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By revising the application of the open quantum system approach to the early universe and extending it
to the conditions beyond the Markovian approximation, we obtain a new non-Markovian quantum
Boltzmann equation. Throughout the paper, we also develop an extension of the quantum Boltzmann
equation to describe the processes that are irreversible at the macroscopic level. This new kinetic equation
is, in principle, applicable to a wide variety of processes in the early Universe. For instance, using this
equation, one can accurately study the microscopic influence of a cosmic environment on a system of
cosmic background photons or stochastic gravitational waves. In this paper, we apply the non-Markovian
quantum Boltzmann equation to study the damping of gravitational waves propagating in a medium
consisting of decoupled ultrarelativistic neutrinos. For such a system, we study the time evolution of the
intensity and the polarization of the gravitational waves. It is shown that, in contrast to intensity and linear
polarization that are damped, the circular polarization (V mode) of the gravitational wave (if present) is
amplified by propagating through such a medium.
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I. INTRODUCTION

Master equations are a powerful tool for studying the
dynamics of density matrices associated with an open
quantum system (OQS) [1,2]. They allow for describing
the relevant degrees of freedom of the system, which evolve
under the influence of all other degrees of freedom,
collectively called the environment. An incredibly simple
situation occurs when a time-local master equation can
describe the system with constant dissipation rates. This
results in Markovian evolution, where the knowledge of the
density matrix at a given time is sufficient to predict all
future observables, meaning that the environment has no
memory. This type of master equation is referred to as the
Markovian equation. Compared to the whole problem of
describing all the degrees of freedom of system and
environment together, a Markovian master equation that
controls only the system’s degrees of freedom is an
immense simplification. Such a drastic reduction in com-
plexity is usually costly. In this case, the price comes in

terms of strong approximations, which are not always
justified. The study of such approximations is thus of great
importance, and, in fact, there is a large body of literature
that addresses these issues (see [1,2] for review). Many
recent studies have focused on revisiting the question of the
validity of the widely used Markovian quantum master
equations and have developed techniques to investigate
non-Markovian dynamics of open systems [3–7].
The formalism of the quantum Boltzmann equation

(QBE) was initially developed to study the time evolution
of the intensity and the polarization of the cosmic micro-
wave background (CMB) photons [8–12]. One way to
formulate such a quantum kinetic equation is to use the
open quantum system approach. Starting from a master
equation describing the CMB photon density matrix
dynamics, applying the Born-Markov approximation,
and finally, after taking the operator expectation values,
the QBE arises [8–13]. The QBE is an accurate tool to
extract the effects of microscopic interactions on the
macroscopic properties of the intensity and the polarization
of the CMB radiation. Since the photon and graviton
density matrices have the same number of degrees of
freedom, the same formalism of the QBE can be applied to
study the propagation of the stochastic gravitational-wave
background (SGWB) in a medium.
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The SGWB represents a laboratorywhere theQBE can be
applied. In the near future, we expect that gravitational-wave
(GW) interferometers, like Advanced LIGO, Virgo,
KAGRA, LISA or the Einstein Telescope [14–18], will
be sensitive enough to measure the astrophysical back-
ground produced by many unresolved GW sources, like
black holes and neutron stars, and the cosmological back-
ground coming from early Universe sources, such as
inflation, phase transitions, topological defects, etc. (see,
e.g., [19–21] for reviews). SGWBs are then powerful tools to
shed light on astrophysics, cosmology, and fundamental
physics [18,22–24]. Among all these effects, we will
investigate the GW damping due to propagation in a
dissipative environment.
The seminal work of Hawking [25] has revealed that

GWs do not interact with a perfect fluid in the absence of
dissipative processes. However, in a viscous medium, the
energy of GWs is converted into heat, without provoking
macroscopic motions of the medium [25–29]. A medium
with a dynamical viscosity coefficient η could absorb the
GW at a rate of absorption [25,29],

ΓGW ¼ 16πGη: ð1Þ

This result is valid only if the collision frequency in the
matter1 is much greater than the frequency of the GW. A
well-known effect given by decoupled relativistic neutrinos
on the CMB angular power-spectrum is the damping due to
their anisotropic stress of the amplitude of the GW
spectrum by 35% [30] (see also [31–38]). Such a damping
becomes quite large in the frequency region between
10−16 Hz and 10−10 Hz [30–37]. In a similar way,
decoupled relativistic particles in the early Universe affect
the anisotropies of the cosmological background of GWs
becoming testable predictions for future GW interferom-
eters [36]. The opposite case, in which the collision
frequency is very small (so that one can consider the
matter as collisionless matter), has been studied in [39],
resulting in no observable effect except perhaps for
cosmological sources. The quantum effects, such as the
absorption and stimulated emission of low-frequency
gravitational waves by a hot ionized gas, have also been
studied in [40]. As shown in this paper, such effects are well
captured by the QBE approach, which can then be used to
extract predictions for GW experiments.
We will apply the approach of the QBE to study the

interaction of the SGWB with a thermal ultrarelativistic
fermion bath. We also rederive the GW damping effect for
the case that fermions are decoupled relativistic neutrinos
[30]. The standard form of QBE is based upon an open

quantum system. In this case, the gravitational wave can be
viewed as an open system (S) that interacts with the
environment E (here, the fermion bath). The time evolution
of S is obtained from the total S þ E dynamics by
eliminating (i.e., integrating over) the E degrees of freedom.
It may be possible to safely ignore the details of the bath
dynamics and use an effective description of this medium
as a classical viscus background. It is usually assumed that
the associated correlations are sufficiently small and the
interaction takes place in such a way that the S − E
coupling is weak. This is known as a Born approximation.
The backreaction of E on S is also ignored. This
assumption is known as the Markov approximation. To
achieve the Markov approximation, we must ignore all
references to history. The whole approximation is known as
the Born-Markov approximation, and the process is called a
Markovian process. However, we will show that to rederive
the GW damping effect, we cannot ignore the backreaction
effects of the ultrarelativistic fermion, and hence, we must
use a non-Markovian approach. In this work, we revise the
interaction of the GWs with a dissipative environment of
the decoupled ultrarelativistic fermions in the light of the
concept of the OQS and the QBE. Moreover, to describe a
damping phenomenon using the QBE, it is necessary to
extend this equation to irreversible processes.
Besides this example, there are many other applications

that could benefit from this appraoch. The basic question of
how the macroscopic irreversible behavior of a system
arises from the microscopic dynamics of quantum fields is a
fundamental question, with several diverse applications in
the early Universe, heavy-ion collisions, fluid dynamics,
and condensed matter physics [41–45]. It’s been a long
time since physicists became interested in analyzing the
properties of fluids employing a quantum field theoretical
approach [46]. One of the important parameters in this
framework is the timescale between collisions in a viscous
fluid, known as the scattering or relaxation time. Extensive
work has been carried out to develop fundamental methods
for calculating the relaxation time [47–52]. One of the
proposed approaches is known as Schwinger-Keldysh or
closed-time-path formalism that is a useful tool to study the
nonequilibrium initial value problems [53,54].
Byusing theQBE,wewill be able to study themicroscopic

interactions of the system with the environment. Generally,
either the systemor the environment has an infinite number of
degrees of freedom, and calculating the microscopic inter-
action can be difficult and impractical. Various techniques
have been developed to investigate these microscopic effects.
In the QBE approach, we use the techniques of quantum field
theory, which solve these problems to a great extent.
Furthermore, after taking the expectation value over the
relevant operators, in the manner that will be described in
the text, a macroscopic description of the system emerges.
The paper is organized as follows: In Sec. II, we provide

a description and detailed comparison of the Markovian

1The collision frequency indicates the number of collisions per
unit time. This collision frequency is defined as the inverse of the
(mean) time τ between two collisions, known as the scattering
time or relaxation time.
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and non-Markovian approaches to the Quantum Boltzmann
Equation, while in Sec. III, we deal with the implementa-
tion of the non-Markovian approach to the QBE to the
study of the absorption of soft gravitons by a fermion bath.
Section IV is devoted to the comparison of our method with
the classical results by Weinberg [30] to this problem and
the study of the evolution of the GW polarization in this
process. Our main conclusions are given in Sec. V. The
explicit calculation of expectation values of relevant quan-
tities is presented in Appendix A.

II. MARKOVIAN VERSUS
NON-MARKOVIAN QBE

In this section, we first review theMarkovian and the non-
Markovian master equations. Then, we will derive an
extension of the QBE equation beyond the Markovian
approximation. The non-Markovian QBE can be used to
study various phenomena in the earlyUniverse.Here,wewill
utilize this equation to explain the damping of GWs. This
section is devoted to the derivation of theQBE in three cases:
(i) The process is reversible, and the backreaction of the
environment on the system is small (Markovapproximation).
(ii) Backreaction is small, but the process is irreversible.
(iii) Backreaction impact cannot be ignored (non-Markov
approximation), and the process is irreversible.

A. Master equation: Born-Markov and secular
approximations

In the OQS approach, the open quantum system S (for
example, soft gravitons) is coupled to another quantum
system (fermion bath in our case) called the environment E.
The free Hamiltonian of the system and the environment
are described by HS and HE , respectively. The interaction
Hamiltonian Hint describes the interaction between the
system and the environment. The total microscopic
Hamiltonian of such an open quantum system is given by

HSþE ¼ HS þHE þHint: ð2Þ

Hint is the interaction Hamiltonian, which causes dissipa-
tion or dephasing phenomena, where the former refers to
both losses of energy and decoherence, and the latter refers
to causing—at least in the uncoupled case—pure
decoherence but no energy leak. The Markovian master
equations can be derived in the weak-coupling limit of the
system-environment interaction. Therefore, we can intro-
duce a general dimensionless perturbation parameter g that
refers to the coupling constant, such that Hint ¼ OðgÞ. It is
assumed that the system and the environment are coupled
so weakly that the state of the environment is almost not
perturbed by the coupling with the system. The full density
matrix is represented by ρtotðtÞ. It is usually assumed that
the initial state is an uncorrelated state; i.e., at t ¼ 0, the

system and the environment have separate states in the
form,

ρtotð0Þ ¼ ρSð0Þ ⊗ ρE; ð3Þ

where ρS and ρE are the system and the environment
density operators, respectively. This may be the case if the
system and the environment have not interacted at previous
times or if the correlations between them are short-lived.
We also assume that the initial state of the environment is
thermal, meaning that it is described by the Gibbs state,

ρE ¼ expð−βHEÞ
Tr½expð−βHEÞ�

; ð4Þ

where β is the inverse temperature, and ρE satisfies the
stationary condition of the environment,

½ρE ; HE � ¼ 0: ð5Þ

Because we are working in the weak-coupling limit, we can
assume that the system and the environment are uncorre-
lated during the time evolution. On the other hand, we
assume that the environment is so large that it is hardly
influenced through interaction with the system. In this
condition, the interaction between the system and the
environment is such that the influence of the system on
the environment is small, and one can assume that the
timescale of correlations of the environment, τE , is much
smaller than the typical system timescale τS. Due to this
requirement, the environment is assumed to be in equilib-
rium in such a way that it is essentially unaffected by its
coupling to the system. Therefore, the environment is
unchanged in time, and the dynamics of the system is
not affected by its coupling to the environment at earlier
times. In this approximation, the state of the total system at
time t is approximately factorized by a tensor product,

ρ̂totðtÞ ≈ ρ̂SðtÞ ⊗ ρ̂E þOðgÞ: ð6Þ

As it was mentioned, this is the Born approximation [42]. If
the initial state of the overall system is the state of the
product, then it is assumed that the evolved state at a
particular time t is in the same product form. The dynamics
of the total system is govern by the Von-Neumann
equation,

d
dt

ρtotðtÞ ¼ −i½HintðtÞ; ρtotðtÞ�: ð7Þ

By integrating Eq. (7), inserting it once again in Eq. (7), and
taking the partial trace on the environment degrees of
freedom, we obtain an integro-differential equation for the
reduced density matrix of the system,
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d
dt

ρSðtÞ ¼ −
Z

t

0

dt0 TrE ½HintðtÞ; ½Hintðt0Þ; ρSðt0Þ ⊗ ρE ��

þOðg3Þ: ð8Þ

To better understand the Markov approximation, we
decompose the interaction Hamiltonian in the interaction
picture and represent it in the following general form:

HintðtÞ ¼
X
β

ŜβðtÞ ⊗ ÊβðtÞ; ð9Þ

where ŜβðtÞ and ÊβðtÞ are the Hermitian operators asso-
ciated with the system and the environment, respectively.
The operators ŜβðtÞ and ÊβðtÞ can be expanded in terms of
the creation and annihilation operators of the system and
environment degrees of freedom. We also assume that ŜβðtÞ
and ÊβðtÞ commute because they are associated with
different particles. In this sense, after changing the variable
s ¼ t − t0 and inserting Eq. (9) in Eq. (8), and after some
straightforward algebra, we get

d
dt

ρSðtÞ

¼ −
X
β;β0

Z
t

0

ds ½Eββ0 ðsÞ½ŜβðtÞ; Ŝβ0 ðt− sÞρSðt− sÞ� þH:c:�

þOðg3Þ; ð10Þ

where Eββ0 ðsÞ ¼ hÊβðsÞÊβ0 ð0ÞiE ¼ Tr½ÊβðsÞÊβ0 ð0ÞρE � is
defined as the environment correlation function. Another
fundamental approximation is to assume that the environ-
ment has a very short correlation time, τE , with correlation
function that decays as jEββ0 ðsÞj ∼ e−s=τE . As previously
stated, the environment correlation function Eββ0 ðsÞ decays
sufficiently fast over a time τS. In fact, in the weak coupling
limit, one can set τE ≪ τS, in the sense that the system will
relax slowly compared to the evolution of the environment
correlation functions. If we now calculate the integral in
Eq. (10) for a sufficiently large time t� ≫ τE , such that t� is
still much smaller than the time τS at which the state of the
system in the interaction picture changes considerably, then
we can safely replace ρSðt − sÞ with ρSðtÞ in the same
equation because the dynamics of ρSðtÞ is much slower
than the decay of the correlation function Eββ0 ðsÞ. This
replacement makes the master equation local in time. For
the same reason, we can extend the upper limit of the
integral to the infinity, since the added part will give a
negligible contribution. This is known as the Markov
approximation, implying that the memory effect of the
environment is negligible. The Eq. (10) is known as the
Bloch-Redfield equation [1–3]. A simplified version of
the Bloch-Redfield equation is obtained by taking the
secular approximation in which the oscillating terms, of

the form eiðω0−ωÞt, are neglected. If there exist values of ω0
and ω in Eq. (10) being coarse grained in time as from [4]

∃ t� such that jω0 − ωj−1 ≪ t� ≪ τS ¼ Oðg−2Þ; ð11Þ

then the terms in Eq. (10) oscillating with frequency ω0 − ω
will not give any significant contribution to the system
evolution. That is because by integrating Eq. (10) for a time
t� such that jω0 − ωj−1 ≪ t� ≪ τS , the fast-oscillating quan-
tities vanish. Neglecting the fast-oscillating terms in the
interaction picture is usually referred to as the secular
approximation [1–4]. This approximation ensures that the
master equation is in the Gorini-Kossakowski-Sudarshan-
Lindblad (GKLS) form [1–3], and it therefore generates
a dynamical semigroup, i.e., a perfectlyMarkovian evolution.

1. Dynamical map

It is also worth sketching briefly the concept of dynami-
cal maps and their relation to the theory of open quantum
systems. Using the quantum dynamical maps and their
semigroup property, one can find the sufficient condition
for the Markovian dynamics.
In general, the time evolution of the density matrix can

be written as [3,55]

ρSðtÞ ¼ expðLðtÞÞρSð0Þ≡ΦðtÞρSð0Þ; ð12Þ

where L is the superoperator, and Φ is known as the
dynamical map that maps the density matrix from t ¼ 0 to
its form at time t. The dynamical map is trace preserving
and also is completely positive, mapping a positive density
matrix onto another positive density matrix. Formally, we
can express the consequences of the Markovian approxi-
mation on the dynamical map as [3,55]

Φðt1ÞΦðt2Þ ¼ Φðt1 þ t2Þ t1; t2 ≥ 0: ð13Þ

In this situation, Φ forms a continuous linear dynamical
semigroup. Applying the Markovian approximation, the
dynamics of an open quantum system is given by the
following local master equation:

d
dt

ρSðtÞ ¼ LðtÞρSðtÞ: ð14Þ

Starting from this equation and using the dynamical
semigroup approach, one can derive the Lindblad master
equation [3,55]. The non-Markovian generalization of (14)
is the following nonlocal equation:

d
dt

ρSðtÞ ¼
Z

t

0

dsKSðt − sÞρSðsÞ; ð15Þ
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where KS is a memory kernel, which simply means that the
rate of change of the state ρSðtÞ at time t depends on its
history (starting at t ¼ 0).

B. Quantum Boltzmann equation

The master equation approach is suitable for applications
in condensed matter physics and quantum technologies.
However, to study the dynamics of the systems on an
expanding background, we must use other techniques.
Here, we take the approach of the so-called QBE instead
[8–13] (see [56–63] for the application of OQS to the
inflation models). We aim to apply our non-Markovian
formalism to a system of soft gravitons coupled to a
background of decoupled ultrarelativistic fermions.
However, our results are quite general and, in principle,
can be applied to similar systems, such as CMB radiation,
cosmic neutrinos, and dark matter. It should be noted that
this approach is essentially similar to the method of the
master equation described in the previous section, except
that taking the trace over the environment states is replaced
by taking expectation values over the environment’s cre-
ation and annihilation operators. Therefore, physical proc-
esses can be calculated microscopically with the help of
field theory techniques. In the following, we formulate
QBE under the above conditions.

1. QBE with Born-Markov approximation but without
secular approximation

To find the quantum Boltzmann equation, we start with
the time evolution of the number operator associated with
the system’s degrees of freedom given in the following
form [8–13]:

d
dt
N̂ S

ijðk; tÞ¼ i½H0
intðtÞ;N̂ S

ijðk; tÞ�

−
Z

t

0

dsf½H0
intðtÞ; ½H0

intðt− sÞ;N̂ S
ijðk; t−sÞ��g:

ð16Þ

The knowledge about scattering processes is encoded in the
S-matrix element. It is essential to note that, for a given
process, the effective interaction Hamiltonian H0

intðtÞ is
defined using the n-th order S-matrix [8]

SðnÞ ¼ −i
Z

dtH0
intðtÞ; ð17Þ

where the superscript 0 indicates that the interaction
Hamiltonian is a functional of the free field. A discussed
in detail in the [8–13], H0

intðtÞ describes physical processes
such as scattering and decay phenomena. The superscript n
in (17) shows the number of vertices in the corresponding
Feynman diagrams of such process. Each vertex corre-
sponds to the fundamental interaction Hamiltonian HIðgÞ

in which g denotes a general dimensionless coupling
constant. Accordingly, it should be noted that H0

intðtÞ is
different from the fundamental interaction Hamiltonian.

Moreover, N̂ S
ijðk; tÞ is the number operator of the system

defined as

N̂ S
ijðk; tÞ ¼ a†i ðk; tÞajðk; tÞ; ð18Þ

where ai and a
†
i are the creation and annihilation operators,

respectively, associated with the system’s degrees of free-
dom. The number operator is related to the system’s density
matrix after taking the expectation value in the following
form:

hN̂ S
ijðk; tÞi ¼ tr½ρ̂ðSÞN̂ S

ijðk; tÞ�
¼ ð2πÞ3δ3ð0Þ2k0ρSijðk; tÞ; ð19Þ

where trace over the continuum of states is defined in
Appendix A. It is difficult to solve the integro-differential
equation (16) because it is nonlocal in time, as NS

ij still
depends upon the entire history of the process, and the
integration runs over time. This can be reduced to an
equation local in time if there is a clear separation of
timescales. To resolve this problem, we make the Markov
approximation, in which the timescale of the environment
is taken to be much shorter than the timescale of the system
so that the memory effects of the environment are negli-
gible in the long run. In order to perform this approxima-

tion, we replace N̂ S
ijðk; t − sÞ by N̂ S

ijðk; tÞ due to its slow
evolution. In this way, we separate the timescales into
microscopic timescale tmic, quantifying the interaction
timescale of individual particles, and mesoscopic timescale
tmes, quantifying the timescale on which the whole macro-
scopic system evolves. Therefore, in the Born-Markov
approximation, the time evolution of this system is given by
the following master equation [8–13]:

d
dtmes

N̂ S
ijðk; tmesÞ

¼ i½H0
intðtmesÞ; N̂ S

ijðk; tmesÞ�

−
Z

tmes

0

dtmic½H0
intðtmesÞ; ½H0

intðtmes − tmicÞ; N̂ S
ijðk; tmesÞ��:

ð20Þ

As explained in the previous section, the time integration
can be extended to infinity due to the Born-Markov
approximation. Now, after extending the upper limit of
the integral involving tmes to the infinity and taking the
expectation value of both sides of (20), we find the final
form of the quantum Boltzmann equation as
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ð2πÞ3δ3ð0Þ2k0 d
dtmes

ρSijðk;x; tmesÞ

¼ ih½H0
intðtmesÞ; N̂ S

ijðk; tmesÞ�ic
−
Z

∞

0

dtmich½H0
intðtmesÞ; ½H0

intð−tmicÞ; N̂ S
ijðk; tmesÞ��ic;

ð21Þ

where the subscript c labels what we consider the con-
nected part of the correlation functions. Upon taking the
expectation values, the macroscopic properties of the
system (for example, GWs) emerge. It is also assumed
that the process obeys the time-reversal symmetry. The
operation of time reversal interchanges initial and final
states with identical positions but opposite momenta. For
the scattering processes such as Compton scattering (the
dominant interaction for CMB photons), the S matrix is
invariant under the interchange of initial and final states
through which, the interaction Hamiltonian defined by
Eq. (17) is invariant under time reversal. Therefore, we
have H0

intð−tmicÞ ¼ H0
intðtmicÞ under which, the Boltzmann

equation transforms in the following form [8,13]:

ð2πÞ3δ3ð0Þ2k0 d
dtmes

ρSijðk;x; tmesÞ

¼ ih½H0
intðtmesÞ; N̂ S

ijðk; tmesÞ�ic
−
1

2

Z
∞

−∞
dtmich½H0

intðtmesÞ; ½H0
intðtmicÞ; N̂ S

ijðk; tmesÞ��ic;

ð22Þ

the equation that deals with the reversible scattering
processes. The first term on the right side of (21) is known
as the forward scattering term, and the second term is the
usual collision term [8,13]. It is worth emphasizing that in
this expression, H0

intðtmicÞ is also dependent on tmes,
although we have not shown it explicitly.
Here, it is worth emphasizing that in the above QBE,

there is no need to consider the secular approximation. In
fact, as shown in [8–13], for the physical processes
described by the interaction Hamiltonian, energy conser-
vation is obtained naturally after taking the integration over
tmic in the interaction picture.

2. Extension to Markovian irreversible processes

There are a variety of examples of irreversible processes
in the early Universe. In this work, we finally intend to
explain the damping of GWs by an environment containing
decoupled ultrarelativistic fermions using the QBE. We
assume that fermions are decoupled before reentering the
horizon during radiation dominance. Due to its dissipative
nature, this process is considered an irreversible process. If
we want to use the QBE to explain this damping effect, then
we first need to identify the interaction Hamiltonian and

essentially the microscopic process that leads to this
irreversible phenomenon. The question of how macro-
scopic irreversibility emerges from microscopic processes
has always been a fundamental question. The root of this
problem is that we still do not know exactly how to
reconcile the second law of thermodynamics with its
intrinsic arrow of time with the microscopic time-reversible
dynamical equations. On one hand, the process of GW
damping is an irreversible phenomenon due to its dissipa-
tive nature, and on the other hand, it has a microreversibility
property on microscopic scales (see [64] for the discussion
on the relation of the detailed balance with the property of
microreversibility of the underlying microscopic dynam-
ics). In order to use the QBE to explain this phenomenon,
we must first generalize it to irreversible phenomena.
In our formalism, the detailed balance condition or

microreversibility is fulfilled for microscopic processes.
Hence, in all the processes that we assume, the amplitudes
of the initial to final and final to initial reactions are equal.
In other words, the phenomenon emerging on the macro-
scopic scale is not invariant under time reversal, whereas
we assume that the microscopic interactions are invariant
under time reversal. The emergent irreversible process must
occur on macroscopic scales. For this purpose, we assume
that the system is in contact with an environment in a steady
state. Under these conditions, the generalization of the
equation to irreversibility conditions will be perform as
follows.
For a microscopic irreversible process like absorption or

emission, the effective interaction Hamiltonian doesn’t
satisfy the relation H0

intð−tmicÞ ¼ H0
intðtmicÞ. It is worth

emphasizing once again that H0
intð−tmicÞ actually describes

the physical process and is different from the fundamental
interaction Hamiltonian. Therefore, one cannot use the
Eq. (22) to dealwith such processes. The effective interaction
Hamiltonian for a specific irreversible process is written in
terms of the creation and the annihilation operators. For such
a process, the action of the time-reversal transformation on
H0

int is equivalent to the action of Hermitian conjugation. We
therefore generalize the Eq. (21) by replacing H0

intðtmicÞ by
the following Hermitian combination:

H0
intð−tmicÞ → H0†

intðtmicÞ: ð23Þ

By doing this, the collision term is modified as follows,

−
Z

∞

0

dtmich½H0
intðtmesÞ; ½H0†

intðtmicÞ; N̂ S
ijðk; tmesÞ��ic; ð24Þ

in which the forward scattering term automatically
vanishes for such emission or absorption processes. Using
this equation, we will be able to compute the time evolution
of density matrix for irreversible phenomena such as
decaying or absorption process. In the condition that
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H0
intðtmicÞ ¼ H0

intð−tmicÞ, wewill reproduce the conventional
collision term.

3. Extension to non-Markovian (ir)reversible processes

In the remainder of this section, we discuss deviations
from the Markovian approximation. As discussed above, in
most situations, the non-Markovianity appears to be rel-
evant for timescales smaller than, or of the order of, the
environment correlation time τE .
For the case of the interaction of SBGW with a back-

ground of ultrarelativistic fermion bath and when one
ignores backreaction effects, the time evolution of the
intensity of GW can be casted in Eq. (24). However, for
a more realistic situation when the backreaction effects are
important, one cannot use this equation. In general, as
already emphasized, the underlying assumption of weak
system-environment coupling to an essentially unchanging,
memoryless environment is not always fulfilled in many
situations of physical interest, and significantly non-
Markovian dynamics may arise. If memory effects in the
environment are substantial, then the evolution of the
reduced density matrix will depend on the past history
of the system and the environment. In this condition,
information can also flow back from the environment to
the system, resulting in a backreaction effect of the

environment. The microscopic description of non-
Markovian dynamics is much more complicated than the
Markovian one. The precise details of the non-Markovian
dynamics has still not fully worked out, partly because of
the complexity behind such phenomena. Here, we will
generalize the QBE as a new tool to deal with the non-
Markovian processes. The generalized QBE is derived as
follows: First, it is important to note that we still consider
the Born approximation. In addition, as stated, we are
interested in the absorption processes in which the time-
reversal symmetry is satisfied microscopically, but the
process is irreversible macroscopically. For this case,
time-local master equations are no longer applicable, and
one has to instead solve integro-differential equations. We
also need to replace the interaction Hamiltonian with the
relation (23) so that the QBE can properly describe an
absorption process. The equation we will ultimately work
with to describe an irriversal and non-Markovian process is
as below:

ð2πÞ3δ3ð0Þ2k0 d
dtmes

ρSijðk;x; tmesÞ ¼ Dij½ρSðk;x; tmesÞ�;

ð25Þ

where Dij½ρSðk;x; tmesÞ� is the “dissipator” that is given by

Dij½ρSðk;x; tmesÞ� ¼ −
Z

tmes

0

dtmich½H0
intðtmesÞ; ½H0†

intðtmicÞ; N̂ S
ijðk; tmes − tmicÞ��ic: ð26Þ

While N̂ S
ij is a nonlocal operator in time, we have kept the

interaction Hamiltonian local in time for simplicity. In the
following, we calculate the dissipative termDij½ρSðk; tmesÞ�
for the graviton absorption process by a decoupled ultra-
relativistic fermions.

III. APPLICATION: ABSORPTION OF SOFT
GRAVITONS BY A ULTRARELATIVISTIC

FERMION BATH

As anticipated, in this work, we apply the non-
Markovian QBE to study the damping phenomena due
to coupling with ultrarelativistic fermions. Before, we
characterize the system, the environment, and the sys-
tem-environment interaction Hamiltonian.

A. Open quantum system components

As mentioned above, the SBGW absorption process can
be studied through the approach of an open system
interacting with the environment. The system is SGWB
propagating in an environment containing decoupled ultra-
relativistic fermions. In the following, we will consider an
example that such fermions can be considered the same as
decoupled neutrinos. We generally assumed that both the

system and the environment are affected by each other. This
interaction is described by H0

intðtÞ. We then outline the
system, the environment, and the interaction Hamiltonian.
We also emphasize once again that our system and the
environment are on an expanding space-time background.
In this condition, we must consider a new timescale that is
the inverse of the Hubble parameter H−1. We will discuss
this new timescale further below.

1. System

We consider a quantum system of soft graviton degrees
of freedom that is affected by its coupling to the environ-
ment. The SGWB field hμν is given by assuming the weak-
field limit and expanding the metric around Minkowski
space-time as follows:

gμν ¼ ημν þ κhμν; ð27Þ

where κ ¼ ffiffiffiffiffiffiffiffiffiffiffi
16πG

p
. In the following, we will straightfor-

wardly generalize this metric to the FRW background. The
dynamics of free gravitons in the transverse-traceless gauge
is given by the following Lagrangian density:
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Lg ¼
1

4
½ _hμν _hμν þ ∂λhμν∂λhμν�: ð28Þ

The associated quantum field is decomposed as

hμνðxÞ ¼ hþμνðxÞ þ h−μνðxÞ; ð29Þ

where h−μνðxÞ and hþμνðxÞ are linear in graviton creation and
annihilation operators, respectively. Fourier transforms of
the fields are expressed by the following conventions:

hþμνðxÞ ¼
Z

dp
X
s¼þ;×

asðp; tÞhsμνðpÞe−iðp0t−p·xÞ; ð30Þ

h−μνðxÞ ¼
Z

dp
X
s¼þ;×

a†s0 ðp; tÞhs�μνðpÞeiðp
0t−p·xÞ; ð31Þ

where as and a†s are the graviton annihilation and creation
operators, and the abbreviation dp is defined as

dp ¼ d3p
ð2πÞ3

1

2p0
; ð32Þ

and hðrÞμν are the polarization tensors with the following
well-known properties:

hsμνðpÞpμ ¼ 0; hμμðpÞ ¼ 0; hsμνðpÞðhs0μνðpÞÞ� ¼ δss
0
:

ð33Þ

Note that in (30) and (31), we have not separated the
microscopic and mesoscopic times to avoid confusion. We
assume that the time appeared in the exponential function is
a microscopic time, while the annihilation and creation
operators can generally be a function of both times. It is
also convenient to represent the polarization tensor hðsÞμν in
terms of a direct product of unit spin polarization vectors,

hsμνðpÞ ¼ esμðpÞesνðpÞ; esμðpÞpμ ¼ 0;

½esμðpÞðes0μðpÞÞ��2 ¼ δss
0
: ð34Þ

In general, as and a†s are assumed to be time dependent. In
Appendix A, we will present a general discussion about
their time-dependent commutation relation and the calcu-
lation of their expectation values. As shown in this
Appendix, for equal times, the canonical commutation
relations are given by

½asðp; tÞ; a†s0 ðp0; tÞ� ¼ ð2πÞ32p0δ3ðp − p0Þδss0 : ð35Þ

The graviton density operator is presented in the following
form [10]:

ρ̂ðgÞðx; tÞ ¼
Z

d3p
ð2πÞ3 ρ

ðgÞ
ij ðx; tÞa†i ðp; tÞajðp; tÞ; ð36Þ

where the polarization matrices ρðgÞ for a system of
gravitons have the following form:

ρðgÞðx; tÞ

¼ 1

2

�
IðgÞðx; tÞ þQðgÞðx; tÞ UðgÞðx; tÞ− iVðgÞðx; tÞ
UðgÞðx; tÞ þ iVðgÞðx; tÞ IðgÞðx; tÞ−QðgÞðx; tÞ

�
;

ð37Þ

where IðgÞ denotes the radiation intensity, QðgÞ and UðgÞ

parameterize the linear polarization, and VðgÞ is the circular
polarization. Among these parameters, IðgÞ is always
positive, while the other three parameters can have either
sign. The Stokes parameters for monochromatic plane GWs
are defined by [10]

IðgÞ ¼ ðhþÞ2 þ ðh×Þ2; ð38Þ

QðgÞ ¼ ðhþÞ2 − ðh×Þ2; ð39Þ

UðgÞ ¼ 2 cos αhþh×; ð40Þ

VðgÞ ¼ 2 sin αhþh×; ð41Þ

where hþ and h× are the complex amplitude for two GW
modes, and α represents the difference of the phases of the
hþ and h× modes. QðgÞ measures the difference between
polarization modes; UðgÞ and VðgÞ measure the phase
dependence of modes. The condition of QðgÞ ¼ UðgÞ ¼
VðgÞ ¼ 0 is associated with an unpolarized GW. In this case,
the GW is composed of incoherent modes with random
polarization angles. The phase of the hþ and h× modes will
change over the coherence time, which is taken much
greater than the period of a quasi-monocratic wave.
However, in the condition that the phase of modes remains
essentially constant over a duration shorter than the
coherence time, the GW becomes polarized.

2. Environment

The environment contains decoupled ultrarelativistic
fermionic degrees of freedom and behaves like a thermal
fermion bath. It is also assumed that the environment (i) is
expanding, (ii) is in thermal equilibrium, and (iii) notices
that the system is interacting with it. However, it cannot
relax back to its equilibrium in a short time due to the
expansion of space-time. Figuratively, it means that the
environment has memory. We will incorporate this kind of
memory effect due to the expanding space-time in our
calculation.
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Fermions are generally described by the spinor field ψf

that is decomposed as ψfðxÞ ¼ ψþ
f ðxÞ þ ψ−

f ðxÞ such as

ψ̄−
f ðxÞ ¼

Z
dq

X
r

b†rðq; tÞūrðqÞeiðq0t−q·xÞ; ð42Þ

ψþ
f ðxÞ ¼

Z
dq

X
r

brðq; tÞurðqÞe−iðq0t−q·xÞ; ð43Þ

where ur is the Dirac spinor, with spin index r ¼ 1, 2, br,
and b†r are fermion creation and annihilation operators,
respectively, and

dq ¼ d3q
ð2πÞ3 : ð44Þ

The creation and the annihilation operators of fermions
obey the following equal-time canonical anticommutation
relation,

fbrðq; tÞ; b†r0 ðq0; tÞg ¼ ð2πÞ3δ3ðq − q0Þδrr0 : ð45Þ

Using these operators, we can define the fermionic density
operators in the form,

ρ̂ðfÞðx; tÞ ¼
Z

d3q
ð2πÞ3 ρ

ðfÞ
ij ðx;q; tÞb†i ðq; tÞbjðq; tÞ; ð46Þ

where, for a system composed of unpolarized fermions,

ρðfÞij is given by

ρðfÞðx; tÞ ¼ 1

2

�
nðfÞðx; tÞ 0

0 nðfÞðx; tÞ

�
; ð47Þ

where nðfÞ denotes the intensity of the fermions.

3. Interaction Hamiltonian

The gravitons interact with an environment composed of
the ultrarelativistic fermions that causes a damping effect.
As we mentioned before, the QBE is a new powerful tool to
obtain a classical macroscopic description of this effect
emerging from a microscopic absorption. Voronov has
calculated the scattering amplitude of the gravitons with
fermions many years ago [65]. Here, we use his results to
calculate the absorption (emission) of gravitons by (from)
fermions. Using the S-matrix element, we can write the
effective interaction Hamiltonian describing the absorption
of graviton by fermions of thermal bath in the following
form:

H0
intðtÞ ¼ −

i
2
κ

Z
d3x hþμλψ̄

−γλ∂μψþ: ð48Þ

Inserting the Fourier transforms (30), (42), and (43) into
(48), we get

H0
intðtÞ ¼ −

i
2
κ

Z
d3xdpdqdq0X

s;r;r0
hsμλðpÞūr0 ðq0Þð−iqμÞγλurðqÞeið−p

0þq00−q0Þte−ið−pþq0−qÞ·xasðp; tÞb†r0 ðq0; tÞbrðq; tÞ: ð49Þ

Integrating over x gives

H0
intðtÞ¼−

i
2
κ

Z
dpdqdq0X

s;r;r0
hsμλðpÞūr0 ðq0Þð−iqμÞγλurðqÞð2πÞ3δ3ðq0−q−pÞeið−p0þq00−q0Þtasðp;tÞb†r0 ðq0; tÞbrðq;tÞ: ð50Þ

In this step, we deduce the behavior of (48) under time reversal. It is known that the covariant bilinear transforms under time
reversal as [66,67]

ψ̄aγ
λ∂λψb →

T
ψ̄bγ

λ∂λψa; ð51Þ

where a; b ¼ þ;−. Also, the GW field transforms as

hþμν →
T
h−μν: ð52Þ

Therefore, we get

H0
intð−tÞ ¼ −

1

2
κ
X
s;r;r0

Z
d3xdpdqdq0h�sμλðpÞūrðqÞq0μγλur0 ðq0Þe−ið−p

0þq00−q0Þte−iðpþq−q0Þ·xa†sðp; tÞb†rðq; tÞbr0 ðq0; tÞ

¼ H0†
intðtÞ; ð53Þ
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which confirms our claim about the relation of time reversal
and complex conjugate operations on the interaction
Hamiltonian. H0†

intðtÞ describes the inverse process, i.e.,
the graviton emission from the fermion of thermal bath. As
explained in the previous section, the QBE involves both
H0

intðtÞ and H0†
intðtÞ terms. After this extension, the collision

term will result in two processes that will be interpreted as
the graviton absorption and emission processes. One can
apply the same formalism to the interaction of gravitons
with ultrarelativistic antifermions.
At the end of this part, we briefly discuss the action of

parity operator on interaction Hamiltonian (48). In general,
the covariant bilinear is transformed under a parity trans-
formation as [66,67]

ψ̄aγ
λ∂λψb →

P
ψ̄aγ

λ∂λψb: ð54Þ

It is also shown that hRμν → hLμν under a parity transformation
[68], where L and R represent, respectively, the left-handed
and the right-handed GW circular polarization. Therefore,

the interaction Hamiltonian hðsÞμν ψ̄aγ
λ∂λψb is not totally

invariant under a parity transformation.

B. Calculation of the collision term

In this part, we provide the general calculation of the
collision or damping term. Working in a comoving frame,
we substitute the interaction Hamiltonian (53) into the
dissipative term on the right-hand side of Eq. (25) and find

Dij½ρðgÞðk;x; tmesÞ� ¼ −
κ2

4

Z
tmes

0

dtmic

Z
d3xd3x0dp1dq1dq0

1dp2dq2dq0
2e

iðp0
2
þq0

2
−q00

2
Þtmic

×
X

s1;r1;r01

X
s2;r2;r02

hs1μ1λ1ðp1Þūr0
1
ðq01Þqμ11 γλ1ur1ðq1Þh�s2μ2λ2

ðp2Þūr2ðq2Þq0μ22 γλ2ur02ðq02Þ

× e−iðq01−q1−p1Þ·x1e−iðp2þq2−q02Þ·x2h½as1ðp1; tmesÞb†r0
1
ðq01; tmesÞbr1ðq1; tmesÞ;

½a†s2ðp2; tmicÞÞb†r2ðq2; tmicÞÞbr0
2
ðq02; tmicÞÞ; a†i ðk; tmes − tmicÞÞajðk; tmes − tmicÞ��ic: ð55Þ

Integrating over x and x0 gives

Dij½ρðgÞðk;x; tmesÞ� ¼ −
κ2

4

Z
dp1dq1dq0

1dp2dq2dq0
2ð2πÞ6δ3ðp2 þ q2 − q0

2Þδ3ðq0
1 − q1 − p1Þeiðp0

2
þq0

2
−q00

2
Þtmic

×
X

s1;r1;r01

X
s2;r2;r02

hs1μ1λ1ðp1Þūr0
1
ðq01Þqμ11 γλ1ur1ðq1Þh�s2μ2λ2

ðp2Þūr2ðq2Þq0μ22 γλ2ur0
2
ðq02Þ

× h½as1ðp1; tmesÞb†r0
1
ðq01; tmesÞbr1ðq1; tmesÞ; ½a†s2ðp2; tmicÞb†r2ðq2; tmicÞbr0

2
ðq02; tmicÞ;

a†i ðk; tmes − tmicÞajðk; tmes − tmicÞ��ic: ð56Þ

Using the nonequal time expectation values computed in the Appendix A, we find the following expression:

h½as1ðp1; tmesÞb†r0
1
ðq01; tmesÞbr1ðq1; tmesÞ; ½a†s2ðp2; tmicÞb†r2ðq2; tmicÞbr0

2
ðq02; tmicÞ;a†i ðk; tmes − tmicÞajðk; tmes − tmicÞ��ic

¼ hb†r0
1
ðq01; tmesÞbr1ðq1; tmesÞb†r2ðq2; tmicÞbr0

2
ðq02; tmicÞic

× fhas1ðp1; tmesÞa†s2ðp2; tmicÞa†i ðk; tmes − tmicÞajðk; tmes − tmicÞic
− has1ðp1; tmesÞa†i ðk; tmes − tmicÞajðk; tmes − tmicÞa†s2ðp2; tmicÞicg
þ hb†r2ðq2; tmicÞbr0

2
ðq02; tmicÞb†r0

1
ðq01; tmesÞbr1ðq1; tmesÞic

× ha†i ðk; tmes − tmicÞajðk; tmes − tmicÞa†s2ðp2; tmicÞas1ðp1; tmesÞic
≃
1

2
ð2πÞ124k0p0

1δ
3ðq0

2 − q0
1Þδ3ðq1 − q2Þδ3ðk − p2Þδ3ðp1 − kÞδr0

2
r0
1
δr1r2δjs2ρ

ðgÞ
s1i
ðp1;x; tmes − tmicÞ

× ½nðfÞðq1; tmes; tmicÞ − nðfÞðq0
1; tmes; tmicÞ�; ð57Þ

where all terms quadratic in the system’s density matrix have been dropped. Plugging this expression in (56) and after
taking integration over momenta, we find
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Dij½ρðgÞðk;x; tmesÞ� ¼ −
κ2

8

Z
tmes

0

dtmic

Z
dq1dq0

1ð2πÞ6δ3ðkþ q1 − q0
1Þδ3ðq0

1 − q1 − kÞeiðp0
2
þq0

2
−q00

2
Þtmic

×
X

s1;r1;r01

qm1

1 qm2

2 hs1m1n1ðkÞh�jm2n2ðkÞūr01ðq0
1Þγn1ur1ðq1Þūr1ðq1Þγn2ur0

1
ðq0

1Þ

× ρðgÞs1i
ðk;x; tmes − tmicÞ½nðfÞðjq1j; tmes; tmicÞ − nðfÞðjq0

1j; tmes; tmicÞ�; ð58Þ

in which one interprets the multiplied coefficients in
nðfÞðjq1j; tmes; tmicÞ as the graviton absorption rate and
the multiplied coefficients in nðfÞðjq0

1j; tmes; tmicÞ as the
graviton emission rate. Also, we note that throughout the
paper, we assume that nðfÞ is isotropic and is a function of
energy q0 ¼ jqj. The oscillating terms like eiðp0

2
þq0

2
−q00

2
Þtmic

can be ignored using the secular approximation, as in the
following. The secular approximation states that one can
remove fast-oscillating terms in the interaction picture in
which p0

2 ≠ q002 − q02. This approximation is feasible
as far as the frequencies are well spaced in such a way
that jp0

2 þ q02 − q002j−1 ≪ tmic ≪ tmes. After confirming this

approximation, we can eliminate the term e−iðp0
2
þq0

2
−q00

2
Þtmic

by assuming p0
2 þ q02 − q002 ≈ 0. As stated in previous

sections, for a QBE describing a Markovian process,
energy conservation occurs automatically, and no secular
approximation is required, but for the GW damping effect,
we have to use the secular approximation to establish
energy conservation.
After calculating the dissipation term and inserting it into

the QBE (25), we derive a full system of equations that
describes the time evolution of the intensity and the
polarization of GWs,

ð2πÞ3δ3ð0Þ2k0 d
dtmes

ρðgÞij ðk;x; tmesÞ ¼ −
κ2

8

Z
tmes

0

dtmic

Z
dq1dq0

1ð2πÞ6δ3ðkþ q1 − q0
1Þδ3ðq0

1 − q1 − kÞ

×
X

s1;r1;r01

qm1

1 qm2

2 hs1m1n1ðkÞh�jm2n2ðkÞūr01ðq0
1Þγn1ur1ðq1Þūr1ðq1Þγn2ur0

1
ðq0

1Þ

× ρðgÞs1i
ðk;x; tmes − tmicÞ½nðfÞðjq1j; tmes; tmicÞ − nðfÞðjq1j þ jkj; tmes; tmicÞ�; ð59Þ

where, in the last step, we have used the conservation of
energy jq0

1j ¼ jq1j þ jkj. The explicit time-dependence
form of nðfÞ can be obtained from the environment
dynamics. In fact, one must write the same QBE as (25)
for the environment and nðfÞ. However, as it was discussed,
the environment is large, and its dynamics is fast enough in
such a way that its energy exchanged with the system will
quickly dissipate away. Then, from the viewpoint of the
system, the state of the environment will appear to be
almost constant all the time, and the environment is in
thermal equilibrium. The main difference with a conven-
tional non-Markovian process in the physics of condense
matter is that here, the dependence on tmic is due to the
expansion of space-time. It should also be noted that

ρðgÞs1i
ðk;x; tmes − tmicÞ is dependent on tmic. However, the

nonlocal kernel in the collision term arises also due to the
dependence of nðfÞ on tmic and the expansion of space-time.
The property of the dependence of nðfÞ on microscopic time
has an important role in the non-Markovianity of the
system’s dynamics. As we will discuss below, nðfÞ depends
on the expansion history of the expanding universe between
tmes and tmic.

IV. DAMPING OF GWs BY
DECOUPLED NEUTRINOS

It has been showed explicitly that the propagation of a
gravitational wave in an environment containing decoupled
relativistic neutrinos leads to the GW damping effect [30].
In fact, the environment induces a damping anisotropic
stress tensor for the time evolution of the metric perturba-
tion hij. The damping effect due to such an anisotropic
stress tensor has been also predicated earlier [25–29]. By
considering the contribution of free-streaming neutrinos to
the anisotropic stress, an integro-differential equation for
the GW propagation in the environment is obtained [30].
After numerically solving this equation and obtaining the
amplitude of the gravitational wave, it is shown that the
damping impact on the cosmological gravitational wave is
not negligible.
The GW dynamics is given by

d2

dt2mes
hijðk; tmesÞ þ 3HðtmesÞ

d
dtmes

hijðk; tmesÞ

þ k2

aðtmesÞ
hijðk; tmesÞ ¼ κ2πijðk; tmesÞ; ð60Þ
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where πij is the tensor component of the matter anisotropic
stress [30], H is the Hubble expansion rate, and aðtmesÞ is
the scale factor given by the following line element in
Friedmann-Lemaître-Robertson-Walker (FLRW) back-
ground,

ds2 ¼ dt2mes − a2ðtmesÞδijdxidxj: ð61Þ

The mode dynamics is influenced by the Hubble parameter
H and by the anisotropic stress source term πij. It was
shown that all short wavelength tensor modes reentering
the horizon during the radiation dominated era, from the
epoch of neutrino decoupling to the matter domination era,
are suppressed by a factor A0 ≈ 0.8 [30].
Here, we turn to calculate the term derived in [30]

using the approach of open quantum systems and QBE. To
this end, we assume that soft gravitons interact with a
medium involving relativistic fermions with momentum

q ¼ jqjðsin θ cosϕ; sin θ sinϕ; cos θÞ. The relativistic fer-
mions are described by the following right-handed and left-
handed helicity eigenstates [66],

uþðq̂Þ ¼
1ffiffiffi
2

p

0
BBB@

cosðθ=2Þ
sinðθ=2Þeiϕ
cosðθ=2Þ

sinðθ=2Þeiϕ

1
CCCA;

u−ðq̂Þ ¼
1ffiffiffi
2

p

0
BBB@

− sinðθ=2Þe−iϕ
cosðθ=2Þ

sinðθ=2Þe−iϕ
− cosðθ=2Þ

1
CCCA: ð62Þ

Now, we further simplify (58) by taking integration over q0
1,

Dij½ρðgÞðk;x; tmesÞ� ¼ −δ3ð0Þ κ
2

8

Z
tmes

0

dtmic

Z
d3q

X
s1;r1;r01

qm1

1 qm2

2 hs1m1n1ðk̂Þh�jm2n2ðk̂Þūr01ðq̂þ k̂Þγn1ur1ðq̂Þūr1ðq̂Þγn2ur01ðq̂þ k̂Þ

× ρðgÞs1i
ðk;x; tmes − tmicÞ½nðfÞðjqj; tmes; tmicÞ − nðfÞðjqj þ jkj; tmes; tmicÞ�; ð63Þ

where we have relabeled the momentum q1 as q. By plugging the helicity states u� into (63) and taking summation over
both r1; r2 ¼ þ;−, we get

Dij½ρðgÞðk;x; tmesÞ� ¼ −δ3ð0Þ κ
2

4

Z
tmes

0

dtmic

Z
d3qsin2θðq · eðjÞÞ2gf½nðfÞðjqj; tmes; tmicÞ − nðfÞðjqj þ jkj; tmes; tmicÞ�

× ½cos 2ϕρðgÞ1i ðk;x; tmes − tmicÞ þ sin 2ϕρðgÞ2i ðk;x; tmes − tmicÞ�; ð64Þ

where gf denotes the number of helicity states for fermions. Therefore, using this result, the QBE (59) becomes

d
dtmes

ρðgÞij ðk;x; tmesÞ ¼
κ2gf
8jkj

Z
tmes

0

dtmic

Z
d3q
ð2πÞ3 sin

2θðq · eðjÞÞ2jkj ∂
∂jqj n

ðfÞðjqj; tmes; tmicÞ

× ½cos 2ϕρðgÞ1i ðk;x; tmes − tmicÞ þ sin 2ϕρðgÞ2i ðk;x; tmes − tmicÞ�; ð65Þ

where, in the last step, we have expanded nðfÞ up to the first order in jkj. We are interested in the time evolution of the

intensity of GWs defined by IðgÞ ¼ ρðgÞ11 þ ρðgÞ22 . To evaluate I
ðgÞ, we assume that gravitons are propagating in z direction with

the following basis for direction and polarization vectors:

k ¼ ð0; 0; 1Þ; ð66Þ

eð1Þ ¼ ð1; 0; 0Þ; ð67Þ

eð2Þ ¼ ð0; 1; 0Þ: ð68Þ

The relativistic fermions are also described by an unpolarized Fermi-Dirac distribution,

nðfÞðjqj; tmes; tmicÞ ¼ Ufðtmes; tmicÞnfðjqj; tmesÞ; ð69Þ

with
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nðfÞðjqj; tmesÞ ¼ ½e
jqj
Tf þ 1�−1; ð70Þ

where Tf is the temperature associated with ultrarelativistic fermions, and Uf is the time evolution operator. Now, inserting
nf into the Eq. (65), using integration by parts and also integrating over ϕ, we find the time evolution of the intensity as

_IðgÞðk;x; tmesÞ ¼ −
κ2gf
8π2

Z
tmes

0

dtmic

Z
djqjdðcos θÞsin4θjqj3Ufðtmes; tmicÞ½e

jqj
Tf þ 1�−1IðgÞðk;x; tmes − tmicÞ; ð71Þ

where dot denotes differentiation with respect to tmes. Integrating over jqj gives

_IðgÞðk;x; tmesÞ ¼ −
κ2ρ̄f
4

Z
tmes

0

dtmic

Z
dðcos θÞsin4θUfðtmes; tmicÞIðgÞðk;x; tmes − tmicÞ; ð72Þ

where ρ̄f is the total energy of fermions per proper volume,

ρ̄f ¼ gf
4π

ð2πÞ3
Z

djqjjqj3½e
jqj
Tf þ 1�−1 ¼ 7

8

π2

30
gfT4

f: ð73Þ

The time evolution of Ufðtmes; tmicÞ has been computed in [30] and is parameterized as

Ufðtmes; tmicÞ ¼ e
−i
R

tmes
tmic

dt0 jkjμ
aðt0Þ; ð74Þ

where μ ¼ q̂ · k̂ ¼ cos θ and Uf satisfy the semigroup property as expected. Therefore, we get

_IðgÞðk;x; tmesÞ ¼ −
κ2

4
ρ̄f

Z
tmes

0

dtmic

Z
dμð1 − μ2Þ2e−i

R
tmes
tmic

dt0 jKjμ
aðt0ÞIðgÞðk;x; tmes − tmicÞ; ð75Þ

Now, using the integrating by parts technique to take integration over jkj and also taking the integration over μ, we find

_IðgÞðk;x; tmesÞ ¼ −4κ2ρ̄f
Z

tmes

0

dtmic
j2ðsÞ
s2

IðgÞðk;x; tmes − tmicÞ; ð76Þ

where j2ðsÞ is the spherical Bessel function, and

s ¼ jkj
Z

tmes

tmic

dt0

aðt0Þ : ð77Þ

Equation (76), describing the macroscopic time evolution of the GW intensity equation, arises from the quantum master
equation and involves a memory kernel. The memory effect is due to the time nonlocality property of IðgÞðk;x; tmes − tmicÞ.
Moreover, the expansion history of the FLRW universe will produce a memory effect as well. The memory kernel j2ðsÞ is
nonlocal in time due to the fact that it keeps memory about the starting point tmic. The appearance of tmic in the memory
kerne implies that the dynamics contains a memory. Therefore, the Eq. (76) is non-Markovian and keeps any memory about
tmic (see [55,64] for a discussion about non-Markovian conditions of an open quantum system).
The full time derivative of IðgÞ can be expanded into partial derivatives as

∂
∂tmes

IðgÞðk;x; tmesÞ −Hk
∂
∂k I

ðgÞðk;x; tmesÞ þ
1

a
k̂ · ∇IðgÞðk;x; tmesÞ ¼ −4κ2ρ̄fðtmesÞ

Z
tmes

0

dtmic
j2ðsÞ
s2

IðgÞðk;x; tmes − tmicÞ:

ð78Þ

The energy density of gravitational waves is given by [10]

ρðgÞðx; tmesÞ ¼
1

2
h _hijðx; tmesÞ _hijðx; tmesÞi ¼

1

4

Z
d3k
ð2πÞ3 k

0IðgÞðk;x; tmesÞ: ð79Þ
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Using this expression and after taking integration over k,
one can rewrite the Eq. (78) in terms of energy density in
the following form:

∂
∂tmes

ρðgÞðx; tmesÞ þ 4HρðgÞðx; tmesÞ þ
1

a
∇ · PðgÞðx; tmesÞ

¼ −4κ2ρ̄fðtmesÞ
Z

tmes

0

dtmic
j2ðsÞ
s2

× ρðgÞðx; tmes − tmicÞ; ð80Þ

where

PðgÞðx; tmesÞ ¼
1

2
h _hijðx; tmesÞ∇hijðx; tmesÞi

¼ 1

4

Z
d3k
ð2πÞ3 kI

ðgÞðk;x; tmesÞ ð81Þ

is the momentum out-flux carried away by GW.
In order to compare our results with [30], we must

extract the equation of motion for tensor fluctuations
hijðx; tmesÞ. To this end, we write the nonlocal in time
intensity IðgÞðk;x; tmes − tmicÞ in the following form:

1

4

Z
d3k
ð2πÞ3 k

0IðgÞðk;x; tmes − tmicÞ

¼ 1

2
h _hijðx; tmesÞ _hijðx; tmes − tmicÞi: ð82Þ

Substituting (79) and (82) in (78) and after some straight-
forward calculations, we get

ḧijðx; tmesÞ þ 3H _hijðx; tmesÞ −
∇2

a2ðtmesÞ
hijðx; tmesÞ

¼ κ2πijðx; tmesÞ; ð83Þ

where the anisotropic stress tensor πij is given by

πijðx; tmesÞ¼−2ρ̄fðtmesÞ
Z

tmes

0

dtmic
j2ðsÞ
s2

_hijðx; tmes− tmicÞ:

ð84Þ

To compare this result with [30], it should be noted that
for left-handed relativistic neutrinos, we have gf ¼ 1.
Considering neutrino and antineutrino, the neutrino energy
density is given by

ρ̄f ¼ 6ρ̄ν ¼ 2 ×
7

8

π2

30
T4
ν: ð85Þ

Therefore,

πijðx; tmesÞ¼−4ρ̄νðtmesÞ
Z

tmes

0

dtmic
j2ðsÞ
s2

_hijðx; tmes− tmicÞ:

ð86Þ

In the following, we shall instead work with Eq. (78) and
look for an analytical solution that reflects the effect of the
fermionic environment on the GW intensity.

A. Calculation of GW damping in the
radiation-dominated era

Here, we will find an approximate analytic solution of
the evolution equation (78) in the radiation dominated era.
The Eq. (78) is an equation with memory effects, which has
the form of an integro-differential equation that is nonlocal
in time. At the early stage of radiation dominance, one can
consider the short memory or equivalently the Markovian
approximation. In this approximation, I ðgÞ will be inde-
pendent of tmic. The reason for this approximation is as
follows. In the limit s → 0, we can write j2ðsÞ=s2 → 1=15.
We instead replace j2ðsÞ=s2 with α=15 where α is a fudge
factor that then we match to the numerical solution.
Therefore, for the modes that are superhorizon during
the radiation-dominated era, one can write

∂
∂tmes

I ðgÞðk;K; tmesÞ−Hk
∂
∂kI

ðgÞðk;K; tmesÞ

−
i

aðtmesÞ
k̂ ·KI ðgÞðk;K; tmesÞ

¼−
8ακ2

15
ρ̄νðtmesÞ

Z
tmes

0

dtmicI ðgÞðk;K; tmes− tmicÞ; ð87Þ

where I ðgÞðk;K; tmesÞ is the Fourier transform of the
intensity, and K is the momentum conjugate to x. The
right-hand side of this equation is still dependent of tmic.
However, one can neglect the microscopic time in
I ðgÞðk;K; tmes − tmicÞ at the early stage of radiation domi-
nance and rewrite the right-hand side of (87) in terms of
I ðgÞðk;K; tmesÞ and tmes as in the following form:

∂
∂tmes

I ðgÞðk;K; tmesÞ −Hk
∂
∂k I

ðgÞðk;K; tmesÞ

−
i

aðtmesÞ
k̂ ·KI ðgÞðk;K; tmesÞ

¼ −
8ακ2

15
ρ̄νðtmesÞtmesI ðgÞðk;K; tmesÞ: ð88Þ

Using this expression, one can write

∂
∂tmes

I ðgÞðk;K;tmesÞ−Hk
∂
∂kI

ðgÞðk;K;tmesÞ

−
i

aðtmesÞ
k̂ ·KI ðgÞðk;K;tmesÞ¼−

1

τ
I ðgÞðk;K;tmesÞ; ð89Þ
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where τ is the damping time of GW,

1

τðtmesÞ
¼ 8ακ2

15
ρ̄νðtmesÞtmes: ð90Þ

It has been shown that in the early stage of radiation
dominance, the effect of damping time on the tensor modes
that are superhorizon is not negligible. To illustrate this for
the intensity, we first write the scale factor aðtÞ after
neutrino decoupling as

aðtmesÞ ≃Ω1=4
R ð2H0tmesÞ1=2; ð91Þ

where H0 is the Hubble constant, and ΩR is the radiation
energy fraction. The Hubble parameter is also given by

HðtmesÞ ¼
1

2tmes
: ð92Þ

In this era, the neutrino energy density is given by

κ2ρ̄νðtmesÞ ≃ 6fνH2; ð93Þ

where, for three neutrino species, fν ¼ Ων=ΩR ≃ 0.4.
Therefore,

1

τðtmesÞ
¼ 16α

5

fν
tmes

: ð94Þ

When the effect of absorption can be ignored, i.e., the
conditionHτ ≫ 1 is met, we recover the ordinary Liouville
equation for the gravitational wave. In this limit, using (80),
we can show that the energy density of GW behaves as
ρðgÞðx; tmesÞ ∝ a−4ðtmesÞ times an oscillatory factor that is
due to the gradient term on the left-hand side of (80).
From the expression (79) and in a comoving frame,
one would expect a similar scaling for the intensity as
IðgÞðk;x; tmesÞ ∝ a−4ðtmesÞ. Now, to obtain such a result
for IðgÞðk;x; tmesÞ from Eq. (78), one must assume
IðgÞðk;x; tmesÞ ∝ k−4. Given this scaling behavior (which
implies that the anisotropic stress tensor of neutrinos just
affects the amplitude of GWs, but they do not produce a
change in frequency), the evolution Eq. (89) becomes

∂
∂tmes

I ðgÞðk;K; tmesÞ þ
�
1

2
þ 4αfν

5

�
4

tmes
I ðgÞðk;K; tmesÞ

− i
μ0K̃

2
ffiffiffiffiffiffiffiffi
tmes

p I ðgÞðk;K; tmesÞ ¼ 0; ð95Þ

where μ0 ¼ K̂ · k̂ and

K̃ ¼ 2
ffiffiffiffiffiffi
H0

p
ΩM

Ω3=4
R

K
Keq

; ð96Þ

with Keq denoting the wave number of the mode that
reenters the horizon at matter-radiation equality. The
analytical solution of this equation is in the following form:

I ðgÞðk;K; tmesÞ

¼ I ðgÞðk;K; tendÞ
� ffiffiffiffiffiffiffiffi

tend
tmes

r �
4ð1þδÞ

eiK̃μ
0ð ffiffiffiffiffiffi

tmes
p

−
ffiffiffiffiffi
tend

p Þ; ð97Þ

where δ ¼ 8αfν=5, and I ðgÞðk;K; tendÞ is the GW intensity
at the end of inflation. Taking the Fourier transform of (97)
yields

IðgÞðk;x0; tmesÞ¼
� ffiffiffiffiffiffiffiffi

tend
tmes

r �
4þ32fν=5

Z
d3K
ð2πÞ3I

ðgÞðk;K; tendÞ

×eiK̃μ
0ð ffiffiffiffiffiffi

tmes
p

−
ffiffiffiffiffi
tend

p ÞeiK·x0 ; ð98Þ

where x0 is the observer location. Now, using the following
general decomposition,

eiμ
0Kx ¼

X∞
l¼0

ilð2lþ 1ÞjlðKxÞÞPlðμ0Þ; ð99Þ

and the expansion,

I ðgÞðk;K; tendÞ ¼ I ðgÞðk; K; tendÞ
X
LM

cILMY
M
L ðK̂Þ; ð100Þ

where jlðxÞ is the spherical Bessel function, PlðμÞ is the
Legendre polynomials, and YM

L ðK̂Þ is the spherical har-
monics, we find at x0 ¼ 0,

IðgÞðk;x0 ¼ 0; tmesÞ

¼
� ffiffiffiffiffiffiffiffi

tend
tmes

r �
4ð1þδÞX

LMl

Z
d3K
ð2πÞ3 I

ðgÞðk; K; tendÞ

× cILMY
M
L ðK̂Þilð2lþ 1Þ

× jlðK̃ð
ffiffiffiffiffiffiffiffi
tmes

p
−

ffiffiffiffiffiffiffi
tend

p ÞÞPlðμ0Þ: ð101Þ

Taking the monopole term L ¼ M ¼ 0, we get

IðgÞðk;x0 ¼ 0; tmesÞ

¼
� ffiffiffiffiffiffiffiffi

tend
tmes

r �
4ð1þδÞ cI00

4π5=2

Z
dK K2I ðgÞðk; K; tendÞ

× j0ðK̃ð ffiffiffiffiffiffiffiffi
tmes

p
−

ffiffiffiffiffiffiffi
tend

p ÞÞ: ð102Þ

At the early stages of the radiation-dominated epoch, the
interaction with the fermion bath decreases the amplitude
of the GW intensity by a factor δ ∼ 0.64α.
At the end of this section, we will estimate the factor α by

comparing our results with [30,34]. We first show that
the same suppression factor δ ∼ 0.48α could be also
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obtained from Eq. (83). Considering the approximation
j2ðsÞ=s2 → α=15 in the stress tensor (86), one finds

ḧijðx; tmesÞ þ
�
3

2
þ 8αfν

5

�
1

tmes

_hijðx; tmesÞ

−
∇2

a2ðtmesÞ
hijðx; tmesÞ ¼ 0: ð103Þ

We write hijðuÞ ¼ hijðu0ÞχðuÞ, where, in a radiation-
dominated background, u ¼ 2K

ffiffiffiffiffiffiffiffi
tmes

p
. In the absence of

the anisotropic stress, the solution of this equation becomes
χðuÞ ¼ j0ðuÞ, where j0 is spherical Bessel function. In the
presence of the anisotropic stress, the Eq. (103) can be
solved approximately with the overall scaling hijðx; tmesÞ ∝
ð ffiffiffiffiffiffiffiffi

tmes
p Þ−1−2δ times an oscillating factor coming from the
Laplacian term. Therefore, using (79), we find the time
behavior of ρðgÞðx; tmesÞ as

ρðgÞðx; tmesÞ ∝ a2ðtmesÞ _hijðx; tmesÞ _hijðx; tmesÞ

∝
�

1ffiffiffiffiffiffiffiffi
tmes

p
�

4ð1þδÞ
; ð104Þ

which is the same as the scaling behavior that we found
using (95).
The exact solution of Eq. (103) is also given as in the

following form:

χðuÞ ¼ 1

2
πχðu0Þu2δþ3=2

0 u−2δ−1=2ðJ2δþ3=2ðu0ÞY2δþ1=2ðuÞ
− Y2δþ3=2ðu0ÞI2δþ1=2ðuÞÞ; ð105Þ

where JαðuÞ and YαðuÞ are Bessel functions of the first and
the second kind, respectively, and χðu0Þ is fixed by
performing matching with the initial condition at u0. For
u > 1, the solution (105) can be approximated as follows:

χðuÞ ¼ χðu0Þ
Γð2δþ 3=2Þ

π1=2

�
2

u

�
2δþ1

sinðuÞ: ð106Þ

In Fig. 1, we have illustrated the analytical solution (106)
for α ¼ 2=7. We have also compared χðuÞ with the solution
j0ðuÞ and the asymptotic solution Aj0ðuÞ with the sup-
pression factor A ¼ 0.8 suggested in [30]. The χðuÞ departs
from the δ ¼ 0 solution j0ðuÞ and approaches the asymp-
totic solution 0.8j0ðuÞ around u ¼ 3, as illustrated in Fig. 1.
Now that we have fixed the parameter α, the suppression

factor of the GW intensity is obtained as δ ¼ 0.183. It is
worth mentioning that the SGWB also passes through the
matter-dominated era until observed at present time.
According to an argument given by [30], we expect that
(106) serves as an initial condition for the subsequent
evolution of the gravitational wave amplitude during the
matter-dominated era. Therefore, one should still expect the

same change in the amplitude during the matter-
dominated era.

B. Influence on the polarization of GW

In this part, we provide the system of differential
equations given by QBE that describe the time evolution
of the GW’s Stokes parameters in the radiation and matter-
dominated epochs. To this end, we first define the vector P
in terms of the gravitational Stokes parameters as the form,

PðgÞ;¼ ðI ðgÞ;QðgÞ;UðgÞ; iVðgÞÞ: ð107Þ

Using this vector and assuming the scaling behavior as
PðgÞðk;K; tmesÞ ∝ k−4, one can represent the evolution
equations (65) in the following form:

∂
∂tmes

PðgÞðk;K; tmesÞ þ 4HPðgÞðk;K; tmesÞ

−
i

aðtmesÞ
μ0KPðgÞðk;K; tmesÞ

¼ −8κ2ρ̄νðtmesÞ
Z

tmes

0

dtmic
j2ðsÞ
s2

MPðgÞðk;K; tmes; tmicÞ;

ð108Þ
where

M ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

1
CCCA ð109Þ

is the symmetric diagonal matrix. Therefore, we have a
system of first-order time nonlocal differential equations
that can be numerically integrated in an expanding universe
background. Using Eq. (108) and the same method as in the
previous section, we can calculate the V parameter during
radiation dominance as follows:

FIG. 1. The solid-red curve shows the analytical solution
Eq. (105) with α ¼ 2=7 compared to the fν ¼ 0 solution j0ðuÞ
(dot-dashed, black) and the asymptotic solution 0.8j0ðuÞ
(dashed-blue). Here, u ¼ 2K

ffiffiffiffiffiffiffiffi
tmes

p
.
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VðgÞðk;x0 ¼ 0; tmesÞ ¼
� ffiffiffiffiffiffiffiffi

tend
tmes

r �
4ð1−δÞX

LMl

Z
d3K
ð2πÞ3 V

ðgÞðk; K; tendÞcVLMYM
L ðK̂Þilð2lþ 1Þ

× jlðK̃ð
ffiffiffiffiffiffiffiffi
tmes

p
−

ffiffiffiffiffiffiffi
tend

p ÞÞPlðμ0Þ; ð110Þ

where VðgÞðK; tendÞ is the V-mode parameter at the end of
inflation. Very interestingly, the source term associated
with the V-mode polarization of GWs changes sign.
Therefore, contrary to the damping effect in the intensity
and the linear polarization, the V-mode polarization is
amplified by interaction with the medium containing
decoupled relativistic fermions. The interaction causes

ρðgÞij → ρðgÞji , which, in turn, changes the sign of the V
parameter. The parity transformation of the interaction
Hamiltonian is a clue to identify the sign change of V.
As it was shown, the interaction Hamiltonian is not
invariant under parity transformation and interchanges
the right- and left- handed circular polarization modes.
Therefore, one can write

V ¼ VR − VL →
P
VL − VR ¼ −V; ð111Þ

where VL and VR denote the left- and right-handed
V modes.

V. CONCLUSIONS

We have discussed that QBE is a powerful and com-
monly used tool in the investigation of open quantum
systems. In the conventional form of the QBE, the Born-
Markov approximation is employed. The Markovian QBE
is a time-local equation in which one ignores all memory
effects. Recent studies show a wide range of applications of
the Markovian QBE in the CMB, neutrino physics, and
GWs. In this work, we consider memory effects beyond the
Markovian approximation and generalize the QBE so that it
can be used to describe the non-Markovian processes.
Moreover, the conventional form of the Markovian QBE is
only applicable to reversible processes. We discussed that
for such processes, the effective interaction Hamiltonian
describing the process at the microscopic scales is invariant
under time reversal operation. However, the effective
interaction Hamiltonian associated with an irreversible
process such as absorption transforms to the effective
interaction Hamiltonian of the inverse process under time
reversal transformation. We have extended the QBE to a
new form that can also describe the irreversible phenom-
ena. Among the many possible applications, in this work,
we have used this new equation to explain the phenomenon
of gravitational-waves damping during their propagation in
an environment consisting of decoupled relativistic fer-
mions using this approach. Using the non-Markovian QBE
we obtained an integro-differential equation describing the
irreversible dynamics of the reduced graviton system. Here,

we computed the time evolution equation of the GW
intensity, although we have shown that this equation is
quite consistent with the equation previously calculated to
explain the damping of the GWs due to free streaming
neutrinos in the early Universe.
The non-Markovian equations are usually difficult to

treat analytically. It would be very interesting to investigate
the resulting non-Markovian equations for the density
matrix of GWs numerically; however, it is left for future
works. We instead considered the limit of the early stage of
the radiation-dominated era during which, one can drasti-
cally reduce the complexity due to memory effects. The
analytical solution for the GW intensity showed that
interaction with the ultrarelativistic fermion environment
gives rise to a damping effect that induces a suppression in
the intensity by a factor δ ¼ 0.64α more than the condition
that there is no contact with the environment.
We then fixed the parameter α in such a way that we first

obtained an analytical solution for (105), and by comparing
our result with the asymptotic solution previously obtained
by [30], we found α ¼ 2=7. Therefore, the suppression
factor during radiation-dominated era was found as
δ ¼ 0.183.
Additionally, another new aspect of our study, we

showed the propagation of a circularly polarized SGWB
in an environment of ultrarelativistic fermions that cause an
enhancement to the Stokes parameter V in contrast with the
intensity and the linear polarization. This is because the
interaction with the environment changes the handedness of
the circularly polarized GWs that in turn causes V → −V.
This makes an amplification by a factor δ ¼ 0.64α ¼ 0.183
for the V mode polarization. However, note that the
polarized SGWB also passes through the matter-dominated
era until observed at present time. The suppression
obtained during the radiation dominated era provides the
initial condition for the subsequent evolution during the
matter-dominated era.
We can also make a general statement about the

amplification of the V-mode polarization due to the
coupling of GWs with a background matter field. In
general, the linear interaction between the GWs and
background matter is characterized through κhμνTðMÞμν,
in which, TðMÞμν describes the energy-momentum tensor of
matter fields such as photon or dark matter. Inserting this
interaction term into the QBE, one can verify that the
absorption of a flux of circularly polarized GWs by a
background of matter fields will amplify the V mode
polarization if TðMÞμν is invariant under the parity
transformation.
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APPENDIX: CALCULATION OF
EXPECTATION VALUES

1. Equal-time operators

In the equilibrium condition, the creation and annihila-
tion operators satisfy equal-time commutation relations,

½asðp; tÞ; a†s0 ðp0; tÞ� ¼ ð2πÞ32p0δ3ðp − p0Þδss0 ; ðA1Þ

and

fbrðq; tÞ; b†r0 ðq0; tÞg ¼ ð2πÞ3δ3ðq − q0Þδrr0 : ðA2Þ

Using the above relations, one can calculate the connected
equal-time expectation value of operators that is propor-
tional to the density matrix. Before, we would like to
emphasize that the correct expression for the expectation
values containing all the information are those that involve
connected pieces. The connected expectation value is
defined as follows:

ha†1a2i ¼ ha†1iha2i þ ha†1a2ic: ðA3Þ

With this in mind, we begin to calculate the equal-time
expectation values for gravitons and ultrarelativistic fer-
mions. First, we calculate the so called two-point equal-
time expectation values. In general, the expectation value
for gravitons is given by [10]

ha†mðp0; tÞanðp; tÞic ¼ tr½ρ̂ðgÞa†mðp0; tÞanðp; tÞ� ¼
Z

d3p1

ð2πÞ3 hp1jρ̂ðgÞa†mðp0; tÞanðp; tÞjp1i: ðA4Þ

Now, using the graviton density operator (36), we have

ha†mðp0; tÞanðp; tÞic ¼
Z

d3p1

ð2πÞ3
Z

d3p2

ð2πÞ3 ρ
ðgÞ
ij ðp2; tÞhp1ja†i ðp2; tÞajðp2; tÞa†mðp0; tÞanðp; tÞjp1i; ðA5Þ

where jp1i is the one-particle graviton state with momentum p1 that is given by

jp1i ¼
1

2p0
1

a†sðp1; tÞj0i: ðA6Þ

Therefore, using the commutation relation (A1), we have

ha†mðp0; tÞanðp; tÞic ¼
Z

d3p1

ð2πÞ3
Z

d3p2

ð2πÞ3
1

4ðp0
1Þ2

ρðgÞij ðp2; tÞð2πÞ98ωp1
ωp2

ωpδliδjmδnlδ
3ðp1 − p2Þδ3ðp2 − p0Þδ3ðp − p1Þ

¼ 2p0ð2πÞ3δðp − p0ÞρðgÞnmðp; tÞ: ðA7Þ

In the same way and using the anticommutation relation (A2), we find

hb†mðq0; tÞbnðq; tÞic ¼ ð2πÞ3δ3ðq − q0ÞρðfÞnmðq; tÞ: ðA8Þ

FIG. 2. Diagrammatic representation of the expectation values
of four operators.
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The four-point equal-time expectation values are calculated as follows [8,41]:

ha†s0
1
ðp0

1; tÞas1ðp1; tÞa†s0
2
ðp0

2; tÞas2ðp2; tÞic ¼ 4p0
1p

0
2ð2πÞ6δ3ðp1 − p0

1Þδ3ðp2 − p0
2ÞρðgÞs1s01

ðp1; tÞ
× ρðgÞs2s02

ðp2; tÞ þ 4p0
1p

0
2ð2πÞ6δ3ðp1 − p0

2Þδ3ðp2 − p0
1Þ

× ρðgÞs2s01
ðp2; tÞρðgÞs1s02

ðp1; tÞ þ 2p0
2ð2πÞ3δ3ðp2 − p0

1Þ
× ρðgÞs2s01

ðp2; tÞh½as1ðp1; tÞ; a†s0
2
ðp0

2; tÞ�i; ðA9Þ

where the subscript “c” denotes the sum of all diagrams connected to the external lines. The expectation value of the
commutator is calculated as in the following, we write

h½asðp; tÞ; a†s0 ðp0; tÞ�i ¼
Z

d3p1

ð2πÞ3
Z

d3p2

ð2πÞ3 ð2πÞ
32p0δ3ðp − p0Þδss0ρðgÞij ðp2; tÞhp1ja†i ðp2; tÞajðp2; tÞjp1i

¼ ð2πÞ32p0δ3ðp − p0Þδss0NðgÞ

¼ ð2πÞ32p0δ3ðp − p0Þδss0 ; ðA10Þ

where NðgÞ is the number of gravitons,

NðgÞ ¼ ð2πÞ3δ3ð0Þ
Z

d3p1

ð2πÞ3 ρ
ðgÞ
ii ðp1; tÞ; ðA11Þ

and is assumed to be equal to 1. Therefore, the expected value of four operators is obtained in a similar way to the Wick’s
theorem as follows:

ha†s0
1
ðp0

1; tÞas1ðp1; tÞa†s0
2
ðp0

2; tÞas2ðp2; tÞic ¼ 4p0
1p

0
2ð2πÞ6δ3ðp1 − p0

1Þδ3ðp2 − p0
2ÞρðgÞs1s01

ðp1; tÞ
× ρðgÞs2s02

ðp2; tÞ þ 4p0
1p

0
2ð2πÞ6δ3ðp1 − p0

2Þδ3ðp2 − p0
1Þ

× ρðgÞs2s01
ðp2; tÞρðgÞs1s02

ðp1; tÞ þ 4p0
1p

0
2ð2πÞ6δ3ðp2 − p0

1Þδ3ðp1 − p0
2Þδs1s02ρ

ðgÞ
s2s01

ðp2; tÞ
≃ 4p0

1p
0
2ð2πÞ6δ3ðp2 − p0

1Þδ3ðp1 − p0
2Þδs1s02ρ

ðgÞ
s2s01

ðp2; tÞ; ðA12Þ

where, in the last line, we have kept the linear term in terms of ρðgÞ. In Fig. 2, we have diagrammatically shown this
expression. In the same manner, we have

hb†r0
1
ðq0

1; tÞbr1ðq1; tÞb†r0
2
ðq0

2; tÞbr2ðq2; tÞic ¼ ð2πÞ6δ3ðq1 − q0
1Þδ3ðq2 − q0

2ÞρðfÞr1r01
ðq1; tÞρðfÞr2r02

ðq2; tÞ
− ð2πÞ6δ3ðq1 − q0

2Þδ3ðq2 − q0
1ÞρðfÞr1r02

ðq2; tÞρðfÞr2r01
ðq1; tÞ

þ ð2πÞ3δ3ðq2 − q0
1ÞρðfÞr2r01

ðq2; tÞhfbr1ðq1; tÞ; b†r0
2
ðq0

2; tÞgi
≃ ð2πÞ3δ3ðq2 − q0

1ÞρðfÞr2r01
ðq2; tÞhfbr1ðq1; tÞ; b†r0

2
ðq0

2; tÞgi
¼ ð2πÞ6δ3ðq2 − q0

1Þδ3ðq1 − q0
2Þδr1r02ρ

ðfÞ
r2r01

ðq2; tÞ; ðA13Þ

where we have assumed that the number of fermions is equal to 1, and therefore, the expectation value of anticommutation
relation is given by

hfbrðq0; tÞ; b†r0 ðq0
2; tÞgi ¼ ð2πÞ3δ3ðq − q0Þδrr0 : ðA14Þ

In all of the above expectation values, we can take t to be the mesoscopic time tmes.
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2. Unequal-time expectation values

As was mentioned, it is convenient that in equilibrium
quantum field theory, we define the operator algebra for the
bosonic and the fermionic creation and annihilation oper-
ators by the equal-time canonical commutation and anti-
commutation relations. However, for out-of-equilibrium
calculations, there are additional complications that do
not appear in equilibrium condition. One of them is that
in nonequilibrium conditions, we often have to apply time-
dependent commutation or anticommutation relations. In
such condition, the Schwinger-Keldysh, in-in or closed-
time-path formalism [53,54] is applied to calculate the
evolution and expectation values of observables that usually
are in the Heisenberg picture. This formalism has been
applied in cosmology, condensed matter problems, and in
studying heavy ion collisions (for a detailed discussion, we

refer to Refs. [41–45]). In particular, it has been used for
computing cosmological correlations during cosmological
inflation, as well as during preheating after inflation, for the
dynamics of phase transitions in the early Universe, and to
study the dynamics of baryogenesis [69,70].
Here, we present a general discussion of the calculation

of the time correlation functions. For a system at equilib-
rium conditions, such correlation functions depend only on
the time interval t − t0,

hAðtÞBðt0Þi ¼ Cðt − t0Þ: ðA15Þ

For instance, we compute the non-equal-time expectation
values for gravitons under the assumption that gravitons do
not interact with the environment,

ha†mðp0; t0Þanðp; tÞic ¼
Z

d3p1

ð2πÞ3
Z

d3p2

ð2πÞ3 ρ
ðgÞ
ij ðp2; τÞhp1; τja†i ðp2; τÞajðp2; τÞa†mðp0; t0Þanðp; tÞjp1; τi

¼
Z

d3p1

ð2πÞ3
1

2p0
1

ρðgÞlj ðp1; τÞh0j½ajðp1; τÞ; a†mðp0; t0Þ�½anðp; tÞ; a†l ðp1; τÞ�j0i

¼ ð2πÞ32p00δ3ðp − p0ÞρðgÞmnðp0; τÞCðt − t0Þ; ðA16Þ

where CðtÞ is time-dependent Green’s function of creation and annihilation operators, defined as

h0j½amðp1; t1Þ; a†nðp2; t2Þ�j0i ¼ ð2πÞ32p0
1δ

3ðp1 − p2ÞδmnCðt1 − t2Þ; ðA17Þ

with the semigroup property that Cðt1ÞCðt2Þ ¼ Cðt1 þ t2Þ [44]. Therefore, we can write

ha†mðp0; t0Þanðp; tÞic ¼ 2p0ð2πÞ3δ3ðp − p0ÞρðgÞnmðp; t − t0Þ: ðA18Þ

In the same way, for fermions, we have

hb†mðq0; t0Þbnðq; tÞic ¼ ð2πÞ3δ3ðq − q0ÞρðfÞnmðq; t − t0Þ: ðA19Þ

We are interested in the four-point unequal-time expectation values. As it was assumed, the environment is in the
equilibrium state. Therefore, for the fermions, we can write

hb†r0
1
ðq01; t01Þbr1ðq1; t1Þb†r0

2
ðq02; t02Þbr2ðq2; t2Þic ¼ ð2πÞ6δ3ðq1 − q0

1Þδ3ðq2 − q0
2ÞρðfÞr1r01

ðq1; t1 − t01Þ
× ρðfÞr2r02

ðq2; t2 − t02Þ − ð2πÞ6δ3ðq1 − q0
2Þδ3ðq2 − q0

1Þ
× ρðfÞr1r02

ðq1; t02 − t1ÞρðfÞr2r01
ðq2; t2 − t01Þ þ ð2πÞ6δ3ðq1 − q0

2Þ
× δ3ðq2 − q0

1Þδr1r02ρ
ðfÞ
r2r01

ðq2; t2 − t01Þ
≃ ð2πÞ6δ3ðq1 − q0

2Þδ3ðq2 − q0
1Þδr1r02ρ

ðfÞ
r2r01

ðq2; t2 − t01Þ; ðA20Þ

where, in the last line, we have kept the linear term in terms of ρðfÞ. Based on what was discussed, the system of gravitons is
in out-of-equilibrium conditions, and therefore, the semigroup condition no longer applies to it. Accordingly, we write the
two-point unequal-time expectation value as in the following form:
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ha†mðp0; t0Þanðp; tÞic ¼ 2p0ð2πÞ3δ3ðp − p0ÞρðgÞnmðp; t; t0Þ: ðA21Þ

The four-point unequal-time expectation value is represented in the following form:

ha†s0
1
ðp0

1; t
0
1Þas1ðp1; t1Þa†s0

2
ðp0

2; t
0
2Þas2ðp2; t2Þic ¼ 4p0

1p
0
2ð2πÞ6δ3ðp1 − p0

1Þδ3ðp2 − p0
2ÞρðgÞs1s01

ðp1; t1; t01Þ
× ρðgÞs2s02

ðp2; t2; t02Þ þ 4p0
1p

0
2ð2πÞ6δ3ðp1 − p0

2Þδ3ðp2 − p0
1Þ

× ρðgÞs2s01
ðp2; t2; t01ÞρðgÞs1s02

ðp1; t02; t1Þ þ 4p0
1p

0
2ð2πÞ6δ3ðp1 − p0

2Þ
× δ3ðp2 − p0

1Þδs1s02ρ
ðgÞ
s2s01

ðp2; t2; t01Þ
≃ 4p0

1p
0
2ð2πÞ6δ3ðp1 − p0

2Þδ3ðp2 − p0
1Þδs1s02ρ

ðgÞ
s2s01

ðp2; t2; t01Þ: ðA22Þ

In the same manner, we can calculate the following expressions:

has1ðp1; t1Þa†s2ðp2; t2Þa†i ðk; tÞajðk; tÞic ≃ ð2πÞ64p0
1k

0δð3Þðp1 − p2Þδ3ð0Þδs1s2ρjiðk; tÞ
þ ð2πÞ64p0

1k
0δð3Þðp1 − kÞδ3ðk − p2Þδs1iρjs2ðk; t; t2Þ; ðA23Þ

and

has1ðp1; t1Þa†i ðk; tÞajðk; tÞa†s2ðp2; t2Þic ≃ ð2πÞ64k0p0
1δ

ð3Þðp1 − p2Þδð3Þð0Þδs1s2ρjiðk; tÞ
þ ð2πÞ64k0p0

1δ
ð3Þðp1 − kÞδð3Þðk − p2Þδs1iρjs2ðk; tÞ

þ ð2πÞ64k0p0
1δ

ð3Þðk − p2Þδð3Þðp1 − kÞδs2jρs1iðp1; t1; tÞ: ðA24Þ
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