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We analyze field fluctuations during an ultra slow-roll phase in the stochastic picture of inflation and the
resulting non-Gaussian curvature perturbation, fully including the gravitational backreaction of the field’s
velocity. By working to leading order in a gradient expansion, we first demonstrate that consistency with
the momentum constraint of general relativity prevents the field velocity from having a stochastic source,
reflecting the existence of a single scalar dynamical degree of freedom on long wavelengths. We then focus
on a completely level potential surface, V ¼ V0, extending from a specified exit point ϕe, where slow roll
resumes or inflation ends, to ϕ → þ∞. We compute the probability distribution in the number of e-foldsN
required to reach ϕe, which allows for the computation of the curvature perturbation. We find that, if the
field’s initial velocity is high enough, all points eventually exit through ϕe and a finite curvature
perturbation is generated. On the contrary, if the initial velocity is low, some points enter an eternally
inflating regime despite the existence of ϕe. In that case, the probability distribution for N , although
normalizable, does not possess finite moments, leading to a divergent curvature perturbation.
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I. INTRODUCTION

The ΔN formalism is a very convenient way to compute
the curvature perturbation generated during inflation. Its
basic tenet is that quantum fluctuations stretched to super-
horizon scales introduce randomness in the total number of
e-folds at different points in the universe, with this number
of e-folds counted from a given initial spatially flat time
slice to a given final uniform ϕ time slice. This final time
slice is determined by a prescribed condition on the scalar
field—for example, that slow roll, and presumably infla-
tion, ends. This difference in the number of e-folds between
different spatial points directly gives the scalar curvature
perturbation. The idea that a time delay encodes the
curvature perturbation induced by the fluctuations of the
inflaton goes back to the early days of inflationary
cosmology and was already used in some of the pioneering
papers on inflationary pertubations [1,2]. The relation of
classicalized, super-Hubble modes to a time delay in the
dynamics was clearly explained in Ref. [3]. The concept
was further formalized and connected to the conserved
gauge invariant curvature perturbation in Ref. [4] and later
in Refs. [5,6]. More recently, it was reintroduced and
elaborated in Refs. [7,8]—see also, e.g., Refs. [9,10].
In the usual slow-roll scenario, the number of e-folds

between the prescribed time slices is dominated by the

classical/deterministic result, and random perturbations are
introduced only as a fluctuation of the initial condition in ϕ,
generated when a given mode exits the Hubble radius. In
this regime, the evolution of the probability distribution is
dominated by the drift term of the Fokker-Planck equation.
However, when the potential is very flat, as in the case of
ultra slow roll [11–15], and the drift term is small, the slow-
roll formula for the curvature perturbation cannot be used
anymore, and the e-fold number becomes an essentially
stochastic quantity. When asking for the time it takes for the
field to reach the prescribed value ϕe, we are thus facing a
first-passage time problem in the stochastically evolving
system: Given an initial condition, how many e-foldsN are
needed for ϕe to be reached? The total number of e-folds
becomes a stochastic quantity described by a probability
distribution ϱðN Þ, such that ϱðN ÞdN is the probability
that the field will reach ϕe for the first time within the
interval ½N ;N þ dN Þ of e-folds [16–21]. As alluded to
above, one can define the first passage with respect to any
desirable condition labeled by ϕe and defined by a constant
field hypersurface where ϕ ¼ ϕe, such as inflation ending
or the commencement of another distinct phase.
The curvature perturbation generated during a phase of

ultra slow roll (USR) has attracted considerable attention
recently [22–29] due to the possibility that it leads to an

PHYSICAL REVIEW D 104, 083505 (2021)

2470-0010=2021=104(8)=083505(18) 083505-1 © 2021 American Physical Society

https://orcid.org/0000-0003-4284-4802
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.083505&domain=pdf&date_stamp=2021-10-01
https://doi.org/10.1103/PhysRevD.104.083505
https://doi.org/10.1103/PhysRevD.104.083505
https://doi.org/10.1103/PhysRevD.104.083505
https://doi.org/10.1103/PhysRevD.104.083505


enhanced curvature perturbation and a related enhanced
primordial black hole production—see Ref. [30] for a
recent review on cosmological implications of primordial
black holes. In this work we revisit the problem, taking the
scalar sector of gravity fully into account. We place the
computation within the framework of a long-wavelength
(leading gradient) approximation to the equations of gen-
eral relativity for an inhomogeneous universe: we retain full
nonlinearities but drop terms that are second order in spatial
gradients, and properly take into account the field’s velocity
and the corresponding gravitational backreaction. Quantum
fluctuations are then consistently included as a random
forcing of the dynamical equation of the scalar field, a well-
established approximation for IR quantum fields in infla-
tionary spacetimes [16,31–36]. We find that imposing the
0i Einstein equation, the GR momentum constraint, leads
to the field ϕ being the only dynamical stochastic variable.
The field’s velocity is constrained and does not obey an
independent equation involving different stochastic kicks
at different spatial points, unlike what a naive “separate
universe” argument would imply. This is a nonlinear
generalization of the linear perturbation theory result for
k=aH → 0 [4,37].
We apply the formalism to a simple problem: the

curvature fluctuation generated in an extreme version of
USR where the field is injected at some point ϕin with
velocity Πin on a totally flat potential V ¼ V0. We find two
separate regimes, depending on the distance from ϕin to the
exit point ϕe and the initial velocity. If this distance is larger
than the length of the classical trajectory, corresponding to
a low injection velocity Πin, the field experiences what we
call the stochastic conveyor belt model for USR: in some
parts of the universe, the initial velocity is forgotten and
the field explores the infinite semiline ϕ → ∞, never fully
reaching ϕe. The resulting probability distribution for the
total number of e-folds N is normalizable but does not
have finite moments, leading to the infinite inflation
observed in Refs. [38,39]. However, if the distance is
smaller than the length of the classical trajectory, corre-
sponding to a high injection velocity Πin, graceful exit does
occur, and inflation eventually terminates in all points of
the universe. The curvature perturbation is then finite and is
described by a highly non-Gaussian probability distribution
that we compute.
Obviously, the infinite inflation regime will not be

reached in realistic single-field models, where USR takes
place only on a finite portion of the potential. This paper
then serves an expository function for the developed
techniques, involving mainly the use of the Hamilton-
Jacobi equation for inflationary evolution, the consistent
inclusion of stochastic fluctuations, and the description of
the stochastic conveyor belt mechanism. These techniques
will be used to analyze more realistic USR potentials in a
forthcoming publication [40].

II. LONG-WAVELENGTH SCALAR
PERTURBATIONS

We start by recalling the long-wavelength approach of
Ref. [4] (see also Ref. [41]), which will take us to the
starting point of our stochastic analysis. Considering the
metric in its ADM parametrization,

g00 ¼ −N2 þ γijNiNj; g0i ¼ Ni; gij ¼ γij; ð1Þ

where N and Ni are the lapse function and shift vector,
respectively, the Einstein equations for gravity plus a single
scalar field ϕ give the GR energy and momentum con-
straints (00 and 0i Einstein equations)

K̄ijK̄ij −
2

3
K2 − ð3ÞRþ 16πGε ¼ 0; ð2Þ

K̄j
ijj −

2

3
Kji þ 8πGΠϕji ¼ 0; ð3Þ

the dynamical equations for the extrinsic curvature tensor
of the 3-slices Kij ¼ K̄ij þ 1

3
Kγij are

∂K
∂t −NiKji

¼ −Njiji þN

�
3

4
K̄ijK̄ij þ 1

2
K2 þ 1

4
ð3ÞRþ 4πGS

�
; ð4Þ

∂K̄i
k

∂t þ NijlK̄l
k − NljkK̄i

l − NlK̄i
kjl

¼ −Njijk þ
1

3
Njljlδik þ N

h
KK̄i

k þ ð3ÞR̄i
k − 8πGS̄ik

i
ð5Þ

(stemming from the ij Einstein equation), and the equation
of motion for the scalar field is

1

N

�∂Π
∂t −NiΠji

�
−KΠ−

1

N
Njiϕji−ϕjiϕjiþdV

dϕ
¼0: ð6Þ

In the above, the field momentum Π is defined as

Π ¼ 1

N

�∂ϕ
∂t − Niϕji

�
; ð7Þ

the extrinsic curvature 3-tensor is

Kij ¼ −
1

2N

�∂γij
∂t − Nijj − Njji

�
; ð8Þ

and the scalar’s energy density and the stress tensor on the
3-slices read

ε ¼ 1

2
ðΠ2 þ ϕjiϕjiÞ þ VðϕÞ ð9Þ
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and

Sij ¼ ϕjiϕjj þ γij

�
1

2
Π2 −

1

2
ϕjiϕji − VðϕÞ

�
: ð10Þ

Avertical bar denotes a covariant derivative with respect to
the 3-metric γij, which is also used to raise or lower spatial
indices.
The approximation we use to study the nonlinear long-

wavelength configurations relevant for inflation is to only
keep terms containing the leading order in spatial deriv-
atives. This is underpinned by the expectation that on scales
aL > H−1 the dynamics is dominated by time derivatives
such that for any quantity Q, the inequality ke−α∇Qk <
j∂tQj will be true, where _α denotes the local expansion
rate [see Eqs. (15) and (17) below], a statement that in
inflation is expected to eventually hold for all scales of
interest. Furthermore, to simplify the equations, we choose
to consider coordinate systems constructed such that
Ni ¼ 0. This gauge choice fixes three gauge degrees of
freedom, leaving one gauge function unfixed; its elimina-
tion can be achieved—e.g., by further choosing a specific
form for the lapse function N. Under these assumptions, we
get from Eq. (5) that the traceless part of the extrinsic
curvature evolves according to

∂K̄i
k

∂t ¼ NKK̄i
k: ð11Þ

The 3-metric can be further decomposed as

γij ¼ e2αhij; ð12Þ

where Dethij¼1 and therefore hij ∂
∂thij¼0. We then have

K ¼ −3_α≡ −3
1

N
∂α
∂t ; ð13Þ

from which we directly obtain

K̄i
j ¼ Ci

jðxÞe−3α; Tr½Ci
jðxÞ� ¼ 0: ð14Þ

Since during inflation αðt;xÞ represents the local gener-
alization of the number of e-folds, it grows approximately
linearly in time, and we can take it as a proxy for time
in inflation. Therefore, Eq. (14) tells us that the anisotropic
expansion rate K̄i

j—which is the nonlinear generalization
of the canonical momentum associated with gravitational
waves—declines extremely rapidly (exponentially fast)
during inflation. We are thus dynamically led to K̄i

j¼0,
and the most general 3-metric on long wavelengths can be
written as

γijðt;xÞ ¼ e2αðt;xÞhijðxÞ; ð15Þ

with the long-wavelength spacetime metric taking the form

ds2 ¼ −N2ðt;xÞdt2 þ e2αðt;xÞhijðxÞdxidxj; ð16Þ

and the 3-tensor hij is not dynamical in this approximation,
at least classically. Furthermore, we restrict the lapse
function Nðt;xÞ to vary slowly enough in space that its
spatial gradients can be neglected. Later on, we will
consider scalar quantum fluctuations, and the accompany-
ing tensor fluctuations would provide hij with a stochastic
source from subhorizon tensor modes entering the long-
wavelength sector, and with an amplitude set by the
uncertainty principle. In this work, we focus on the
dynamics of the scalar sector of gravity, leaving that of
the stochastic evolution of the tensor sector for future study.
Defining the local expansion rate as

Hðt;xÞ≡ 1

N
∂α
∂t ; ð17Þ

we are led to a set of long-wavelength equations for the
spatially dependent field ϕðt;xÞ and expansion rateHðt;xÞ
comprising the two GR constraints: the energy [Eq. (2)] and
momentum [Eq. (3)] constraints (from now on, we set
8πG ¼ 1)1:

H2 ¼ 1

3

�
1

2
Π2 þ VðϕÞ

�
ð18Þ

and

∂iH ¼ −
1

2
Π∂iϕ; ð19Þ

the evolution of the expansion rate [Eq. (4)],

1

N
∂H
∂t ¼ −

1

2
Π2; ð20Þ

as well as the dynamical equations for the scalar field
[Eqs. (6) and (7)],

Π ¼ 1

N
∂ϕ
∂t ; ð21Þ

1

N
∂Π
∂t þ 3HΠþ dV

dϕ
¼ 0: ð22Þ

Equations (18), (20), (21) and (22) are formally the same
as those of homogeneous cosmology but are valid at each
spatial point with a priori different values of the initial

1The Newton constant 8πG ¼ 1=M2
P can always be recovered

in the equations by noting the canonical dimension of various
quantities: ½H� ¼ 1, ½ϕ� ¼ 1, ½8πG� ¼ −2, ½Π� ¼ 2, ½VðϕÞ� ¼ 4,
½hij� ¼ 0.
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conditions for ϕ and Π. This is what is sometimes referred
to as the “separate universe evolution.” However, not all
spatially inhomogeneous initial conditions are allowed on
long wavelengths, as they must also satisfy the momen-
tum constraint [Eq. (19)]. As we will see, this restricts the
possibility of assigning Π independently of the initial
value of ϕ. Indeed, for the constraint (19) to be respected,
the local expansion rate H must depend on the spatial
position only through its dependence on the spatially
varying ϕ,

Hðt;xÞ ¼ Hðϕðt;xÞ; tÞ; ð23Þ

and the field momentum must be given by

Π ¼ −2
∂H
∂ϕ : ð24Þ

Taking the time derivative of Eq. (23) and comparing with
Eq. (20), we immediately find that

�∂H
∂t

�
ϕ

¼ 0; ð25Þ

showing that the total spatiotemporal dependence of the
expansion rate is solely determined through its depend-
ence on ϕðt;xÞ:

H ¼ Hðϕðt;xÞÞ; ð26Þ

and the field momentum is therefore given by

Π ¼ −2
dH
dϕ

: ð27Þ

Hence, Π is evidently also a function of ϕ alone,
Π ¼ Πðϕðt;xÞÞ, with no explicit temporal or spatial
dependence.
When Eq. (27) is inserted into the local energy constraint

[Eq. (19)], it gives the Hamilton-Jacobi equation for the
function HðϕÞ:

�
dH
dϕ

�
2

¼ 3

2
H2 −

1

2
VðϕÞ: ð28Þ

Since Eq. (28) is a first-order differential equation, it admits
a family of solutions of the form Hðϕ; CÞ, with different
solutions parametrized by an arbitrary constant C. A
solution H ¼ Hðϕ; CÞ to Eq. (28), along with

dϕ
dt

¼ −2N
dH
dϕ

; ð29Þ

provides a complete description and the inhomogeneous
long-wavelegth scalar field configuration ϕ.2 The corre-
sponding long-wavelength metric [Eq. (16)] can then
determined via

1

N
∂α
∂t ¼ HðϕÞ: ð30Þ

It should be pointed out that by taking a ϕ derivative
of Eq. (18), one can verify that the long-wavelength field
indeed obeys

1

N
∂
∂t

�
1

N
∂ϕ
∂t

�
þ 3H

1

N
∂ϕ
∂t þ

dV
dϕ

¼ 0 ð31Þ

as expected. Although Eqs. (28)–(30) are identical to those
of homogeneous cosmology, including Eq. (31), which is
implied by them, the momentum constraint [Eq. (19)]
imposes that there is no freedom to choose initial values
for Π independently at each spatial point. Let us see why: If
Eq. (28) is considered without reference to Eq. (19), a naive
separate universe picture would imply that C ¼ Cðx⃗Þ—i.e.,
for every point x⃗ on the initial hypersurface, there would be
a separate integration constant Cðx⃗Þ. This simply encodes
the freedom to choose the initial field momentum at that
point independently of ϕ. However, a spatially inhomo-
geneous Cðx⃗Þ further leads to

∇H ¼ ð∂CHÞ∇C þ ð∂ϕHÞ∇ϕ ≠ −
1

2
Π∇ϕ: ð32Þ

Therefore, as long as ∂CH ≠ 0, it follows that ∇C ¼ 0;
otherwise, the momentum constraint [Eq. (19)] would be
violated. This restricts C to be a global constant, meaning
that the momentum Π cannot be chosen arbitrarily at each
point, but instead, all spatial points must be placed along
one and the same integral curve of Eq. (28).
The restriction ∇C ¼ 0 is a direct consequence of the

momentum constraint. However, it would not apply when
integral curves of Hðϕ; CÞ exist for which ∂CH ¼ 0. In this
case, setting ∇C ≠ 0 would not violate the momentum
constraint, since a spatially varying value of C does not
change the value of H at different spatial points. Such
integral curves are attractors of the long-wavelength sys-
tem, as one can see by taking a derivative of Eq. (28) with
respect to C, which leads to [4,41]

∂H
∂C ∝ a−3: ð33Þ

2Equation (28), often referred to as the Hamilton-Jacobi
equation in the literature, has been used in Refs. [42,43] to
study an alternative parametrization of possible homogeneous
inflationary cosmologies, including USR [12,44]. We stress that
in the present, long-wavelength context, it describes an inhomo-
geneous universe as well, as originally demonstrated in Ref. [4].
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This is equivalent to the decay of the second solution to
Eq. (31) and, as was already pointed out in Ref. [9], if this
decaying mode is neglected, the momentum constraint
places no further restriction on the long-wavelength con-
figuration; this is the case, for example, in slow-roll
inflation. In the case of motion on a constant potential
examined in this work, the decaying mode [Eq. (33)]
expresses the approach to a static field and de Sitter
spacetime—see Eq. (38), where the constant ϕ0 in that
formula plays the role of the general constant C discussed
here. Including this decaying mode is therefore crucial in
studying the slide and slowing down of the field on the
constant potential. More generally, the Hamilton-Jacobi
treatment adopted here allows the ΔN formalism to be
made fully and a priori consistent with the momentum
constraint and include the decaying mode, which is
essential in studying ultra slow roll.
We can conclude that on sufficiently large scales, at

which subleading spatial gradient terms can be neglected,
the dynamics of the inhomogeneous configuration can be
described solely in terms of ϕ, while the momentum, when
it contributes to the expansion rate, cannot be arbitrarily
chosen at different spatial points. The would-be inhomo-
geneous degree of freedom is killed by the momentum
constraint [Eq. (19)] on long wavelengths, which patches
different spatial points together. Physically, that means that
on large scales, there is a decaying inhomogeneous mode
which is necessarily suppressed by spatial derivatives, and
hence negligible in the leading gradient expansion. We
stress that this conclusion goes beyond slow roll and is
completely general, relying only on the long-wavelength
approximation. Note that slow roll trivially satisfies the
momentum constraint and is an attractor in which any
dependence of H on C is altogether suppressed exponen-
tially. The absence of a second dynamical inhomogeneous
mode is unique to single-scalar inflationary models. For a
recent study on how the inflaton canonical momentum can
be excited during inflation through its coupling to a light
spectator scalar field, see Ref. [45].
Before closing this section, we note that Eqs. (28)–(30)

and the corresponding metric (16) are valid for any choice
of time hypersurfaces (any choice of N), as long as the
corresponding spatial coordinate worldlines are constructed
orthogonally to the time slices, keeping Ni ¼ 0, and if all
terms that are second order in spatial gradients are dropped;
see Ref. [4]. For the reader’s convenience, we recall the
demonstration of this fact in Appendix A.

III. HAMILTON-JACOBI SOLUTION
IN ULTRA SLOW ROLL

We now apply the above analysis to our extremal USR
scenario, where the field moves along a very flat and
level part of the potential where VðϕÞ ≃ V0. Equation (28)
then reads

�
dH
dϕ

�
2

¼ 3

2
H2 −

1

2
V0: ð34Þ

Taking a derivative with respect to ϕ gives

dH
dϕ

�
d2H
dϕ2

−
3

2
H

�
¼ 0; ð35Þ

and the general solution can be written as

HðϕÞ ¼ H0 ¼
ffiffiffiffiffiffi
V0

3

r
; or HðϕÞ ¼ Ae−

ffiffi
3
2

p
ϕ þ Be

ffiffi
3
2

p
ϕ;

ð36Þ

where AB ¼ V0

12
. The constraints on the integration con-

stants H0 and AB are obtained by inserting the general
solutions of Eq. (35) into the original Hamilton-Jacobi
equation (34). It is convenient to redefine A and B as

A¼H0

2
C¼H0

2
e

ffiffi
3
2

p
ϕ0 ; B¼H0

2
C−1¼H0

2
e−

ffiffi
3
2

p
ϕ0 ; ð37Þ

where C and ϕ0 are global constants. With these definitions
in mind, the second solution in Eq. (36) becomes

HðϕÞ ¼ H0

2

�
Ce−

ffiffi
3
2

p
ϕ þ C−1e

ffiffi
3
2

p
ϕ
�

¼ H0 cosh

� ffiffiffi
3

2

r
ðϕ − ϕ0Þ

�
; ð38Þ

where we have replaced C with ϕ0 ¼
ffiffi
2
3

q
lnðCÞ. The

corresponding momentum (velocity) is then taken from
Eq. (24):

Π ¼ 0; or Π ¼ −
ffiffiffi
6

p
H0 sinh

� ffiffiffi
3

2

r
ðϕ − ϕ0Þ

�
: ð39Þ

The number of e-foldings α, from Eq. (17) and using the
solution for HðϕÞ Eq. (38), becomes

α ¼
Z

HNdt ¼ −
1

6
ln

�
sinh2

� ffiffiffi
3

2

r
ðϕ − ϕ0Þ

��
: ð40Þ

The above formulas completely describe the classical
field evolution along a flat potential V ¼ V0, including the
gravitational backreaction of a nonzero field velocity.
However, they require some clarification with regard to
the exact dynamics they describe. We see that if the field
starts off with a finite velocity, it evolves asymptotically
towards ϕ0, which it reaches only after an infinite amount
of e-folds. The precise value of ϕ0 depends on the initial
velocity imparted on ϕ as well as its sign: If ΠðϕinÞ > 0,
then ϕ0 > ϕðtÞ, and ϕ moves asymptotically to the right
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towards ϕ0. If ΠðϕinÞ < 0, then ϕ0 < ϕðtÞ, and ϕ moves
asymptotically to the left towards ϕ0. Of course, if
ΠðϕinÞ ¼ 0, then the field remains static, and these are
degenerate “trajectories,” where Π ¼ 0 and H ¼ H0

always. Note that they represent distinct solutions of
Eq. (28), and the field does not transition from a Π ≠ 0
to a Π ¼ 0 state during its classical evolution, nor does its
velocity change sign. The constant ϕ0 is the asymptotic end
point of each classical trajectory, and it parametrizes
different integral curves of the HJ equation (28); it is
identified with the constant C of the general discussion in
Sec. II. Note that ∂ϕ0

Hjϕ¼ϕ0
¼ 0, and therefore a static field

can become inhomogeneous without violating the momen-
tum constraint. Figure 1 summarizes the different solutions.
We therefore see that on long wavelengths and for a flat
level potential,

(1) An evolving (Π ≠ 0) long-wavelength field configu-
ration always tends at asymptotically late times
to the same field value at all spatial points:
ϕðt;xÞ → ϕ0.

(2) An arbitrary inhomogeneous field configuration is
only allowed for a static field, since ∂ϕ0

Hjϕ¼ϕ0
¼ 0

in this case. This is a nonlinear version of the
growing mode of linearized pertubations.

As emphasized above, these represent two different sol-
utions, which classically do not evolve into each other. In
the following section, we discuss how this picture changes
when quantum effects are included.

IV. STOCHASTIC EVOLUTION: THE CONVEYOR
BELT OF ULTRA SLOW ROLL

Let us now incorporate a stochastic element in the
evolution, modeling as usual quantum fluctuations
stretched to long wavelengths. We do not need to specify
the amplitude of the noise terms at this point, so we keep
them general for this discussion. Generically, any stochastic
“add-on” to the dynamics, regardless of the microscopic
origin of the extra noise terms, can be thought of as adding
an extra stochastic “kick” to the classical drift determined
by the dynamical equations. Suppose we introduce noise in
both the field and its momentum: in a discretized form of
the time evolution, their values would be updated after a
time step Δt as

Δϕ ¼ −2
∂H
∂ϕ NΔtþ ξϕNΔt;

hξϕðtÞξϕðt0Þi ¼ Aδðt − t0Þ; ð41Þ

ΔΠ ¼ −3HΠNΔtþ ξΠNΔt;

hξΠðtÞξΠðt0Þi ¼ Bδðt − t0Þ: ð42Þ

To be consistent with the constraints, H should be a
solution to the Hamilton-Jacobi equation. For the case
we are considering, it is given by Eq. (38) with either ϕ >
ϕ0 or ϕ < ϕ0 depending on the sign of the velocity—
see Fig. 1.
The energy and momentum constraints are not dynami-

cal equations, and therefore they are not to be accompanied
by some form of an extra stochastic force. As is well
known, the constraints are preserved by the classical
dynamical evolution, and any consistent stochastic exten-
sion of the dynamics should also preserve them while
the stochastic kicks are incorporated—the stochastically
updated field and momentum should respect them too. We
can achieve this by elevating the constants appearing in the
solution of the HJ equation, whose values parametrize
different possible velocities for fixed field values, to
stochastic variables. Let us now see how this can be done
in our case.

FIG. 1. The conveyor belt of stochastic ultra slow roll:
Solutions of the HJ equation of motion on a flat potential
VðϕÞ ¼ V0 are plotted. Inflation ends at ϕ ¼ 0 in this figure.
The blue and red curves are HJ solutions for fields moving to the
left (negative initial velocity), while the dashed curve shows a
trajectory that started off with positive initial velocity. These
evolving trajectories reach the H2

0 ¼ V0=3 surface only asymp-
totically after an infinite number of e-folds. Alternatively, the
field can remain stationary at some value of ϕ on one of the
H2

0 ¼ V0=3 points—a sample of them are denoted in the figure
by diamonds. Classically, the field does not transition from an
evolving state to a stationary state, and therefore the classical
phase space is partitioned into these two types of trajectories.
Stochastic fluctuations disintegrate this partition: the field can
start along one of the HJ trajectories, but it is now possible to
cross the asymptotic end point due to a stochastic jump. This end
point acts as a bifurcation point for the quantum phase space,
beyond which the field simply diffuses along the H2 ¼ V0=3
surface. The GR momentum constraint is still respected, since
Π ¼ 0 there. The system thus resembles a jiggly conveyor belt
where an initial HJ trajectory feeds into a de Sitter stage with
successive unimpeded diffusion.
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The constant ϕ0 in Eq. (39), characterizing different HJ
solutions, can be linked to the velocity, since we can write

ϕ0 ¼ ϕ −
ffiffiffi
2

3

r
arc sinh

�
−

Πffiffiffi
2

p
V1=2
0

�
; ð43Þ

and the choice of Π for fixed ϕ is reflected in ϕ0, which
also defines the breadth of field values covered by motion
on the flat potential given the initial Π of the field. If many
possible initial conditions for Π are contemplated, then ϕ0

defines the different asymptotic resting points correspond-
ing to different initial momenta Πin for a given initial
value of ϕ. A stochastic change in Π at fixed ϕ would
correspond to the field changing the HJ curve along
which it evolves, and this can be accommodated by
promoting ϕ0 to a stochastic variable which would change
according to3

Δϕ0 ¼ Δϕþ ΔΠ
3H

þ 1

18H3

∂H
∂ϕ ΔΠ2; ð44Þ

leading to

Δϕ0 ¼
NB
18H3

∂H
∂ϕ NΔtþ

�
1

3H
ξΠ þ ξϕ

�
NΔt: ð45Þ

At face value, this provides a stochastic equation for ϕ0

which would now take different values at different spatial
points. However, as we stressed above, unless ∂H

∂ϕ0
¼−∂H

∂ϕ¼
Π
2
¼0, ϕ0 should only take a global value if the momentum

constraint is to be respected. This cannot be accommodated
in Eq. (45), since, for any choice of ξϕ and ξΠ, ϕ0

necessarily develops inhomogeneities. Hence, although
one could a priori allow for stochastic changes in the
velocity through stochastically jumping between different
HJ trajectories on top of the stochastic ϕ displacement, the
momentum constraint prevents that if Π ≠ 0.
We are thus led to conclude that as long as Π ≠ 0, the

whole long-wavelegth universe can only be located on
different points of a single HJ trajectory with the following
stochastic equation:

Δϕ ¼ −2
∂Hðϕ;ϕ0Þ

∂ϕ NΔtþ ξϕNΔt;

hξϕðtÞξϕðt0Þi ¼ Aδðt − t0Þ; ð46Þ

with either ϕ > ϕ0 or ϕ < ϕ0, depending on the fixed sign
of the momentum. Once stochastic evolution takes the field
past ϕ0, memory of the initial velocity is lost, and it simply

diffuses by a free random walk on the flat potential surface
V0, obeying

Δϕ ¼ ξϕðt;xÞNΔt; hξϕðtÞξϕðt0Þi ¼ Aδðt − t0Þ: ð47Þ

In this regime, the field does jump between different HJ
trajectories—i.e., different points on the H ¼ H0 surface.
This is now allowed, as these degenerate solutions are
characterized by ∂ϕ0

Hjϕ¼ϕ0
¼ Πðϕ0Þ ¼ 0. Hence, the

momentum constraint is not violated by the universe
occupying different solutions at different spatial points
and stochastically jumping between them, becoming a
collection of classically static field values that carry no
extra energy.
Note that the quantum fluctuations have a remarkable

effect. The classical phase space, consisting of the set of
trajectories that solve the HJ equation (28) and which are
shown in Fig. 1, is split into (i) regular (nondegenerate, HJ)
trajectories, which are characterized by an initial momen-
tum Πin, the corresponding field value, ϕin ¼ ϕðΠinÞ, and
end at ϕ0 ¼ ϕ0ðΠinÞ, at which Π ¼ 0; and (ii) degenerate
trajectories characterized by Πin ¼ 0 and an arbitrary field
value ϕ0. The quantum phase space is very different,
however. A typical quantum/stochastic trajectory consists
of a classical HJ branch Πin, which ends at ϕ0 ¼ ϕðΠinÞ,
supplemented by the set of all degenerate trajectories
(Π ¼ 0, ϕ ∈ R). The point ϕ0 ¼ ϕðΠinÞ is a bifurcation
point, at which the quantum trajectory splits into two
branches: ϕ > ϕ0 and ϕ < ϕ0, see Fig. 1. This quantum
phase space picture resembles a conveyor belt for the
quantum field which starts at a point on one of the HJ
branches, diffuses downwards towards the bifurcation point
at ϕ0, and then continues diffusing along the set of points
shown as the horizontal line Π ¼ 0, H ¼ H0 ≡

ffiffiffiffiffiffiffiffiffiffiffi
V0=3

p
in Fig. 1.
Despite field fluctuations being generated, the above

picture does not carry with it a well-defined curvature
perturbation. A corresponding curvature perturbation
emerges only when an exit point ϕe is specified, where
either inflation ends or another inflationary era follows by
exiting the region where VðϕÞ ¼ V0. If ϕe lies outside the
HJ branch, we are faced with the stochastic conveyor belt
and a double first-passage-time problem: first, to transition
from a Π ≠ 0 solution onto the H ¼ H0 surface (as non-
stochastic evolution does not allow this), and second, to exit
the H ¼ H0 region by reaching ϕe. If ϕe is reached within
the HJ branch, we have a standard first-passage-time
problem, and the conveyor is not operational. We analyze
these cases in Secs. V and VI, respectively.

V. THE CASE ϕe < ϕ0: USR WITHOUT
GRACEFUL EXIT

As we demonstrated above, the gravitationally consistent
inclusion of velocity to the problem of diffusion on a flat

3Note that we are using Itô’s calculus here [46,47], and we
therefore keep ΔΠ2 terms to follow changes to order Δt. Other
choices are possible along with corresponding calculi, and the
results are invariant, since A and B are independent of ϕ.
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potential leads naturally to a two-stage process when
ϕe < ϕ0: (i) All spatial points diffuse along a single branch
of the HJ solution until ϕ0 is crossed, and then (ii) each
point that has crossed ϕ0 diffuses independently along the
level V0 potential. We therefore need to construct a first-
passage-time probability distribution for the first stage, and
for that we require the kernel (to which we shall also refer
to as the propagator) with exit boundary conditions at ϕ0,
achieved by setting PHJðϕ0; αÞ ¼ 0 [48]. The probability
current at that point then injects probability for the second
stage of the diffusion—one can thus think of the HJ branch
as a “conveyor belt” feeding the second diffusive process at
a single point ϕ0.
The stochastic equation describing the IR field dynamics

reads

dϕ ¼ −2
∂H
∂ϕ dτ þ ξϕdτ; ð48Þ

where ξϕ is the noise generated by the flow of modes
between the UVand IR sectors of the theory. When treated
perturbatively, due to an effectively time-dependent cutoff,
the leading-order contribution occurs at the tree level [16],
and on super-Hubble scales the noise is, to a good
approximation, of Markovian type:

hξϕðτÞξϕðτ0Þi ¼ Aδðτ − τ0Þ; ð49Þ

where τ ¼ R
t Nðt; x⃗Þdt0 denotes a reparametrization-

invariant time. The coupling between the ultraviolet and
long-wavelength modes can then be approximated by its
tree-level expression,

A ¼ ðσaHÞ3
2π2

ð1 − ϵÞHjϕðτ; kÞj2k¼σaH½1þOðκ2H2Þ�; ð50Þ

where κ2 ¼ 16πG is the loop-counting parameter of quan-
tum gravity and σ sets the highest (ultraviolet cutoff)
energy scale of the long-wavelength theory. For example,
when σ ¼ 1, the highest scale (smallest wavelength) is the
Hubble scale; when σ ≪ 1, the highest scale is much
smaller than the Hubble scale (or equivalently, a wave-
length much longer than H−1). Since there can be no
secular enhancement in the loop corrections in Eq. (50), the
loop suppression factor, κ2H2 ≲ 10−12 represents a fair
estimate of the accuracy of the stochastic approximation
scheme developed in this work. In order to estimate the
noise amplitude [Eq. (50)], in what follows, we work in
the approximation ϵ ≈ 0 and set σ ≪ 1, in which
case jϕðτ; kÞj2 ≃H2

0=ð2k3Þ, and the noise amplitude
simplifies to

A ≈
H3

0

4π2
ð51Þ

which is the approximation we use below. Rigorous proof
that Starobinsky’s stochastic inflation [16] reproduces the
correct infrared dynamics on de Sitter can be found in
Refs. [31–36] for interacting scalar field theories and in
Ref. [49] for quantum scalar electrodynamics. These works
demonstrate that stochastic inflation not only reproduces
the leading infrared logarithms at each order in perturbation
theory, but (when summed up) they also reveal what
happens at late times in the deep nonperturbative regime
when the large logarithms overwhelm small coupling
constants, a point first made in Ref. [50]. To directly
compute the curvature perturbation, we use the number of
e-folds α as the time variable.4 This is, in fact, required
for consistency with standard cosmological pertubation
theory—see, e.g., Ref. [21]. We therefore have the follow-
ing branches of the evolution:
HJ branch: The Langevin equation on the HJ branch is

dϕ
dα

¼ −2
∂ lnHðϕ;ϕ0Þ

∂ϕ þHðϕ;ϕ0Þ
2π

ξðαÞ; ð52Þ

with

hξðαÞξðα0Þi ¼ δðα − α0Þ ð53Þ

and an absorbing boundary condition at ϕ ¼ ϕ0. Hðϕ;ϕ0Þ
is the solution to the HJ equation, with ϕ0 determined by
the initial velocity of the field. When expressed as a
Fokker-Planck equation, this implies that the probability
density PHJðϕ; αÞ on the HJ branch obeys

∂PHJ

∂α ¼ −
∂
∂ϕ

�
−2

∂ lnH
∂ϕ PHJ

�
þ 1

2

∂2

∂ϕ2

�
H2

4π2
PHJ

�
ð54Þ

≡ −
∂J
∂ϕ ; ð55Þ

to be solved with the boundary condition PHJðϕ0; αÞ ¼ 0,
which implies that once a random walker ϕ among the
ensemble ventures to ϕ ¼ ϕ0, it is removed—see, e.g.,
Ref. [48] for a detailed discussion of this boundary
condition’s use in exit problems.
H0 (de Sitter) branch: Once the stochastically evolving

field at a spatial point reaches ϕ0, it is removed from the HJ
branch and is injected into the degenerate V ¼ V0 (de
Sitter) branch, where H ¼ H0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
V0=3

p
. It then diffuses

along the semi-infinite branch ϕ ∈ ½ϕe;∞Þ of the flat
potential V ¼ V0 according to the Langevin equation,

4We are therefore using a uniform expansion gauge in
perturbation theory terminology. This is not fully equivalent to
choosing spatially flat time slices but, as pointed out in Ref. [4],
volume-preserving shape deformations are not interesting
dynamically in our approximations. See also Appendix A on
this point.
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dϕ
dα

¼ H0

2π
ξðαÞ; ð56Þ

again with

hξðαÞξðα0Þi ¼ δðα − α0Þ; ð57Þ

where now the influx from the HJ branch must also be
accounted for. When the exit point ϕe of the V ¼ V0 branch
is reached, inflation may end, for example, by entering a
non-slow-roll region or by instant reheating, or the field
may enter a subsequent slow-roll phase. In either case, the
quantity of interest is the number of e-folds until ϕe is
reached, which is a stochastic quantity.
We can write the probability distribution for ϕ on the H0

branch as

PV0
ðϕÞ ¼ PDðϕÞ þ P⋆δðϕ − ϕ0Þ; ð58Þ

where PD is the part which has diffused along the V ¼ V0

surface, while P⋆ denotes the probability at ϕ0 leaking in
from the HJ branch. Its contribution to the Fokker-Planck
equation on the V ¼ V0 branch can be computed as
follows: in a time interval between α and αþ dα, the
amount of randomwalkers flowing in from the HJ branch is

dP⋆ ¼
Z

∞

ϕ0

½PHJðϕ; αþ dαÞ − PHJðϕ; αÞ�dϕ: ð59Þ

Therefore,

∂P⋆
∂α ¼

Z
∞

ϕ0

∂PHJ

∂α dϕ ¼ Jðϕ0; αÞ; ð60Þ

and the Fokker-Planck equation for PV0
can then be

written as

∂PV0

∂α ¼ 1

2

∂2

∂ϕ2

�
V0

12π2
PV0

�
þ Jðϕ0; αÞδðϕ − ϕ0Þ; ð61Þ

where, recalling that PHJðϕ0Þ ¼ 0 and ∂ϕHðϕ0Þ ¼ 0,

Jðϕ0; αÞ ¼
V0

24π2
∂PHJ

∂ϕ
				
ϕ0

: ð62Þ

The probability distribution for the number of e-folds it
takes for the field to reach ϕe can be obtained from
knowledge of PD by noting that once the random walker
has been injected into the V0 branch and has started
diffusing, the probability that it has not yet crossed ϕe
by the time of N e-folds is the same as that of inflation
lasting longer than N e-folds:

ProbðInflationary duration > N Þ ¼
Z

∞

N
ϱðαÞdα

¼
Z

∞

ϕe

PDðϕ;N Þdϕ;

ð63Þ

where we have denoted the probability that inflation
lasts (more precisely, ϕe is reached) between α and
αþ dα e-folds by ϱðαÞ. Therefore,

ϱðN Þ ¼ −
∂
∂N

Z
∞

ϕe

PDðϕ;N Þdϕ: ð64Þ

Using Eqs. (58), (60), and (61), we obtain simply

ϱðN Þ ¼ V0

24π2
∂PV0

ðϕ;N Þ
∂ϕ

				
ϕe

: ð65Þ

A. Computing PHJ

In order to obtain the current flowing into the V0 branch
from Eq. (62), we first need to compute PHJ, the probability
distribution on the HJ branch. To obtain simple analytic
expressions, we will make the approximation that ϕ is close
to ϕ0 on the HJ branch, corresponding to a small initial
velocity. This is justified, since

ϕin − ϕ0 ¼ arc sinh

�
−

Πinffiffiffi
2

p
V1=2
0

�
≃ −

Πinffiffiffi
2

p
V1=2
0

≪ 1; ð66Þ

assuming that the field enters the USR regime from a
previous slow-roll phase. We will tackle the more general
problem in an upcoming publication [40]. We therefore
take the HJ branch stochastic dynamics to be [see Eq. (38)]

dϕ
dα

≃ −3ðϕ − ϕ0Þ þ
H0

2π
ξðαÞ; ð67Þ

with exit boundary conditions at ϕ0. Setting

χ ¼
ffiffiffiffi
12

p
π

H0
ðϕ − ϕ0Þ, the corresponding Fokker-Planck equa-

tion (54) for the probability density PHJðχ; αÞ reads

∂PHJ

∂α ≃ 3
∂
∂χ ðχPHJÞ þ

3

2

∂2PHJ

∂χ2 : ð68Þ

Writing

PHJðχ; αÞ ¼ Ce
3
2
α−1

2
χ2Ψðχ;αÞ; ð69Þ

where C is a constant independent of α and χ but dependent
on the choice of the initial state, Ψðχ; αÞ obeys
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−
1

3

∂Ψ
∂α ¼ 1

2

�
−

∂2

∂χ2 þ χ2
�
Ψ; ð70Þ

and the problem reduces to the quantum mechanical kernel
for the simple harmonic oscillator (SHO), with a mass m

and frequency ω given bymω → ℏH2
0=ð12π2Þ in imaginary

time α ¼ iωt=ð3ℏÞ (or t ¼ −3iℏα=ω)—see, e.g., Ref. [51].
The free propagator, also known in the literature on
stochastic processes as the Mehler heat kernel [52], is
given by

KMðχ; α; χin; αinÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π sinh½3ðα − αinÞ�
p exp

�
−
coth½3ðα − αinÞ�ðχ2 þ χin

2Þ
2

þ χχin
sinh½3ðα − αinÞ�

�
; ð71Þ

which for small time intervals tends to

lim
α→αin

KMðχ; α; χin; αinÞ ¼ δðχ − χinÞ: ð72Þ

Since a random walker is “removed” upon reaching
χ ¼ 0 (ϕ ¼ ϕ0), for the problem at hand we do not require
the free, but rather the absorptive kernel. Due to the
symmetry of the effective potential in which the dynamics
takes place, it can be obtained from the full kernel
[Eq. (71)] by adding to it a free mirror kernel at −χ,
giving

Ψðχ; αÞ ¼ KMðχ; α; χin; αinÞ − KMð−χ; α; χin; αinÞ

¼
ffiffiffi
2

π

r
exp ð− 1

2
coth½3ðα − αinÞ�ðχ2 þ χin

2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½3ðα − αinÞ�

p
× sinh

�
χχin

sinh½3ðα − αinÞ�
�
; ð73Þ

which ensures that the correct boundary condition is
satisfied. The properly normalized PHJ is then obtained
from Eq. (69),

PHJðφ;αÞ ¼
6πffiffiffiffiffiffi
V0

p exp

�
3

2
ðα − αinÞ −

1

2
ðχ2 − χ2inÞ

�
Ψðχ; αÞ;

ð74Þ

where C in Eq. (69) is chosen such that in the limit α → αin
reduces to5

PHJðφ; α → αinÞ ¼
6πffiffiffiffiffiffi
V0

p δðχ − χinÞ ¼ δðϕ − ϕinÞ ð75Þ

for ðχ ≥ 0; χin > 0Þ. A general probability distribution
on the HJ branch can be obtained by convolving the
absorptive kernel [Eq. (73)] with the initial probability
distribution.

The injected current into the flat V0 branch [Eq. (62)],
J ¼ ½ ffiffiffiffiffiffi

V0

p
=ð4πÞ�∂χPHJjχ→0, is obtained by taking a deriva-

tive of Eq. (74):

JðαÞ ¼ 6π

½2π sinh½3Δα��3=2

× exp

�
3

2
Δα −

1

2
ðcoth½3Δα� − 1Þχ2in

�
χin; ð76Þ

which rises at early times Δα ¼ α − αin ≪ 1 as

JðαÞjΔα≪1 ¼
χinffiffiffiffiffiffi

6π
p ðΔαÞ32 e

−
χ2
in

6Δα; ð77Þ

whereas at late times, when Δα ¼ α − αin ≫ 1, it decays
exponentially,

JðαÞjΔα≫1 ¼
6ffiffiffi
π

p χine−3Δα þOðe−9ΔαÞ: ð78Þ

The current JðαÞ for three different values of χin can be seen
in Fig. 2. The current increases from zero at t ¼ 0

a

J(a)

FIG. 2. The current JðαÞ injected from the HJ branch into the
flat branch at ϕ ¼ ϕ0 for χin ¼ 0.5, 1, 1.5 (from leftmost to
rightmost curve).

5Strictly speaking, in the limit α → αin, the probability density
[Eq. (74)] reduces to δðχ − χinÞ þ δðχ þ χinÞ. Since the domain of
validity of Eq. (73) is the HJ branch on which χ ≥ 0, the second
delta function is discarded.
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(α ¼ αin), peaks, and then decays exponentially as
∝ e−3ðα−αinÞ—see Eqs. (77) and (78).

B. Computing PV0

Assuming that the initial field distribution lies entirely at
the HJ branch, Eq. (61) must be supplemented by the initial
condition Pðχ; 0Þ ¼ 0, and the solution can therefore be
written as

PV0
ðϕ; αÞ ¼

Z
α

αin

duGeðϕ − ϕ0; α − uÞJðuÞ; ð79Þ

where Geðϕ − ϕ0; α − α0Þ is the diffusive Green function
with exit boundary conditions at ϕe, also known as the
absorptive kernel. As above, it is straightforwardly con-
structed from the well-known unrestricted diffusive kernel
along an infinite interval

Gðϕ;ϕ0;ΔαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2π

H2
0Δα

s
exp

�
−

2π2

H2
0Δα

ðϕ − ϕ0Þ2
�
; ð80Þ

where Δα ¼ α − α0, by subtracting the same kernel, but
with ϕ0 reflected on ϕe: ϕ → 2ϕe − ϕ, giving

Geðϕ;ϕ0;ΔαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2π

H2
0Δα

s �
exp

�
−

2π2

H2
0Δα

ðϕ − ϕ0Þ2
�

− exp

�
−

2π2

H2
0Δα

ð2ϕe − ϕ − ϕ0Þ2
��

:

ð81Þ

This imposes the correct boundary conditions, Geðϕe;
ϕ0;ΔαÞ ¼ 0 and Geðϕ;ϕ0;Δα → 0Þ ¼ δðϕ − ϕ0Þ, for
ϕ;ϕ0 ≥ ϕe. The limits of integration in Eq. (79) are
determined by imposing that no current can be sourced
before the beginning of inflation at αin (lower limit), and
that no current can be sourced in the future of α
(upper limit).
To compute the probability distribution for the field on

the flat branch, we use the convolution integral [Eq. (79)]
with the absorptive kernel [Eq. (81)] and the injected
current [Eq. (76)] to obtain

PV0
ðϕ; αÞ ¼ 3χin

H0

Z
α

0

duffiffiffiffiffiffiffiffiffiffiffi
α − u

p
�
exp

�
−

χ2

6ðα − uÞ
�

− exp

�
−
ðχ − 2χeÞ2
6ðα − uÞ

��

×
exp ½3

2
u − 1

2
ðcothð3uÞ − 1Þχ2in�

½sinhð3uÞ�3=2 ; ð82Þ

where χ ¼ ffiffiffiffiffi
12

p
πðϕ − ϕ0Þ=H0, χe ¼

ffiffiffiffiffi
12

p
πðϕe − ϕ0Þ=H0,

and we set αin ¼ 0 for simplicity.6

C. Probability density for the e-fold number

From PV0
, we can directly compute the e-fold proba-

bility density using Eq. (65):

ϱðN Þ¼
ffiffiffi
3

p

2π
ð−χeχinÞ

×
Z

N

0

du
exp½− χ2e

6ðN−uÞþ 3
2
u− 1

2
ðcothð3uÞ−1Þχ2in�

½ðN −uÞsinhð3uÞ�3=2 ;

ð83Þ

where we note that χe < 0 by definition. Although the
above integrals cannot be evaluated analytically, an
approximate evaluation of Eq. (82) can be performed by
noting that the dominant dependence on u sits in the
exponent, and the integral can be well approximated by a
steepest descent method presented in Appendix B. There is
a very simple case—namely, if the integral is dominated by
u ≪ 1, and if α ≫ 1, then it evaluates to

PV0
ðϕ; αÞ ≈

ffiffiffiffiffi
12

p
π

H0

e−χ
2
in=2ffiffiffiffiffiffiffiffiffiffiffiffi

6πΔα
p

×

�
exp

�
−

χ2

6Δα

�
− exp

�
−
ðχ − 2χeÞ2

6Δα

��
;

ð84Þ

which is, up to the factor e−χ
2
in=2, equal to the absorptive

kernel Geðϕ − ϕ0;ΔαÞ (Δα ¼ α − αin) in Eq. (81).
Therefore,

ϱðN Þ ≈
ffiffiffi
6

π

r
e−

χ2
in
2
e−

χ2e
6N

N 3=2 : ð85Þ

We see that although ϱðN Þ is normalizable, the prob-
ability distribution does not decay fast enough, as ϕ → ∞,
and therefore all moments are infinite: hN ni ¼ ∞ for
n ≥ 1. A numerical evaluation of the probability density
ϱðN Þ is plotted in Fig. 3. For largeN , the distribution tends
to an ∝ N −3=2 decay, which is in agreement with our
analytic estimate. This reflects the fact that if the precipice
signified by ϕe is beyond ϕ0, the field settles into free
diffusion along the half-line towards ϕ → ∞, a situation
termed “infinite inflation” in Refs. [38,39].
The endless diffusion towards ϕ → ∞ would, of course,

not occur if the field were injected into the de Sitter branch
from a prior slow-roll regime. We will deal with this in

6One can always recover the dependence on αin by noting that
the integral in Eq. (82) is a function of α − αin.
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more detail in Ref. [40], where more complete models are
studied. A simple way to regulate this infinite diffusion
would be to erect a reflecting wall at, or close to ϕin. In

Ref. [23], this is shown to indeed lead to a distribution with
finite moments, and hence a finite curvature perturbation.

VI. THE CASE ϕe > ϕ0:
USR WITH GRACEFUL EXIT

We saw in the previous section that if the initial velocity
of the field does not suffice to carry it beyond ϕe (ϕe < ϕ0),
eternal inflation sets in on the semiline ½ϕe;∞Þ, and
the curvature perturbation is infinite, as signified by the
divergence of all moments of N . We show in this section
that this is not true when the exit point ϕe occurs on the HJ
branch—i.e., before the asymptotic point ϕ ¼ ϕ0 at which
the classical trajectory of ϕ would terminate. In other
words, we now assume that

ϕe ≥ ϕ0 ð86Þ

and show that this model of inflation exhibits a graceful
exit. The probability density PHJðϕ; αÞ is then of the form
of Eq. (74), but with Ψðχ; αÞ given by the absorptive kernel
mirrored at χe—see Eq. (73):

Ψðχ; αÞ ¼ KMðχ; α; χin; αinÞ − KMð2χe − χ; α; χin; αinÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sinh½3ðα − αinÞ�

p 

exp

�
−
1

2
coth½3ðα − αinÞ�ðχ2 þ χin

2Þ þ χχin
sinh½3ðα − αinÞ�

�

− exp

�
−
1

2
coth½3ðα − αinÞ�½ð2χe − χÞ2 þ χin

2� þ ð2χe − χÞχin
sinh½3ðα − αinÞ�

��
: ð87Þ

The probability ϱðN Þ in Eq. (64) that inflation ends in the interval ½N ;N þ dN Þ of e-folds is then

ϱðN Þ ¼ −
∂
∂N

Z
∞

ϕe

dϕPHJðN ;ϕÞ ð88Þ

¼ −
∂
∂N



1

2
erfc½ ffiffiffiffiffiffiffiffiffiffiffi

1þ n
p ðχe − e−3ΔN χinÞ� − exp½χ2in − χ2e − ðχin − e−3ΔN χeÞ2�

1

2
erfc½ ffiffiffi

n
p ðχin − e−3ΔN χeÞ�

�
ð89Þ

¼ 3
ffiffiffi
n

pffiffiffi
π

p ½2ð1þ nÞχin − ð3þ 2nÞe−3ΔN χe� exp½−ð1þ nÞðχe − e−3ΔN χinÞ2�

− 3e−3ΔN χe½χin − e−3ΔN χe�eðχ2in−χ2eÞ−ðχin−e−3ΔN χeÞ2erfc½ ffiffiffi
n

p ðχin − e−3ΔN χeÞ�; ð90Þ

where n ¼ 1=ðe6ΔN − 1Þ, ΔN ¼ N −N in, and erfcðzÞ ¼
1 − erfðzÞ ¼ 2ffiffi

π
p

R
∞
z e−t

2

dt is the complementary error func-

tion. The distribution ϱðN Þ in Eqs. (88)–(90) is plotted in
Fig. 4 for a few selected values of χe and χin. The
distribution is again strongly non-Gaussian; however, at
large N it falls off exponentially as ∝ e−3N , such that the
moments of the curvature perturbation are all finite,
implying that inflation terminates. The first term after
the curly bracket in Eq. (89) is the standard result for the

probability that the particle is located anywhere at χ > χe,
and it approaches 1 when χe → −∞, as it should, while the
second term reduces the probability due to the absorptive
boundary condition at ϕ ¼ ϕe, where inflation ends.
Equations (88)–(90) contain the complete information

for the probability distribution of the number of e-folds
in this simple model [where we assume a small initial
momentum, which allows us to linearize in ϕ − ϕ0 in
Eq. (67)]. To get a better understanding of ρðN Þ in

Ν

Ν

FIG. 3. The probability distribution ϱðN Þ defined by Eq. (83)
for χe ¼ −1 and χin ¼ 0.5 (leftmost, blue curve) or χin ¼ 1.5
(rightmost, red curve). The dashed-dotted line indicates the
asymptotic ϱ ∝ N −3=2 behavior for large N—see Eq. (85). This
deep non-Gaussian tail is responsible for eternal inflation.
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Eq. (88), we shall now calculate the first few moments of
the number of e-folds:

hN ki ¼
Z

∞

αin

N kϱðN ÞdN ; ðk ¼ 0; 1; 2;…Þ: ð91Þ

Let us first look at the zeroth moment,

h1i ¼ 1

2
½1þ erf½χe� þ e−χ

2
e � ðχe ≥ 0Þ: ð92Þ

When 0 ≤ χe ≲ 1, this is, as one would expect, of the
order 1. One can account for the fact that Eq. (92) is not
exactly equal to 1 by dividing hN ni by h1i. The moments
of N are considerably more difficult to calculate, and
therefore in what follows, for simplicity we consider the
case χe ¼ 0 (ϕe ¼ ϕ0). Then the probability distribution in
Eqs. (88)–(90) reduces to

ϱðN ÞdN ¼ 6
ffiffiffi
n

pffiffiffi
π

p ð1þ nÞχine−nχ2indN : ð93Þ

It pays off to convert this into the probability per unit
dn ¼ −6nð1þ nÞdN :

GðnÞdn ¼ χinffiffiffiffiffiffi
πn

p e−nχ
2
indn; ð94Þ

such that the kth moment in Eq. (91) gives

hN ki ¼ 2ffiffiffi
π

p
Z

∞

0

dy e−y
2

�
1

6
ln

�
1þ χ2in

y2

��
k

; ð95Þ

where ðk ¼ 0; 1; 2;…Þ and we use y ¼ ffiffiffi
n

p
χin, assuming

that αin ¼ 0. Furthermore, it is useful to calculate how the
number of e-folds fluctuates around its mean value, hN i:

hðΔN Þni ¼
Xn
k¼0

ð−1Þk
�
n

k

�
hN kihN in−k; ð96Þ

where ðnkÞ ¼ n!=½k!ðn − kÞ!� is the binomial coefficient.
The first moment in Eq. (96) can be expressed in terms of

a generalized hypergeometric function,

hN i¼π

6
erfðiχinÞ−

χ2in
3
× 2F2

�
f1;1g;



3

2
;2

�
;χ2in

�
: ð97Þ

The higher moments are harder to evaluate analytically.
Nevertheless, one can show that the following confluent
hypergeometric function generates all the moments:

Gðα; χinÞ ¼
2ffiffiffi
π

p
Z

∞

0

dy e−y
2

�
1þ χ2in

y2

�α
6

¼ 1ffiffiffi
π

p Γ
�
1

2
−
α

6

�
×U

�
−
α

6
;
1

2
; χ2in

�

¼ 1F1

�
−
α

6
;
1

2
; χ2in

�
− 2

Γð1
2
− α

6
Þ

Γð− α
6
Þ ðχ2inÞ1=2

× 1F1

�
1

2
−
α

6
;
3

2
; χ2in

�
; ð98Þ

in the sense that

hN ki ¼
� ∂k

∂αk Gðα; χinÞ
�

α¼0

ðk ¼ 1; 2; 3;…Þ; ð99Þ

where U denotes the confluent hypergeometric function.
In Fig. 5, we show the first few moments in Eq. (95) and
their fluctuations around the mean hN i defined in Eq. (96).
For simplicity, we choose χe ¼ 0 and plot our results as a
function of χin. We see that the distribution is highly non-
Gaussian, which is one of the main results of this work.
Because we have calculated GðαÞ with the assumption of
small ϕ − ϕ0, in Fig. 5 we plot the results only for χin < 1.
The principal conclusion is that the non-Gaussianities
produced in USR are quite large and grow with χin, or
the length of the USR supporting potential segment. On the
other hand, from Fig. 4 we see that a larger χin implies a
larger average number of e-folds of USR hN i, from which
we conclude that a longer USR phase generates larger non-
Gaussianities. This observation can be of crucial impor-
tance for the generation of primordial black holes. These
results are in broad agreement with the findings of
Ref. [23], and it would be interesting to make a more
quantitative comparison, recalling that we have fully and
consistently included the gravitational effects of the field’s
velocity.

FIG. 4. The probability distribution [Eqs. (88)–(90)] in the USR
model with graceful exit as a function of the number of e-folds,
ΔN ¼ N −N in with N in ¼ 0, and given in Eq. (90) for four
choices of ðχe; χinÞ: (0, 1) (solid black); (0, 1.5) (solid orange);
(0.3, 1) (long dashes); and (0.3, 2) (short dashes). We see that for
larger χe (χin), inflation gets shorter (longer), which is as one
would expect.
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VII. CONCLUSION AND DISCUSSION

In this paper, we established a consistent formalism for
describing the quantum evolution of the large-scale curva-
ture perturbation, generated during inflation on very flat
portions of the potential VðϕÞ, fully taking into account the
scalar gravitational backreaction and the finite classical
velocity for the field. This was achieved by combining a
long-wavelength approximation to the Einstein equations
with the stochastic picture of inflationary quantum fluctu-
ations. We found that the 0i Einstein equation, usually
neglected in the widely used “separate universe” approach,
leads to a single stochastic equation for the scalar field but
not its velocity, the latter being fully determined by the
former even beyond slow roll through a unique solution to
the Hamilton-Jacobi equation [Eq. (28)].
We then focused on a completely level potential V ¼ V0,

where inflation occurs in an ultra slow-roll (USR) regime.
We assumed that ϕ ∈ ½ϕe;þ∞Þ and that the field is injected
with some finite velocity Πin at ϕin. We showed that on
large (super-Hubble) scales, USR is a phase space attractor,
in the sense that gravitational constraints fully fix the field
velocity in terms of the field ϕ, up to a global constant ϕ0

determined by the initial velocity and marking the end point
towards which the classical field evolution asymptotes.
This is accurate up to small, exponentially decaying
gradient corrections, which are highly suppressed, and
thus completely irrelevant on very large scales. The value
ϕe demarcates an exit point where inflation either ends or

the field enters into another region of the potential,
presumably one supporting slow roll. The stochastic
number of e-folds required to reach ϕe directly gives the
curvature perturbation.
The inflaton dynamics depends crucially on the distance

between the entry and exit points jϕin − ϕej and on the
initial field velocity Πin. As we argue in Sec. VI, if
jϕin − ϕ0j > jϕin − ϕej, the field performs a graceful exit,
with ϕe being eventually reached at all spatial points. If, on
the other hand, jϕin − ϕ0j < jϕin − ϕej, then the quantum
phase space becomes larger than the classical one such that
USR proceeds in two distinct phases, discussed in detail in
Sec. V. When the quantum particle reaches the end point ϕ0

of the classical trajectory, it will start diffusing along the set
of classical trajectories marked by hΠi ¼ 0 and arbitrary ϕ,
implying that the point ϕ0 acts as a bifurcation point of
the quantum phase space, at which the quantum trajectory
splits into two branches—see Fig. 1. Consequently, a
conveyor belt picture of the quantum particle phase space
emerges and leads to a phase where some random walkers
exit but most are trapped in an eternal de Sitter epoch as
the field freely diffuses towards ϕ → þ∞. While in the
former case, a well-defined probability distribution for
the curvature perturbation emerges, in the latter, although
normalizable, the distribution has no finite moments
indicating an infinite curvature perturbation. This behav-
ior, of course, depends on there not being a barrier in
reaching ϕ → þ∞, a situation not valid in more complete
inflationary models.
This is a preliminary study in many respects. In a realistic

inflationary model, the flat potential portion will be finite,
and even when jϕin − ϕej is large and the conveyor belt is
operational, the field’s diffusion towards large values will
be halted, although it may still lead to a greatly enhanced
curvature perturbation. Furthermore, in passing to Eq. (67),
we linearized in the field perturbation ϕ − ϕ0, which is
equivalent to assuming a small initial field velocity Πin.
This was done for simplicity and to obtain the semianalytic
results presented here but is not necessary. This paper was
largely expository of the methods developed, and we will
return with a more general treatment and more realistic
USR models in a forthcoming publication [40]. Finally, we
dropped the tensor modes which are nondynamical clas-
sically. This statement will no longer hold when their
quantum fluctuations are taken into account. We reserve a
more sophisticated nonlinear treatment of the IR stochastic
tensors for the future.
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APPENDIX A: CHANGING THE TIME-SLICING
ON LONG WAVELENGTHS

In this Appendix, following Ref. [4], we recall that
under changes of the time hypersurfaces t → Tðt;xÞ,
the long-wavelength equations (17), (20), (21), and (22)
remain invariant, and the long-wavelength spatial metric
[Eq. (15)] retains its form. These statements are valid
up to terms which are second order in spatial gradients
and are therefore dropped within the long-wavelength
approximation.
Starting with coordinates ðt; xiÞ, consider a change in the

choice of constant-time hypersurfaces (the spacetime time
slicing) defined by a new time coordinate Tðt; xiÞ. To keep
Ni ¼ 0 in the new coordinate system, new spatial coor-
dinates Xi must also be chosen which are orthogonal to the
T ¼ const surfaces. We now examine how such a trans-
formation between the old and new coordinates can be
obtained.
Given the new time surface Tðt; xiÞ, a set of spatial

coordinates Xi is chosen on a T ¼ T0 hypersurface and
then orthogonally projected to thread all other T ¼ const
hypersurfaces, labeling spatial coordinates in them too.
Along constant Xi curves, the old coordinates xμ will
change as dxμ ¼ T;μds, where s is an arbitrary parameter.
Along such lines, T will change as

dT ¼ T;μdxμ ¼ T;μT;μds; ðA1Þ

which implies

�∂xμ
∂T

�
Xj

¼ T;μ

T;αT;α ; ðA2Þ

which defines 4 of the 16 components of the transformation
matrix between the old and new coordinates. To determine
the 12 remaining components, we consider the transfor-
mation matrix

Bμ
k ¼

�∂xμ
∂Xk

�
T
; ðA3Þ

which should be chosen such that

T;μB
μ
k ¼ 0 ðA4Þ

in order to keep gTXi ¼ 0. If condition (A4) is satisfied on
the T ¼ T0 hypersurface, it will always be satisfied. This
can be seen by taking the T derivative of Bμ

k to find

�∂Bμ
k

∂T
�

Xj
¼

� ∂
∂Xk

�∂xμ
∂T

�
Xj

�
T

¼
� ∂
∂Xk

�
T;μ

T;αT;α

��
T
¼ Bν

k

�
T;μ

T;αT;α

�
;ν
: ðA5Þ

In turn, this relation can be used to show that

∂TðT;μB
μ
kÞ ¼ 0; ðA6Þ

and hence that Ni is kept at zero on all T time slices in the
ðT; XjÞ coordinates.
From Eq. (A4), we have

B0
k ¼ −

Bi
kT;i

T;0
; ðA7Þ

which, when substituted into Eq. (A5), gives

�∂Bl
k

∂T
�

Xj
¼

��
T;l

T;aT;a

�
;m
−
T;m

T;0

�
T;l

T;aT;a

�
;0

�
Bm
k : ðA8Þ

The rhs is second order in spatial gradients and is dropped
within our approximation scheme, implying that to this
order in the gradient expansion, Bl

k is independent of T:

Bl
k ≡ Bl

kðXÞ: ðA9Þ

On the other hand, by integrating xj along a line of constant
Xj using Eq. (A2), we obtain

xj ¼ fjðXÞ þ
Z

T;j

T;0T;0 dT: ðA10Þ

This is consistent with Eq. (A9); a derivative of the second
term with respect to Xj involves two spatial gradients
∂=∂xi, as can be seen by using Eq. (A7). Furthermore, any
function evaluated at xi will read

gðxiÞ ¼ g
�
fiðXÞ þ

Z
T;j

T;0T;0 dT
�

≃ gðfiðXÞÞ þ g;i

Z
T;j

T;0T;0 dT: ðA11Þ

Hence, within our approximations,

gðxiÞ ¼ gðfiðXÞÞ ¼ g̃ðXiÞ; ðA12Þ

and the 3-metric [Eq. (15)] in the ðT;xÞ coordinates reads
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γl0k0 ¼ e2αðt;xÞBl
l0 ðXÞBk

k0 ðXÞhlkðxÞ
¼ e2α̃ðtðTÞ;XÞBl

l0 ðXÞBk
k0 ðXÞhlkðXÞ; ðA13Þ

i.e., it again has the form of a locally defined conformal
factor times a time-independent 3-metric, which is only a
function of the three new spatial coordinates Xi. The
simplest choice for the new spatial coordinates is, of
course, fjðXÞ ¼ Xj.
Regarding the dynamical equations in the new time T,

we note that for any time-dependent quantity Q,

�∂Q
∂T

�
Xj

¼ 1

T;0

�∂Q
∂t

�
xj
þ T;k

T;0T;0

�∂Q
∂xk

�
t
: ðA14Þ

Dropping the second term on the rhs as second order in
spatial gradients, and noting that the two lapse functions,
Nt and NT , associated with the time coordinates t and T,
respectively, are related by Nt ¼ NT∂T=∂t, we have

1

NT

�∂Q
∂T

�
Xj

¼ 1

Nt

�∂Q
∂t

�
xj

ðA15Þ

up to second order in spatial gradients. This can be used to
show the invariance of the long-wavelength dynamical
equations under changes of the time slicing.

APPENDIX B: STEEPEST DESCENT FOR PV0

The integral in Eq. (82) is dominated by the dependence
on u in the exponent, which diverges in both limits of
integration, and hence is dominated by some intermediate
u, at which the function in the exponent minimizes. To
study the integral in more detail, we write it in the form

PV0
¼ 3χin

H0

½Iðχ; αÞ − Iðχ − 2χe; αÞ�; ðB1Þ

Iðχ; αÞ ¼
Z

α

0

e−Sðχ;uÞdu; ðB2Þ

where

Sðχ; uÞ ¼ χ2

6ðα − uÞ þ
1

2
ln ðα − uÞ − 6u

−
3

2
lnð2Þ þ nð6uÞχ2in −

3

2
ln½nð6uÞ�; ðB3Þ

and where nðxÞ ¼ 1=ðex − 1Þ is the Bose-Einstein function
of its argument. The integral (B2) is then performed by
expanding Sðχ; uÞ in Eq. (B3) around the local minimum u0
(at which S00 ≡ ½∂uSðχ; uÞ�u¼u0 ¼ 0) as

SðuÞ ≈ Sðu0Þ þ
1

2
S000ðu − u0Þ2 þOððu − u0Þ3Þ; ðB4Þ

where S000 ¼ ½∂2
uSðχ; uÞ�u¼u0 . Upon dropping the higher

orders Oððu − u0Þ3Þ, the integral (B2) becomes simple
to evaluate:

Iðχ; αÞ ¼
ffiffiffiffiffiffiffiffi
π

2S000

r �
Erf

� ffiffiffiffiffi
S000
2

r
ðα − u0Þ

�
þ Erf

� ffiffiffiffiffi
S000
2

r
u0

��
;

ðB5Þ

where the result is meaningful if S000 > 0. To complete the
evaluation, we need u0 and S000 , and hence we need the first
and second derivatives of Eq. (B3):

S00 ¼
χ2

6ðα − uÞ2 −
1

2ðα − uÞ − 6nðnþ 1Þχ2in þ 3þ 9n

¼ 0; ðB6Þ

S000 ¼
χ2

3ðα − uÞ3 −
1

2ðα − uÞ2
þ 36nðnþ 1Þðnþ 2Þχ2in − 54nðnþ 1Þ; ðB7Þ

where we make use of ∂unð6uÞ ¼ −6nðnþ 1Þ and
∂2
unð6uÞ ¼ 36nðnþ 1Þðnþ 2Þ. u0 is found by setting

S00 ¼ 0 in Eq. (B6). If α ≫ u, the problem of solving
Eq. (B6) reduces to finding the positive root of a quadratic
equation in n ¼ nð6uÞ, which is easily solved for
n0 ≡ nð6u0Þ, and hence also for u0.

[1] S. W. Hawking, The development of irregularities in a single
bubble inflationary universe, Phys. Lett. 115B, 295 (1982).

[2] A. A. Starobinsky, Dynamics of phase transition in the new
inflationary universe scenario and generation of perturba-
tions, Phys. Lett. 117B, 175 (1982).

[3] A. H. Guth and S. Y. Pi, The quantum mechanics of the
scalar field in the new inflationary universe, Phys. Rev. D
32, 1899 (1985).

[4] D. S. Salopek and J. R. Bond, Nonlinear evolution of long
wavelength metric fluctuations in inflationary models,
Phys. Rev. D 42, 3936 (1990).

[5] M. Sasaki and E. D. Stewart, A general analytic formula for
the spectral index of the density perturbations produced
during inflation, Prog. Theor. Phys. 95, 71 (1996).

[6] M. Sasaki and T. Tanaka, Superhorizon scale dynamics of
multiscalar inflation, Prog. Theor. Phys. 99, 763 (1998).

TOMISLAV PROKOPEC and GERASIMOS RIGOPOULOS PHYS. REV. D 104, 083505 (2021)

083505-16

https://doi.org/10.1016/0370-2693(82)90373-2
https://doi.org/10.1016/0370-2693(82)90541-X
https://doi.org/10.1103/PhysRevD.32.1899
https://doi.org/10.1103/PhysRevD.32.1899
https://doi.org/10.1103/PhysRevD.42.3936
https://doi.org/10.1143/PTP.95.71
https://doi.org/10.1143/PTP.99.763


[7] D. H. Lyth, K. A. Malik, and M. Sasaki, A general proof of
the conservation of the curvature perturbation, J. Cosmol.
Astropart. Phys. 05 (2005) 004.

[8] D. H. Lyth and Y. Rodriguez, The Inflationary Prediction for
Primordial Non-Gaussianity, Phys. Rev. Lett. 95, 121302
(2005).

[9] N. S. Sugiyama, E. Komatsu, and T. Futamase, δN formal-
ism, Phys. Rev. D 87, 023530 (2013).

[10] J. Garriga, Y. Urakawa, and F. Vernizzi, δN formalism from
superpotential and holography, J. Cosmol. Astropart. Phys.
02 (2016) 036.

[11] N. C. Tsamis and R. P. Woodard, Improved estimates of
cosmological perturbations, Phys. Rev. D 69, 084005
(2004).

[12] W. H. Kinney, Horizon crossing and inflation with large eta,
Phys. Rev. D 72, 023515 (2005).

[13] M. H. Namjoo, H. Firouzjahi, and M. Sasaki, Violation of
non-Gaussianity consistency relation in a single field infla-
tionary model, Europhys. Lett. 101, 39001 (2013).

[14] J. Martin, H. Motohashi, and T. Suyama, Ultra slow-roll
inflation and the non-Gaussianity consistency relation,
Phys. Rev. D 87, 023514 (2013).

[15] K. Dimopoulos, Ultra slow-roll inflation demystified, Phys.
Lett. B 775, 262 (2017).

[16] A. A. Starobinsky, Stochastic de Sitter (inflationary) stage in
the early universe, Lect. Notes Phys. 246, 107 (1986).

[17] D. S. Salopek and J. R. Bond, Stochastic inflation and
nonlinear gravity, Phys. Rev. D 43, 1005 (1991).

[18] K. Enqvist, S. Nurmi, D. Podolsky, and G. I. Rigopoulos,
On the divergences of inflationary superhorizon perturba-
tions, J. Cosmol. Astropart. Phys. 04 (2008) 025.

[19] T. Fujita, M. Kawasaki, Y. Tada, and T. Takesako, A new
algorithm for calculating the curvature perturbations in
stochastic inflation, J. Cosmol. Astropart. Phys. 12
(2013) 036.

[20] T. Fujita, M. Kawasaki, and Y. Tada, Non-perturbative
approach for curvature perturbations in stochastic δN
formalism, J. Cosmol. Astropart. Phys. 10 (2014) 030.

[21] V. Vennin and A. A. Starobinsky, Correlation functions in
stochastic inflation, Eur. Phys. J. C 75, 413 (2015).

[22] C. Germani and T. Prokopec, On primordial black holes
from an inflection point, Phys. Dark Universe 18, 6 (2017).

[23] C. Pattison, V. Vennin, H. Assadullahi, and D. Wands,
Quantum diffusion during inflation and primordial black
holes, J. Cosmol. Astropart. Phys. 10 (2017) 046.

[24] C. Pattison, V. Vennin, H. Assadullahi, and D. Wands,
Stochastic inflation beyond slow roll, J. Cosmol. Astropart.
Phys. 07 (2019) 031.

[25] M. Biagetti, G. Franciolini, A. Kehagias, and A. Riotto,
Primordial black holes from inflation and quantum diffu-
sion, J. Cosmol. Astropart. Phys. 07 (2018) 032.

[26] J. M. Ezquiaga and J. Garca-Bellido, Quantum diffusion
beyond slow-roll: Implications for primordial black-hole
production, J. Cosmol. Astropart. Phys. 08 (2018) 018.

[27] D. Cruces, C. Germani, and T. Prokopec, Failure of the
stochastic approach to inflation beyond slow-roll, J. Cos-
mol. Astropart. Phys. 03 (2019) 048.

[28] H. Firouzjahi, A. Nassiri-Rad, and M. Noorbala, Stochastic
ultra slow roll inflation, J. Cosmol. Astropart. Phys. 01
(2019) 040.

[29] S. Passaglia, W. Hu, and H. Motohashi, Primordial black
holes and local non-Gaussianity in canonical inflation,
Phys. Rev. D 99, 043536 (2019).

[30] J. Garcia-Bellido, Primordial black holes, Proc. Sci.,
EDSU2018 (2018) 042.

[31] N. C. Tsamis and R. P. Woodard, Stochastic quantum
gravitational inflation, Nucl. Phys. B724, 295 (2005).

[32] F. Finelli, G. Marozzi, A. A. Starobinsky, G. P. Vacca, and
G. Venturi, Generation of fluctuations during inflation:
Comparison of stochastic and field-theoretic approaches,
Phys. Rev. D 79, 044007 (2009).

[33] F. Finelli, G. Marozzi, A. A. Starobinsky, G. P. Vacca,
and G. Venturi, Stochastic growth of quantum fluctuations
during slow-roll inflation, Phys. Rev. D 82, 064020 (2010).

[34] B. Garbrecht, F. Gautier, G. Rigopoulos, and Y. Zhu,
Feynman diagrams for stochastic inflation and quantum
field theory in de Sitter space, Phys. Rev. D 91, 063520
(2015).

[35] B. Garbrecht, G. Rigopoulos, and Y. Zhu, Infrared corre-
lations in de Sitter space: Field theoretic versus stochastic
approach, Phys. Rev. D 89, 063506 (2014).

[36] I. Moss and G. Rigopoulos, Effective long wavelength
scalar dynamics in de Sitter, J. Cosmol. Astropart. Phys. 05
(2017) 009.

[37] G. I. Rigopoulos, E. P. S. Shellard, and B. J. W. van Tent,
Quantitative bispectra from multifield inflation, Phys. Rev.
D 76, 083512 (2007).

[38] H. Assadullahi, H. Firouzjahi, M. Noorbala, V. Vennin, and
D. Wands, Multiple fields in stochastic inflation, J. Cosmol.
Astropart. Phys. 06 (2016) 043.

[39] V. Vennin, H. Assadullahi, H. Firouzjahi, M. Noorbala, and
D. Wands, Critical Number of Fields in Stochastic Inflation,
Phys. Rev. Lett. 118, 031301 (2017).

[40] G. Rigopoulos and A. Wilkins, Inflation is always semi-
classical: Diffusion domination overproduces Primordial
Black Holes, arXiv:2107.05317.

[41] G. I. Rigopoulos and E. P. S. Shellard, The separate universe
approach and the evolution of nonlinear superhorizon
cosmological perturbations, Phys. Rev. D 68, 123518
(2003).

[42] P. Binetruy, E. Kiritsis, J. Mabillard, M. Pieroni, and C.
Rosset, Universality classes for models of inflation, J.
Cosmol. Astropart. Phys. 04 (2015) 033.

[43] A. R. Liddle, P. Parsons, and J. D. Barrow, Formalizing the
slow roll approximation in inflation, Phys. Rev. D 50, 7222
(1994).

[44] F. Cicciarella, J. Mabillard, and M. Pieroni, New perspec-
tives on constant-roll inflation, J. Cosmol. Astropart. Phys.
01 (2018) 024.

[45] P. Friedrich and T. Prokopec, Entropy production in
inflation from spectator loops, Phys. Rev. D 100, 083505
(2019).

[46] P. H. Damgaard and H. Huffel, Stochastic quantization,
Phys. Rep. 152, 227 (1987).

[47] Bernt K. Oeksendal, Stochastic Differential Equations: An
Introduction with Applications (Springer, Berlin, 2003),
ISBN 3-540-04758-1; Ludwig Arnold, Stochastic Differ-
ential Equations: Theory and Applications (Wiley-
Blackwell, New York, 1974), ISBN-10: 9780471033592,
ISBN-13: 978-0471033592; I. I. Grihman and A. V.

ΔN AND THE STOCHASTIC CONVEYOR … PHYS. REV. D 104, 083505 (2021)

083505-17

https://doi.org/10.1088/1475-7516/2005/05/004
https://doi.org/10.1088/1475-7516/2005/05/004
https://doi.org/10.1103/PhysRevLett.95.121302
https://doi.org/10.1103/PhysRevLett.95.121302
https://doi.org/10.1103/PhysRevD.87.023530
https://doi.org/10.1088/1475-7516/2016/02/036
https://doi.org/10.1088/1475-7516/2016/02/036
https://doi.org/10.1103/PhysRevD.69.084005
https://doi.org/10.1103/PhysRevD.69.084005
https://doi.org/10.1103/PhysRevD.72.023515
https://doi.org/10.1209/0295-5075/101/39001
https://doi.org/10.1103/PhysRevD.87.023514
https://doi.org/10.1016/j.physletb.2017.10.066
https://doi.org/10.1016/j.physletb.2017.10.066
https://doi.org/10.1007/3-540-16452-9
https://doi.org/10.1103/PhysRevD.43.1005
https://doi.org/10.1088/1475-7516/2008/04/025
https://doi.org/10.1088/1475-7516/2013/12/036
https://doi.org/10.1088/1475-7516/2013/12/036
https://doi.org/10.1088/1475-7516/2014/10/030
https://doi.org/10.1140/epjc/s10052-015-3643-y
https://doi.org/10.1016/j.dark.2017.09.001
https://doi.org/10.1088/1475-7516/2017/10/046
https://doi.org/10.1088/1475-7516/2019/07/031
https://doi.org/10.1088/1475-7516/2019/07/031
https://doi.org/10.1088/1475-7516/2018/07/032
https://doi.org/10.1088/1475-7516/2018/08/018
https://doi.org/10.1088/1475-7516/2019/03/048
https://doi.org/10.1088/1475-7516/2019/03/048
https://doi.org/10.1088/1475-7516/2019/01/040
https://doi.org/10.1088/1475-7516/2019/01/040
https://doi.org/10.1103/PhysRevD.99.043536
https://doi.org/10.1016/j.nuclphysb.2005.06.031
https://doi.org/10.1103/PhysRevD.79.044007
https://doi.org/10.1103/PhysRevD.82.064020
https://doi.org/10.1103/PhysRevD.91.063520
https://doi.org/10.1103/PhysRevD.91.063520
https://doi.org/10.1103/PhysRevD.89.063506
https://doi.org/10.1088/1475-7516/2017/05/009
https://doi.org/10.1088/1475-7516/2017/05/009
https://doi.org/10.1103/PhysRevD.76.083512
https://doi.org/10.1103/PhysRevD.76.083512
https://doi.org/10.1088/1475-7516/2016/06/043
https://doi.org/10.1088/1475-7516/2016/06/043
https://doi.org/10.1103/PhysRevLett.118.031301
https://arXiv.org/abs/2107.05317
https://doi.org/10.1103/PhysRevD.68.123518
https://doi.org/10.1103/PhysRevD.68.123518
https://doi.org/10.1088/1475-7516/2015/04/033
https://doi.org/10.1088/1475-7516/2015/04/033
https://doi.org/10.1103/PhysRevD.50.7222
https://doi.org/10.1103/PhysRevD.50.7222
https://doi.org/10.1088/1475-7516/2018/01/024
https://doi.org/10.1088/1475-7516/2018/01/024
https://doi.org/10.1103/PhysRevD.100.083505
https://doi.org/10.1103/PhysRevD.100.083505
https://doi.org/10.1016/0370-1573(87)90144-X


Skorokod, Stochastic Differential Equations (Springer, New
York, 1972); C. W. Gardiner, Handbook of Stochastic
Methods (Springer-Verlag, Berlin, 2009), ISBN10 978-3-
540-70712-7, ISBN13 978-3-642-08962-6.

[48] N. G. van Kampen, Stochastic Processes in Physics and
Chemistry, 3rd ed. (North Holland, Amsterdam, 2007),
ISBN 0-444-89349-0.

[49] T. Prokopec, N. C. Tsamis, and R. P. Woodard, Stochastic
inflationary scalar electrodynamics, Ann. Phys. (Amsterdam)
323, 1324 (2008).

[50] A. A. Starobinsky and J. Yokoyama, Equilibrium state of a
self-interacting scalar field in the de Sitter background,
Phys. Rev. D 50, 6357 (1994).

[51] J. J. Sakurai and J. Napolitano, Modern Quantum Mechan-
ics, 2nd ed. (Cambridge University Press, Cambridge,
England, 2017).

[52] W. Pauli, Wave Mechanics: Volume 5 of Pauli Lectures on
Physics (Dover Books on Physics, New York, 2000),
ISBN 0486414620.

TOMISLAV PROKOPEC and GERASIMOS RIGOPOULOS PHYS. REV. D 104, 083505 (2021)

083505-18

https://doi.org/10.1016/j.aop.2007.08.008
https://doi.org/10.1016/j.aop.2007.08.008
https://doi.org/10.1103/PhysRevD.50.6357

