
Extreme-value statistics of the spin of primordial black holes

Siri Chongchitnan*

Warwick Mathematics Institute, University of Warwick,
Zeeman Building, Coventry, CV4 7AL, United Kingdom

Joseph Silk†

Institut d’Astrophysique de Paris, UMR7095:CNRS&UPMC-Sorbonne University, F-75014, Paris, France;
Department of Physics and Astronomy, The Johns Hopkins University Homewood Campus,

Baltimore, Maryland 21218, USA,
and BIPAC, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, United Kingdom

(Received 15 August 2021; accepted 23 September 2021; published 12 October 2021)

How rare are extreme-spin primordial black holes? We show how, from an underlying distribution of
primordial black hole (PBH) spin, extreme-value statistics can be used to quantify the rarity of spinning
PBHs with Kerr parameter close to 1. Using the peaks-over-threshold method, we show how the probability
that a PBH forms with spin exceeding a sufficiently high threshold can be calculated using the generalized
Pareto distribution. This allows us to estimate the average number of PBHs amongst which we can find
a single PBH that formed with spin exceeding a high threshold. We found that the primordial spin
distribution gives rise to exceedingly rare near-extremal spin PBHs at formation time: for typical parameter
values, roughly up to one in a hundred million PBHs would be formed with spin exceeding the Thorne
limit. We discuss conditions under which even more extreme-spin PBHs may be produced, including
modifying the skewness and kurtosis of the spin distribution via a smooth transformation. We deduce from
our calculations that, if indeed asteroid-mass PBHs above the current observational limit on evaporating
PBHs of mass ∼1017 g contribute significantly to the dark matter, it is very likely that some of them at
somewhat lower masses could be long-lived near-extremal PBHs.
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I. INTRODUCTION

Primordial black holes (PBHs) have long been known as
a viable candidate for dark matter and seeds of super-
massive black holes (for recent reviews, see [1–3] and
references therein). In recent years, PBH mergers have also
been put forward as a possible explanation of massive
sources of gravitational waves (GWs) observed by the
LIGO-VIRGO experiment [4–6].
The modeling of PBH mass distribution has been a

subject of many previous studies. However, their spin
distribution is far less well understood. The spin of a black
hole mass M and angular momentum J is characterized by
the dimensionless Kerr parameter

as ¼
cJ

GM2
: ð1Þ

The magnitude of as is theoretically bounded above by 1
due to the cosmic censorship hypothesis [7], since as > 1
yields a naked singularity.

One of the earliest theoretical predictions of the prob-
ability distribution of PBH spins (at formation time) was
due to Chiba and Yokoyama [8], who found that PBHs
formed during radiation era (due to collapsing overdensities
on the Hubble scale) tend to have low spins with a≲ 0.4.
Subsequently, de Luca et al. [9] gave a more sophisticated
derivation of a PBH distribution based on peaks theory and
also concluded that radiation-era PBH tend to have low
spins. The same conclusion was obtained in further inves-
tigations by subsequent authors [10,11].
On the other hand, forming high-spin PBHs with as very

close to 1 is not theoretically forbidden. Indeed PBH
assembly from particles or fields in the very early Universe
can, in principle, generate high spins [12]. The existence
of a black hole with spin exceeding astrophysical limits
(e.g., the Thorne limit as ¼ 0.998 [13]) could be construed as
evidence for a primordial origin [14,15]. PBHs in a mass
range that otherwise would have evaporated by now, can be
partially [14] or even fully stabilized [16] against Hawking
evaporation by extreme spin or charge. Even if extremely rare
at formation, such objects could survive long after their
formation epoch and contribute today to observable signals,
such as binarymergers in PBH clusters, or delayed stochastic
gravitational wave background contributions.
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But exactly how rare are extreme-spin PBHs? In this
work, we attempt to statistically quantify the rarity of PBHs
with as close to unity at formation time, and investigate
how sensitive this rarity is to changes in the parameters in
the underlying PBH formation theory. We will not explic-
itly consider charge in our discussion of near-extremal
black holes, but our statistical treatment of extreme spin
values can also be regarded as a proxy for extreme values of
charge. In this latter case, the physics can be complicated
by pair production, but there are ways to counter such
effects, for example by dark photon emission [17].
The primary tool of our investigation will be extreme-

value statistics (EVS). More precisely, we will employ the
peaks-over-threshold (POT) approach, which allows us to
calculate the probability that a rare PBH forms with spin
exceeding a set threshold.

II. REVIEW OF EXTREME-VALUE STATISTICS

Extreme-value statistics generally fall into two strands,
which are summarized below. See Fig. 1 for a graphical
summary of the extreme-value statistics pipeline.

(i) GEV: also known as the “block maxima” approach.
The quantity of interest here is the probability
distribution of block maxima (or minima), where
a block is a set sample size, volume, or time period.
This involves dividing data into N nonoverlapping
blocks, and collecting the maximum value from each
block (discarding the rest of the data). Under generic
assumptions, the large-N limit (after applying a
certain scaling) is one of three types: the Gumbel,
Fréchet, or Weibull distribution. This is the result of
the Fisher-Tippett-Gnedenko theorem, which is the
key to most applications of EVS (analogous to the
central limit theorem).

For examples of previous applications in astro-
physics using the block maxima approach, see
[18–20] in the context of massive galaxy clusters,
and [21] in the context of massive PBHs. See [22,23]
for pedagogical reviews of the GEV approach.

(ii) POT: also known as the “generalized Pareto” ap-
proach. Here the quantity of interest is the proba-
bility that an observable exceeds a predetermined
threshold. The analog to the central limit theorem in
this approach is the theorem of Pickands [24] and
Balkema and de Hahn [25], which states that for
a sufficiently high threshold, the probability of
exceeding the threshold can be described by the
generalized Pareto distribution (more about this in
Sec. IV).

As far as we are aware, there have been only a
handful of applications of the POT approach to
astrophysics, for instance, in [26] in the context of
cluster velocities, and in [27,28] for solar-physics
applications. For more detailed statistical reviews on
the POT approach, see [29–31].

The POTapproach applied to PBH spin is the main focus
of this work.

III. STATISTICS OF PBH SPIN

We now consider the statistics of the spin of PBHs
formed during the radiation era. For treatment of the spin of
PBHs formed at later times, see [11,12]. We will take the
pdf of PBH spin to be that given in de Luca et al. [9]. In this
formalism, the pdf of PBH spin is characterized by two
parameters: ν and γ, which are determined by the power
spectrum of density perturbations. The parameter ν is the
height of density peaks forming PBHs. Lower values of ν
means the threshold for collapse is reduced, hence leading
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FIG. 1. Summary of the EVS pipeline. We start with data described by some underlying probability density function (pdf), or equally,
the cumulative density function (cdf). We can then apply one of two EVS methodologies, namely, generalized extreme value (GEV) or
POT. Both yield different measures of rare events.
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to an increased abundance of low-mass PBHs. The param-
eter γ ∈ ½0; 1� parametrizes the (inverse) width or variance
of the power spectrum of density perturbations, where
γ ¼ 1 for Dirac-delta power spectrum (giving rise to a
monochromatic PBHmass function) whilst smaller γ yields
a wider range of PBH masses. For example, γ ∼ 0.82 for a
log-normal power spectrum of density perturbations [9].
Typical values are ν ∼ 6–9 and γ ∼ 0.8–1. These are the two
parameters that we will later vary to determine their effects
on the distribution of high-spin PBHs.
The pdf of PBH spins is given as a function of as; ν; γ by

PðasÞ ¼
N1ðas; ν; γÞ
N2ðν; γÞ

; ð2Þ

where N1 and N2 are rather complicated functions derived
from the analysis of tidal torques of overdensity peaks
during radiation era. For completeness, we give a compact
summary of the analytic form of the pdf in the Appendix.
For the rest of this paper, wewill refer to the above equation
as the “de Luca’s PBH spin pdf.” We will also work with
the corresponding cdf obtained by the usual integration of
the pdf.

IV. THE GENERALIZED PARETO DISTRIBUTION
FOR PBH SPIN

We now show that the probability of that a PBH has spin
exceeding a high threshold can be approximated using the
well-known generalized Pareto distribution (GPD).
Let X be a random variable with the cdf F. In the POT

approach, we are interested in the cdf for the excess
distribution over a predetermined threshold u, defined by

FuðxÞ ¼ Pðx ≥ X − ujX > uÞ ¼ Fðxþ uÞ − FðuÞ
1 − FðuÞ : ð3Þ

The exceedance, x, is defined as the upper bound for the
difference between the measurements and the threshold u
(so if x ¼ 0 then all measurements never exceed the
threshold). We are interested in the rare events where u
is set to an atypically high value and the exceedance x
is non-negative. In other words, x is defined on the
domain ½0; XF − u�, where the right end point XF of F
is the smallest value such that FðXFÞ ¼ 1. In other words,
the right end point is the least upper bound such that the
probability of a measurement exceeding XF is zero.
In our application to PBH spin, X represents the Kerr

parameter, as, and the threshold values u of interest could
be one of the following:

(i) u ¼ 0.7, typical upper range of SMBH spin.
(ii) u ¼ 0.8, typical upper range of the spin of the

remnant black hole formed by binary mergers.
(iii) u ¼ 0.9, typical upper range of the spin of black

holes with mass ≲3 × 107 M⊙.

(iv) u ¼ 0.998, the Thorne limit [13], attained by the
most extreme astrophysical objects (e.g., one pos-
sible example being Cygnus X-1 [32]).

The right end point is set to be XF ¼ 1 by the cosmic
censorship hypothesis.
Since the theoretical pdf for the spin is known, in theory

the tail of the pdf is also completely known. However, the
calculation of probabilities in the tail of the pdf is numerically
prohibitive as the extreme precisions needed are hampered
by computer round-off errors, made even worse by the large
number of operations and integrations involved as evident in
the Appendix. We now show that the modeling of the tail
using the GPD approach greatly simplifies the problem and
can circumvent numerical issues.
In the high-threshold limit, the Pickands-Balkema–de

Haan theorem states that if F converges to an extreme-value
distribution, then, for sufficiently high threshold values
(i.e., in the limit u → xF), the tail of the excess cdf can be
approximated as

FuðxÞ ≃Gξ;βðxÞ; ð4Þ
where Gξ;β is the generalized Pareto distribution defined by

Gξ;βðxÞ ¼
�
1 − ð1þ ξx=βÞ−1=ξ; ξ ≠ 0

1 − e−x=β; ξ ¼ 0
: ð5Þ

The parameter β is a non-negative function of u. β is called
the scaling parameter, and ξ is the shape parameter. The
GPD is defined where x ∈ ½0;∞Þ when ξ ≥ 0, and x ∈
½0;−β=ξ� when ξ < 0. Our goal in this section is to
numerically calculate β and ξ where the underlying pdf
is that of the spin of PBHs.
Figure 2 shows the plot of the excess cdf, FuðxÞ, for

u ¼ 0.7, 0.8, and 0.9 for the following parameter combi-
nations, which we will study in this section:

(i) ν ¼ 6, γ ¼ 0.85.
(ii) ν ¼ 6, γ ¼ 0.99.
(iii) ν ¼ 9, γ ¼ 0.85.
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FIG. 2. The excess cdf FuðxÞ defined in Eq. (3), for u ¼ 0.7
(blue/rightmost group), 0.8 (red/central group), and 0.9 (green/
leftmost group) for various parameter combinations ðν; γÞ gov-
erning the PBH spin distribution.
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To calculate β and ξ, we note that the GPD satisfies the
relation

β þ ξx ¼ 1 −GðxÞ
G0ðxÞ : ð6Þ

Therefore, if FuðxÞ converges to GðxÞ for large u and x,
then β and ξ are simply the y intercept and gradient of the
function

FitðxÞ ¼ 1 − FuðxÞ
F0
uðxÞ

: ð7Þ

This observation also gives the following expressions for
β and ξ in terms of the original pdf and cdf (f and F,
respectively).

β ¼ 1 − FðuÞ
fðuÞ ; ð8Þ

ξ ¼ −1 − βf0ðuÞ: ð9Þ

Figure 3 shows the graphs of FitðxÞ for various parameter
combinations. We observe that as u increases in each panel,
FitðxÞ indeed becomes more linear. If FuðxÞ → GðxÞ, then
it can be shown that βðuÞ is a linear function of u, and ξ is a
constant independent of u. In our case, the equation of the
dashed lines is FitðxÞ ¼ β þ ξx. We now numerically
investigate the approximations of β and ξ, which together
completely characterize the GPD.

A. Lowest-order approximation

At lowest-order approximation, i.e., in the very high-
threshold limit (u ≳ 0.9), we find

βðuÞ ≈ 1 − u; ð10Þ

ξ ≈ −1; ð11Þ

regardless of the values of ν and γ. Substituting these
into (5), we find that, for u ≃ 1,

FuðxÞ ≃
x

1 − u
: ð12Þ

Correspondingly, this means that the cdf FðxÞ is linear in
the tail, and that the spin pdf is roughly flat. For our chosen
parameter combinations, the above approximations are
accurate to 1% for threshold values u ∈ ð0.95; 1Þ and
therefore are sufficient for studying the occurrences of
PBHs violating the Thorne limit (as ¼ 0.998). We note that
attempting to evaluate the de Luca’s spin cdf for as ≳ 0.998
without the POT approach is problematic since floating-
point errors conspire to give unity, giving us no information
about the tail.

B. Next-order approximation

For lower thresholds (0.7≲ u≲ 0.9), let us obtain the
next-order approximation of FuðxÞ. The algebraic require-
ment βð1Þ ¼ 0 and the large-u limit (10) imply that the
next-order approximation of βðuÞ is quadratic. We can
express β as

βðuÞ ¼ ð1 − uÞð1 − Cð1 − uÞÞ: ð13Þ

This parametrizes the y intercept of the line y ¼ FitðxÞ ¼
β þ ξx. Together with the fact that Fitð1 − uÞ ¼ 0, we have
the following expression for ξ

ξ ¼ −1þ Cð1 − uÞ; ð14Þ

valid for small (1 − u). Therefore there is only one
parameter C to determine from least-square fitting, which
then determines both β and ξ. Note that the limits (10)–(11)
are recovered from these next-order expressions.
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FIG. 3. Each panel shows the function FitðxÞ defined in Eq. (7),
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parameter combination ðν; γÞ shown. Observe that as u increases
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to a generalized Pareto distribution as predicted by the Pickands-
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Table I shows the parameter values for C for various
combinations of ðν; γÞ (including extended values of ν
down to 2). We found the next-order approximations to
be accurate to 1% for threshold values u ∈ ð0.8; 1Þ. In
particular, For ðν; γÞ ¼ ð6; 0.85Þ the formula remains
applicable at subpercent accuracy for u ≥ 0.7.
Finally, we test the accuracy of the lowest-order versus

the next-order approximations for the Thorne limit case.
Fig. 4 shows the excess cdf, FuðxÞ for the Thorne limit
u ¼ 0.998, using the next-order approximation. We note

again that for such a high threshold, the de Luca’s spin cdf
for the case ν ¼ 9 cannot be evaluated accurately due to
floating-point errors, but this issue is circumvented by
the GPD modeling. The bottom panel shows the relative
difference between the next-order and lowest-order
approximations, i.e.,

Relative difference ¼ Gξ;βðnext orderÞ
Gξ;βðlowest orderÞ

− 1: ð15Þ

We see that the relative improvement in going from lowest
to next order approximation given such a high threshold is
well below subpercent. We conclude that in the case of the
Thorne limit, the lowest-order approximation does indeed
provide an accurate model of the GPD tail.

V. RETURN LEVELS

Extreme-value statistics can help us quantify the rarity of
an event via the concept of the return level, which, in the
simplest term, is embodied in statements such as “the event
occurs once in N years,” or “the event is seen once every N
measurements,” depending on which EVS methodology
is used:

(i) In the GEVapproach, the return level zN is the value
that is expected to be exceeded once every N years
(or N blocks). For example, we could estimate
the maximum energy of solar flares expected in a
100-year period, or ask how often do the most
powerful X-class solar flares occur [33].

(ii) In the POT approach, the return level xN is the
value that is exceeded on average once every N
measurements.

Let us discuss how xN can be calculated in the POT
approach. The probability of exceedance of a random
variable X given that it exceeds a high threshold u can
be written in terms of GPD parameters as

PðX > xjX > uÞ ¼ 1 − Pðx ≥ XjX > uÞ;
¼ 1 − Pðx − u ≥ X − ujX > uÞ;
¼ 1 − Fuðx − uÞ; ðusing Eq: 3Þ
≈ 1 −Gξ;βðx − uÞ;
ðassuming the P-B-dH theoremÞ

¼
�
1þ ξ

�
x − u
β

��
−1=ξ

; ð16Þ

where x > u and we have assumed ξ ≠ 0 (substantiated by
the results in the previous section).
Let ζu ¼ PðX > uÞ ¼ 1 − FðuÞ, which is the probability

of exceeding the threshold. Bayes’s theorem states that

PðX > xÞ · PðX > ujX > xÞ ¼ PðX > uÞ · PðX > xjX > uÞ:

TABLE I. The parameter C for the next-order approximations
of GPD parameters β and ξ defined in Eqs. (13)–(14), for various
combinations of PBH-spin distribution parameters, ðν; γÞ.
Model ðν; γÞ C

A (6, 0.85) 1.53
B (6, 0.99) 2.07
C (9, 0.85) 1.97

ðν; γÞ C

(5, 0.85) 1.38
(4, 0.85) 1.27
(3, 0.85) 1.18
(2, 0.85) 1.11
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FIG. 4. The generalized Pareto model of the excess cdf of PBH
spins exceeding the Thorne limit u ¼ 0.998. All three curves are
visually indistinguishable on the top panel, which shows Gξ;βðxÞ.
The lower panel shows the relative difference between the next-
order and lowest-order approximations of the GPD [Eq. (15)].

EXTREME-VALUE STATISTICS OF THE SPIN OF … PHYS. REV. D 104, 083018 (2021)

083018-5



The second probability is 1 since x > u. Setting PðX >
xÞ ¼ 1

N and substituting our results so far gives an equation
satisfied by the return level xN , i.e., the value that is
exceeded, on average, once every N observations.

ζu

�
1þ ξ

�
xN − u

β

��
−1=ξ

¼ 1

N
: ð17Þ

Solving for the return level:

xN ¼ uþ β

ξ
½ðNζuÞξ − 1�: ð18Þ

In Fig. 5, the upper panel shows the return level xN
plotted against N for the threshold u ¼ 0.8, using the next-
order approximation (13)–(14) for the GPD. Using the
PBH-spin distribution of de Luca et al. with standard
parameters (ν ¼ 6–9), we find that only one PBH amongst
a huge number of PBHs would be formed with extremal
spin. For instance, for the threshold as ¼ 0.8, one such
PBH would form for every 105–106 PBHs (assuming
models A and B), and 1011 (model C). These numbers
become more extreme for a single Thorne-limit violation
(u ¼ 0.998, lower panel in Fig. 5): reading off from the
graph, we see that N ∼ 108 for models A and B, and ∼1014
for model C (not shown). These numbers quantify how

exceedingly rare it is to form extreme-spin PBHs. These are
the central results of this paper.
We also plotted the return levels for models with an

extended range of ν (2–5). For these models, we see expect
N of order 100 for a return level xN ∼ 0.8, and 105 for the
Thorne limit. Recall that ν controls the height of over-
density peaks that end up in PBHs, decreasing ν would
naturally overpredict the abundance of PBHs, but in any
case the graphs give us an indication that decreasing ν
further is a limited way to produce extreme-spin PBHs.

VI. MODIFYING THE SKEWNESS AND
KURTOSIS OF SPIN PDF

The results in the previous section show that the de
Luca’s PBH spin distribution generally gives rise to
exceedingly rare extreme-spin PBHs. We ask this: what
modifications could one perform on the underlying PDF
that might increase the chances of observing extreme-spin
PBHs? It is likely that interactions between PBHs could
change the primordial PBH distribution. Merger processes
could, for instance, skew the spin distribution towards
higher values of as. In this section, we systematically
modify the skewness and kurtosis of spin distribution to
mimic postformation effects. Adding kurtosis and skew-
ness are generic extensions of PBH formation modeling.
We show that their inclusion allows a considerable boost in
the return levels of extreme-spin PBHs.
Let X be a random variable with pdf f, mean μ ¼ hXi

and variance σ2 ¼ hX2i − hXi2, the skewness and kurtosis
are defined by

Skewness ¼ hðX − μÞ3i
σ3

¼ hX3i − 3μhX2i þ 2μ3

σ3
; ð19Þ

Kurtosis ¼ hðX − μÞ4i
σ4

;

¼ hX4i − 4μhX3i þ 6μ2hX2i − 3μ4

σ4
: ð20Þ

For example, the normal distribution has skewness 0 and
kurtosis 3. Table II shows the values of the skewness and
kurtosis for some of the models considered in Sec. IV.
We now consider a specific method for generalizing our

calculations to incorporate control on the skewness and
kurtosis. Given the spin cdf, F, parametrized by ðν; γÞ, we
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FIG. 5. The return-level plot, showing the sample size N in
which we would find a single PBH with spin exceeding xN . We
assume the parameters γ ¼ 0.85 and ν ¼ 2–6. In the upper panel,
xN ≥ 0.8, whilst the lower panel enlarges the region where xN
exceeds the Thorne limit 0.998.

TABLE II. The skewness and kurtosis for some models of the
PBH spin distribution (to three significant figures).

ðν; γÞ Skewness Kurtosis

Model A: (6, 0.85) 8.06 251
Model B: (6, 0.99) 2.45 76.3
Model C: (9, 0.85) 2.27 14.1
(2, 0.85) 4.12 24.3
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introduce the sinh-arcsinh (SAS) transformation to intro-
duce additional skewness and kurtosis to the pdf. This
procedure was first introduced by Jones and Pewsey [34] in
the attempt to smoothly introduce asymmetry to the normal
distribution. This was done via a two-parameter trans-
formation of the cdf, F → Fε;δ, where

Fε;δðx̂Þ ¼ Fðsinhðδsinh−1x̂ − εÞÞ; ð21Þ

x̂ ¼ x − μ

σ
: ð22Þ

The parameters ε and δ affect skewness and kurtosis,
respectively (if the pdf is symmetric). Note that when
ðε; δÞ ¼ ð0; 1Þ, we obtain the identity transformation. The
perturbed pdf can be obtained by differentiating the per-
turbed cdf, yielding

fε;δðx̂Þ¼fðsinhðδsinh−1x̂−εÞÞcoshðδsinh−1x̂−εÞ δffiffiffiffiffiffiffiffiffiffiffiffi
1þ x̂2

p :

ð23Þ
We demonstrate how this technique can be applied to the

spin pdf as follows. First, we scan the parameter space of ε
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FIG. 6. Percentage change in skewness (left) and in the kurtosis (right) in the PBH probability density distribution model with
ðν; γÞ ¼ ð6; 0.85Þ (top) and ðν; γÞ ¼ ð2; 0.85Þ (bottom), using the sinh-arcsinh transformation parameters ðε; δÞ. In the skewness figure,
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change in the kurtosis (vice versa for the kurtosis figure).
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and δ to see how changing each variable affects the
skewness and kurtosis (since the spin pdf is asym-
metric, ðε; δÞ do not necessarily alter the skewness and
kurtosis separately). Figure 6 shows how the contour
plots of ðε; δÞ and the corresponding percentage changes
in the skewness (left panels) and kurtosis (right panels)
relative to the identity transformation. We plotted the
contours for a typical value ν ¼ 6 (model A, top panels),
and an atypically low value ν ¼ 2 (bottom panels) for
comparison.
From the contour plots, we were able to identify the

combinations of ðε; δÞ, which would affect only the skew-
ness or kurtosis separately (thick black contour lines).
We experimented with various combinations of ðε; δÞ

along the curves of constant skewness and constant
kurtosis, but found that changing them individually by ∼�
20% resulted in negligible effects on the return levels.
Instead, we found that an appreciable amount of boost to
the return level was obtained when both skewness and
kurtosis are varied together.

We shall demonstrate this using two transformations:
ðε; δÞ ¼ ð0.25; 0.75Þ and ðε; δÞ ¼ ð0.5; 0.5Þ. The effects
on the skewness and kurtosis are summarized in Table III
below.
The effects of these transformation on the spin pdf are

shown in Fig. 7. We see that these transformations suppress
the low-spin probabilities in favor of high-spin values
around as ∼ 1.
We then repeated the procedure in the previous section

to obtain the return levels, xN , for the SAS-transformed
spin distributions. The results are shown in Fig. 8. We see
for ν ¼ 6 (left panels), the SAS transformations are very
effective in boosting the return levels. For instance, the
rarity of Thorne-limit violating PBH was reduced from 1 in
∼3 × 108 (for the fiducial model, black curve) to 1 in 105

when ε ¼ δ ¼ 0.5 (dotted blue curve). For the astrophysi-
cal limit as ¼ 0.8, the return level of 1 in 4 × 105 is relaxed
to 1 in 300 using the same transformation. By comparison,
the improvement in the return levels is not as dramatic for
the extreme parameter choice ν ¼ 2.
Our conclusion here is that the return levels can indeed

be improved by adjusting the skewness and kurtosis of
the underlying spin pdf. A moderate modification of the
skewness and kurtosis can boost the chance of a PBH
forming with as ≳ 0.8 from one in a million, to one in a
few hundred. The same transformation can boost the rarity
of forming a Thorne-limit violating PBH from one in a
hundred million to one in a hundred thousand. There is
potential here to model more precisely what postformation
interactions do to alter the moments of the primordial
spin distribution, which we expect to be significant. For
instance, accretion and merger can increase the fraction of
black holes at the tail of the spin distribution [35,36], and
thus generally driving up the skewness and kurtosis.

TABLE III. The parameters ðε; δÞ of two SAS transformations
acting on the spin pdf, and their effects on the skewness and kurtosis
compared with the identity transformation ðε; δÞ ¼ ð0; 1Þ.
ðν; γÞ ¼ ð6; 0.85Þ Δ Skewness Δ Kurtosis

ðε; δÞ ¼ ð0; 1Þ 0% 0%
ðε; δÞ ¼ ð0.25; 0.75Þ þ22.8% −28.6%
ðε; δÞ ¼ ð0.5; 0.5Þ −33.4% −84.7%

ðν; γÞ ¼ ð2; 0.85Þ Δ Skewness Δ Kurtosis

ðε; δÞ ¼ ð0; 1Þ 0% 0%
ðε; δÞ ¼ ð0.25; 0.75Þ −13.2% −26.4%
ðε; δÞ ¼ ð0.5; 0.5Þ −28.9% −49.0%
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FIG. 7. The solid/black lines show the PBH spin pdf with ðν; γÞ ¼ ð6; 0.85Þ (left) and ðν; γÞ ¼ ð2; 0.85Þ (right), together with their
images under two SAS transformations: ðε; δÞ ¼ ð0.25; 0.75Þ (dashed/red) and ðε; δÞ ¼ ð0.5; 0.5Þ (dotted/blue). The probability of
forming PBHs with extreme spins increases with these transformations.
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Fattening of the tail of the spin pdf can also be achieved by
more exotic PBH formation mechanisms such as scalar-
field fragmentation [37] and formation of PBHs through
the collapse of cosmic-string cusps [38]. We leave a more
qualitative investigation of such effects for future work.

VII. CONCLUSIONS AND DISCUSSION

We have shown how the rarity of extreme-spin PBHs
could be quantified using the POTapproach in extreme-value
statistics, adding to a surprisingly small handful of such
applications in astrophysics. We have shown how the high-
spin tail of the spin pdf could be analyzed using the
generalized Pareto distribution, and from it we calculated
the return levels, i.e., the average number of PBHs amongst
which a single PBHwas formed with spin exceeding a given
threshold. Our main results are summarized in Fig. 5, which
shows that, using typical parameter values, roughly one in a
million PBHs was formed with spin as ≳ 0.8, and one in a
hundredmillion formedwith spin exceeding theThorne limit
0.998. These results were derived using the spin pdf at
formation time derived by de Luca et al. (parametrized by
two variables, γ and ν). We emphasize that our results
involving the Thorne limit would be extremely difficult to
obtain using the spin distribution on its ownwithout the EVS
modeling, because floating-point errors become overwhelm-
ingly prohibitive at the extreme tail of the distribution.
Furthermore, we found that the return levels of extreme-

spin PBHs can be improved by any of the following

modifications: (i) decreasing γ, (ii) decreasing ν, and
(iii) modifying the skewness and kurtosis of the underlying
pdf. We demonstrated modification (iii) by appealing to
the sinh-arcsinh transformation [34], which can smoothly
alter the skewness and kurtosis of a given pdf. This work,
far as we know, is its first application in astrophysics.
Moderate changes to both the skewness and kurtosis can
change the rarity of forming a PBH with spin exceeding
the Thorne limit, from one in a hundred million to one
in a hundred thousand. Figure 8 summarizes the SAS
methodology.

A. Implications for PBHs as dark matter

Between formation and the present epoch, there is a
potential boost by a factor zformation=zequality depending on
BH mass and formation time. Remarkably, for PBHs in the
asteroid mass range, where a possible dark matter window
remains open [1], the boost in current abundance between
formation epoch and the end of the radiation-dominated
epoch is comparable to our computed extremal-spin return
levels. The current limit on evaporating PBHs from
Voyager-1 e� [39] and INTEGRAL data [40] is that
PBHs of mass ≲1017 g cannot contribute significantly to
the dark matter. However, our estimates imply that a
significant number of lower mass PBHs may be stabilized
by extreme spin and thereby contribute to the dark matter
(for example, a 1016 g PBH formed at ∼10−23 s). The
surviving extremal PBHs from this epoch could be as rare
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as one in 1017 at formation compared to their evaporating
counterparts and yet be a significant dark matter contributor
today. If indeed asteroid mass PBHs contribute to the dark
matter, it is likely that some of them, at somewhat lower
masses, could be long-lived near-extremal PBHs.

B. Further astrophysical applications of EVS

Beyond the application to PBH spin discussed in this
work, the POT formalism is applicable to other contexts
wherever the rarity of extreme objects is to be quantified,
e.g., extreme-mass clusters or extreme-radius cosmic voids.
An alternative extreme-value technique (the “exact” for-
mulation of extreme-value statistics) was applied to these
problems in [41–43], but it would be interesting to see what
the POT formalism could add to previous findings. The
SAS transformation, in the case of massive clusters and
voids, would also translate directly to primordial non-
Gaussianities that affect the skewness and kurtosis of the
pdf of primordial overdensities [44]. Other extensions
include the analysis of POT statistics for different black
hole spin or charge distributions, and modeling the change
in the spin distribution due to evaporation, merger and late-
time accretion as redshift-dependent SAS transformations.
We have only investigated the theoretical predictions of

PBH spin. However, measuring black hole spin accurately
is a monumentally delicate experimental task [45].

Much more will be learnt about black hole spin when
the results from the Event Horizon Telescope are further
analyzed [46]. This would give us further clues for the
existence and nature of rotating PBHs. Notwithstanding
these demanding observational tasks, we believe our work
has shed some light on the question “how rare are extreme-
spin PBH?” using extreme-value statistics, which deserves
to be more widely adopted in astrophysics.

APPENDIX: THE PROBABILITY DENSITY
FUNCTION OF PBH SPIN

We summarize the analytic form of the pdf of PBH spin
at formation time obtained by de Luca et al. [9]. The spin of
a PBH can be quantified by either the Kerr parameter, as, or
the spin variable se. They are related by

as ≃
0.675ΩDM

πν
se; ðA1Þ

(although see [47] for a different viewpoint on the factor
ΩDM). The spin pdf is given as a function of se by

PðseÞ ¼
N1ðse; ν; γÞ
N2ðν; γÞ

; ðA2Þ

where

N1ðse; ν; γÞ ¼
4C̃se
ν5

Z
∞

0

dλ1

Z
λ1

0

dλ2

Z
λ2

0

dλ3

Z
α2

α1

dβ
e−Q5F̃ðλiÞΛTðse; ν; γÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðα21 − β2Þðα22 − β2Þðα23 − β2Þjp ; ðA3Þ

N2ðν; γÞ ¼
1

ð2πÞ2 e
−ν2

2

Z
∞

0

dxf̃ðxÞ
ffiffiffiffiffiffi
Γ
2π

r
e−

Γ
2
ðx−γνÞ2 : ðA4Þ

The various components in N1 and N2 are given below.

C̃ ¼ 311511=2γ5Γ3=2

213π13=2
; Γ ¼ 1

1 − γ2
; 2Q5 ¼ ν2 þ Γðx − x�Þ2 þ 15y2 þ 5z2; Λ ¼ λ1λ2λ3;

x ¼ λ1 þ λ2 þ λ3; y ¼ 1

2
ðλ1 − λ3Þ; z ¼ 1

2
ðλ1 − 2λ2 þ λ3Þ;

F̃ðλiÞ ¼
27

2
λ1λ2λ3ðλ1 − λ2Þðλ2 − λ3Þðλ1 − λ3Þ;

α1 ¼
1

λ3
−

1

λ2
; α2 ¼

1

λ3
−

1

λ1
; α3 ¼

1

λ2
−

1

λ1
;

Tðse; ν; γÞ ¼ Θðα23 − β2Þe
−15Γw2

3
2 DðXÞ þ Θðβ2 − α23Þ

ffiffiffi
π

p
2

e
−15Γw2

β
2 erfðXÞ;

DðXÞ ¼ e−X
2

Z
X

0

e−y
2

dy; X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15

2
Γjw2

β − w2
3j

r
; w3 ¼

ffiffiffiffi
Λ

p
se

Kν5=2α3
; wβ ¼

ffiffiffiffi
Λ

p
se

Kν5=2β
; K ¼ 29=2π

5 × 37=2γ5=2
;

f̃ðxÞ ¼ ðx3 − 3xÞ
2

"
erf

 
x

ffiffiffi
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2

r !
þ erf

 
x
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ffiffiffi
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2
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�
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2

�
:

Here ΘðxÞ is the Heaviside step function and erfðxÞ is the error function.
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