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This work studies the formation and growth of boson stars and their surrounding miniclusters by
gravitational condensation using nonlinear dynamical numerical methods. Fully dynamical attractive and
repulsive self-interactions are also considered for the first time. In the case of pure gravity, we numerically
prove that the growth of boson stars inside halos slows down and saturates as has been previously
conjectured, and detail its conditions. Self-interactions are included using the Gross-Pitaevskii-Poisson
equations. We find that in the case of strong attractive self-interactions the boson stars can become unstable
and collapse, in agreement with previous stationary computations. At even stronger coupling, the
condensate fragments. Repulsive self-interactions, as expected, promote boson star formation, and lead to
solutions with larger radii.
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I. INTRODUCTION

Dark matter (DM) is a hypothetical form of matter,
which makes up nearly 27% of the contents in our Universe
[1]. A popular idea is that the dark matter could be formed
of light (pseudo-)scalar particles with large occupation
number so that they can be described by a classical scalar
field ϕ, see e.g. [2–8]. The potential of the scalar field can
be expanded for small field values as [9–11]

VðϕÞ ¼ 1

2
m2ϕ2� 1

4!

m2

f2a
ϕ4 þ � � � ; ð1Þ

where m is the particle mass, fa is the decay constant, and
natural units, ℏ ¼ c ¼ 1, are used. The plus-minus sign
before theϕ4 term corresponds to repulsive (þ) and attractive
(−) self-interaction, respectively. In this paper, we define the
dimensional self-coupling constant as g≡� 1

8f2a
. Depending

on the detailed models, the particle’s mass and coupling
constant have different values. For instance, QCD axions
have masses in the range 10−11–10−2 eV [2,12–23], while
the ultralight boson particles have masses as low as
10−22–10−19 eV [24–27]. These different parameters can
influence gravitational structure formation and the mass
distribution of scalar field dark matter in our Universe.
For example, for ultralight bosons without self-interaction,

their dynamics can be computed in the nonrelativistic regime
using the Schrödinger-Poisson (SP) equations. For bosons
with repulsive or attractive self-interactions, they have a
nonzero self-coupling constant, leading to the Gross-
Pitaevskii-Poisson (GPP) equations. Solving the SP or
GPP equations, we know that the finite energy ground state
solution (for weak self-interactions) of these systems is a
soliton: a localized lump of boson energy density held
together by the competing forces of gravity, self-interactions,
and gradient energy [7,28–30]. Such solitonic solutions are
also known as boson stars [11,31–36].
The formation of boson stars has been observed in

numerical simulations in a variety of situations relevant to
dark matter structure formation [37–42]. The growth rate of
boson stars is an important quantity since the more massive
and dense stars are easier to observe. Ultimately, if we can
understand the masses and abundances of boson stars, then
we can predict their observational signatures, in instru-
ments such as haloscopes [43,44] or gravitational waves
detectors [45,46], or by gravitational lensing, or via their
decay products [47–54].
For bosons without self-interaction, boson stars can form

due to gravitational condensation from isotropic initial
conditions [40]. After nucleation, boson stars start to
acquire mass from the surrounding field, with an initial
mass growth rate ∝ t1=2, as obtained by [40]. However, due
to computational limitations,1 the end-stage evolution of*jiajun@astro.physik.uni-goettingen.de

†xdu@carnegiescience.edu
‡erik.lentz@uni-goettingen.de
§david.marsh@uni-goettingen.de∥niemeyer@astro.physik.uni-goettingen.de

1The computational costs depend on the size of the system to
be simulated. Previous studies such as [40] can only observe the
early stage of the growth of boson stars.
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boson stars has yet to be observed despite predictions that
saturation of the mass growth rate will drop to ∝ t1=8 [42].
In fact, if saturation is reached within a Hubble time, the
end-stage evolution of boson stars is the main factor
determining their mass distribution at present. Thus study-
ing the end-stage evolution of boson stars can help us to
search for, and possibly observe, boson stars in the
Universe.
Attractive or repulsive self-interaction can further influ-

ence the evolution of the boson systems. Dynamical boson
star formation in this case has not been studied using
nonlinear numerical methods. One example is for QCD
axions, where the attractive self-interaction could lead to
the collapse of boson stars at a critical mass [55]. Therefore,
we need to study the evolution of these kinds of bosons in
order to understand mass distribution in our Universe.
Using pseudospectral methods [56], we study the evo-

lution of systems with different scalar potentials. We look at
systems that are smaller than previous studies so that we
have sufficient resolution to resolve the end-stage evolution
of boson stars. We anticipate that our conclusions are also
applicable to larger systems. We find the following results
in our simulation:

(i) For ultralight bosons without self-interaction, the
saturation of boson stars occurs in miniclusters. The
mass growth rate of boson stars drops from ∝ t1=2 to
∝ t1=8 as conjectured by [42].

(ii) For bosons with attractive self-interaction, such as
QCD axions (109 ≲ fa ≲ 1012 GeV), the self-inter-
action can cause collapse of boson stars above a
critical mass. However, it does not affect condensa-
tion and early-stage evolution of boson stars in
miniclusters.

(iii) For bosons with a repulsive self-interaction, con-
densation and growth of boson stars is promoted. At
strong coupling, ρg2 ≫ 4πGm2, the resulting boson
stars are well described by the Thomas-Fermi profile
[57], with a larger radius than the case with no self-
interaction (see Appendix C for more details).

(iv) For strong attractive self-interactions which satisfy
ρg2 ≫ 4πGm2, e.g. large axion density perturba-
tions generated in early Universe if the Peccei-Quinn
symmetry is broken after inflation, the condensate
can fragment and form multiple boson stars2 even in
a small simulation box (see also [58] for the case
with a saturated scalar potential).

Each of the above results are novel, and have not been
found before in the dynamical and nonlinear regime. The
observed growth rate of boson stars in our simulations has
implications for the expected astrophysical abundance and
mass function of boson stars in both the fuzzy DM mass
rangem ∼ 10−22–10−19 eV, and the QCD axion mass range,

m ∼ 10−10–10−2 eV, which we will explore in detail in a
future publication. The boson star mass function of fuzzy
DM has implications for the cusp-core problem of dwarf
spheroidal galaxies (e.g. Ref. [28]), the dynamics
of old star clusters (e.g. Refs. [59]), the rotation curves
of low surface brightness galaxies (e.g. Ref. [60]), the
kinematics in the Milky Way center [61], and possibly for
the formation of supermassive black holes [38]. For the
QCD axion, the boson star mass function has implications
for radio astronomy and other indirect dark matter detection
methods [62], in addition to direct detection methods [63].
More generally, a saturation mass of boson stars has impli-
cations for gravitational wave searches for exotic compact
objects [64], where the saturation mass implies a maximum
compactness for boson stars formed by gravitational con-
densation and accretion.
We start in Sec. II with introducing the GPP equations

and our initial distributions. In Sec. III A we study the
formation and saturation of boson stars for bosons without
self-interaction. In Sec. III B and Sec. III C we study the
evolution of bosons with attractive self-interaction and
repulsive self-interaction, respectively. In Sec. IV, we study
the condensation of multiple fragments. Finally, we present
our conclusions in Sec. V. In the Appendixes, we discuss
the pseudospectral method, convergence analysis, soliton
solutions to the GPP equations, condensation time for
gravitational and self-interactions.

II. THE GROSS-PITAEVSKII-POISSON
EQUATIONS AND INITIAL DISTRIBUTIONS

In the nonrelativistic, low-density and low-velocity
limits, we can rewrite the scalar field ϕ as

ϕ ¼
ffiffiffiffi
2

m

r
Reðψe−imtÞ: ð2Þ

The complex wave function ψ at lowest order satisfies the
GPP equations [65,66]

i
∂
∂tψ ¼ −

1

2m
∇2ψ þmVψ þ gjψ j2ψ ; ð3Þ

∇2V ¼ 4πGmðjψ j2 − nÞ; ð4Þ

where G is Newton’s gravitational constant, V is the
gravitational potential, g≡� 1

8f2a
is the dimensional self-

interaction coupling, and n is the mean number density.
Examining Eqs. (3) and (4), we find that they are invariant
under the scaling transformation

fr; t;ψ ; V; gg → fλ−1r; λ−2t; λ2ψ ; λ2V; λ−2gg; ð5Þ

where λ is an arbitrary parameter.
Equations (3) and (4) can be written in a dimen-

sionless form following the definitions in Ref. [40]:
2Boson stars formed in this regime are unstable and experience

runaway collapse.
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substitutions x ¼ x̃=ðmv0Þ, t ¼ t̃=ðmv20Þ, V ¼ Ṽv20 and
ψ ¼ ψ̃v20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð4πGÞp

, g ¼ g̃4πG=v20, where v0 is a refer-
ence velocity, e.g. the characteristic velocity of the initial
state. The dimensionless equations are given by

i
∂
∂ t̃ ψ̃ ¼ −

1

2
∇̃2ψ̃ þ Ṽ ψ̃ þg̃jψ̃ j2ψ̃ ; ð6Þ

∇̃2Ṽ ¼jψ̃ j2 − ñ: ð7Þ

We use the wave function momentum distribution [40],
jψ p⃗j2 ¼ Nδðjp⃗j −mv0Þ in a periodic box of size L as initial
conditions, where N ≡ nL3 is number of nonrelativistic
bosons in the box. Performing an inverse Fourier transform
on ψ p⃗eiS with S a random phase, we obtain an isotropic
initial distribution in position space, ψðx⃗; 0Þ. This initial
distribution follows from the uncertainty principle: exact
knowledge of p⃗ gives complete uncertainty in x⃗. The initial
wave function is then evolved by solving the GPP equa-
tion numerically using pseudospectral method [67,68] (see
also in Appendix A). In order to study isolated halos/
miniclusters, we run simulations in a box of size L̃ > 2π=k̃J
with k̃J ¼ ð4ñÞ1=4 the dimensionless Jeans wave number,
since nonrelativistic boson gas forms clumps at scales
larger than 2π=k̃J due to Jeans instability [69]. To study the
influence of self-interactions, we vary the dimensionless
coupling constant g̃within the range ½−102; 10−2�. Note that
g̃ is related to the decay constant by

jg̃j ¼ v20
4πG

1

8f2a

¼ 1.5 × 10−6
�

v0
3 × 10−5 km=s

�
2
�
1011 GeV

fa

�
2

: ð8Þ

For a given fa, the value of g̃ depends on the reference
velocity one chooses. So to compare g̃ in different systems,
we should choose the reference velocity to be the charac-
terized velocity of the system.

III. CONDENSATION OF BOSONS

A. Condensation of bosons without self-interactions

For bosons without self-interactions (g̃ ¼ 0), the GPP
equations can be simplified as SP equations:

i
∂
∂ t̃ ψ̃ ¼ −

1

2
∇̃2ψ̃ þ Ṽ ψ̃ ; ð9Þ

∇̃2Ṽ ¼jψ̃ j2 − ñ: ð10Þ

It has been observed that gravity leads to the formation
of a gravitationally virialized DM halo (for certain cos-
mologies called a “minicluster”), and eventually to the
condensation of a boson star at its center [40]. The

condensation time, τgravity, can be derived from the theory
of relaxation in the SP equations and the Landau equation
[38,40,70], which is given in terms of the radius of
miniclusters, R, characteristic velocity, v, and density, n,
of the minicluster [40]:

τgravity ¼
b
ffiffiffi
2

p

12π3
mv6

G2n2Λ

∼ 106 yr
�

m
10−22 eV

�
3
�

v
30 km=s

�
6

×

�
0.1 M⊙ pc−3

ρ

�
2

; ð11Þ

where Λ ¼ logðmvRÞ is the Coulomb logarithm, and b is
an Oð1Þ coefficient to be determined by simulation. After
condensation, boson stars have been shown to acquire mass
from the surrounding gas of particles, with the subsequent
growth rate [40],

M�ðtÞ ≃M�;0

�
t − τgravity
τgravity

�
1=2

; ð12Þ

where M� is the mass of the boson star, and the coefficient
M�;0 is given by [40]

M�;0 ¼ ð3� 0.7Þ × v
4πGm

¼ ð3� 0.7Þ × 107 M⊙

�
v

30 km=s

��
10−22 eV

m

�
:

ð13Þ

The question arises as to whether the growth in Eq. (12)
continues forever or saturates. We know immediately after a
boson star has been formed, its growth rate is in accordance
with Eq. (12). As this boson star grows, surrounding bosons
become gravitationally bound to it in a halo or atmosphere
(the minicluster surrounding the star). The halo surrounding
the boson star contains granular structure on the scale of the
de Broglie wavelength, which can be modeled as consisting
of transient “quasiparticles” [29,38]. As the boson star grows
in mass, its radius contracts. At a particular mass,M�;sat, the
size of the boson star will be of order that of the granular
structure. At this time, it has been conjectured that the hot
atmosphere will reach virial equilibrium with the star,
causing the mass growth to slow down [42]. The transition
has been predicted to occur at vvir� ≈ vhalo [42], where vvir�
and vhalo are the viral velocity of the boson star and
minicluster respectively. We call this time the saturation
time, τsat. The saturation time is estimated by considering the
viral velocity in thegravitational potential of the soliton given
by [29]

vvir� ðM�Þ ¼ GM�mw1=2
0 ; ð14Þ
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where w0 ¼ 0.10851. Exploiting that ðM�;sat=vvir�;satÞ3=4 ¼
ðmGw1=2

0 Þ−3=4, and combining this with Eq. (12) gives

M�ðtÞ ≃ ðM3�;satM�;0Þ1=4
�
t − τgravity
τgravity

�
1=8

; ð15Þ

where M�;sat is the boson star mass at the saturation time
and vvir�;sat ≈ vhalo. Comparing with Eq. (13), we find that
M�;sat ∼M�;0. From Eq. (15), we can estimate the saturation
time:

τsat ¼
��

vhalo
GmM�;0

�
2 1

w0

þ 1

�
τgravity ≈ 2τgravity: ð16Þ

This suggests that the growth of boson star in the center of a
minicluster saturates in about one condensation time after its
formation.
Due to computational limitations, the prediction of the

saturation of boson stars has not been verified [40,42]. In
the rest of this subsection, by running a large number of
numerical simulations past the estimated saturation time
t > τsat, we are able to demonstrate that the growth of
boson stars in miniclusters indeed saturates as predicted.
We show the evolution of boson stars from our simu-

lations with different L and N to statistically verify our
results. From the simulations, we obtain the change of
energy, the growth rate of boson stars, etc.

1. Condensation of boson stars

Numerically solving the SP equations at box size 10 <
L̃ < 30 and total mass 500 < Ñ < 1800, we observe the
formation of a boson star and its surrounding halo/mini-
cluster. One example is shown in Fig. 1: box size L̃ ¼ 18

and total mass Ñ ¼ 1005.3. We can see a minicluster
forming gradually from t̃ ≈ 10 to t̃ ≈ 30. After that, a dense
and nearly spherically symmetric object appears and grows
in the center of the minicluster. We find that the radial
density profile of the minicluster from this most dense point
coincides with the density profile of a soliton solution at
0 < r̃ < 1 (soliton density profiles are described in
Appendix C), and a power law at r̃ > 1 (see Fig. 2). We
also find that there is always one, and only one, boson star
formed in each minicluster. The region outside the boson
star has a radial density profile consistent with cold DM on
scales larger than the de Broglie wavelength, and with
granular structure below it. These results are fully con-
sistent with results of Refs. [38,40,42].
If we restore the physical units of the above dimen-

sionless simulation, e.g. for typical QCD axion with
m ∼ 10−5 eV, it will correspond to an axion minicluster
with a mass of ∼3.2 × 10−14 M⊙ and a radius of
5.1 × 105 km. The axion star formed in the center of the
minicluster will have a mass of ∼5 × 10−15 M⊙ and a
radius of 3.2 × 104 km.

2. Growth of boson stars

Figure 3 shows the evolution of mean, normalized,
stacked boson star mass for our ensemble of simulations.
The boson stars form at t ≈ τgravity. After that, we find the
growth rate of boson star mass ∝ t̃1=2 until t ≈ 5τgravity.
When the size of the boson star becomes smaller than the

granular structure in the surrounding halo, the boson star
growth saturates and drops to ∝ t̃1=8 at the transition time,
as predicted by Eq. (15). Therefore, the saturation of boson
star growth indeed occurs in our system, and the asymptotic
mass growth rate of the boson star matches the theoretical
prediction [42]. Note that in Fig. 3 we define τgravity using

(a)

(c) (d)

(b)

FIG. 1. Snapshots of the density field from one simulation with
Ñ ¼ 1005.3, L̃ ¼ 18. (a) Projected density at the initial time.
(b) Projected density at t̃ ¼ 10, which shows that minicluster is
forming in the box. (c) Projected density at t̃ ¼ 30. (d) Projected
density at t̃ ¼ 200. A single dense object is visible at the center of
the minicluster.

FIG. 2. Density profiles of the minicluster at different times
(colored dots) compared with solitonic profiles (solid lines) as
given by Eq. (C10) with the same central densities.
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the characteristic density and velocity of the initial con-
ditions instead of the central density and virial velocity of
the minicluster. In reality, the condensation time in the
center of minicluster is higher because the characteristic
velocity is higher. So the value of saturation time we
obtained in units of τgravity is a bit larger than the prediction
in Eq. (16). Nevertheless, after the formation, the boson
star will grow and saturate in Oð1Þ condensation time.
Furthermore, we find that during the end stages of
evolution, the mass of boson stars can be normalized by
Ñα with α ∼ 0.45 (for more details, see Appendix D). If we
assume the mass of stable halos is proportional to the total
mass in the box, Ñ, we get the core mass-halo mass relation
M� ∝ Mα

halo. This is broadly consistent with previous
findings in cosmological simulations, i.e. α ¼ 1=3 [38].
In Fig. 3, we choose to normalize the boson star mass by
Ñ1=3, i.e. assuming the core mass-halo mass relation found
by Ref. [38]. Setting α at the best-fit value, 0.45, leads to
almost indistinguishable results, and thus we do not show
them in Fig. 3. As can be seen, the growth of normalized
boson star mass after saturation follows a universal
power law.

B. Condensation of bosons with self-interactions

Here we include self-interaction. Self-interactions can
promote condensation of bosons. Simulating the GPP
equations, we study the evolution of bosons with self-
interactions.

1. Bosons with attractive self-interactions

Levkov et al. [40] predict that sufficiently weak attrac-
tive self-interactions, like those of the QCD axion, have a
negligible effect on boson star formation. However, this
prediction has not been directly demonstrated.
For bosons with very weak attractive self-interaction,

such as QCD axions in minicluster with v ≈ 10−10 [71–73],
and decay constant fa ¼ 1=

ffiffiffiffiffiffiffiffi
8jgjp

≈ 1011 GeV, we obtain
an estimate on the self-interaction coupling of g̃ ≈ −10−6.
We run some simulations with different g̃. One of these

simulations is shown in Fig. 4. We can see the process of
formation of the minicluster and condensation of the boson
star. This process is similar to the pure gravity case, Fig. 1.
The radial density profiles of the minicluster and analytic
profiles of soliton with and without self-interactions are
given in Fig. 5 and fitted by Eq. (C11) and Eq. (C10),
respectively. We discover that the radial density profile of
the minicluster coincides with the density profile of a
soliton solution at 0 < r̃ < 1, with the case with the correct
value of g̃ providing a better fit.
The evolution of maximum density from simulations

with different strength of self-interactions compared with
the case without self-interactions is shown in Fig. 6. These
results support the theoretical prediction of [40] that gravity
dominates the system and the effect of self-interactions is
negligible in the early stages of boson star evolution.
As the central density continues to grow, we can see

different trends occur depending on the strength of self-
interaction. The growth rate of maximum density still
coincides with the case without self-interactions where
self-interaction is very weak, e.g. jg̃j ∼ 10−6. However, if

FIG. 3. The mean stacked mass of boson stars evolution (solid
lines) for different box sizes L̃ ¼ 25, 20, 18, 15 and total mass
Ñ ¼ 691, 754, 817, 880, 942, 1005, 1131. The data from
simulation with the same box size L̃ but different total mass
Ñ are divided into 500 time bins. The shaded regions show the
1 − σ intervals. The time and mass of boson stars are normalized
by the condensation time, τgravity and the total mass, Ñ1=3

691, where
Ñ691 ¼ Ñ=691. Note that here τgravity is computed using Eq. (11)
for the initial configuration, i.e. R ¼ L, v ¼ v0, and n ¼ N=L3,
to avoid ambiguities in the definitions of halo radius and density.

(a)

(c) (d)

(b)

FIG. 4. Snapshots of the density field from one simulation with
Ñ ¼ 1005.3, L̃ ¼ 18, g̃ ¼ −0.007. (a) Projected density at the
initial time. (b) Projected density at t̃ ¼ 10, which shows that
minicluster is forming in the box. (c) Projected density at t̃ ¼ 30.
(d) Projected density at t̃ ¼ 48. Compared with the case without
self-interactions, the boson star formed at the center is denser.
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the self-interaction is moderately weak, e.g. jg̃j ∼ 10−2, the
effect of self-interactions becomes increasingly important.
In the latter case, the boson stars collapse at a critical mass,
see Fig. 6 [55,65,74,75]. Above the critical mass, the boson
star is unstable to perturbations. The attractive self-inter-
action in Eq. (3) overcomes the quantum pressure, and
boson stars shrink at an accelerated pace, developing huge
boson densities in the center when maximum density
reaches the critical value, ∼0.52=g̃2. Combining the rela-
tionship of Eq. (C9), we know the critical mass of collapse
is inversely proportional to

ffiffiffĩ
g

p
, in accordance with the

theoretical critical mass, Mcr ∝ 1=ðm ffiffiffi
g

p Þ [65,75] (see also
in Appendix C). At the collapse time, the core radius of the

boson star, which is defined as the radius at which the
density drops to half of the central density, is given by [see
Eq. (C12) for more details]

rcore;cr ¼
1.213

mfa
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p

¼ 291.5 km ×

�
1011 GeV

fa

��
10−5 eV

m

�
: ð17Þ

C. Bosons with repulsive self-interactions

In this subsection, we study the evolution of some other
candidates for dark matter, bosons with repulsive self-
interactions.3

By simulating the GPP equations with different positive
values of g̃ in a box of size L̃ ¼ 18 and total mass
Ñ ¼ 1005.3, we find miniclusters form and dense objects
appear in the center of the miniclusters for sufficiently weak
g̃, see Figs. 7(a)–7(c).
The density profiles of the dense objects in the cases with

g̃ ¼ 0.01 and g̃ ¼ 0.1 are shown in Fig. 8, which can be
well fit by the density profiles of solitons given by
Eq. (C11). Thus, we confirm solitons are condensed in
the minicluster. We also prove the kinetic-energy term in
Sec. II can be neglected when g̃≳ 1.0 since the density
profile of the boson star becomes tantamount to the
Thomas-Fermi approximation, Fig. 8. Furthermore, as
can be seen in Fig. 7(d), we find that for very large
repulsive self-interaction, g̃ ¼ 10, no boson star forms at

FIG. 6. Maximum density growth with respect to time from
simulations assuming different self-interaction couplings:
g̃ ¼ 0 (without self-interactions), g̃ ¼ −0.000005, g̃ ¼ −0.001,
g̃ ¼ −0.007, g̃ ¼ −0.01, and g̃ ¼ −0.012. The box size L̃ ¼ 18

and the total mass Ñ ¼ 1005.3. The horizontal dashed lines mark
the densities which satisfy ρ̃g̃2 ¼ 0.52, when the boson star will
collapse.

FIG. 5. Density profiles of the minicluster at different times
(colored dots) from simulations of the GPP equations with
g̃ ¼ −0.007. Solitonic profiles given by Eq. (C11) and Eq. (C10)
are plotted in solid and dashed lines, respectively.

(a)

(c)

(b)

(d)

FIG. 7. Snapshots of the density field at t̃ ¼ 200 from simu-
lations in a box of size L̃ ¼ 18 and total mass Ñ ¼ 1005.3
assuming different g̃. (a) g̃ ¼ 0.01 (b) g̃ ¼ 0.1 (c) g̃ ¼ 1.0
(d) g̃ ¼ 10.0.

3The linear theory of bosons with repulsive self-interactions,
and constraints on the allowed interaction strength of DM, are
studied in Ref. [76].
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all. In this case, the self-interaction dominates over gravity.
Due to limited box size, the system forms a uniform
condensate instead of a boson star.
The evolution of maximum density with repulsive self-

interactions is shown in Fig. 9. The evolution of the
maximum density with g̃ ¼ 0.01 coincides with the case
without self-interaction (g̃ ¼ 0) at the early stage. This is
similar to the case with weak attractive self-interactions.
But at later stages when t̃ > τ̃sat, the growth rate of the
maximum density is different. The growth rate decreases
with increasing g̃ as expected.
However, with repulsive self-interactions, the radius of

the boson star is larger compared to the case with no self-
interactions (see Fig. 8). Thus for boson stars with the same
central density, the mass of the ones with repulsive self-
interactions is larger. To quantify how many particles
condense in different cases, we look at the mass growth

of boson stars, Fig. 10. We find that while the central
density growth is slower for larger positive g as shown in
Fig. 9, the mass growth of boson stars is actually faster with
increasing g indicating that repulsive self-interactions
promote the condensation process.

IV. FORMATION OF MULTIPLE
BOSON STARS

It is possible that bosons can have even larger values of
attractive self-coupling. Thus studying the evolution of
these bosons is also necessary. For bosons with attractive
self-interactions, we have shown in Sec. III B that when jg̃j
is very small, gravity dominates the early stage evolution in
systems and leads to the formation of a single boson star per
box.4 The situation can be very different if jg̃j is very large,
and self-interactions dominate the early stages of evolu-
tion [58].
In order to analyze these systems, we first introduce the

governing equation for linear overdensity δ≡ δρ=ρ, where
ρ is the mean density. In Fourier space, the linear over-
density δk satisfies [74,78,79]

δ̈k ¼ −
�

k4

4m2
þ gρk2

m2
− 4πGρ

�
δk: ð18Þ

Here we have neglected the Hubble friction term and
assumed the cosmic scale factor varies slowly on time
scales we are concerned with so that it can be treated as a
constant. It is easy to find that δk will grow exponentially
when

FIG. 8. Density profiles of the miniclusters from simulations
(colored dots), compared with solitonic profiles (solid lines) as
given by Eq. (C10) and Thomas-Fermi approximation [57]
[Eq. (C16)] with the same central densities.

FIG. 9. Maximum density growth with respect to time from
simulations assuming different g̃. The box size L̃ ¼ 18 and the
total mass Ñ ¼ 1005.3.

FIG. 10. Mass growth of boson stars with respect to time from
simulations assuming different g̃. The box size L̃ ¼ 18 and the
total mass Ñ ¼ 1005.3. Note that the case with g ¼ 10 is not
shown because no boson star is formed in the box.

4In cosmological simulations [38,60,77], one boson star forms
in each halo as it separates out from the cosmic expansion during
gravitational collapse. We have verified that this occurs also in
our simulations with an expanding background spacetime.
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k2J < −2ρgþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðρg2 þ 4πGm2Þ

q
; ð19Þ

i.e. the growth of the linear perturbation is unstable, thus the
overdense regions will quickly undergo nonlinear collapse.
The instability scale kJ is determined by the strength of

gravity and self-interactions. For different values of g and ρ,
we have three different regimes:

(i) ρg2 ≪ 4πGm2. Gravity dominates, miniclusters
form first. After that, one boson star forms in the
center of each minicluster.

(ii) ρg2 ≈ 4πGm2. Gravity and self-interactions both
play important roles in these regions. A gravitation-
ally bound minicluster may contain multiple boson
stars formed from local overdensities.

(iii) ρg2 ≫ 4πGm2. Self-interactions dominate. The con-
densate can fragment and form multiple boson stars
due to self-interactions before a gravitationally
bound object forms.

More specifically, different behaviors of the boson stars are
determined by the ratio

ρ̃g̃2 ¼ ρg2

4πGm2
¼ 5.4 × 10−14 ×

ρ

107 M⊙=pc3

×

�
1011 GeV

fa

�
4
�
10−5 eV

m

�
2

: ð20Þ

To test this hypothesis, we run simulations with very
strong attractive self-couplings. For comparison, we also
simulate the Gross-Pitaevskii (GP) equations ignoring
gravity:

i
∂
∂ t̃ ψ̃ ¼ −

1

2
∇̃2ψ̃ þ g̃jψ̃ j2ψ̃ ð21Þ

under the same initial conditions.
Figure 11 shows the evolution of the system simulated

using GPP equations with g̃ ¼ −0.04. At the initial time,
ρg2=ð4πGm2Þ ∼ 3 × 10−4 ≪ 4πGm2. We can see the for-
mation of a minicluster first, Figs. 11(a)–11(c). After that,
boson stars form and collapse in the system, see Fig. 11(d).
Interestingly, we actually found two boson stars formed in
the miniclsuter. This is because the density in the central
region of the miniclsuter increases during its formation and
at later time ρg2 becomes comparable with 4πGm2, i.e. the
second regime.
Figures 12(a) and 12(b) show the systems simulated

using GPP equations and GP equations with g̃ ¼ −1.0,
ρg2=ð4πGm2Þ ∼ 1, at t̃ ¼ 1.0, We can see two boson stars
condense in the dense areas in Fig. 12(a), but not in 12(b),
suggesting that the gravity can promote the condensation of
boson stars slightly even when self-interactions are strong.
Figures 12(c) and 12(d) show the cases with g̃ ¼ −80,

ρg2=ð4πGm2Þ ≫ 1. Comparing results from GPP equa-
tions with the ones from the GP equations, we do not find a

big difference. Therefore, we conclude that the self-inter-
actions dominate the evolution of boson stars alone in some
extreme systems.
In fact, Eq. (E1) suggests the self-interactions can be

ignored if −0.53≲ g̃ < 0 for a system with box size
L̃ ¼ 18, total mass Ñ ¼ 1005.3, and characteristic velocity
ṽ ∼ 1. But our simulation shows self-interactions are
important even for g̃ ¼ −0.04 at the late stages of evolution
[see Figs. 11(c) and 11(d)]. We think the reason is that at

(a)

(c) (d)

(b)

FIG. 11. Snapshots of the density field from simulations of the
GPP equations in a box of size L̃ ¼ 18, and total mass
Ñ ¼ 1005.3. The self-interaction coupling constant g̃ ¼ −0.04.
Note that due to resolution limit, we cannot resolve the central
region of the densest object, so we cutoff the projected density in
the plot at ≈1500. (a) t̃ ¼ 0 (b) t̃ ¼ 10 (c) t̃ ¼ 13 (d) t̃ ¼ 13.7.

(a)

(c) (d)

(b)

FIG. 12. Snapshots of the density field from simulations of the
GPP equations (left column) and GP equations (right column).
We pick g̃ ¼ −1 (first row) and g̃ ¼ −80 (second row). The box
size L̃ ¼ 18, and the total mass Ñ ¼ 1005.3. (a) t̃ ¼ 1.0, g̃ ¼ −1
(b) t̃ ¼ 1.0, g̃ ¼ −1 (c) t̃ ¼ 0.2, g̃ ¼ −80 (d) t̃ ¼ 0.2, g̃ ¼ −80.
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these times, the characteristic velocity increases due to
gravitational collapse making the gravitational condensa-
tion less efficient. But on the other hand, ρg2=ð4πm2GÞ is
larger than the value in the early stage.
In a cosmological setting, the extreme condensate

fragmentation observed in our simulations caused by strong
self-interactions would spoil the hierarchical nature of
cosmic structure formation. However, these results could
be applicable to fragmentation of the inflation condensate
(e.g. Ref. [80]) or to condensates in condensed matter.

V. CONCLUSIONS

By means of numerical solution of the dynamical Gross-
Pitaevskii-Poisson equations, we studied the formation and
subsequent growth of boson stars inside gravitationally
self-bound halos. We demonstrated a series of new phe-
nomena in the solutions, which had not been seen before in
the dynamical regime. Our simulations are local, not
cosmological, and so our conclusions apply in all cosmo-
logical models that possess the correct environments.
In the case with no self-interactions beyond gravity, we

demonstrated the saturation of boson star growth. We ran
simulations for times long compared to the dynamical
timescales, i.e. t ≫ τsat > τgravity, and much longer than
those of Ref. [40]. In this regime of boson stars we
observed a transition from relatively fast mass growth,
∝ t1=2, to much slower growth, ∝ t1=8, in accordance with
the prediction made by Ref. [42]. We attribute this to the
formation of a gravitationally bound and virialized atmos-
phere around the boson star, suppressing further mass
growth by coupling the condensation time to the boson
star’s virial temperature.
Another interesting phenomenon is that we discover no

significant difference for the end-stage evolution of mass of
boson stars (see Fig. 3) normalized by Ñα ∝ M̃α

halo. The
best-fit value of α is 0.45, which is broadly consistent with
the core mass-halo mass relation found in previous cos-
mological simulations, i.e. α ¼ 1=3 [38].
In any case, our observation of a reduced boson star

growth rate at late times explains why boson stars in
virialized halos in cosmological simulations (e.g.
Refs. [37,42,77]) are only observed to grow very slowly
compared to the other gravitational timescales, and thus
populate an almost constant in time core-halo mass relation
(see also Ref. [81], which considers the effect of mergers).
The saturation of boson star growth will play a role in fixing
the cosmological mass function of boson stars formed of
axions and ALPs in all cosmological scenarios, although
we leave a quantitative study of this to future work.
Our results in the case of attractive self-interactions

demonstrated for the first time that boson stars can grow via
accretion and reach the critical mass for collapse. Once the
critical mass is reached, relativistic simulations are needed.
The relativistic simulations of Refs. [11,35] began with

supercritical stars, and showed that these stars lead to either
ejection of relativistic bosons and a massive remnant (nova)
if fa ≲Mpl, or, for weak self-interactions, fa ≳Mpl,
collapse to black holes. Our dynamical simulations show
that it is possible to reach such critical nova state dynami-
cally before saturation. This implies that such a star could
undergo a series of novae in its lifetime. This could have
implications for the abundance of relativistic particles in the
Universe. If the bosons produced can be converted into
visible photons, as is the case for axions and axionlike
particles, the nova ejecta could even be observed. We leave
for future work the study of he expected rates in realistic
models. The regime of weak coupling is applicable to the
QCD axion, and so we have demonstrated that such novae
could occur for models where the QCD axion composes the
dark matter. However, further study is required to determine
in which astrophysical environments or cosmologies QCD
axion novae are expected to occur in abundance.
In the case of very strong attractive interactions, we

demonstrated that these can dominate over gravity and lead
to fragmentation of the condensate into many small, dense
regions. Such fragmentation has not been seen before in
simulations including gravity. This has implications for the
fragmentation of the inflaton condensate during the reheat-
ing epoch [80,82].
Our results in the case of repulsive interaction demon-

strated that such an interaction can promote boson star
formation. We showed for the first time that the stable
Thomas-Fermi-like solution, which has been studied often
in the literature on scalar field DM (e.g. Refs. [57]), can be
reached dynamically via gravitational accretion. Repulsive
self-interactions change the mass-radius relation of boson
stars, and we have shown that these solitons can also be
formed dynamically via condensation. A realistic formation
mechanism for such states also has implications for the
gravitational wave searches for exotic compact objects
[64], and could be used to predict the expected signal rates
in gravitational wave detectors [83]. Given the sign and
strength of the interaction required in this case, the
formation of Thomas-Fermi condensates is not applicable
to the QCD axion, but could occur in more generalized
ALP or scalar field dark matter models with strong
attractive self interactions.
In summary, we have demonstrated new results on the

dynamical formation and growth of boson stars in a
collection of different models, including self-gravity, attrac-
tive and repulsive self-interactions. Our results have appli-
cations to future terrestrial, astrophysical, and cosmological
observations searching for new types of bosons across a
wide range of scales.
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APPENDIX A: PSEUDOSPECTRAL METHOD

To solve the SP, GP, and GPP equations, we use a fourth-
order time-splitting pseudospectral solver with GPU accel-
eration [84]. Compared to the fourth-order pseudospectral
method used in [67], our code is 6 to 7 times faster under
the same resolution.
The wave function is advanced in time by a unitary

operator,

ψðtþ ΔtÞ ¼ e−iĤΔtψ ¼ e−iðKþWÞΔtψ ; ðA1Þ
where the Hamiltonian operator is split into the kinetic part
K and the potential part W. Δt is the time step size. In
general, the operator e−iðKþWÞΔt can be expanded as

e−iðKþWÞΔt ¼
YN
j

ðe−ikjΔtKe−ivjΔtVÞ; ðA2Þ

where kj and vj are constant parameters which are
determined by requiring that the expansion is accurate
up to a specified order. For example, to the second order,
we obtain the well-known leapfrog method,

e−iðKþWÞΔt ¼ e−i
1
2
WΔte−iKΔte−i

1
2
WΔt þOðΔt3Þ; ðA3Þ

which is also referred to as the “kick-drift-kick scheme.” In
our simulations, we implement the fourth-order algorithm
proposed by [85,86]

e−iðKþWÞdt ¼ …e−iv0ΔtWe−it1ΔtKe−iv1ΔtW

× e−it2ΔtKe−iv2ΔtW þOðΔt5Þ; ðA4Þ
where v0, t1, v1, t2, v2 are parameters, and … means
operations symmetric with the right terms in the equation.
These parameters are given by

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 12v1 þ 9v21

q
; ðA5Þ

t1 ¼
1

2
− t2; ðA6Þ

t2 ¼
1

4

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9v1 − 4þ 2w

3v1

s !
; ðA7Þ

v0 ¼ 1 − 2ðv1 þ v2Þ; ðA8Þ

v1 ¼
121

3924
ð12 −

ffiffiffiffiffiffiffiffi
471

p
Þ; ðA9Þ

v2 ¼
1

6
− 4v1t21: ðA10Þ

For the time step size, Δt, we require [87]

Δt ¼ min

�
mΔx2

6π
;

π

4mVmax

�
; ðA11Þ

where Vmax is the maximum absolute value of the potential
and Δx is spatial cell size.

APPENDIX B: CONVERGENCE ANALYSIS

1. Temporal resolution

To test the convergence of our code in time, we run one
typical simulation with decreasing time step sizes and
examine the conservation of total energy. The box has a
length of 18 on each side and is simulated with 2563 cells.
The bosons in the box have only gravitational interaction,
i.e. g̃ ¼ 0, and have a total mass of 1005.3. We find that
the total energy is fourth-order conserved as expected
(see Fig. 13).

2. Spatial resolution

We run the same simulation in Sec. B 1 with different
spatial resolutions: 1283, 2563, and 5123. The maximum
density in the box as a function of time is shown in Fig. 14.
As can be seen, the results from the lowest-resolution run is
consistent with the highest-resolution run, suggesting that
even with a resolution as low as 1283. we can already get
reliable results.

FIG. 13. Relative errors of the total energy with respect to time
for different time step sizes. To show the fourth-order conver-
gence of the algorithm in time, we have multiplied the relative
errors by a factor of 24 and 44 for the cases with time step sizes
4πΔt̃ and 2πΔt̃, respectively.
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We also check the cases with self-interactions. The initial
conditions are taken to be the same, but the simulations are
run with g̃ ¼ −0.007. The maximum density is shown in
Fig. 15. Again, we can see that the results are converged as
the resolution increases. At late times when the central
density of the boson star approaches to the critical value,
the maximum density has a rapid increase. This happens
slightly later in the high-resolution run suggesting that we
may not have enough resolution at that time. But in this
paper, we will focus on the growth of boson star before the
critical collapse.

APPENDIX C: SOLITON SOLUTIONS TO THE
GPP EQUATIONS

Plugging the ansatz of stationary solution

ψðr; tÞ ¼ ψðrÞe−iEt ðC1Þ

into Eqs. (3) and (4), we get the time-independent GPP
equations

−
1

2
∇2ψðrÞ ¼ ½E − VðrÞ − gjψðrÞj2�ψðrÞ; ðC2Þ

∇2VðrÞ ¼jψðrÞj2: ðC3Þ

Here we have written the equations in dimensionless form
as in Sec. II and dropped the tildes over the dimensionless
quantities for simplicity. The soliton solution is the eigen-
state of Eqs. (C2) and (C3) with the lowest eigenenergy
under the boundary conditions

ψð0Þ ¼ ψ0; ðC4Þ

ψ 0ð0Þ ¼ 0; ðC5Þ

ψð∞Þ ¼ 0; ðC6Þ

V 0ð0Þ ¼ 0; ðC7Þ

Vð∞Þ ¼ 0: ðC8Þ

In practice, Eqs. (C2) and (C3) can be solved numerically
using the shooting method: (1) let Vð0Þ ¼ V0, E ¼ E0 and
integrate the equations outward from r ¼ 0; (2) adjust the
values of V0 and E0 until the boundary conditions
Eqs. (C6) and (C8) are satisfied.
Note that the GPP equations have the following scaling

symmetry:

fr; t;ψ ; E; V; gg → fλ−1r; λ−2t; λ2ψ ; λ2E; λ2V; λ−2gg;
ðC9Þ

where λ is an arbitrary nonzero parameter. Using this
scaling symmetry, we can transform one soliton solution
to another solution that has a different central density
ρ0 ¼ jψ0j2 but the same g2ρ0.
For a scalar field without self-interaction, i.e. g ¼ 0, it

has been shown that the density profile of a soliton can be
well fit by [28,38]

ρsolitonðrÞ ¼ ρ0

�
1þ 0.091

�
r

rcore

�
2
�
−8
: ðC10Þ

Here only one of the parameters ρ0 and rcore is independent.
Given ρ0, the core radius, defined as the radius where
the density drops to half of the central density, rcore ¼
1.308ρ−1=40 . The soliton is uniquely determined by its
central density.
When the self-interaction is non-negligible, we will need

an additional parameter g2ρ0 to determine the soliton
profile.

FIG. 14. Maximum density growth with respect to time for
spatial resolutions.

FIG. 15. Maximum density with respect to time for different
spatial resolutions. The bosons have attractive self-interaction,
i.e. g̃ ¼ −0.007.

NEW INSIGHTS INTO THE FORMATION AND GROWTH OF … PHYS. REV. D 104, 083022 (2021)

083022-11



As g2ρ0 approaches 0, we expect that the soliton has the
same density profile as Eq. (C10). So we assume in the
general case the soliton density profile has a form of

ρsolitonðrÞ ¼ ρ0

�
1þ ð−1þ 21=βÞ

�
r

rcore

�
α
�
−β
; ðC11Þ

where α and β are functions of g2ρ0 only. When gρ20 → 0,
we require that α → 2, and β → 8.
We first consider the case with attractive self-inter-

actions, i.e. g < 0. As is well known, there exists a critical
mass above which a boson star with attractive self-inter-
actions is unstable [65,74]. In Fig. 16, we show the total
mass of the boson star,

ffiffiffiffiffijgjp
Mtotal, with respect to its

central density, g2ρ0. As expected,
ffiffiffiffiffijgjp

Mtotal increases
with g2ρ0 and reached a maximum value, 12.72, at
g2ρ0 ¼ 0.52. When the central density increases further,

the soliton solution becomes unstable and its total mass
decreases as the central density increases.
To get the fitting formula for the density profile, we also

need to know how the core radius depends on g and ρ0.
Figure 17 shows the core radii of boson stars with different
central densities. As can been seen, when g2ρ0 ≪ 1, the
core radius rcore ∝ ρ−1=40 , recovering the relation seen in the
case without self-interactions. When g2ρ0 ≫ 1, rcore ∝
ρ−1=20 . So we assume the core radius has the form

rcore ¼ 1.308
ffiffiffiffiffi
jgj

p "
−
a
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a
2

�
2

þ 1

g2ρ0

s #1=2
; ðC12Þ

where a is a free parameter needed to be determined by
fitting the numerical results. We find the best-fit value of a

FIG. 16. Total mass of boson star with attractive self-inter-
actions (g < 0) as a function of the central density.

FIG. 17. Core radius of boson star with attractive self-inter-
actions (g < 0) as a function of the central density. Circles:
numeric results. Solid line: fitting function, Eq. (C12).

FIG. 18. Parameter α in the fitting formula Eq. (C11) for the
case with attractive self-interactions (g < 0). Circles: numeric
results. Solid line: fitting function, Eq. (C13).

FIG. 19. Parameter β in the fitting formula Eq. (C11) for the
case with attractive interactions (g < 0) as a function of the
central density. Solid line: fitting function, Eq. (C14).
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is 1.375. Note that the solution with g2ρ > 0.52 is unstable
as discussed previously, but we include all the solutions
with 10−4 < g2ρ0 < 102 in the fitting process so that we
can correctly get the transition between two limits: rcore ∝
ρ−1=40 and rcore ∝ ρ−1=20 .
To determine the parameter α and β for each solution, we

first fix the core radius using Eq. (C12). Then we fit r2ρðrÞ
within the range 0.01rcore < r < 5rcore. The best-fit α and β
for different g2ρ0 are shown in Figs. 18 and 19, respec-
tively. We find that the dependence of α and β on g2ρ0 can
be well fit by

α ¼ αa þ ð2 − αaÞ tanh8 ½αbðg2ρ0Þ−αc �; ðC13Þ

β ¼ βa þ ð8 − βaÞ tanh8 ½βbðg2ρ0Þ−βc �: ðC14Þ

The best-fit values for αi and βi (i ¼ a, b, c) are listed in
Table I.
Similarly, we can find the relation between rcore and ρ0

for the case with repulsive self-interactions (g > 0). We
assume

rcore ¼
(
1.308

ffiffiffiffiffijgjp ½2þ ðg2ρ0Þ−b� 14b; g2ρ0 ≤ 1.5;

c
ffiffiffiffiffijgjp

; g2ρ0 > 1.5;

ðC15Þ
considering that when g2ρ ≫ 1, we have Thomas-Fermi-
like solution at small radii

ρðrÞ ¼ ρ0
sinðr= ffiffiffi

g
p Þ

r=
ffiffiffi
g

p ; ðC16Þ

which gives a core radius that is independent of the
central density. We find the best-fit b ¼ 0.710752, and
c ¼ 1.86543. Figure 20 shows the fitting formula of rcore
(solid line) compared with the numerical results (circles).
As in the g < 0 case, we also fit r2ρðrÞ within the range

0.01rcore < r < 5rcore to the results obtained from numeri-
cal wave function. But we have fixed β at 8. Allowing β to
be a free parameter does not improve the fit too much. For
the dependence of α on g2ρ we take the same form as in
Eq. (C13). The best-fit αi are listed in Table I. A
comparison between the fitting function of α and the

one obtained from numerical results is shown in
Fig. 21.5 We have fitted the soliton density for
10−4 < g2ρ < 10, but we note that Eq. (C11) cannot well
describe the soliton density at very small radii when
g2ρ≳ 1. In those cases, the Thomas-Fermi-like solution
equation (C16) is more accurate at r < rcore.
For other approximate soliton solutions with and without

self-interactions, see [88,89].

TABLE I. Best-fit parameters for the soliton density with
attractive (g < 0) and repulsive (g > 0) self-interactions.

g < 0 g > 0

αa 1.81823 3.96849
αb 1.73925 2.11238
αc 0.22478 0.143883
βa 3.48601
βb 1.29355 β ¼ 8
βc 0.122718

FIG. 20. Core radius of boson star with repulsive self-inter-
actions (g > 0) as a function of the central density. Circles:
numeric results. Solid line: fitting function, Eq. (C15).

FIG. 21. Parameter α in the fitting formula Eq. (C11) for the
case with repulsive self-interactions (g > 0) as a function of the
central density. Circles: numeric results. Solid line: fitting
function, Eq. (C13).

5When we derive α for each soliton solution by fitting
Eq. (C11) to the numerical results, we fix the core radius using
Eq. (C15) which is not smooth at g2ρ0 ¼ 1.5. So the values of α
with respect to g2ρ0 we obtain (circles) has a small fluctuation
around that density.
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APPENDIX D: BOSON STAR MASS AT
SATURATION TIME

As is shown in Sec. III A 2, bosons can condense into
boson star in a minicluster through long-range gravitational
interaction. The growth of boson star saturates when the
virial velocity of the star equals to the virial velocity of the
minicluster. The mass of boson star at saturation time is
proportional to Ñα, where Ñ is the total mass in the
simulation box. To find the best-fit parameter α, we define
the mean fractional deviation σα as

σ2α ¼
1

Nbin

X
i

�
M̃�;iðαÞ − M̃�;meanðαÞ

M̃�;meanðαÞ
�

2

: ðD1Þ

Here M̃�;iðαÞ is the boson star mass normalized by Ñα,
M̃�;meanðαÞ is the mean value within a specific time bin (see

Fig. 3 for more explanations). We only include the data at
t=τgravity > 20. Figure 22 shows σα calculated for each set
of simulations with the same box size (colored lines) and
the combined σα including all simulations (black line). We
find that the mean fractional deviation is minimized at
α ∼ 0.45, which is close to the value we would expect from
the core mass-halo mass relation found in previous studies
[38], i.e. M̃� ∝ M̃1=3

halo ∝ Ñ1=3.

APPENDIX E: CONDENSATION TIME
FOR GRAVITATIONAL AND

SELF-INTERACTIONS

The transport cross section for self-interaction and gra-
vity are σself ¼ m2g2=ð2πÞ and σgravity ∼ 8πðmGÞ2Λ=v4,
respectively [40]. The ratio of condensation time of self-
interaction to gravity can be written as

τgravity
τself

∼
σself
σgravity

∼
g2v4

16π2G2 logðmvLÞ ; ðE1Þ

where τself is the condensation time due to self-interaction.
Using Eq. (E1), we can estimate the effect of self-
interaction and gravity on the condensation of boson stars.
For example, for a system of typical QCD axions with
v ≈ 10−10, and decay constant fa ≈ 1011 GeV (g ¼ − 1

8f2a
),

we have τgravity=τself ≪ 1, thus gravity plays a much more
important role in the condensation process.
Recently, Kay Kirkpatrick et al. [70] argue that the

relaxation rate due to self-interaction is proportional to jgj
rather than g2, suggesting a much shorter condensation time
for self-interaction compared to the one reported by other
literature. Further simulations are needed to verify this.
However, for typical QCD axions gravity still dominates
the condensation process.
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