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We investigate the parametric amplification of the zero-point fluctuations in the spin modes of a two-
component Bose-Einstein condensate, triggered by the dynamical evolution of the condensate density. We
first make use of a Thomas-Fermi approximation to develop a tractable theoretical model of the quantum
dynamics of the Bogoliubov excitations in a harmonically trapped condensate with a time-dependent
trapping frequency. The predictions of this model are then compared to an ab initio numerical study of the
correlation functions of density and spin fluctuations for general spatially inhomogeneous configurations.
Results are shown for the two cases of expanding and oscillating condensates: while the quantum excitation
of spin modes remains weak and relatively featureless in the case of an expanding condensate, clear and
experimentally promising signatures of particle creation are anticipated for the oscillating case under
suitable resonance conditions between the density and the spin modes.
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I. INTRODUCTION

It is well known that the zero point fluctuations of a
quantum field can be excited into observable radiation in
the case of a time-dependent or, more generally, curved
spacetime [1]. Examples of such phenomena for nonsta-
tionary backgrounds are the cosmological particle creation
[2,3] and the dynamical Casimir effect (DCE) [4–6]. In the
former case the nonstationarity is in the metric, that is a
bulk property of the spacetime while, in the latter case, the
time-dependence is in a boundary condition imposed to
the field. To the same family of phenomena belongs also
the Hawking radiation emanating from black holes [7,8]. In
this case however, the emission originates from the pres-
ence of an event horizon and is thus linked to a modifi-
cation of the causal structure of spacetime.
The detection of tiny quantum effects in a cosmological

context is extremely challenging with state-of-the-art tech-
nologies. So far, the only (indirect) evidence is in the
anisotropy of the cosmic microwave background [9] that,
according to the theory of cosmological inflation [10],
is believed to be a signature of primordial vacuum
fluctuations in the early Universe. These difficulties have
pushed for the quest of analog systems [11,12], where the
microscopic physics is different from gravity, but the
same kinematic effects of quantum field theory on time-
dependent or curved backgrounds can be implemented and
tested in a lab. A surge of proposal have flourished over the
past couple of decades using a multitude of analog systems,

including Bose-Einstein condensates (BEC) of ultracold
atoms [13–22], ions [23–25], quantum fluids of light [26],
and superconducting circuits [27–29] to name a few.
Building on this theoretical effort, pioneering experimental
works claimed the detection of spontaneous Hawking
emission originating from a sonic black hole [30–32] or
from effective horizons in a nonlinear medium [33], or of its
classical, stimulated counterpart in surface waves on water
[34,35]. Experimental studies of superradiant scattering in
rotational geometries [36] and of particle creation in analogs
of an expanding Universe [37–39] have also been reported.
In all these works, the nonstationary effective spacetime

is simulated by externally modulating certain physical
properties of the system at hand, such as the refractive
index in a optical medium or the scattering length of the
two-body collisional interaction in an atomic BEC. In other
words, in such proposals the time-dependence driving the
parametric amplification of the vacuum fluctuations is not
provided by a dynamical degree-of-freedom of the system,
but is rather imposed by the external action of the
experimentalist. While this approach is sufficient to study
kinematic effects of quantum field theory on a curved
spacetime, it cannot be used to go beyond and address those
dynamical and backreaction features that are more and
more attracting the interest of the community [40].
In this work we consider a conceptually different

configuration in which the vacuum fluctuations get ampli-
fied by the dynamical evolution of the system itself. By
either switching off, inverting, or just suddenly perturbing
the frequency of the harmonic trapping, different behaviors
can be generated in the condensate such as a linear or*salvatore.butera@glasgow.ac.uk
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exponential expansion, or periodic oscillations. In the
cosmological analogy, these regimes simulate an expanding
or a more complex cyclic universe [21,41] or the last
preheating stage of inflation [42]. Capitalizing on previous
works [43–45], we focus our attention on the most prom-
ising case of an analog model based on a two-component
BEC. The spinorial nature of the BEC gives rise to two
independent branches of collective excitations which, in the
simplest spin symmetric case, have purely density or spin
characters [46]. Going beyond our classical study of black
hole lasing dynamics of spin waves in [47], here we
investigate quantum particle creation processes into the
spin excitation branch that are driven by the dynamical
evolution of the overall condensate density modes. Within
this framework, the density excitations play the role of the
nonstationary background (namely the spacetime in the
gravitational case), while the spin excitation modes encode
the quantum field. A key advantage of this configuration is
that the speed of standard (density) sound can bemuch faster
than the one of spin-sound, so that one can take advantage of
the faster characteristic timescale of the density oscillations
to enhance the particle production into the spin modes.
Further experimental advantages of spinor condensates are
offered by the possibility of simultaneous imaging both the
density and the spin profiles in real time [48].
The work is organized as follows: In Sec. II, we develop

a theoretical model under the simplifying assumption of a
spatially homogeneous system. We show that this model is
able to predict the amplification of the vacuum fluctuations
in the spin excitation modes as a result of the time-
dependent overall density. We derive the effective action
for the fluctuations and show that, in the case of a
expanding background, both the phase and the density
experience an effective damping. In Sec. III we make use of
this simplified model to simulate the dynamics of the
quantum fluctuations in a harmonically trapped condensate
within the Thomas-Fermi limit in different cases of a
linearly or exponentially expanding condensate and of
an oscillating one. In Sec. IV, we present an ab initio
numerical study of the dynamics of the trapped system,
focusing on the time evolution of the two-body correlations
in the density and the sectors. While the signal of the
parametric amplification of the vacuum fluctuations
remains weak in an expanding condensate, strong signa-
tures are instead found in the case of an oscillating
condensate. Our final considerations and our perspectives
for future work are finally summarized in Sec. V.

II. THEORY OF A NONSTATIONARY
TWO-COMPONENT CONDENSATE

A. Lagrangian and energy functional

We consider a weakly interacting D-dimensional Bose
gas composed by two atomic speciesa andb or two different
internal atomic states of the same atom [49]. The atoms are

assumed to have the same mass m in the two states
and to be subject to the same external harmonic
potentialVðx; tÞ ¼ ðm=2ÞPD

i¼1 ωiðtÞx2i , with generic time-
dependent trapping frequencies ωiðtÞ in the three directions
i ¼ fx; y; zg. We indicate by gjj0 ðj; j0 ¼ a; bÞ the inter-
action constants for the different collisional channels.
The action S describing the dynamics of the system is

expressed as the space-time integral of the Lagrangian
density L, that is

S ¼
Z

dtdxLðΨ̂j; Ψ̂
†
j ; ∂αΨ̂j; ∂αΨ̂

†
jÞ: ð1Þ

Here, dx≡Q
D
i¼1 dxi is the differential volume element,

Ψ̂jðx; tÞ (j ¼ a, b) are the field operators relative to the two
components of the system, and we collectively indicated
the space and time derivatives by using the Dþ 1 notation
∂αΨ̂j (α ¼ 0; 1;…; D, the time coordinate corresponding
to α ¼ 0). The Lagrangian density can be written in terms
of the density P̂jðx; tÞ and phase Φ̂jðx; tÞ operators,
which are defined according to the Madelung representa-

tion of the fields Ψ̂j ¼
ffiffiffiffiffi
P̂j

q
eiΦ̂j . By using this notation, the

Lagrangian takes the explicit form:

LðP̂j; Φ̂j; ∂αP̂j; ∂αΦ̂jÞ

¼
X
j¼a;b

�
ℏP̂j

∂Φ̂j

∂t
�
þ ϵðP̂j; Φ̂j; ∂αP̂j; ∂αΦ̂jÞ; ð2Þ

where

ϵðP̂j; Φ̂j; ∂αP̂j; ∂αΦ̂jÞ

¼
X
j¼a;b

�
ℏ2

8mP̂j
ð∇xP̂jÞ2 þ

ℏ2

2m
P̂jð∇xΦ̂jÞ2

þ Vjðx; tÞP̂j þ
gjj
2
P̂2j þ

gjj0

2
P̂jP̂j0

�
ð3Þ

is the energy density of the system. In Eq. (3), ∇x is the
standard nabla operator, that is the vector-valued differ-
ential operator whose components are the derivative respect
to each spatial coordinate. From now on, we indicate with
the primed index j0 the component of the system other
than j.
This formalism reveals to be particularly useful for

interpreting the results we discuss in the following in
terms of cosmological and QFTCS terms.

B. Comoving coordinates

We find it convenient to describe the evolution of the
system by working with the so-called co-moving coordi-
nates yi ≡ xi=liðtÞ ði ¼ 1;…; DÞ [50–52], in which the
expansion parameters liðtÞ account for the size variation of
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the system, and defined the scaling volume VðtÞ≡Q
D
i¼1 liðtÞ. An explicit evolution law for liðtÞ will be

given in Eq. (6). These coordinates partake of the motion of
the system and, as we will see in the following sections,
allow us to describe the dynamics of the elementary
excitations in terms of a formalism that resembles a
quantum field in a time-dependent spacetime. For nota-
tional convenience, we also introduce the rescaled oper-
ators ϕ̂j, ρ̂j and ψ̂ j, defined according to the following
transformations:

Φ̂jðx; tÞ ¼
XD
i¼1

_liðtÞ
2liðtÞ

ℏ
m
x2i þ ϕ̂jðfxi=ligi¼1;…;D; tÞ; ð4aÞ

P̂jðx; tÞ ¼
ρ̂jðfxi=ligi¼1;…;D; tÞ

VðtÞ ; ð4bÞ

Ψ̂jðx; tÞ ¼
1ffiffiffiffiffiffiffiffiffi
VðtÞp exp

�XD
i¼1

_liðtÞ
2liðtÞ

iℏ
m
x2i

�

× ψ̂ jððfxi=ligi¼1;…;D; tÞ; tÞ: ð4cÞ

The first term in Eq. (4) accounts for the phase induced
by the overall motion of the system while, in Eq. (4b), ρ̂j is
the scaled density profile. According to the definitions in
Eqs. (4a)–(4c), the scaled field operators are related via the
usual Madelung relation ψ̂ j ¼

ffiffiffiffiffi
ρ̂j

p
expðiϕ̂jÞ.

The action S can be written in terms of these scaled
quantities as [19,50]

S ¼
Z

dtdy
X
j¼a;b

�
ℏρ̂j

∂ϕ̂j

∂t

þ
XD
i¼1

�
1

2
mðωi;0yiÞ2

ρ̂j
VðtÞ þ

ℏ2

8mρ̂j

�
1

liðtÞ
∂ρ̂j
∂yi

�
2

þ ℏ2

2m

�
1

liðtÞ
∂ϕ̂j

∂yi
�

2

ρ̂j

�
þ gjj

2

ρ̂2j
VðtÞ þ

gjj0

2

ρ̂jρ̂j0

VðtÞ
�
; ð5Þ

where we indicated the initial value of the trapping
frequency ωi;0 ¼ ωið0Þ.
Within the usual Thomas-Fermi interaction, valid if the

interaction energy is much larger than the harmonic trap
frequency [49], the dynamics of the scale parameters liðtÞ
is governed by the equation [50]

l̈iðtÞ þ ω2
i ðtÞliðtÞ ¼

ω2
i;0

liðtÞVðtÞ
; ð6Þ

which, for a system initially at equilibrium, has to be solved
with the initial conditions lið0Þ ¼ 1, _lið0Þ ¼ 0. We indi-
cate time derivatives with over dots.

C. Bogoliubov theory

We follow the Bogoliubov prescription, and split the
field operators into their mean-field (classical) ϕj;0, ρj;0 and
quantum fluctuating δϕ̂j, δρ̂j components as

ϕ̂j ¼ ϕj;0 þ δϕ̂j; ð7aÞ

ρ̂j ¼ ρj;0 þ δρ̂j: ð7bÞ

Accordingly, we expand the action in Eq. (5) up to
second order in δϕ̂j, δρ̂j, in order to capture the free
dynamics of the quantum fluctuations.

1. Condensate evolution

The zero-th order term of the action has the same
structure as Eq. (5), with the operators replaced by their
mean-field components. This provides the following Euler-
Lagrange equations for the phase and the density:

−ℏ
∂ϕj;0

∂t ¼ m
2

XD
i¼1

�
ω2
i;0

y2i
VðtÞ

�
þ
XD
i¼1

�
ℏ2

2m

�
1

liðtÞ
∂ϕj;0

∂yi
�

2

−
ℏ2

4ml2
i ðtÞ

∂
∂yi

�
1

ρj;0

∂ρj;0
∂yi

��

þ gjj
ρj;0
VðtÞ þ gjj0

ρj0;0
VðtÞ ; ð8Þ

∂ρj;0
∂t þ ℏ

m

XD
i¼1

� ∂
∂yi

�
1

liðtÞ
∂ϕj;0

∂t ρj;0

��
¼ 0: ð9Þ

In the Thomas-Fermi (TF) limit in which the spatial
variations of the density can be neglected [49], these are
solved by taking a time-independent value ρj;0 of the scaled
density such that

μ ¼ m
2

XD
i¼1

ω2
i;0y

2
i þ gjjρj;0 þ gjj0ρj0;0: ð10Þ

and a simple evolution of the spatially-uniform scaled
phase in the form ϕj;0ðtÞ ¼ −μτðtÞ=ℏ [19,50], where μ is
the initial chemical potential of the system and τ is a
comoving time defined according to the differential rela-
tion dτ ¼ dt=V.
Throughout this paper, we focus on the case of a

symmetric system, for which the contact interaction
strengths between particles in states a and b are the
same gaa ¼ gbb ≡ g. In this assumption, the mean-field
ground state is symmetric or polarized, depending on
whether or g > gab or g < gab. In the former case the
density for the two components is the same, and equal to
ρa;0 ¼ ρb;0 ¼ ρ0=2, with
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ρ0 ¼
�
2μ −m

P
D
i¼1 ω

2
i;0y

2
i

gþ gab

�
: ð11Þ

In this symmetric configuration, the elementary excita-
tions of the system decouple into the two independent spin
and density branches [46].

2. Collective excitations

The equations governing the dynamics of the collective
excitations on top of the condensate are obtained from the
second order term of the action in Eq. (5) in the fluctuation
operators. This has the form:

Sð2Þ ¼
Z

dtdy
X
j¼a;b

�
ℏδρ̂j

∂δϕ̂j

∂t þ
XD
i¼1

�
ℏ2

4mρ0

�
1

liðtÞ
∂δρ̂j
∂yi

�
2

−
ℏ2

2mρ20

�
1

liðtÞ
∂ρ0
∂yi

��
1

liðtÞ
∂δρ̂j
∂yi

�
δρ̂j

þ ℏ2

4m
ρ0

�
1

liðtÞ
∂δϕ̂j

∂yi
�

2
�
þ g
2VðtÞ δρ̂

2
j þ

gab
2VðtÞ δρ̂jδρ̂j0

�
: ð12Þ

For simplicity, in this section we restrict our attention to the central region of the condensate, where the density can be
approximated as homogeneous (∂ρ0=∂yi ≈ 0). Under this assumption the action in Eq. (12) reduces to the form

Sð2Þ ¼
Z

dtdy
X
j¼a;b

�
ℏδρ̂j

∂δϕ̂j

∂t þ
XD
i¼1

�
ℏ2

4mρ0

�
1

liðtÞ
∂δρ̂j
∂yi

�
2

þ ℏ2

4m
ρ0

�
1

liðtÞ
∂δϕ̂j

∂yi
�2�

þ g
2VðtÞδρ̂

2
j þ

gab
2VðtÞδρ̂jδρ̂j0

�
: ð13Þ

where the fluctuations in the a and b components are
coupled by the cross-species collisional interaction de-
scribed by the last term in Eq. (13).
A further simplified form is obtained by working in the

density and spin basis, δσ̂d ¼ ðδσ̂a þ δσ̂bÞ=2 and δσ̂s ¼
ðδσ̂a − δσ̂bÞ=2 for both the density and the phase σ ¼ ρ;ϕ.
While the ρd and ϕd have the usual meaning of the total
density and the phase of the condensate, the spin counter-
parts ρs and ϕs are related to the density difference in the
two components and to the relative phase of the two
components.
In this basis, the action Sð2Þ can be written as the sum of

the actions in the density and spin channels

Sð2Þ ¼
Z

dtdy
X
r¼d;s

�
ℏδρ̂r

∂δϕ̂r

∂t

þ
XD
i¼1

�
ℏ2

4mρ0

�
1

liðtÞ
∂δρ̂r
∂yi

�
2

þ ℏ2

4m
ρ0

�
1

liðtÞ
∂δϕ̂r

∂yi
�

2
�

þ gr
2VðtÞδρ̂

2
r

�
: ð14Þ

and the elementary excitations decouple into two branches
of density and spin excitations. Here gd ¼ gþ gab and gs ¼
g − gab indicate the strength of the effective atomic
interactions involved in the density and the spin branches.
Dynamical stability of the condensate imposes that both
interaction constants are positive gd;s > 0.
In the remaining of this section we derive the equations

governing the dynamics of these fluctuations and discuss
the features of their motion. For simplicity, we drop the

subscript d, s in the modes as the following considerations
apply to both the types of excitations, and write in general
δρ and δϕ. We keep the subscript only in gr, so to
distinguish the effective interaction strength seen by the
two components.
The Euler-Lagrange equations for the fluctuations are

obtained by minimizing the action in Eq. (14) with respect
to variations in δρ̂ and δϕ̂:

ℏ
∂δϕ̂
∂t þ gr

δρ̂

VðtÞ −
ℏ2

2mρ0

XD
i¼1

�
1

l2
i ðtÞ

∂2δρ̂

∂y2i
�
¼ 0; ð15Þ

∂δρ̂
∂t þ ℏ

2m
ρ0

XD
i¼1

�
1

l2
i ðtÞ

∂2δϕ̂

∂y2i
�
¼ 0: ð16Þ

In the homogeneous limit here considered it is convenient
to expand the fields in the plane wave basis and consider
waves of given wave vector q. Restricting to classical
equation for this mode and inserting the normalization
δρq ¼ ðρ0=2ÞϱqðtÞeiq·y and δϕq ¼ φqðtÞeiq·y into Eqs. (15)
and (16), we obtain the following equations for the time-
dependent amplitudes ϱqðtÞ and φqðtÞ:

ℏ _φq þ
�
grρ0
2VðtÞ þ

ℏ2Π2ðtÞ
4m

�
ϱq ¼ 0; ð17Þ

_ϱq −
ℏ
m
Π2ðtÞφq ¼ 0; ð18Þ

where we defined the time-dependent wave vector Π2ðtÞ≡P
D
i¼1 q

2
i =liðtÞ2 rescaled by the condensate size.
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For a static configuration with a constant l, the solution
of the equations of motion Eqs. (15) and (16) has the
usual form expð−iΩrtÞ and recovers the well known
Bogoliubov dispersion of a homogeneous, two-component
condensate [46]:

Ω2
rðqÞ ¼ c2rq2 þ ℏ2q4

4m2
; ð19Þ

with c2r ≡ grρ0=ð2mÞ the speed of (spin or density) sound
[cf. with the time-dependent definition in Eq. (24)]. In this
work, we focus on the most relevant g > gab > 0 case
where the effective interaction strength gs ¼ g − gab expe-
rienced by the spin excitations is positive but lower than the
one of the density excitations. In these conditions, stability
is guaranteed but the frequencies of the spin modes are
systematically smaller than one of the corresponding
density modes. This feature will play a crucial role for
our study of particle creation in the spin modes generated
by a time-dependent density of the system.

3. Role of dimensionality

Before proceeding to the study of the quantum dynamics
of the Bogoliubov excitations in a nonstationary conden-
sate, it is interesting to highlight some important features of
the equations of motion Eqs. (17) and (18). Consider for
simplicity an isotropic system with equal trapping frequen-
cies ωiðtÞ≡ ωðtÞ and, thus, equal scaling factors
liðtÞ≡ lðtÞ. The time-dependent wave vector ΠðtÞ then
scales as 1=lðtÞ, while the volume VðtÞ scales as lDðtÞ,
where we remindD being the dimensionality of the system.
Depending on D, for an expanding condensate with

lðtÞ → þ∞, the square bracket in Eq. (17) is eventually
dominated by one or another term. For D ¼ 1, the second
term accounting for the superluminal behavior of the
Bogoliubov dispersion decreases faster than the first term
accounting for interactions, so that any given q mode
eventually enters the sonic range. The situation is com-
pletely different in D ¼ 3, where the interaction term
decreases faster and the mode eventually acquires a
single-particle character. As it was pointed out in
[19,53], the D ¼ 2 case is peculiar, as in this case the
equations of motion recover the constant l case upon a
trivial rescaling of the time dτ ¼ dt=V. As a result, in this
dimensionality the time-dependence of lðtÞ has no effect
on the phase or density fluctuations.
Similar scaling arguments can be used to also highlight

the peculiarities of our physically expanding condensate in
comparison with the case where the expansion is simulated
by means of a time-dependent collisional interaction
strength grðtÞ between atoms, e.g., by means of a
Feshbach resonance [37,54]. Even though this technique
has been extensively exploited in the literature in order to
study the effect of particle creation in an effective nonsta-
tionary spacetime for phonons in a BEC [21,53], some

crucial points need highlighting: the volume V and the
time-dependent wave vector Π do not change in time, so
the kinetic energy of the mode under consideration remains
constant. Since the interaction energy decreases instead in
time via grðtÞ during the analog expansion, any excitation
mode will eventually acquire a single-particle character
independently of the dimensionality.
Furthermore, the scaling factor is in this case fully

predetermined by the externally determined time-depend-
ence of grðtÞ and does not constitute an independent degree
of freedom of the system. This poses serious problems if
one aims at going beyond the physics of quantum fields on
a pre-determined background and is interested to the
coupled dynamics of the two.

4. Mode freezing effect

By deriving the motion equations Eqs. (17) and (18) with
respect to time and combining them, we can reformulate
our dynamics in terms of second order differential equa-
tions that only involve the phase and the density fluctua-
tions separately [38,43]:

φ̈q −
�

1

C2r;qðtÞ
dðC2r;qðtÞÞ

dt

�
_φq þ ω2

r;qðtÞφq ¼ 0; ð20Þ

ϱ̈q −
�

1

Π2ðtÞ
dðΠ2ðtÞÞ

dt

�
_ϱq þ ω2

r;qðtÞϱq ¼ 0; ð21Þ

where

C2r;qðtÞ≡ c2rðtÞ þ
ℏ2Π2ðtÞ
4m2

; ð22Þ

ω2
r;qðtÞ≡ C2r;qðtÞΠ2ðtÞ; ð23Þ

and we defined the time-dependent speed of sound

c2rðtÞ≡ grρ0=ð2mVðtÞÞ ð24Þ

which is induced by the dynamical evolution of the density
component of the system via the volume scaling factor
VðtÞ. The Eqs. (20) and (21) show that, in the case of an
expanding condensate, each mode, as seen in co-moving
coordinates, undergoes the dynamics of a damped har-
monic oscillator with a time-dependent frequency. The
effective damping experienced by the modes appears
because of the variation in size of the system, and is the
analogous of the cosmological Hubble friction that orig-
inates in an expanding Universe [55].
Even though the physical picture of the Hubble friction is

a useful tool to intuitively understand the physics, some
peculiar features are worth being pointed out. First, the
effective friction experienced by the phase and density
fluctuations in respectively (20) and (21) seem to have
different physical origins. For the density fluctuations, the

PARTICLE CREATION IN THE SPIN MODES OF A … PHYS. REV. D 104, 083503 (2021)

083503-5



effective friction is related to the redshift of the modes
consequent to the variation in size of the system itself. For
the phase, it appears via a time dependence in the speed of
sound of the modes, which in turn depends (in the hydro-
dynamic limit) on the density of the system as well as on
the interaction constant g.
The evolution given by Eqs. (20) and (21) is illustrated in

Fig. 1 for the case of an expanding system. For simplicity
we focus again on an isotropic system with equal trapping
frequencies ωiðtÞ≡ ωðtÞ and liðtÞ≡ lðtÞ. Also, let us
define the Hubble parameter HðtÞ≡ _lðtÞ=lðtÞ. This is
proportional the friction appearing in Eqs. (20) and (21). It
is constant in the case of an exponential expansion:
lðtÞ ∼ eHt, while HðtÞ ∼ 1=t for the linearly expanding
system: lðtÞ ∼ t. As a specific example of the general
physics, in the figure we show the time evolution of the
density and phase components of a spin mode of frequency
ωs=ω0 ¼ 50, obtained by numerically solving the equa-
tions of motion for the case of an exponentially expanding
one-dimensional condensate.
As shown in the figure, the dynamical evolution of the

Bogoliubov modes goes through three different stages, that
arise as a result of the competition between the different
timescales provided by the mode frequency and the
effective friction in the motion equations. At the early
times of the expansion [indicated as (I) in the figure], when
the expansion rate is still negligible respect to the mode
natural frequency, the mode evolves as an almost free
harmonic oscillator. As the expansion proceeds [temporal
region (II) in the figure], the value of the frequency
decreases because of the combined effect of the redshift
of the wavelengths and of the reduced density that result in
a lower value of the sound speed. This change in frequency
is also responsible for a redistribution of the amplitude
between the density and phase components that is visible in

the figure. This effect can be derived from the equation
relating the time evolution of the amplitudes of the phase
and density components of the modes, which is readily
obtained from Eqs. (17) and (18) as

ℏ2

m

djφqj2
dt

þ 1

VðtÞΠ2ðtÞ
�
gr
2
þ ℏ2

4m
VðtÞ
ϱ0

Π2ðtÞ
�
djϱqj2
dt

¼ 0:

ð25Þ

Since the time dependent coefficients in Eq. (25) are
positive, we deduce that the variation of the amplitude
of the phase and density components is opposite in sign. At
the time when the oscillation frequency becomes compa-
rable to the expansion rate ωr;qðtÞ ≈HðtÞ, the effective
damping starts to strongly affect the dynamics that turns
into an over-damped regime [temporal region (III) in the
Figure] analogous to the dynamics of a mass attached to a
spring that oscillates immersed in a viscous medium. Both
the values of the elastic constant of the spring and of the
viscosity goes to zero over time: since the former decays
faster than the latter, the mode amplitude tends to a finite
constant value in the long time limit.
A similar phenomenology occurs in cosmology when the

wavelength of a mode crosses the so-called Hubble radius
RHðtÞ, that is defined in terms of the sound speed crðtÞ
and the Hubble parameter HðtÞ as RHðtÞ≡ crðtÞ=HðtÞ.
Physically this represents the distance between two points
moving away from each other with luminal velocity. This
interpretation is readily demonstrated by posing the relative
physical velocity v between two points

v ¼ d
dt

jxj ¼ d
dt

ðlðtÞjyjÞ ¼
_lðtÞ
lðtÞ jxj ¼ HðtÞjxj

FIG. 1. Time evolution of the (spin) density (solid black line) and (relative) phase (dashed blue line) components of a spin mode of
initial angular frequency ωs=ω0 ¼ 50, in a one-dimensional condensate that is expanding after reverting the sign of the harmonic
potential at t ¼ 0. In the inset we show the dynamics of the expansion parameter lðtÞ: After the initial transient regime, whose duration
is of the order ∼1=ω0, the expansion is exponential, and characterized by the Hubble parameter HðtÞ ¼ _lðtÞ=lðtÞ ¼ ω0. The three
stages of the evolution of the modes discussed in the main text, driving the system from the under- to the over-damped regime, are
clearly visible.
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equal to crðtÞ. The Hubble radius is a local quantity (it is
defined at each time instant) and has not to be confused
with the (past and future) cosmological horizons, that are
global features of spacetime instead [55]. In this late stage
of the evolution, the mode frequencies go to zero faster than
HðtÞ and the amplitudes display an overdamped behavior
toward a finite-valued long-time limit. In the cosmological
literature, this phenomenology goes under the name of
mode freezing.
This mode freezing is generic to all dimensions and can

be reconciled with our previous analysis of the D ¼ 2 case
where the scaling arguments predict the absence of evo-
lution of the density and the phase. To this purpose, one
need to note that the rescaled time τ has a finite limit for a
physical time t → ∞ for any D. Since the modes keep
oscillating at the Bogoliubov frequency in the rescaled
temporal variable τ, it is immediate to understand why the
mode amplitudes shown in the figure tend to a constant
value for t → þ∞.
As a final remark, it is useful to comment on the physical

nature of the Hubble friction. Since our evolution is a
purely conservative one, the Hubble friction is only
apparent and is not associated to any real dissipation
process. In particular, if one considers the combination
of suitably tuned expansion and contraction stages, the
system can be brought back to its initial quantum state
without inserting any additional noise. On one hand, this
can be be understood as the sign of the friction being
reversed when expansion is replaced by contraction, lead-
ing to an effective amplification. On the other hand, the
evolution of our system differs from the one of a generic
quantum system experiencing a sequence of dissipation and
reamplification stages, as in this case the overall process
would unavoidably introduce some extra noise. These
remarks highlight the necessity of using the expression
mode freezing with due care.

D. Effective Hamiltonian

In this subsection we derive the quantum mechanical
energy operator for the Bogoliubov excitations in the
general case of a nonstationary condensate. This provides
the Hamiltonian operators that describes the quantum
dynamics of the elementary excitations in the system, from
which the analogue effect of cosmological particles crea-
tion can be deduced. As a first step toward this objective,
we derive first the scalar product of the corresponding field
theory from first principles.

1. Scalar product

Given the action in Eq. (14), the scalar product is defined
as the space integral of the time-component of the con-
served (Dþ 1)-current Jα resulting from the global phase
invariance of the Lagrangian. The explicit expression for
such a scalar product is obtained by first generalizing the
Lagrangian of the theory to the case of complex φr and ϱr

fields since, in the homogeneous limit we are considering,
we are expanding the phase and density fields in plane
waves. The conserved current is a classical concept, so we
work with classical fields in this section. The first term in
Eq. (14) can be generalized as

ℏ
2

�
δρ�r

δ∂ϕr

∂t þ δρr
∂δϕ�

r

∂t
�
; ð26Þ

having opportunely symmetrized the time derivative
between the density and phase fields. A similar procedure
can be applied to the other terms of the Lagrangian.
The resulting complex Lagrangian is invariant under the
transformations

δρr → δρreiϵ ≈ δρrð1þ iϵÞ; ð27aÞ

δϕr → δϕreiϵ ≈ δϕrð1þ iϵÞ; ð27bÞ

where ϵ is an arbitrary infinitesimal phase. The conserva-
tion law is deduced from the Noether theorem [56], and is
written as

∂αJαr ¼ 0; ð28Þ

where

Jαr ¼
X

σ¼δϕ;δρ

� ∂L
∂ð∂ασrÞ

δð∂ασrÞ þ
∂L

∂ð∂ασ
�
rÞ
δð∂ασ

�
rÞ
�
; ð29Þ

is the conserved ðDþ 1Þ-current for each of the two
components. The Eq. (28) is a continuity equation. By
integrating it over the spatial volume, and considering field
variations that vanish at the spatial boundaries, we obtain

∂t

�Z
dyJ0r

�
¼ 0; ð30Þ

provided δϕr and δρr are solution of the field equations in
Eqs. (15) and (16). The spatial integral of the time-
component J0r of the current is thus constant. In the case
of a complex field theory whose quanta are distinguishable
particles with opposite charge, J0r has the physical meaning
of total charge in the system. In the case of a condensate
instead the fields φr and ϱr are real-valued and we have a
single type of particle that is the phonon, and we can assign
to the conserved quantity the meaning of a scalar product.
We thus haveZ

dyJ0r ¼ ð31Þ

¼ iℏ
2
ϵ

Z
dyðδρ�rδϕr − δρrδϕ

�
rÞ ¼ const:: ð32Þ
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Since the Lagrangian is quadratic, this conservation law
holds for each couple of density and phase modes,
individually. For a reason that will be clear in the next
sections, we chose the arbitrary phase ϵ in such a way that
the scalar product takes the explicit form

ðφr;q; ϱr;qÞ≡ φ�
r;qϱr;q − ϱ�r;qφr;q ¼ i=N; ð33Þ

where we used the notation introduced in the previous
section for the amplitude of the modes in the homogeneous
system, and we indicated by N ¼ R

dyρ0ðyÞ the total
number of particles in the system.

2. Time-dependent Hamiltonian

The energy of the excitations is obtained by integrating
over the spatial domain the term of the energy density in
Eq. (3) that is of second order in the quantum fluctuations.
By working in the spin and density basis, and by using the
scaled quantities and comoving coordinates, this energy
can be written as

Êð2Þ ¼
Z

dy
X
r¼d;s

�XD
i¼1

�
ℏ2

2mρ0

�
1

l2
i ðtÞ

∂2δρ̂r
∂y2i

�
2

þ ℏ2

2m
ρ0

�
1

l2
i ðtÞ

∂2δϕ̂r

∂y2i
�

2
�
þ gr
VðtÞ δρ̂

2
r

�
: ð34Þ

By using the Eqs. (15) and (16), this reduces to the simple
form

Êð2Þ ¼
Z

dy
X
r¼d;s

ℏ

�
δϕ̂r

dδρ̂r
dt

− δρ̂r
dδϕ̂r

dt

�
: ð35Þ

By using the expansion of the quantum fluctuations in
terms of the Bogoliubov modes:

δρ̂r ¼
ρ0
2

X
q

ðϱr;qeiq·yb̂q þ ϱ�r;qe−iq·yb̂
†
qÞ; ð36Þ

δϕ̂r ¼
X
q

ðφr;qeiq·yb̂q þ φ�
r;qe−iq·yb̂

†
qÞ; ð37Þ

this energy operator can be expanded as

Êð2Þ

N
¼ ℏ

2

X
r;q

ðW½φr;q; ϱ�r;q� þ ðW½φr;q; ϱ�r;q�Þ�Þb̂†r;qb̂r;q

þ ℏ
2

X
r;q

W½φr;q; ϱ�r;q�

þ ℏ
2

X
r;q

ðW½φ�
r;q; ϱ�r;q�b̂†r;qb̂†r;−q þ H:c:Þ: ð38Þ

Here we defined the Wronskian W½φr;q;ϱr;q�≡φr;q _ϱr;q−
_φr;qϱr;q and used the relation W½ϱr;q;φ�

r;q� ¼
−ðW½φr;q;ϱ�r;q�Þ�. The first term in Eq. (38) represents

the energy carried by the quasi-particles that populate each
of the Bogoliubov modes. The second term accounts
instead for the zero-point contribution of the vacuum. If
different from zero, the last term in Eq. (38) accounts for a
process of squeezing, and thus the creation of entangled
pairs of quasiparticles with opposite momenta.
At equilibrium this term of course has to be zero.

In such conditions the frequencies of the modes are well
defined, and they take the form [see Eqs. (19)–(21)]:
φr;q ¼ φ̄r;qe−iΩrðqÞt, ϱr;q ¼ ϱ̄r;qe−iΩrðqÞt (with φ̄r;q, ϱ̄r;q
complex constants). By substituting these expressions into
the definition of the Wronskian, we obtain

W½φr;q; ϱ�r;q� ¼ 2iΩrðqÞφ̄r;qϱ̄
�
r;q; ð39Þ

W½φr;q; ϱr;q� ¼ 0; ð40Þ

so that the energy can be rewritten as

Eð2Þ

N
¼ ℏ

X
r;q

ΩrðqÞ½iðφ̄r;qϱ̄
�
r;q − φ̄�

r;qϱ̄r;qÞ�b̂†r;qb̂r;q

þ ℏ
2

X
r;q

2iΩrðqÞφ̄r;qϱ̄
�
r;q: ð41Þ

From the Eq. (41) we infer that the theory has a particle
interpretation if

Nðφ̄�
r;qϱ̄r;q − φ̄r;qϱ̄

�
r;qÞ ¼ i;

that is the scalar product defined in Eq. (33). Also note that,
in the static configuration, Nφ̄�

qϱ̄q ¼ i=2. The energy is
conserved in this case as expected, and takes the standard
form at equilibrium:

Eð2Þ ¼
X
r;q

ℏΩrðqÞ
�
b̂†r;qb̂r;q þ

1

2

�
: ð42Þ

In the general time-dependent case, the Eqs. (39) and (40)
are not verified, and W½φr;q; ϱr;q� is different from zero.
This means that the energy is not conserved and pairs of
entangled particles with opposite momenta are created out
of the initial vacuum state.
We should mention here that the nonconservation of the

energy is a consequence of the time-dependence of the
background underlying our quantum field. This highlights
the fact that the Bogoliubov theory adopted here only
provides a partial description of the system in terms of a
time-dependent Hamiltonian. In particular, this model is
not self-consistent as it does not take into account the
effects of the backreaction of the quantum fluctuations
onto the mean-field component. A more sophisticated
theory solving this difficulty will appear in a forthcoming
work [57].
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III. THOMAS-FERMI NONSTATIONARY
ONE-DIMENSIONAL CONDENSATE

In the previous section we developed the theory
that describes the dynamics of the Bogoliubov excitations
in a nonstationary, two-component condensate. We
developed this model by working in the TF limit, in
which the interaction energy is the predominant
energy scale in the mean-field description of the
system, and we considered the spatial region close to
the centre of the trapping potential in order to justify our
assumption of homogeneous density. In more formal
terms, the density can be approximated as homogeneous
when it changes over a length scale that is much longer
compared to the characteristic microscopic length scale of
the condensate. The former is provided by the TF radius
RTFðtÞ≡ ½2μ=mω2ðtÞ�1=2, which gives the spatial exten-
sion of the condensate, while the latter is provided by the
healing length ξr ¼ fℏ2=½mgrρ0ðx ¼ 0Þ�g1=2. The defini-
tion of the healing length is not unique for the two-
component system, as collective modes in the spin and
density branches experience a different effective inter-
action strength. Since one typically has gs < gd, the
validity condition ξr=RTFðtÞ ≪ 1 for the constant density
approximation is more easily verified for the density
modes rather than the spin modes.

A. Particle creation and correlations

The coupled dynamics of the background condensate
and the quantum fluctuations is governed by the set of
Eqs. (6), (20) and (21). The homogeneous spectrum, in
Eq. (23) reproduces in the long wavelength limit the TF
spectrum ½ωTF

r;n=ω0�2 ¼ gr
gd
½n
2
ðnþ 1Þ�, provided we take

wave vectors of the form qnðtÞ¼ n=RTFðtÞ ðn ¼ 1; 2;…Þ
and add the constant term c2rðtÞqnðtÞ=RTFðtÞ. With this
ad hoc amendments it reads as

ω2
r;nðtÞ ¼

c2rðtÞqnðtÞ
RTFðtÞ

þ c2rðtÞq2nðtÞ þO½q4nðtÞ�

¼ c2rðtÞq2nðtÞ
�
1þ 1

qnðtÞRTFðtÞ
�
þO½q4nðtÞ�

¼ ½ωTF
r;n�2

VðtÞl2ðtÞ þO½q4nðtÞ�: ð43Þ

The form we used for the wave vectors accounts for the
discreteness of the spectrum imposed by the finite size of
the system, whose extension is provided by the TF radius.
The constant term we added to the homogeneous spectrum
accounts instead for a correction to the frequency of the
modes. This correction is negligible for modes of higher
energy, and shorter wavelength, as they oscillate with a
length scale that is much shorter compared to the extension
of the system, locally seeing an effective constant density.
The correction term is instead relevant for modes of lower

energy, with a wave vector comparable to the size
of the system. The structure of these modes is strongly
affected by the inhomogeneity of the system, and they
cannot be approximated as simple harmonic functions.
Given Eq. (43), the correction terms can geometrically be
interpreted as introducing an effective wave vector qn;eff,
defined as

qn;eff ≡ qnðtÞ
�
1þ 1

qnðtÞRTFðtÞ
�

1=2
; ð44Þ

that allows to write the TF spectrum in the form of the
homogeneous one: ω2

r;nðtÞ ¼ ðcrðtÞqn;effðtÞÞ2.
By using Eq. (43) in Eqs. (20) and (21), together with the

values for the wave vectors given above, we are thus able to
simulate the dynamics of the Bogoliubov excitations on top
of a TF condensate.
The Eqs. (20) and (21) are thus solved, given the initial

conditions provided by the mode functions at equilibrium,
that read

ϱr;qðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ϵq;0
ℏωr;q

s
e−iΩr;qt; ð45aÞ

φr;qðtÞ ¼ −
i
2

ffiffiffiffiffiffiffiffiffiffiffi
ℏωr;q

ϵq;0

s
e−iΩr;qt; ð45bÞ

with ϵ2q;0 ¼ ℏ2q2=2m.
We consider the two configurations of an expanding

condensate or of an oscillating condensate in its breathing
density mode. In the former case, a linear or exponential
expansion is implemented by switching-off or reverting the
sign of the trapping potential, respectively. The oscillating
condensate is instead implemented by perturbing the
trapping potential in order to excite the density breathing
mode of the system. To this aim, we consider a sudden
modulation of the trapping frequency with a temporally-
localized form, ωðtÞ=ω0 ¼ 1þ A expð−ðt − t0Þ2=ð2σ2ÞÞ.
Here A is the amplitude of the modulation, t0 is time
instant at which it takes place, while σ determines its
duration. This perturbation sets the condensate in motion
mostly in its breathing mode [49], with the expansion
parameter lðtÞ periodically oscillating around its equilib-
rium value lð0Þ ¼ 1.
Because of the periodicity of the oscillations, a resonant

parametric coupling between the density and spin branches
is then triggered, which involves modes whose frequencies
are related as ωd;n ¼ 2ωs;m. In the case of the breathing
oscillations here considered (n ¼ 2), and limiting to the
long wavelength regime, the spin modes verifying the
resonance condition are the ones for which

mðmþ 1Þ ¼ 3

2

gd
gs

:
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This means that, depending on the value of the ratio gd=gs,
a different spin mode is resonant with the breathing
density mode.
In the case of an expanding system, we have seen in

Sec. II C 3 that the Bogoliubov modes ultimately freeze,
attaining a constant value. This is due to the fact that the
frequency of the modes goes to zero faster than the Hubble
parameter, yet with different laws depending on the
dimensionality.
Since the energy of the quantum fluctuations is propor-

tional to theWronskianW½φr;q; ϱ�r;q� calculated for the phase
and the density amplitudes of the modes, the mode freezing
effect implies that the energy of each mode eventually goes
to zero at late times of the expansion. This physically means
that the expansion drives the fluctuations toward a final cold
state, as in the case of a monotonically expanding Universe.
At a closer look, however, one notes that the time-dependent
background parametrically amplifies the zero-point fluctu-
ations in the spin modes, and pairs of entangled (quasi)
particles are created out of the Bogoliubov vacuum.
The number of particles nq created in a certain mode out
of the vacuum is obtained by evaluating the quantity
nq þ 1=2≡W½φq; ϱ�q�=ð2ωqðtÞÞ, which comprises also
the initial vacuum fluctuations in the mode. These particles
are created in a squeezed state, as entangled pairs with
opposite momenta. The build up of quantum correlations is
witnessed by the quantity cq ¼ W½φq; ϱq�=ð2ωqðtÞÞ. The
results reported in Figs. 2(a)–2(d) clearly show that the late
state of a spinmode in an expanding condensate is squeezed,
as nq ¼ cq. The fact that nq, cq saturate to a finite value in
D ¼ 3 whereas they keep growing in D ¼ 1 can be under-
stood in terms of the single-particle (sonic) nature of the q
mode at late times in D ¼ 3 (D ¼ 1).
A similar particle creation effect takes place in the

oscillating case, if a resonant mode is considered.
Figures 2(e) and 2(f) show the time evolution of the
number of excitations nq and the correlations cq in modes
that are either resonant or off-resonant with the (halved)
frequency of density oscillations: In the former case, the
number of particles that populate the mode grows expo-
nentially, while it remains almost unaltered in the lat-
ter case.
Rather than looking at the number of excitations nq or at

the correlations cq, it is often more convenient in actual
experiments to consider the correlation function of density

fluctuations: Gð2Þ
s ðq;−qÞ≡ hδρ̂sðqÞδρ̂sð−qÞi. Given the

system initially in the vacuum state, this reduces to

Gð2Þ
s ðq;−qÞ ¼ ρ20jϱs;qj2=4. In all panels of the same

Figure, we plot as red dot-dashed lines the time-evolution
of the component of spin density fluctuations at wave
vector q that results from the excitation of the Bogoliubov
mode at this wave vector.
On one hand, no marked feature is visible for an

expanding condensate. In this case, the creation of

quasi-particles gets in fact intertwined with the change
in the collective vs single-particle character of the q mode.
This is visible as a difference between the D ¼ 1 and D ¼
3 cases: In agreement with our discussion in Sec. II C 3, in
D ¼ 1 [panels (a,c)] the mode eventually becomes a
collective excitation with a mostly phase character, so
the spin-density fluctuations get suppressed. In D ¼ 3
[panels (b-d)], instead, the mode eventually gets a sin-
gle-particle mode character recovering a sizable amplitude
of spin-density fluctuations; the fact that the long-time limit
does not reach the value 1=4 of the vacuum state of single-
particle modes is a signature of the squeezing associated to
the particle creation process. In all dimensions D, the
constant and nonoscillating late-time value of the spin
density fluctuations is a signature of the mode freezing
effect.
On the other hand, a clearly visible signal is found in

every dimension for a resonantly oscillating condensate
[panel (e)], which looks very promising in view of experi-
ments. The large contrast of the oscillations in the spin
density fluctuations is a signature of squeezing effects,
which have been predicted to lead to nonseparable behav-
iors [58,59].

IV. INHOMOGENEOUS NONSTATIONARY
ONE-DIMENSIONAL CONDENSATE

In order to further validate the predictions of the
theoretical model presented in the previous section
and based on a homogeneous system approximation,
we report now a full numerical study for the particle
creation in the inhomogeneous system. We pursue this
analysis by using the same physical configurations pre-
viously discussed, that are the expanding and oscillating
systems.
In the perspective of the experimental investigation of

this physics, we focus here on the (connected component of
the) density and spin Gð2Þ

d;sðx; x0Þ correlation functions.
Correlation functions have revealed to be particularly
useful in order to detect the weak signal arising from the
amplification of the zero-point fluctuations of a quantum
field in condensed matter analog models [30–32,39]. In our
two-component case, these are defined as

Gð2Þ
d ðx; x0Þ ¼ hP̂ðxÞP̂ðx0Þi − hP̂ðxÞihP̂ðx0Þi; ð46Þ

Gð2Þ
s ðx; x0Þ ¼ hŜðxÞŜðx0Þi − hŜðxÞihŜðx0Þi; ð47Þ

where P̂ ¼ P̂a þ P̂b is the total density operator, while Ŝ ¼
P̂a − P̂b is the spin density operator that accounts for the
excess of particles in one species compared to the other.
For numerical ease we work now with the complex
field operators Ψ̂j (j ¼ a, b) rather than with the (real)
density and phase fields. Within this formalism, the fields
can be split according to the Bogoliubov prescription
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as Ψ̂j ¼ Ψj;0 þ δΨ̂j. The first term accounts for the mean-
field component, that in our symmetric configuration is
equal for both the atomic components and reads:
Ψ0;a ¼ Ψ0;b ¼ Ψ0=

ffiffiffi
2

p
. The quantum component can be

conveniently written in the spin and density basis. In terms
of the standard u, v eigenfunctions, this reads [49]:

δΨ̂r ¼
X
n∈ðþÞ

ður;nb̂r;n þ v�r;nb̂
†
r;nÞ; ð48Þ

in which the sum runs over the positive norm modes only.
Upon substitution of the Bogoliubov decomposition into
the Eqs. (46) and (47), the density correlation functions can
be written to the leading order in the fluctuations as:

Gð2Þ
r ðx;x0Þ ¼ ½Ψ�

0ðxÞΨ�
0ðx0ÞhδΨ̂rðx0ÞδΨ̂rðxÞi

þΨ�
0ðxÞΨ0ðx0ÞhδΨ̂†

rðx0ÞδΨ̂rðxÞiþ c:c:�: ð49Þ

The order parameter of the system evolves in time
according to the Gross-Pitaevskii equation (GPE):

FIG. 2. Panels (a–d) (upper and middle row): time evolution of the number of excitations nq, including the initial vacuum fluctuations,
nq þ 1=2≡W½φq; ϱ�q�=ð2ωqðtÞÞ (solid black lines), of the modulus of the anomalous correlations cq ≡W½φq; ϱq�=ð2ωqðtÞÞ (dashed
blue lines) and of the correlation functions of the density fluctuations Gð2Þ

2 ðq;−qÞ (dot-dashed red line), generated in the spin mode of
frequency ωs;1=ω0 ¼ 0.5, of a condensate that is linearly (a,c) and exponentially (b,d) expanding in one (a,c) and three (b,d) dimensions.
The inset shows the time evolution of the energy of the mode, which goes to zero because of the freezing effect. Panels (e,f) (bottom
row): same quantities for a condensate that oscillates in the breathing density mode. The two panels refer respectively to a resonant case
with ωs;2 ≈ ωd;2=2 ≈

ffiffiffi
3

p
=2 (e) and to a nonresonant case with ωs;1=ω0 ¼ 0.5. In all panels, we have taken gd=gs ¼ 4.
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iℏ
∂Ψ0

∂t ¼ ĤGPΨ0; ð50Þ

where HGP ¼ −ℏ2∂2
x=2mþ ðgd=2ÞjΨ0ðx; tÞj2 þ Vðx; tÞ is

the Gross-Pitaevskii Hamiltonian. The evolution of the
Bogoliubov modes is governed instead by the Bogoliubov-
de Gennes equations [60]

iℏ
d
dt

�
ur
vr

�
¼Lr

�
ur
vr

�
¼
� Lr

QQ Lr
QQ�

Lr
Q�Q −Lr

QQ

��
ur
vr

�
; ð51Þ

in which the (operator-valued) components of the
Bogoliubov operator Lr are defined as

Lr
QQ ¼

�
HGP þ

gr
2
QjΨ0ðx; tÞj2Q − μ

�
; ð52aÞ

Lr
QQ� ¼ gr

2
QΨ2

0ðx; tÞQ�; ð52bÞ

Lr
Q�Q ¼ ðLQQ� Þ�: ð52cÞ

Here the operator Q≡ 1 − jΦ0ihΦ0j (with 1 the identity
operator) is the projector onto the noncondensed
component, that is onto the Hilbert subspace spanned by
all single particle states orthogonal to the condensate
wavefunction, and μ ¼ −ðℏ2=2mÞð∂2

xΨ0=Ψ0Þ þ Vðx; t ¼
0Þ þ ðgd=2ÞjΨ0j2 is the chemical potential of the system
calculated for the system at equilibrium.
We carry out our investigation by considering a 1D

system whose chemical potential is equal to μ=ω0 ¼ 28.25
and by using two different values for the effective spin and
density interaction strengths such that gd=gs ¼ 13.3 and
gd=gs ¼ 73.3. We calculate the density and spin spectra
relative to these configurations by numerically diagonal-
izing the corresponding Bogoliubov operators in Eq. (51).
These are reported in Fig. 3. We notice that, in the two
chosen configurations, the breathing density mode of
frequency ωd;2 is close to resonance with the spin modes
of angular frequenciesω13.3

s;3 and ω73.3
s;5 , with a detuning from

resonance approximately equal to �7% and �2%, respec-
tively. In the notation we use, we indicate in the subscript
the quantum number of the modes, while in the superscript
the values of the ratio gd=gs. We expect to see the signature
of such resonances in the time evolution of two-body
correlations for the oscillating system.
We evolve the two-body correlations in time by solving

for the time evolution of the background condensateΨ0 and
for the Bogoliubov excitations modes fur; vrg, by using
Eqs. (50) and (51), respectively. Given these solutions
we construct the density-density correlations at each
time, according to Eqs. (49). As in the previous
section, the oscillating condensate is implemented by
modulating the frequency of the trapping potential in time
as ωðtÞ=ω0 ¼ 1þ A expð−ðt − t0Þ2=ð2σ2ÞÞ. The linearly

and exponentially expanding configurations are instead
implemented by simply switching off and reverting the
trapping potential, respectively.
We show in Fig. 4(a)–4(c) the results we obtained for the

correlations in the expanding case. In order to single out the
nontrivial dynamics on top of to the overall expansion, we
report the scaled quantity

Gð2Þ
r ðy1; y2Þ≡ V2ðtÞGð2Þ

r ðy1=lðtÞ; y2=lðtÞÞ: ð53Þ

We find that, in the case of an expanding system, the
correlations appear featureless. The only noticeable feature
is a slight variation in size of the width and the depth of the
anti-bunching stripe.
The results in Fig. 5(a)–5(c) show instead the much

richer dynamics of the spin correlations in the case of the
oscillating system. On one hand, in Fig. 5(a) we see that

Gð2Þ
d ðx; x0Þ does not evolve, as expected, because there are

no density modes that can be resonantly amplified by
density oscillations of the system in the breathing mode. On
the other hand, in Figs. 5(b) and 5(c) we present the time

evolution of spin correlations Gð2Þ
s ðx; x0Þ for two parameter

choices differing for the distance from resonance. In both
cases, the zero-point fluctuations in the spin modes are
parametrically amplified by the density oscillations. While
the effect is relatively weak in the off-resonance case of
panel (b) for gþ=g− ¼ 13.3, a dramatic resonant enhance-
ment is visible in panel (c) for gd=gs ¼ 73.3. As time
proceeds, the parametric excitation of the resonantly
selected spin mode is visible in a monotonically growing

FIG. 3. Bogoliubov spectrum of the density (black dots) and
spin (red and blue markers) modes in a one-dimensional,
harmonically trapped two-component condensate of chemical
potential μ=ω0 ¼ 28.25. We notice that the spin modes of
quantum number n ¼ 3 (for gd=gs ¼ 13.3, red marker) and n ¼
5 (for gd=gs ¼ 73.3, blue marker) are close to resonance with the
breathing mode (n ¼ 2) in the density branch of the excitations.
We reported in the inset the density profile of the condensate.
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amplitude of the spatially oscillating pattern in the spin
density correlation function, whose shape is determined by
the resonantly selected mode. Other choices of the inter-
action constant ratio gd=gs and of the excited density mode
may be used to resonantly address other spin modes, which
would result in a different spatial pattern of the spin
correlation function.

V. CONCLUSIONS

In this work we have theoretically studied the analog of
cosmological particle creation in a nonstationary Universe,
using an analog model based on a two-component Bose-
Einstein condensate. We have shown that the collective
spin excitations of the system behave as a quantum field
experiencing a time-dependent background determined by
the time-dependent density profile. As a result of this time
modulation, the zero-point vacuum fluctuations in the spin
modes can be parametrically amplified according to a
quantum particle creation process. By working in the
Thomas-Fermi limit, we developed a theoretical model

that is able to analytically describe the dynamics of the
quantized collective excitations on top of classical mean-
field condensate. Our theoretical predictions have been then
validated by a full ab initio numerical study of the time
evolution of the quantum fluctuations in a inhomogeneous
condensate.
In the perspective of the experimental investigation of

this physics, we have focused our attention on the spatial
correlation function of spin-fluctuation. On one hand, no
specific feature witnessing the particle creation appears in
the case of an expanding condensate, mostly due to an
effective friction analogous to the Hubble friction in
Cosmology. On the other hand, unambiguous signatures
are visible in the case of an oscillating condensate. Because
of the onset of a resonant interaction between the density
oscillations and certain spin modes, the density correlations
develops a peculiar oscillating pattern that is very prom-
ising in view of experimental observations with state-of-
the-art cold atom technology.
A direct next step of our work will be to extend our

study in the presence of a coherent coupling between the

FIG. 5. Time evolution of the density-density correlation function for a one-dimensional, harmonically trapped two-component
condensate, of chemical potential μ=ω0 ¼ 28.25 whose overall density is oscillating in the breathing mode. In panel (a) we report the
contribution to the correlations due to the density excitations. We see that the zero-point fluctuations that populate these modes are not
excited and the correlations do not evolve in time. In panels (b,c) is reported the contribution to the correlations due to the spin
excitations. We clearly see here the structure of the resonant mode, whose vacuum fluctuations are parametrically amplified because of
the oscillations in the density.

FIG. 4. Time evolution of the density-density correlation function for a one-dimensional, harmonically trapped two-component
condensate of chemical potential μ=ω0 ¼ 28.25. Panel (a) shows the contribution to the correlations due to the density excitations, for
the case of a linearly expanding system. In panels (b) and (c) we report the contribution to the correlations due to the spin excitations,
respectively for the linearly and exponentially expanding systems.
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two species, so to provide an effective mass to the
spin modes [44,46,47] and investigate particle creation
effects for massive fields [44]. On a longer term, our
proposal opens exciting perspectives in the direction
of studying backreaction phenomena. In contrast
to most previous works, here this amplification is not
induced by externally modulating in time a physical
parameter of the system, but rather originates from the
dynamical evolution of the system itself. As a result, the
background is no longer externally imposed as in tradi-
tional quantum field theories on curved space-times [1],
but is a fully fledged degree of freedom of the problem.
This feature holds a great promise in view of studying how
the parametrically excited quantum field back-reacts onto
the background and modifies its dynamics, e.g., by
inducing a friction onto the density oscillations [59,61].
Understanding such backreaction phenomena in con-
densed-matter toy models provides a promising avenue

to shine light on a number of questions of cosmological
interest, related for example to the early inflationary stage
of the Universe, or the ultimate stage of existence of a
black hole.
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