolution of the Hubble

parameter of these models in comparison with the data for
0.07 < z < 2. Based on the results, the turning point of the
polynomial fit to the data is estimated to be at z ≅ −0.1.
The scale invariant model has the most weird behavior, as
its Hubble parameter is flat at the late-time Universe and
drops to zero in the distant future; the limit is a Minkowski
space-time. Thus, the scale invariant model does not make a
reliable Λ-free gravitational theory. According to Fig. 1, this
gravitationalmodel is classified as typeC and shouldbe ruled
out because of its certain conflictswith the observational data
as shown in the qQ-diagram (Fig. 10).ΛCDM is type Bwith
a constant value ofH at z ¼ −1. Finally, unparticle cosmol-
ogy behaves differently depending on the value of δ [see
Figs. 11(a) and 11(c)]. Unparticle cosmology as a perturba-
tion to ΛCDM is type A or B, while unparticle cosmology
without a cosmological constant can take place in each of the
three classes. However, this model shows pronounced
deviations from the polynomial fit at late time, indicating
some inconsistencies with the data.
An interesting feature comes out if we let δ be a free

parameter along with H0 and ΩU0
. In this case, the

holographic limit δ ≃ −2 [Eq. (35)] and the ΛCDM limit
δ ≃ −4 [Eq. (36)] will show up as the natural fitted values
of δ for unparticles as a perturbation to ΛCDM versus
unparticles without Λ, respectively.
Interestingly, the appearance of δ ≃ −2 is persistent for

all values of zmax ∈ ½0.07; 2� as shown in the right panel of
Fig. 9 [removing the outlier mentioned below Eq. (35)
leaves this conclusion essentially unchanged]. However, as
δ should be greater than or equal to −2 to avoid violation of
unitarity, the holographic limit is the lower bound of
unparticle cosmology and any lower value of δ is forbidden.

This result implies that the most conventional value of du ¼
3=2 is ruled out by a 6.6σ deviation from the best fit value
to the data. δ ≃ −2 sets the barotropic index to be w ¼ 1,
meaning that as presumed, unparticles are matterlike in the
best fit to the data used here. Furthermore, δ ≃ −4 is also at
odds with unitarity, which brings us back to ΛCDM. The
violation of unitarity may, in fact, be the inconsistency
anticipated by the swampland conjectures. Therefore,
ΛCDM appears to be challenged again.
The unexpected preference of a holographic limit by the

data is remarkable, giving credence to the recent studies of
alleviating H0-tension using holographic dark energy. The
holographic limit has also been derived for a cosmological
constant assuming a stable de Sitter late-time universe [89],
but we illustrate that our Universe does not tend to have a
stable de Sitter phase. The results of [90] are also
remarkable in this regard given the inferred trend of
increasing H0 estimates with bins closer to zero.
An important point is that ab initio unparticle theory is

local in terms of interactions between various constituents,
while holography is a nonlocal theory. Therefore, the
appearance of the holographic limit takes us, strictly
speaking, out of the realm of unparticle cosmology.
We summarize our findings of our comparison with the

data in a qQ-diagram presented in Fig. 10. This figure
features a huge gap between the model fits and polynomial
fit, representative of the presence or absence of a turning
point. It is notable that ΛCDM also represents an obvious
discrepancy with the polynomial fit, and this makes the
standard model below the gap, in fact, inside the swamp-
land [71].
Current observational data suggest an unstable future for

theUniversewhich, if true, inevitably requires a turning point
in Hubble parameter evolution, suggesting class A Hubble
evolution. Importantly,ΛCDMimplicitly assumes a stable de
Sitter phase for the late-time Universe, and this may not hold
true. Alternative theories such as unparticle cosmology and
scale invariant and many others of types B or C appear
inconsistent with the data featuring no turning point. The
absence of turning is here interpreted as the origin of H0-
tension. A precise look at Figs. 1 and 10 translates this
inconsistency as a significant gap between theqQ-diagramof
themodels and polynomial fit, the upper boundary of the gap.
Our results show that, although there is a chance for

unparticle cosmology to alleviate H0-tension for special δ
values, generally speaking, it cannot be an explanation for
H0-tension. But, as the data show preference for the
holographic limit of this model, we conjecture the need
to look for a holographic model of dark energy with a
turning point indicating an unstable de Sitter phase for the
late-time Universe in seeking to alleviate H0-tension.
Furthermore, taking Eq. (8) as an ansatz for the energy
density, we find that a comparison with the data shows
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δ ≃ −2, equivalent to the common assumption of c1H2 for
entropic gravity, yet here we identify this by fitting both the
coefficient and the exponent. Although the model cannot
relax H0-tension, the appearance of δ ≃ −2, persistent in
best fits over zmax ∈ ½0.07; 2� (also zmax ∈ ½0.07; 1.3�) is
reported here as an unexpected and therefore conceivably
powerful hint for holographic dark energy to govern the
late-time Universe.
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