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Unlike ground-based gravitational wave detectors, space-based gravitational wave detectors can detect
the ringdown signals from massive black hole mergers with large signal-to-noise ratios, help to localize
sources and extract their parameters. To reduce the computation time in the Fisher information matrix
analysis, we derive the analytical formulas of frequency-domain ringdown signals for both heliocentric and
geocentric detectors by considering the effects of the harmonic phases, the rotation period of the geocentric
detector, and the detector’s arm length. We explore median errors of the parameter estimation and source
localization with ringdown signals from binaries with different masses and different redshifts. Using a
binary source with the total mass M ¼ 107 M⊙ at the redshift z ¼ 1, we analyze the dependence of these
errors on the sky position. We find that the network of space-based gravitational wave detectors can
significantly improve the source localization at the ringdown stage. The results of the Fisher matrix
approximation are also checked by Bayesian inference method.
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I. INTRODUCTION

The detection of gravitational waves (GWs) by the Laser
Interferometer Gravitational-Wave Observatory (LIGO)
Scientific Collaboration and the Virgo Collaboration not
only announced the dawn of a new era of multimessenger
astronomy, but also opened a new window to probe the
nature of gravity and spacetime in the nonlinear and strong
field regimes [1–13]. GWs from compact binary coales-
cences consist of inspiral, merger, and ringdown phases,
with increasing frequency. The inspiral waves, at the stage
of orbiting until the innermost stable orbit, can be analyzed
by the post-Newtonian theory, black hole (BH) perturbation
theory, etc. At the early inspiral stage, the emitted GWs
can be regarded as monochromatic waves due to the slow
orbital decay. The merger waveform which is not well
modeled at present, is the research topic in numerical
relativity. The ringdown signal originating from the dis-
torted final BH, comprises a superposition of quasinormal
modes (QNMs). The frequency of each mode is a complex
number, the real part is the oscillation frequency, and the
imaginary part is the inverse of the damping time. These
frequencies are determined by the mass M and angular
momentum J of the final BH, and the amplitude and phase
of each mode are determined by the specific process when
the final BH forms.

Ground-based GW detectors, such as Advanced
LIGO [14,15], Advanced Virgo [16] and Kamioka
Gravitational Wave Detector (KAGRA) [17,18], operate
in the 10 − 104 Hz frequency band. In this frequency band,
the detected events are stellar-mass binary mergers, the
ringdown signal is not loud enough to probe the
physics behind it. The proposed space-based GW detectors
such as Laser Interferometer Space Antenna (LISA)
[19,20], TianQin [21], and Taiji [22] probe GWs in the
millihertz frequency band, while Deci-hertz Interferometer
Gravitational Wave Observatory (DECIGO) [23] operates
in the 0.1 to 10 Hz frequency band. Thus, space-based GW
detectors can detect ringdown signals from massive BH
binary mergers with large signal-to-noise ratios (SNRs),
and the detected ringdown signals can be used to probe the
nature of BHs, localize sources and estimate their param-
eters, etc. In particular, the sky localization of the source is
one of the important scientific objectives for GW obser-
vations because accurate information about the source
localization is necessary for the follow-up observations
of electromagnetic counterparts and the statistical identi-
fication of the host galaxy if no counterpart is present.
Therefore, cosmological applications such as studying the
problem of Hubble tension [24] using GWs as standard
sirens [25,26] depend critically on the capability of locating
the source accurately.
In general, higher multipoles and higher harmonics

are subdominant in the inspiral phase, so usually the
parameter estimation for space-based GW detectors was
analyzed with Fisher information matrix (FIM) method by
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considering the (2, 2) mode only [27–53]. The parameter
estimation as function of time left before merger was also
discussed in [53]. Higher multipoles and higher harmonics
of GWs have characteristic structure in the gravitational
waveforms, and they have different dependence on the
source’s parameters such as the inclination, the mass ratio
and spins, so they can be used to break some of the
degeneracies between the parameters and improve the
parameter estimation accuracy [54–60]. Furthermore,
higher harmonics can break the degeneracy between the
polarization and the coalescence phase [61]. Because the
contribution of higher multipoles to the radiated energy
increases with the mass ratio [62,63], the estimations of the
mass ratio and the effective spin are improved with higher
harmonics for the GW170729 event [64]. For heavier
binaries with M ≳ 107 M⊙, higher harmonics of inspiral
can improve the angular resolution of LISA by a factor of
∼100 [65–68]. If the total mass of a binary is very large,
then the inspiral waves are out of the frequency band of
space-based GW detectors and the ringdown waves with
higher harmonics become dominant because they have
higher frequencies [69–71]. For ringdown GWs, ignoring
the source location, the capability of TianQin to test the no-
hair theorem of general relativity was studied [72]. With
higher harmonics of the ringdown signals from binaries
with the total mass M ≥ 106 M⊙, employing the error
propagation method in FIM and ignoring the influences of
the arm length and harmonic phases, the parameter esti-
mation and source localization of LISA were studied in
Ref. [73]. Compared with Bayesian inference method, the
FIM method provides poor estimations for the extrinsic
parameters such as sky location, luminosity distance and
inclination angle and we cannot make strong statements
about parameter estimation with massive BH binaries
using the FIM method [74–76]. It was shown that higher
harmonics can break degeneracies between parameters and
considerably improve the source localization of massive
BH binaries with LISA by using Bayesian parameter
estimation [76]. With Bayesian inference method, varied
correlations between the total masses and mass ratios and
the ability of sky localization of the source with LISAwere
discussed by analyzing seven test massive BH binaries
using the PhenomHM waveform with higher harmonics
and aligned spins [77].
Note that to perform parameter estimation, we need

to identify the presence of a signal first. In reality, data
gaps, glitches, nonstationary and non-Guassian noises,
orbital evolution, unequal arms and superposed signals
of different types, all increase the complexity of data
analysis [75,76,78–86]. To cancel the large laser frequency
noise in an unequal arm interferometer detector, Time-
delay interferometry was proposed in [84,85]. Dey et al.
found that the effect of data gaps due to regular
maintenance of the spacecraft on the detection and param-
eter estimation of massive BH binaries with LISA is

negligible [86]. In this paper, we leave aside these problems
and focus on the inference of BH parameters.
The purpose of this paper is to derive analytical

frequency-domain detector signals at the ringdown stage,
and use them to make parameter estimation. The paper is
organized as follows. In Sec. II, we give the analytical
formulas of frequency-domain ringdown signals for both
heliocentric and geocentric detectors by considering the
influences of the harmonic phases, the rotation period of
the geocentric detector, and the detector’s arm length. The
integration formulas we used are presented in Appendix A.
In Sec. III, we show the median errors of the parameters and
the source localization with ringdown signals from binaries
with different total masses and different redshifts. We also
analyze the dependence of these errors on the sky position.
Then we explore the localization capability of different
detectors including the network of space-based GW detec-
tors. In Sec. IV, we choose two binaries for parameter
estimation with Bayesian inference method to check the
FIM results. We conclude this paper in Sec. V. Throughout
this paper we use units in which G ¼ c ¼ 1.

II. METHODOLOGY

A. Ringdown waves

Distorted BHs, such as the newly formed remnant after
the coalescence of two BHs, are expected to emit character-
istic radiation in the form of QNMs, called ringdown
waves, with discrete frequencies. We usually use three
indices ðl; m; nÞ to label the QNMs, where n ¼ 0; 1; 2;… is
the overtone index, and l¼2;3;4;… and m¼0;�1;…;�l
are the harmonic indices. Compared to higher overtones
with n ≥ 1, the fundamental modes with n ¼ 0 usually
have much larger amplitudes and much longer damping
times. Thus we only consider the fundamental modes with
n ¼ 0 and denote them as ðl; mÞ. Due to the similar reason,
and to avoid large numerical-relativity errors, we only use
the four strongest modes ðl;mÞ¼ð2;2Þ;ð3;3Þ;ð2;1Þ;ð4;4Þ,

hþðtÞ ¼
Mz

dL

X
l;m

AlmYlmþ ð{Þe− t
τlm cosðωlmt − ϕlmÞ;

h×ðtÞ ¼ −
Mz

dL

X
l;m

AlmYlm
× ð{Þe− t

τlm sinðωlmt − ϕlmÞ ð1Þ

for t > t0; and hþ;×ðtÞ ¼ 0 for t < t0. Here t0 is the start
time of the ringdown waves, Mz is the redshifted mass of
the remnant, dL is the luminosity distance to the source,
Alm;ωlm; τlm and ϕlm are the amplitude, oscillation
frequency, damping time, and initial phase of the corre-
sponding QNM respectively, and { ∈ ½0; π� is the inclination
angle of the source.
The functions Ylmþ;×ð{Þ corresponding to the two ring-

down polarizations can be found by summing over modes
with positive and negative m:
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Ylmþ ð{Þ≡ −2Y
lmð{; 0Þ þ ð−1Þl−2Yl−mð{; 0Þ;

Ylm
× ð{Þ≡ −2Y

lmð{; 0Þ − ð−1Þl−2Yl−mð{; 0Þ: ð2Þ

For example,

Y22þ ð{Þ ¼ 1

2

ffiffiffi
5

π

r
1þ ðcos {Þ2

2
;

Y22
× ð{Þ ¼ 1

2

ffiffiffi
5

π

r
cos {;

Y21þ ð{Þ ¼
ffiffiffiffiffiffi
5

4π

r
sin {;

Y21
× ð{Þ ¼

ffiffiffiffiffiffi
5

4π

r
cos { sin {;

Y33þ ð{Þ ¼ −
ffiffiffiffiffiffi
21

8π

r
ð1þ cos2 {Þ

2
sin {;

Y33
× ð{Þ ¼ −

ffiffiffiffiffiffi
21

8π

r
cos { sin {;

Y44þ ð{Þ ¼
ffiffiffiffiffiffiffiffi
63

16π

r
ð1þ cos2 {Þ

2
sin2 {;

Y44
× ð{Þ ¼

ffiffiffiffiffiffiffiffi
63

16π

r
cos { sin2 {: ð3Þ

The fitting formulas of ωlm and τlm are given as [71]

ωlm ¼ f1 þ f2ð1 − jÞf3
Mz

;

τlm ¼ 2ðq1 þ q2ð1 − jÞq3Þ
ωlm

; ð4Þ

where the coefficients are listed in Table I, and j is the spin
of the remnant. For mergers of nonspinning BHs, j is only a
function of the mass ratio q ¼ M1=M2 (q ≥ 1) which can
be approximated as jðqÞ ¼ ηð2 ffiffiffi

3
p

− 3.5171ηþ 2.5763η2Þ
[87], and the fitting formulas of Alm are given in
Refs. [59,60]. Here η ¼ q=ð1þ qÞ2 is the symmetric mass
ratio.
In this paper, we take q ¼ 2. In fact, for different q

(1 < q ≤ 10), the difference of the results for the parameter
estimation and source localization is mostly within one
order of magnitude as shown in Fig. 1.

B. Polarization tensors

In the heliocentric coordinate fî; ĵ; k̂g, the GW coor-
dinate basis vectors fm̂; n̂; ôg are determined by the source
location ðθs;ϕsÞ and the polarization angle ψ s as

fm̂; n̂; ôg ¼ fî; ĵ; k̂g × Rzðϕs − πÞRyðπ − θsÞRzðψ sÞ; ð5Þ

where ô is the propagating direction of GWs, and Rx, Ry,
and Rz are Euler rotation matrices given by Eq. (B1).
In general relativity, there are two polarizations A¼þ;×.

With the help of polarization tensors eAij,

eþij ¼ m̂im̂j − n̂in̂j; e×ij ¼ m̂in̂j þ n̂im̂j; ð6Þ

we can decompose GWs into two polarizations
hij ¼

P
A¼þ;× hAe

A
ij.

C. The detector signal

To use FIM to estimate parameters, we need the
frequency-domain signal sðfÞ in the detector. An analytical
expression for sðfÞ will help to speed up the computation
and improve the precision. In Appendix A, we present the
analytical formulas used in this paper.
At the ringdown stage, the damping time of GWs is

normally within one day. Since space-based GW detectors
take one year to orbit around the Sun, we treat the Doppler
shift exp ½−2πfô · r⃗0=c�, where r⃗0 is the position of the
center of mass of the detector in the heliocentric coordinate,
as a constant at the ringdown stage. For convenience,
we work in the detector coordinate as shown in Fig. 2.
Although we put the detector in the x‐y plane, it is
straightforward to obtain the direction that the detector
plane points to in the heliocentric coordinate. In the
heliocentric coordinate, if the heliocentric detector (such
as LISA and Taiji) is at ðθs;ϕsÞ ¼ ðπ=2;ϕ0Þ, then the
normal vector of its detector plane will point to ðθs;ϕsÞ ¼
ðπ=3;ϕ0 þ πÞ.

TABLE I. The coefficients [71] in Eq. (4).

(l; m) f1 f2 f3 q1 q2 q3

(2, 2) 1.5251 −1.1568 0.1292 0.7000 1.4187 −0.4990
(3, 3) 1.8956 −1.3043 0.1818 0.9000 2.3430 −0.4810
(2, 1) 0.6000 −0.2339 0.4175 −0.3000 2.3561 −0.2277
(4, 4) 2.3000 −1.5056 0.2244 1.1929 3.1191 −0.4825

FIG. 1. The effect of the mass ratio on the median errors of the
parameters and the source localization with TianQin for the
binary with the total mass M ¼ 106 M⊙ at the redshift z ¼ 1.
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In the detector coordinate, the polarization tensors are
given by

eþij ¼ m̂im̂j − n̂in̂j; e×ij ¼ m̂in̂j þ n̂im̂j;

fm̂; n̂; ôg ¼ Rzðϕd − πÞRyðπ − θdÞRzðψdÞ; ð7Þ

where ðθd;ϕd;ψdÞ are source parameters in the detector
coordinate, which are determined by ðθs;ϕs;ψ sÞ through
Eqs. (B1)–(B5).
The configurations of space-based GW detectors are

generally equilateral triangles. We can model every detector
of this kind as a combination of two independent LIGO-like
detectors (“I” and “II”) with the opening angle γ ¼ π=3.
Thus the signal in the detector II for a source at (θd;ϕd) is
equivalent to the signal in the detector I for the same source
but at (θd;ϕd − 2π=3).

1. Geocentric detectors

Geocentric detectors orbit the Earth and further rotate
around the Sun together with the Earth. We take TianQin as
an example, whose detector plane faces to the source RX
J0806.3þ 1527 at (θtq ¼ 94.7°, ϕtq ¼ 120.5°) [88–92].
In the case of 105 M⊙ ≤ Mz ≤ 107 M⊙, the damping

time of the ringdown signals is within 10 minutes. Thus we
ignore the rotation of TianQin in this case. The frequency-
domain detector signal is

sðfÞ ¼
X

A¼þ;×

½DA
uT ðf; û · ôÞ −DA

vT ðf; v̂ · ôÞ�hAðfÞ; ð8Þ

where

DA
u ¼ 1

2
ûiûjeAij; DA

v ¼ 1

2
v̂iv̂jeAij; ð9Þ

the unit vectors of the detector’s two arms are

û ¼
�
cos

�
γ

2

�
;− sin

�
γ

2

�
; 0

�
;

v̂ ¼
�
cos

�
γ

2

�
; sin

�
γ

2

�
; 0

�
; ð10Þ

and eAij is the polarization tensor, given by Eq. (7).
Combining Eqs. (7) and (10), we get

Dþ
u ¼ 1

4
½ð1þ cos2 θdÞ cosð2ϕd þ γÞ − sin2 θd� cosð2ψdÞ

þ 1

2
cos θd sinð2ϕd þ γÞ sinð2ψdÞ;

Dþ
v ¼ 1

4
½ð1þ cos2 θdÞ cosð2ϕd − γÞ − sin2 θd� cosð2ψdÞ

þ 1

2
cos θd sinð2ϕd − γÞ sinð2ψdÞ;

D×
u ¼ 1

4
½sin2 θd − ð1þ cos2 θdÞ cosð2ϕd þ γÞ� sinð2ψdÞ

þ 1

2
cos θd sinð2ϕd þ γÞ cosð2ψdÞ;

D×
v ¼ 1

4
½sin2 θd − ð1þ cos2 θdÞ cosð2ϕd − γÞ� sinð2ψdÞ

þ 1

2
cos θd sinð2ϕd − γÞ cosð2ψdÞ: ð11Þ

The transfer function T is

T ðf; û · ôÞ ¼ 1

2

�
sinc

�
fð1 − û · ôÞ

2f�

�
exp

�
fð3þ û · ôÞ

2if�

�

þ sinc
�
fð1þ û · ôÞ

2f�

�
exp

�
fð1þ û · ôÞ

2if�

��
;

ð12Þ

where sincðxÞ ¼ sin x=x, f� ¼ c=ð2πLÞ is the transfer
frequency of the detector, c is the speed of light, and L
is the arm length of the detector. The frequency-domain
GW signal hAðfÞ is

hþðfÞ ¼
Mz

dL

X
l;m

AlmYlmþ ð{ÞIaðωlm; τlm;ϕlmÞ;

h×ðfÞ ¼
Mz

dL

X
l;m

AlmYlm
× ð{ÞIa

�
ωlm; τlm;ϕlm −

π

2

�
; ð13Þ

where Ia is given by Eq. (A1). For the detector II, the
analytical frequency-domain detector signal is given by the
replacement ϕd → ϕd − 2π=3 in Eq. (8).
In the case of 107M⊙ ≤Mz≤1.47×109 M⊙, the damp-

ing time of the ringdown signals is from 10 minutes to
one day with the frequencies of the four strongest modes
within a few mHz. We choose to treat the Doppler shift
exp ½−2πifô · r⃗1=c�, which comes from the time shift

FIG. 2. The detector coordinate and the configuration of the
detector with the opening angle γ ¼ π=3.
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between r⃗1 (the position of SC1) and the coordinate origin, as a constant, because f is within mHz, jr⃗1j=c ¼ 1=3 s, and the
variation of r⃗1 is small. We approximate T ðfÞ ≈ 1 because the GW frequency is much less than the transfer frequency of
TianQin, and take into account the rotation of TianQin, so û and v̂ are

û ¼
�
cos

�
ωtqt −

γ

2

�
; sin

�
ωtqt −

γ

2

�
; 0

�
; v̂ ¼

�
cos

�
ωtqtþ

γ

2

�
; sin

�
ωtqtþ

γ

2

�
; 0

�
; ð14Þ

where ωtq ¼ 2π=Ttq ¼ 1.99 × 10−5 Hz is the rotation frequency of TianQin. For the detector I, the analytical frequency-
domain detector signal is

sðfÞ ¼
�
−
sin γ
2

ð1þ cos2θdÞ cosð2ψdÞIbðϕd;ωlm; τlm;ϕlmÞ

þ sin γ cos θd sinð2ψdÞIb
�
ϕd þ

π

4
;ωlm; τlm;ϕlm

��
MzAlm

dL
Ylmþ ð{Þ

þ
�
sin γ
2

ð1þ cos2θdÞ sinð2ψdÞIb
�
ϕd;ωlm; τlm;ϕlm −

π

2

�

þ sin γ cos θd cosð2ψdÞIb
�
ϕd þ

π

4
;ωlm; τlm;ϕlm −

π

2

��
MzAlm

dL
Ylm
× ð{Þ: ð15Þ

Here Ib is given by Eq. (A2). For the detector II, the
analytical frequency-domain detector signal is given by the
replacement ϕd → ϕd − 2π=3 in Eq. (15).
If a geocentric detector has a longer arm length than

TianQin, it will have a longer rotation period and a lower
transfer frequency than TianQin. Thus we only need to
increase the boundary redshifted mass (we choose 107 M⊙
for TianQin) in the above two cases.

2. Heliocentric detectors

The heliocentric detector rotates around theSun in the orbit
of the Earth, with a fixed period of one year.We take LISA as
an example, in the case of 105 M⊙ ≤Mz≤1.47×109M⊙,
since the rotation frequency ofLISAωlisa ¼ 1.99 × 10−7 Hz
is extremely small, we ignore the rotation of LISA. The arm
vectors û and v̂ are the same as Eq. (10), and the expressions
for the frequency-domain detector signals are the same as
Eqs. (8)–(13). This does not mean that LISA and TianQin
will have the same detector signal, because the two detectors
have different detector parameters ðθd;ϕd;ψdÞ for the same
source ðθs;ϕs;ψ sÞ (Appendix B), different transfer fre-
quency, different noise, etc.

D. The noise curve

In this paper, we use the noise curve [93]

PnðfÞ ¼
Sx
L2

þ 2½1þ cos2ðf=f�Þ�Sa
ð2πfÞ4L2

½1þ ð0.4 mHz=fÞ2�;

ð16Þ

where Sx is the position noise, Sa is the acceleration noise,
L is the arm length, f� ¼ c=ð2πLÞ is the transfer frequency

of the detector. For LISA, Sx ¼ ð1.5 × 10−11 mÞ2 Hz−1,
Sa ¼ ð3 × 10−15 ms−2Þ2 Hz−1, L ¼ 2.5 × 109 m and f� ¼
19.09 mHz [20]. For TianQin, Sx ¼ ð10−12 mÞ2 Hz−1,
Sa ¼ ð10−15 ms−2Þ2 Hz−1, L ¼ ffiffiffi

3
p

× 108 m and f� ¼
0.2755 Hz [21]. For Taiji, Sx ¼ ð8 × 10−12 mÞ2 Hz−1,
Sa ¼ ð3 × 10−15 ms−2Þ2 Hz−1, L ¼ 3 × 109 m and f� ¼
15.90 mHz [46].
For LISA and Taiji, we also add the confusion noise [93]

ScðfÞ ¼
2.7 × 10−45f−7=3

1þ 0.6ðf=0.01909Þ2 e
−f0.138−221f sinð521fÞ

× ½1þ tanhð1680ð0.00113 − fÞÞ� Hz−1; ð17Þ

to the noise curve.
Figure 3 shows the noise power spectra of LISA,

TianQin, and Taiji.

FIG. 3. The noise power spectra of LISA, TianQin, and Taiji.
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E. Fisher information matrix

For convenience, we define the inner product of two
frequency-domain signals s1ðfÞ and s2ðfÞ as

ðs1js2Þ ¼ 2

Z
fout

fin

s1ðfÞs�2ðfÞ þ s�1ðfÞs2ðfÞ
PnðfÞ

df: ð18Þ

The SNR ρ is simply defined as

ρ2 ¼ ðsjsÞ: ð19Þ

For a detected source with a significant SNR (a threshold
of ρ ≥ 8), we can use the FIM method to estimate its
parameters, which is defined as

Γij ¼
�∂sðfÞ

∂ξi
				 ∂s

�ðfÞ
∂ξj

�
; ð20Þ

where ξ¼fq;Mz;dL;θd;ϕd;ψd;{;ϕ22;ϕ33;ϕ21;ϕ44g spans
the 11-dimensional parameter space. Although the ring-
down phases ϕlm are related to the source parameters and
the specific process, the relationship is not well known.
Thus we treat ϕlm as four independent parameters.
The covariance matrix of these parameters is

σij ¼ hΔξiΔξji ≈ ðΓ−1Þij: ð21Þ

FIG. 4. The effect of the number of simulated sources on the
median errors of the parameter estimation and source localization
with LISA for the binary with 106 M⊙ at z ¼ 1. The vertical
orange solid line represents the number of simulated sources that
we choose to obtain the median error of each parameter.

FIG. 5. The median SNRs of TianQin and LISAwith ringdown
signals from binaries with different total masses and different
redshifts. For LISA, the blue, orange, and green dashed lines
correspond to the redshifted masses Mz ¼ 6.5 × 105 M⊙, 6.5 ×
106 M⊙ and 6.5 × 107 M⊙, respectively. For TianQin, the blue,
orange, and green dashed lines correspond to the redshifted
masses Mz ¼ 3 × 105 M⊙, 3 × 106 M⊙ and 3 × 107 M⊙, re-
spectively. For LISA-TianQin network, the blue, orange, and
green dashed lines correspond to the redshifted masses
Mz ¼ 4 × 105 M⊙, 4 × 106 M⊙ and 4 × 107 M⊙, respectively.

FIG. 6. The median errors of the parameter estimation
and source localization of LISA with ringdown signals from
binaries with different masses and different redshifts. The blue,
orange, and green dashed lines correspond to the redshifted
masses Mz ¼ 6.5 × 105 M⊙, 6.5 × 106 M⊙ and 6.5 × 107 M⊙,
respectively.
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The angular uncertainty of the sky localization is
evaluated as

ΔΩs ≡ 2π sin θd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σθdθdσϕdϕd

− σ2θdϕd

q
; ð22Þ

so the probability that the source lies outside an error ellipse
enclosing the solid angle ΔΩ is simply e−ΔΩ=ΔΩs.

III. PARAMETER ESTIMATION AND SOURCE
LOCALIZATION

It is hard to control the noise of space-based detectors
below the frequency ∼2 × 10−5 Hz [73], so we take 2 ×
10−5 Hz as the lower cutoff frequency. For BH binaries with
the redshifted total mass Mz ≥ 109 M⊙, f22 and f21 are out
of the frequency band of space-based detectors, thus we do
not consider binaries with the total mass M ≥ 109 M⊙. For
ringdown signals, we set fin ¼ max ð0.5f21; 2 × 10−5 HzÞ
and fout ¼ 2f44. Since higher frequencies correspond to
higher overtones and higher harmonics, which are not used
in our computation, we choose this upper limit fout in the

integration. The lower limit in the integration stands for the
starting frequency of the ringdown stage, and we set it to be
0.5f22 in our computation.
In this section, for each binary with the same total mass

and redshift, we use Monte Carlo simulation to generate
1000 sources and obtain the median error of each param-
eter. We also check the effect of the number of simulated
sources on the median errors and the results are shown in
Fig. 4. We see that the results are almost the same if the
number of simulated sources is larger than 100, so we
choose to simulate 1000 sources. From Eqs. (3), (8), (11),
and (15), we see that there exists a transformation of
extrinsic parameters yielding an exact degeneracy, called
reflected sky position (for a reflection with respect to the
detector plane) [76],

θd → π − θd;

{ → π − {;

ψd → π − ψd: ð23Þ

FIG. 7. The median errors of the parameter estimation and
source localization of TianQin with ringdown signals from binaries
with different masses and different redshifts. The blue, orange,
and green dashed lines correspond to the redshifted masses
Mz ¼ 3 × 105 M⊙, 3 × 106 M⊙ and 3 × 107 M⊙, respectively.
In the case ofMz ≥ 107 M⊙, we take the rotation of TianQin into
account and adopt the low-frequency approximation.

FIG. 8. The median errors of the parameter estimation and
source localization of the network of LISA and TianQin with
ringdown signals from binaries with different masses and differ-
ent redshifts. The blue, orange, and green dashed lines corre-
spond to the redshifted masses 4 × 105 M⊙, 4 × 106 M⊙ and
4 × 107 M⊙, respectively. In the case of Mz ≥ 107 M⊙, we take
the rotation of TianQin into account and adopt the low-frequency
approximation.
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Thus, in general, there are two degenerate positions in the
sky in the parameter estimation with ringdown signals.
Moreover, in the low-frequency limit, due to T → 1, the
constraints on û · ô and v̂ · ô in the transfer function
become weak, leading to another transformation [76],

ϕd → ϕd þ
kπ
2

mod 2π;

ψd → ψd þ
kπ
2

mod π; ð24Þ

where k ¼ 0, 1, 2, 3. The new transformation implies
that, in the parameter estimation with ringdown signals
from supermassive BH binaries, there are eight degenerate
positions in the sky in the low-frequency limit. Note that the
two transformations (23) and (24) lead to a multimodal
distribution in the Bayesian analysis discussed in the next
section, but they are missed in the FIM analysis. The
parameter distribution of simulated sources is shown in
Appendix C.

Using a typical source withM ¼ 107 M⊙ and z ¼ 1, we
analyze the dependence of these errors on the sky position.
We also explore the capability of source localization
for different detectors and their combined network. The
median SNR for the simulated sources is shown in Fig. 5
and the results for the parameter estimation are shown in
Figs. 6, 7, 8, 9, 10, and Tables II and III. The results with
Taiji are similar to those with LISA.
Figure 6 shows the median errors of the parameter

estimation and source localization of LISA with ringdown
signals from binaries with different total masses and
different redshifts, and Fig. 7 shows the median errors
of the parameter estimation and source localization of
TianQin. For BH binaries with the total massM ≥ 104 M⊙,
as the total mass increases, the SNR of its ringdown signal
will exceed the threshold ρ ¼ 8, the estimation errors of
δ ln q, δ lnMz and δ ln dL will be within 0.5, the estimation
errors of the angles and phases will be within 60°, and the
source localization will be within 1000 deg2. If its total
massM ≥ 105 M⊙, in most cases, the SNR of its ringdown

FIG. 9. The sky map of the parameter estimation and source localization with LISA for the binary with the total massM ¼ 107 M⊙ at
z ¼ 1. Note that LISA is put in the equatorial plane. The other source parameters are q ¼ 2;ψd ¼ 60°; { ¼ 45°, and ϕlm ¼ 0°.

CHUNYU ZHANG, YUNGUI GONG, and CHAO ZHANG PHYS. REV. D 104, 083038 (2021)

083038-8



signal will be larger than 100, the estimation errors of δ ln q
and δ ln dL will be within 0.1, the estimation error of
δ lnMz will be within 0.01, the estimation errors of the
angles and phases will be within 10°, and the source
localization will be within 10 deg2. If its total mass
M ≥ 106 M⊙, the SNR can exceed ∼103, the estimation
errors of δ ln q and δ ln dL will be within 0.01, the
estimation error of δ lnMz will be within 0.001, the
estimation errors of the angles and phases will be within
1°, and the source localization will be within 1 deg2.
Figure 8 shows the median errors of the parameter
estimation and source localization with the network of
LISA and TianQin, which implies that the network can
improve the parameter estimation by about one order of
magnitude, and can improve the source localization by two
or even three orders of magnitude compared with individ-
ual detector. Figures 5, 6, 7, and 8 tell us that for BH
binaries at the same distance, LISA has larger SNR and
better parameter estimation and source localization for the
BH binary with Mz ¼ 6.5 × 106 M⊙, TianQin has larger

SNR and better parameter estimation and source localiza-
tion for the BH binary withMz ¼ 3 × 106 M⊙, the network
of LISA and TianQin has larger SNR and better parameter
estimation and source localization for the BH binary
with Mz ¼ 4 × 106 M⊙.
There are three main factors that affect the source

localization. The first factor is the relative difference
of the source location between the detector I and the
detector II. We use the angle between the direction ðθd;ϕdÞ
and the direction ðθd;ϕd − 2π=3Þ to represent the differ-
ence, which reaches the maximum at θd ¼ π=2 and reaches
the minimum at θd ¼ f0; πg. The second factor is the
transfer function T . For the ringdown frequency
0.5f� ≤ f ≤ 5f�, T slightly weakens the response and
dramatically improves the source localization. For the
ringdown frequency f ≥ 10f�, T significantly weakens
the response and the estimation of all parameters. For the
ringdown frequency f ≤ 0.1f�, T contributes little to the
source localization because T → 1. Thus the transfer
function of LISA can improve their source localization

FIG. 10. The sky map of source localization with LISA, TianQin, and their combined network for binaries with total masses 105 M⊙,
106 M⊙, 107 M⊙, and 108 M⊙ at z ¼ 1. The other source parameters are q ¼ 2;ψd ¼ π=3; { ¼ π=4, and ϕlm ¼ 0.
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for binaries with the redshifted total masses 1.7 × 105 M⊙ ≤
Mz ≤ 1.7 × 106 M⊙. The transfer function of Taiji can
improve its source localization for the binary with the
redshifted total mass 2 × 105 M⊙ ≤ Mz ≤ 2 × 106 M⊙.
The transfer function of TianQin can improve its source
localization for the binary with the redshifted total mass
1.2 × 104 M⊙ ≤ Mz ≤ 1.2 × 105 M⊙. The third factor is
the different responses of the detector to different QNMs. In
one LIGO-like detector, because of Yllþ;× ∝ ðsin {Þl−2Y22þ;×,
the response difference between the (2, 1) mode and the
(2, 2) mode is bigger than those from (3, 3) and (4, 4) modes.
However, the difference is still not big enough for one
LIGO-like detector to localize the source. Thus, for the
source localization of each space-based GW detector, we
need to consider both the detector I and II.
Figure 9 shows the dependence of these errors on the sky

position for LISA. Note that we place LISA in the x-y
plane, i.e., the equatorial plane. For the LISA-TianQin
network, we set LISA pointing to ðθs;ϕsÞ ¼ ðπ=3; 0Þ. For
the LISA-TianQin-Taiji network (3-network), we set Taiji
pointing to ðθs;ϕsÞ ¼ ðπ=3; 0Þ, and set LISA pointing to
ðθs;ϕsÞ ¼ ðπ=3;−2π=9Þ. Fig. 9 implies that the angular
resolution becomes the best for sources along the detector
plane, where the relative difference of source location
reaches the maximum, but it is the worst for sources
locating perpendicular to the detector plane, where the
relative difference of source location reaches the minimum.
The tensor response of a detector reaches the minimum

at its angular bisector and the vertical direction of its
angular bisector in the detector plane [94–96], which is
at the longitude of f−90°, 0°, 90°, 180°g in the equatorial
plane for the detector I, and at the longitude of
f−150°;−60°; 30°; 120°g in the equatorial plane for the
detector II. The tensor response of a detector reaches the
maximum at the direction perpendicular to the detector
plane, which is near the two poles. Thus, except fθd;ϕdg,
the worst accuracy of the parameter estimation generally
occurs for sources along the detector plane, where the
tensor response reaches the minimum, and the best accu-
racy of the parameter estimation generally occurs for
sources along the two poles, where the tensor response
reaches the maximum. However, as θd → 0, both û · ô and
v̂ · ô in T go to 0, so T contributes little to the estimation

of ϕd. Furthermore, from Eq. (11), we see that ϕd and ψd
degenerates into one parameter ϕd − ψd when θd ¼ 0 due
to the coupling. Thus the estimation of ψd becomes the
worst for binaries along the two poles.
Figure 10 shows the dependence of the source locali-

zation on the sky position with the ringdown signal for
LISA, TianQin, and their combined network. The com-
bined network of two detectors not only improves the
localization accuracy but also makes the sky map more
uniform. Tables II and III show the median localization
errors of different detectors with ringdown signals from
binaries with total masses f105; 106; 107; 108; 109gM⊙ at
the redshift z ¼ 1 and the redshift z ¼ 3 respectively. From

FIG. 11. The amplitudes of the strain data in LISA, TianQin,
and Taiji for the two sources. The first source has the total mass
M ¼ 105 M⊙. The sampling frequency and the observation time
are set to be 1 Hz and 100 s respectively. The second source has
the total mass M ¼ 107 M⊙. The sampling frequency and the
observation time are set to be 0.1 Hz and 10000 s. The other
parameters of the two sources are q ¼ 2, z ¼ 1, θs ¼ ϕs ¼ ψs ¼
ϕlm ¼ π=3 and { ¼ π=4.

TABLE II. Median localization errors of different detectors
with ringdown signals from binaries with total masses
f105; 106; 107; 108; 109gM⊙ at the redshift z ¼ 1.

MðM⊙Þ LISA TianQin Taiji LISA-TianQin 3-network

105 139.87 2122.59 30.00 14.21 4.24
106 1.53 10.97 0.243 0.00645 0.00276
107 1.00 11.36 0.544 0.00303 0.000745
108 160.95 1180.32 113.61 0.108 0.0211
109 >105 >105 >105 80.13 12.99

TABLE III. Median localization errors of different detectors
with ringdown signals from binaries with total masses
f105; 106; 107; 108; 109gM⊙ at the redshift z ¼ 3.

MðM⊙Þ LISA TianQin Taiji LISA-TianQin 3-network

105 252.90 4893.65 45.72 16.26 5.60
106 9.09 62.97 1.78 0.033 0.0101
107 103.99 458.02 82.27 0.112 0.0415
108 18963 >105 13191 9.50 1.518
109 >105 >105 >105 >105 >105
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the two tables, we see that Taiji has better source locali-
zation than LISA and TianQin due to its lower noise curve
for massive BH binaries and lower transfer frequency for
supermassive BH binaries. As the total mass of the BH
binary increases, the improvement in the source localiza-
tion is one to three orders for the LISA-TianQin network
compared with individual detector. The 3-network
improves the sky localization only a few times than the
LISA-TianQin network.

Reference [76] analyzes two binaries with M ¼
4 × 105 M⊙, q ¼ 3 and z ¼ 4, using Bayesian inference
method, and the localization errors are about 200 square
degrees, which are consistent with the median error 80
square degrees given in Fig. 6. Reference [77] analyzes five
binaries with M ¼ 2 × 106 M⊙, q ¼ 3 and z ¼ 4, using
Bayesian inference method and the PhenomHM waveform
with higher-order harmonic modes and aligned spins.
The localization errors of the five sources are about

FIG. 12. The posterior distribution for the first source with LISA. The red solid lines (dots) represent the true parameters, the orange
solid lines represent the reflected sky position given by Eq. (23), and the dashed lines represent the degenerate points given by Eq. (27).
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0.001 square radians or 3 square degrees, which are
consistent with the median error 1 square degree given
in Fig. 6. The localization errors of the binary with
M ¼ 4 × 107 M⊙, q ¼ 5 and z ¼ 2, and the binary with
M ¼ 3 × 105 M⊙, q ¼ 1.4 and z ¼ 7, are about 2000 and
800 square degrees respectively, which are roughly con-
sistent with the median error 500 square degrees given in
Fig. 6. In Ref. [73], they use the low-frequency limit

and found that the estimation errors for q ¼ 10 are a few
times worse than those for q ¼ 2 which are consistent
with the results shown in Fig. 1. In the low-frequency limit,
the transfer function is independent of the frequency,
so there are eight degenerate sky positions in the locali-
zation contours [73]. In this paper, we consider the
frequency dependence of the transfer function and use it
to improve the sky localization. As we will see in the next

FIG. 13. The posterior distribution for the first source with TianQin. The red solid lines (dots) represent the true parameters, the orange
solid lines represent the reflected sky position given by Eq. (23), and the dashed lines represent the degenerate points given by Eq. (27).
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section, the transfer function also helps to break the eight
degeneracy (24).

IV. BAYESIAN INFERENCE

To check the FIM results, we use Bayesian inference
method to analyze two specific sources and compare the
FIM results with those from Bayesian analysis.

Bayesian inference method is based on Bayes rule

pðξjdÞ ¼ pðdjξÞpðξÞ
pðdÞ ; ð25Þ

where pðξjdÞ is the posterior distribution of the parameters
ξ, pðdjξÞ is the likelihood,

FIG. 14. The posterior distribution for the first source with the network of LISA and TianQin. The red solid lines (dots) represent the
true parameters, the orange solid lines represent the reflected sky position given by Eq. (23), and the dashed lines represent the
degenerate points by Eq. (27).
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pðdjξÞ ¼ exp

�
−
1

2
ðsðξÞ − djsðξÞ − dÞ

�
; ð26Þ

d ¼ sðξ0Þ þ n is the observed data for the true parameters
ξ0, n is the noise generated by the noise power spectra, pðξÞ
is the prior distribution of the parameters ξ, and pðdÞ is the
evidence which is treated as a normalization constant. For
the two sources, we choose the sampler Dynesty [97] with

“mulit” bound and “rwalk” sample method for nested
sampling [98,99], to obtain the posterior distribution of
the parameters ξ.
We choose the two sources with different SNRs. The

parameters of the first source with smaller SNR are q ¼ 2,
M ¼ 105 M⊙, z ¼ 1, θs ¼ ϕs ¼ ψ s ¼ ϕlm ¼ π=3, and
{ ¼ π=4. The number of live points of the sampler, the
sampling frequency, and the observation time are set to be

FIG. 15. The posterior distribution for the second source with LISA. The red solid lines (dots) represent the true parameters, the orange
solid lines represent the reflected sky position given by Eq. (23), and the dashed lines represent the degenerate points given by Eq. (27).
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1500, 1 Hz, and 100 s, respectively. The parameters of the
second source with larger SNR are q ¼ 2, M ¼ 107 M⊙,
z ¼ 1, θs ¼ ϕs ¼ ψ s ¼ ϕlm ¼ π=3, and { ¼ π=4. The
number of live points of the sampler, the sampling
frequency, and the observation time are set to be 3000,
0.1 Hz, and 10000 s, respectively. We choose { ¼ π=4
because in this case the parameter errors are close to the
median errors. From Eq. (23), we see that in the

heliocentric coordinate, the sky position ðθs;ϕs;ψ s; {Þ ¼
ð60°; 60°; 60°; 45°Þ is reflected to ð67.7°; 72.8°; 7.2°; 135°Þ
for LISA, and to ð55.7°; 6.3°; 130°; 135°Þ for TianQin.
The amplitudes of the strain data in LISA, TianQin, and

Taiji for the two sources are shown in Fig. 11. From Fig. 11,
we see a high peak which corresponds to the modes (2, 2)
and (2, 1), and a low peak behind the high peak which
corresponds to the modes (3, 3) and (4, 4). If we work in the

FIG. 16. The posterior distribution for the second source with TianQin. The red solid lines (dots) represent the true parameters, the
orange solid lines represent the reflected sky position given by Eq. (23), the black dotted lines represent the degenerate points given by
Eq. (24), and the dashed lines represent the degenerate points given by Eq. (27).
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heliocentric coordinate, from Eqs. (5) and (6), we find that
the phases of GW signals have the degeneracy

sðψ s;ϕlmÞ ¼ sðψ s � πÞ ¼ sðψ s � π=2;ϕlm � πÞ; ð27Þ

which is not apparent if we work in the detector coordinate.
Thus, all the posterior distributions of ϕlm at least have two
peaks. We set the prior distributions of the parameters

fq; lnðM=M⊙Þ; lnðdL=MpcÞ;cosθs;ϕs;ψ s;cos {;ϕlmg to be
uniform in the ranges [1, 10], [11.5, 20.72], [6.2, 20.34],
½−1; 1�, ½0; 2π�, ½0; π�, ½−1; 1�, and ½0; 2π�, respectively. The
results of Bayesian analysis are shown in Figs. 12, 13, 14,
15, 16, and 17. The Bayesian results with Taiji are similar to
those with LISA, and the results with the 3-network are a
few times better than those with the network of LISA
and TianQin.

FIG. 17. The posterior distribution for the second source with the network of LISA and TianQin. The red solid lines (dots) represent
the true parameter values, the orange solid lines represent the reflected sky position given by Eq. (23), and the dashed lines represent the
degenerate points given by Eq. (27).
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For the first source, from Figs. 12, 13 and 14, the errors
fδθs; δϕsg with LISA, TianQin and the network of LISA
and TianQin are f15°; 34°g, f25°; 81°g and f13°; 27°g,
respectively, which are a few times worse than the median
errors f6.4°; 4.8°g, f16.8°; 20.1°g and f1.4°; 2.4°g with the
FIM method given by Figs. 6, 7 and 8. For the second
source, from Figs. 15, 16 and 17, the errors fδθs; δϕsg with
LISA, TianQin and the network of LISA and TianQin
are f6°; 9°g, f15°; 32°g and f0.3°; 0.5°g, respectively,
which are about one order worse than the median errors
f0.5°; 0.6°g, f1.6°; 2.3°g and f0.023°; 0.033°gwith the FIM
method given by Figs. 6, 7, and 8. The FIM results show
that the detector network improves the source localiza-
tion about two order of magnitudes, while the Bayesian
results show that the detector network also plays an
important role in eliminating degenerate sky positions.
In particular, the inherent multimodal distributions for θs
and ϕs with single detector become unimodal distribu-
tions with the detector network. We also find that the
estimation errors of fq;Mz; dL;ψ s; {;ϕlmg given by the
two methods are consistent with each other within one
order of magnitude.

V. CONCLUSION

We derive the analytical formulas of the frequency-
domain ringdown signals with the harmonic phases, the
rotation period of the geocentric detector, and the detector’s
arm length. The analytical formulas help a lot to reduce the
computation time in the FIM analysis. We show the median
errors of the parameter estimation and source localization
with ringdown signals from binaries with different total
masses and different redshifts. We find that for binaries
with the total mass M ≥ 105 M⊙, space-based GW detec-
tors can effectively estimate parameters and localize
sources with the ringdown signal. For the ringdown
frequencies 0.5f� ≤ f ≤ 5f�, we find that the transfer
function dramatically improves the parameter estimation
and source localization. Thus the transfer function of LISA,
Taiji, and TianQin can improve their source localization for
binaries with the redshifted total masses 1.7 × 105 M⊙ ≤
Mz ≤ 1.7 × 106 M⊙, 2 × 105 M⊙ ≤ Mz ≤ 2 × 106 M⊙,
and 1.2 × 104 M⊙ ≤ Mz ≤ 1.2 × 105 M⊙, respectively.
We also find that for BH binaries at the same distance,
LISA has larger SNR and better parameter estimation and
source localization for the BH binary with Mz ¼
6.5 × 106 M⊙, TianQin has larger SNR and better param-
eter estimation and source localization for the BH binary
with Mz ¼ 3 × 106 M⊙, and LISA-TianQin network has
larger SNR and better parameter estimation and source
localization for the BH binary with Mz ¼ 4 × 106 M⊙.

As for the dependence of the parameter estimation and
source localization on the sky position, we find that the
detector has the best angular resolution for sources along
the detector plane, where the relative difference of source
location reaches the maximum, but it has the worst angular
resolution for sources perpendicular to the detector plane,
where the relative difference of source location is the
minimum. Except fθd;ϕdg, the worst parameter estimation
accuracy occurs for sources along the detector plane, where
the tensor response is the minimum, and the best parameter
estimation accuracy occurs for sources along the two poles,
where the tensor response is the maximum. However, the
estimation error of the polarization angle ψd becomes the
worst for sources along the two poles, because of its
coupling with ϕd. In fact, the difference of the parameter
estimation for sources at different locations is within one
order of magnitude in most cases.
To check the FIM results, we use Bayesian inference

method to analyze two typical binaries. We find that the
results of the parameter estimation and source localization
given by the two methods are consistent with each other.
Thus we expect that in real data analysis, especially in the
case of GW detector network, the results of the parameter
estimation and source localization given by Bayesian analy-
sis are close to the median errors given by Figs. 6, 7, and 8
within one order of magnitude in most cases.
The network of space-based GW detectors not only

improves the sky localization accuracy by two or even three
orders of magnitude compared with individual detector, but
also avoids the reflected sky position, and it is sensitive to
GWs from almost all directions. Thus, to reach the
scientific goals efficiently for GW observations, the com-
bined network is extremely important for not only ground-
based GW detectors, but also space-based GW detectors.
We provide a useful approach to understanding parameter
estimation with ringdown signals in space-based GW
detectors, which is important to quickly understand the
range of possibilities in these detectors. The results are
helpful for exploring the scientific potential of space-based
GW detectors.
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APPENDIX A: ANALYTICAL FORMULAS

In this paper, we use the following formulas:

Iaðωlm; τlm;ϕlmÞ ¼
Z þ∞

0

e−
t

τlm cosðωlmt − ϕlmÞe−iωtdt ¼
Ia1 cosϕlm − Ia2τlmωlm sinϕlm

Ia3
τlm;

Ia1 ¼ ð1þ iωτlmÞ½1þ 2iωτlm − τ2lmðω2 − ω2
lmÞ�;

Ia2 ¼ τ2lmðω2 − ω2
lmÞ − 1 − 2iωτlm;

Ia3 ¼ ½τlmðω − ωlmÞ − i�2½τlmðωþ ωlmÞ − i�2; ðA1Þ

Ibðϕd;ωlm; τlm;ϕlmÞ ¼
Z þ∞

0

sin ½2ðϕd − ωtqtÞ�e−
t

τlm cosðωlmt − ϕlmÞe−iωtdt

¼ Ib1 cosϕlm − Ib2τlmωlm sinϕlm

Ib3
τlm;

Ib1 ¼ 2τlmωtq½τ2lmðω2 þ ω2
lm − 4ω2

tqÞ − 2iωτlm − 1� cos 2ϕd

− ð1þ iωτlmÞ½τ2lmðω2 − ω2
lm − 4ω2

tqÞ − 2iωτlm − 1� sinð2ϕdÞ;
Ib2 ¼ ½τ2lmðω2 − ω2

lm þ 4ω2
tqÞ − 2iωτlm − 1� sinð2ϕdÞ þ 4τlmωtqð1þ iωτlmÞ cos 2ϕd;

Ib3 ¼ ½τlmðω − ωlm − 2ωtqÞ − i�½τlmðωþ ωlm − 2ωtqÞ − i�
× ½τlmðω − ωlm þ 2ωtqÞ − i�½τlmðωþ ωlm þ 2ωtqÞ − i�; ðA2Þ

Z þ∞

0

−e−
t

τlm sinðωlmt − ϕlmÞe−iωtdt ¼ Ia

�
ωlm; τlm;ϕlm −

π

2

�
;

Z þ∞

0

cos ½2ðϕd − ωtqtÞ�e−
t

τlm cosðωlmt − ϕlmÞe−iωtdt ¼ Ib

�
ϕd þ

π

4
;ωlm; τlm;ϕlm

�
;

Z þ∞

0

− sin ½2ðϕd − ωtqtÞ�e−
t

τlm sinðωlmt − ϕlmÞe−iωtdt ¼ Ib

�
ϕd;ωlm; τlm;ϕlm −

π

2

�
;

Z þ∞

0

− cos ½2ðϕd − ωtqtÞ�e−
t

τlm sinðωlmt − ϕlmÞe−iωtdt ¼ Ib

�
ϕd þ

π

4
;ωlm; τlm;ϕlm −

π

2

�
;

Z
L

0

ðe2πif½−2Lþð1−μÞλ� þ e2πif½−Lþλ−μðL−λÞ�Þdλ ¼ 2LT ðf; μÞ: ðA3Þ

Here ω ¼ 2πf.

APPENDIX B: THE COORDINATE TRANSFORMATION

In this section, we give the coordinate transformation formulas from the heliocentric coordinate fî; ĵ; k̂g to the detector
coordinate fx̂; ŷ; ẑg. The Euler rotation matrices are

RxðθÞ ¼

2
64
1 0 0

0 cos θ − sin θ

0 sin θ cos θ

3
75; RyðθÞ ¼

2
64

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

3
75; RzðθÞ ¼

2
64
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

3
75: ðB1Þ

GW coordinate basis vectors in the heliocentric coordinate are given by
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fm̂; n̂; ôg ¼ fî; ĵ; k̂g × Rzðϕs − πÞRyðπ − θsÞRzðψ sÞ

¼

2
64
cos θs cosϕs cosψ s þ sinϕs sinψ s sinϕs cosψ s − cos θs cosϕs sinψ s − sin θs cosϕs

cos θs sinϕs cosψ s − cosϕs sinψ s − cosϕs cosψ s − cos θs sinϕs sinψ s − sin θs sinϕs

− sin θs cosψ s sin θs sinψ s − cos θs

3
75; ðB2Þ

where ðθs;ϕsÞ are the source location, and ψ s is the polarization angle.
For TianQin, the detector coordinate basis vectors are

fx̂; ŷ; ẑg ¼ fî; ĵ; k̂g × Rz

�
ϕtq −

π

2

�
Rxð−θtqÞ; ðB3Þ

FIG. 18. The parameter distribution of simulated sources.
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where ðθtq;ϕtqÞ ¼ ð94.7°; 120.5°Þ, and ωtq ¼ 2π=Ttq ¼
1.99 × 10−5 Hz is the rotation frequency of TianQin. For
LISA, the detector coordinate basis vectors are

fx̂; ŷ; ẑg ¼ fî; ĵ; k̂g × RzðωetÞRy

�
−
π

3

�
Rzð−ωlisatÞ; ðB4Þ

where ωe ¼ ωlisa ¼ 1.99 × 10−7 Hz is the rotation fre-
quency of the Earth and LISA around the Sun. Thus the
source parameters in the detector coordinate are

θd ¼ arccosð−ô · ẑÞ; ϕd ¼ 2 arctan

�
−ô · ŷ

sin θd − ô · x̂

�
;

ψd ¼ 2 arctan
�

n̂ · ẑ
sin θd − m̂ · ẑ

�
: ðB5Þ

APPENDIX C: SIMULATED SOURCES

For each binary with the same total mass and redshift, we
use Monte Carlo simulation to generate 1000 sources. In
this Appendix, we show the distribution of the parameters
for the simulated sources in Fig. 18.
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