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In an early work, we applied a QCD-based equation of state (EOS) to the study of the stellar structure of
self-bound strange stars, obtaining sequences with maximum masses larger than two solar masses and radii
ranging from 8 to 12 km. In this work, we update the previous calculations and compare them with the most
recent data, including the very recent determination of the mass and radius of the massive pulsar PSR
J0740þ 6620 performed by the NICER and XMM-Newton Collaborations. Our equation of state is similar
to the MIT bag model one, but it includes repulsive interactions, which turn out to be essential to reproduce
the accumulated experimental information. We find that our EOS is still compatible with all astrophysical
observations, but the parameter window is now narrower.
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I. INTRODUCTION

The region of the QCD phase diagram with low temper-
ature and high chemical potential is still not well understood.
From the theoretical point of view, there are no accurate first
principles predictions for the properties of QCD matter at
high baryon densities. The numerical lattice simulation
techniques that have been successfully applied to the study
of the hot quark gluon plasma (QGP) fail in the cold, baryon
rich conditions due to the sign problem. In spite of the
difficulties, significant progress has been accomplished both
in the theoretical description of moderate density nuclear
matter [1,2] and ultrahigh density matter [3,4], but no
reliable results exist in the crucial regime between approx-
imately one and ten nuclear saturation densities. Several
model calculations suggest that there is a low temperature
deconfined phase of quarks and gluons, the cold QGP, also
called quark matter (QM). This phase might exist in the core
of dense stars, an idea that has been around already for some
decades [5,6]. It is even possible that a whole star, not only
its core, be made of quark matter [7]. This possibility was
explored in several works [8–12] and is further explored in
this work, which is an update of [10].
An early analysis of the existing observational data

presented in [13] concluded that most of the QM equations
of state (EOSs) were too soft and therefore unable to support
the existence of neutron stars with a quark phase. Since then,
it was shown in several works that a self-bound star,
composed entirely of quark matter, could explain a massive
neutron star. In order to obtain a stiff enough quark matter
equation of state, several groups introduced repulsive inter-
actions among the quarks, mediated by the exchange of
vector particles [10,14–19], which can be “effective massive

gluons” or “effective vector mesons”. Interestingly, most of
these developments make use of a mean field approximation
for the vector field and arrive at a similar result, which is a
quadratic term in the baryon density present both in the
pressure and energy density.
From the experimental side, during the last decade, we

have witnessed remarkable advances in the observation of
neutron stars: the discovery of extremely massive neutron
stars [20,21], qualitative improvements in x-ray radius
measurements [22–28], and the famous Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO)/Virgo
detection of gravitational waves (GWs) originating from
the neutron star (NS)-NS merger GW170817 [29].
Increasingly stringent constraints have been placed on
the EOS of NS matter. An accurate measurement of a
compact object using Shapiro delay [30] yielded
2.14þ0.1

−0.09 M⊙ for the J0740þ 6620 pulsar. It has been
argued that a handful of compact stars may achieve masses
greater than the PSR J0740þ 6620. The events denoted as
GW190814 [31] and GW190425 [32] suggest that the NS
mass can be larger than 2.5 M⊙. Recent data (including a
reliable determination of the radius) on the pulsar PSR
J0030þ 0451 indicate that the mass and radius values are
M ¼ 1.44þ0.15

−0.14 M⊙ with R ¼ 13.02þ1.24
−1.06 km [33], M ¼

1.34þ0.15
−0.16 M⊙ with R ¼ 12.71þ1.14

−1.19 km [34,35], and
R1.4 M⊙

> 10.4 km [36,37]. Finally, very recently [38],
the NICER and XMM-Newton Collaborations presented
a determination of the mass and radius of the massive
pulsar PSR J0740þ 6620. The estimated values of
mass and radius are M ¼ 2.072þ0.067

−0.066 M⊙ and R ¼
12.39þ1.30

−0.98 km [38], respectively.
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Differences between candidate EOSs can have a signifi-
cant effect on the tidal interactions of neutron stars.
Recently new constraints appeared on the tidal deform-
ability [39]. It has been realized [40] that the two-solar-
mass constraint forces the EOS to be relatively stiff at low
densities. At the same time, the constraint on Λð1.4 M⊙Þ
sets an upper limit for the stiffness, constraining the EOS
band in a complementary direction.
In this paper, we update the study presented in [10] and

check whether the EOS introduced in [41] remains a viable
option, satisfying the most recent experimental constraints.
This text is organized as follows. In Sec. II, we briefly

review the EOS for the cold QGP. In Sec. III, we introduce
the stability conditions and discuss its consequences. In
Sec. IV, we present the Tolman-Oppenheimer-Volkoff
(TOV) equations for stellar structure calculations and their
numerical solutions. In Sec. V, we discuss the tidal
deformability, and in Sec. VI, we present some comments
and conclusions.

II. THE EQUATION OF STATE

Following [10], we consider a quark star consisting of u,
d, and s quarks with masses mu ¼ 5 MeV, md ¼ 7 MeV,
and ms ¼ 100 MeV. The derivation of the EOS [41] used
here starts with the assumption that the gluon field can be
decomposed into low (“soft”) and high (“hard”) momen-
tum components. The expectation values of the soft fields
were identified with the gluon condensates of dimension
two and four, respectively. The former generates a dynami-
cal mass, mG, for the hard gluons, and the latter yields an

analogue of the “bag constant” term in the energy density
and pressure. Given the large number of quark sources,
even in the weak coupling regime, the hard gluon fields are
strong, and the occupation numbers are large. Therefore,
these fields can be approximated by classical color fields.
The effect of the condensates is to soften the EOS, whereas
the hard gluons significantly stiffen it, by increasing both
the energy density and pressure. With these approxima-
tions, it was possible to derive [41] an analytical expression
for the EOS, called MFTQCD (mean field theory of QCD).
When adapting this equation of state to the stellar medium,
we assume, as usual, that quarks and electrons are in
chemical equilibrium maintained by the weak processes
[42]. Neutrinos are assumed to escape and do not contribute
to the pressure and energy density. Moreover, we impose
charge neutrality and baryon number conservation. These
requirements yield a set of four algebraic equations for
Fermi momentum calculations for each quark flavor (u, d,
and s) and for the electrons (e),

ku3 þ kd3 þ ks3 ¼ 3π2ρB;

2ku3 ¼ kd3 þ ks3 þ ke3;

kd2 þmd
2 ¼ ks2 þms

2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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2
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; ð1Þ

for a fixed baryon density ρB. The energy density is given
by [41]
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and the pressure is
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where me ¼ 0.5 MeV is the electron mass, mG the dynamical gluon mass, and g the coupling constant ðαs ¼ g2=4πÞ in
QCD. Our analogue of the bag constant, called here BQCD, is given by
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BQCD ¼ 9

128
ϕ4
0 ¼

�
1

4
FaμνFa

μν

�
; ð4Þ

where ϕ0 is an energy scale associated with the energy
density of the vacuum and with the gluon condensate [41].
In (2) and (3), the summation over quark colors has already
been performed. Throughout this work, we employ the
natural units G ¼ 1, ℏ ¼ 1, and c ¼ 1. Comparing Eqs. (2)
and (3) with the equivalent definitions of energy and
pressure in the modified bag model with postulated
repulsive vector interactions [see Eqs. (14) and (16) of
Ref. [43]], we observe a similarity. Both EOSs have a term
proportional to ρ2B. In [41], it was derived from QCD,
whereas in [43] it was postulated.

III. STABILITY CONDITIONS

In this section, we discuss the two stability conditions,
which have to be satisfied by stable strange quark matter.
The first one is that the energy per baryon of the deconfined
phase (for P ¼ 0 and T ¼ 0) is lower than the nonstrange
infinite baryonic matter defined in [12,42]. Following these
works, we impose that

EA ≡ ϵ

ρB
≤ 934 MeV: ð5Þ

This condition must hold at the zero pressure point, and
hence, we can, from (2) and (3), numerically derive a relation
between the bag constant BQCD and the ratio ξ ¼ g=mG. We
solve (3) obtaining ρB ¼ ρBðBQCD; ξÞ, which is then inserted
into (2). The resulting expression is used to write the
condition ϵðBQCD; ξÞ=ρBðBQCD; ξÞ ¼ 934 MeV, which
defines one “stability frontier”. This last equation, rewritten
as ξ ¼ ξðBQCDÞ, is plotted in Fig. 1 (solid line) and denoted
by the 3-flavor line. Points in the ðBQCD; ξÞ plane located on
the right of the solid line are discarded since they do not
satisfy (5). The solid line, corresponding to the maximal

value of EA ¼ 934 MeV, determines the maximum value of
BQCD. The minimum value of BQCD is determined by the
second stability condition, which requires nonstrange quark
matter in the bulk to have an energy per baryon higher than
the one of nonstrange infinite baryonic matter. By imposing
that

EA ≡ ϵ

ρB
≥ 934 MeV; ð6Þ

for a 2-flavor quark matter at ground state, we ensure that
atomic nuclei do not dissolve into their constituent quarks.
The constraint (6) defines the dashed line in the ðBQCD; ξÞ
plane, denoted by the 2-flavor line in Fig. 1. Points located
on the left of this line are excluded because they do not
satisfy (6). The region between the two lines in Fig. 1 defines
our stability window. Having fixed the BQCD and ξ param-
eters, we go back to (2) and (3) and, obtaining ϵ and p for
successive values of ρB, we construct the EOS in the form
p ¼ pðϵÞ, plotted in Fig. 2(a). In the figure, the different
lines correspond to the three parameter sets listed in Table I.
In this type of plot, the slope is the speed of sound, which,
due to causality, cannot exceed unity. This limit is shown by
the full lines in the figure. In Fig. 2(b), we show the
corresponding values of the speed of sound. As can be
seen, our model yields a much stiffer EOS, with a speed of
sound much larger than the conformal value, for which
c2s ¼ 1=3. The dotted-dashed line shows the EOS obtained
from a recently updated version of the MIT bag model
[44,45], which reads

pðϵÞ ¼ ðϵ − BeffÞ
3

−
a22

12π2a4

	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16π2a4

a22
ðϵ − BeffÞ

s 

;

ð7Þ

where B1=4
eff ¼ 142.52 MeV, a1=22 ¼ 100 MeV, and

a4 ¼ 0.535. As can be seen, the MFTQCD EOS generates
stronger pressure for larger values of the parameter
ξ ¼ g=mG. This combination of parameters appears in the
first term of (3), which comes from the repulsive inter-
actions [41].

IV. TOV EQUATION, MASS, AND RADIUS

In order to describe the structure of a static, nonrotating
compact star, we use the Tolman-Oppenheimer-Volkoff
(TOV) equation for the pressure pðrÞ [46],

dp
dr

¼ −
ϵðrÞMðrÞ

r2

	
1þ pðrÞ

ϵðrÞ

	

1þ 4πr3pðrÞ
MðrÞ




×

	
1 −

2MðrÞ
r



−1
: ð8Þ

FIG. 1. Values of ξ ¼ g=mG as a function of BQCD for different
values of the energy per baryon. The two lines define the stability
region.
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The enclosed massMðrÞ of the compact star is given by the
mass continuity equation,

dMðrÞ
dr

¼ 4πr2ϵðrÞ: ð9Þ

Equations (8) and (9) express the balance between the
gravitational force and the internal pressure acting on a
shell of mass dMðrÞ and thickness dr.
We solve numerically (8) and (9) for pðrÞ and MðrÞ to

obtain the mass-radius diagram. The pressure and the
energy density in (8) and (9) are given by the MFTQCD
expressions (3) and (2), respectively. We take the central
energy density to be ϵðr ¼ 0Þ ¼ ϵc, and then, we integrate
out (8) and (9) from r ¼ 0 up to r ¼ R, where the pressure
at the surface is zero: pðr ¼ RÞ ¼ 0. In Fig. 3, we show the
mass-radius diagram for several values of BQCD and ξ
respecting the stability condition. In the diagram, the points
represent the region favored by the measurements reported
in Refs. [33–38]. We can see that, with the parameters
chosen in the indicated range, our EOS is able to satisfy all
the constraints shown in the mass-radius diagram.

V. TIDAL DEFORMABILITY

An object that experiences a tidal force of another object
will deform. The susceptibility to deform is often measured
using dimensionless quantities that are called Love numbers.

The Love number is an interesting quantity because it can be
used to probe the dense-matter EOS using data from double-
neutron-star-merger events. There are various binary systems
where two objects orbit around each other. Because these
objects lose energy to gravitational waves, their orbits are not
stable. Therefore, they will inevitably approach each other
until they finally merge. Around the collision point, the
generated gravitational-wave signal is strong enough to be
detected by terrestrial instruments.
The tidal deformability parameter is given by [47–49]

Λ ¼ 2

3
k2C−5; ð10Þ

(a) (b)

FIG. 2. (a) Equation of state obtained with MFTQCD. Sets I, II, and III correspond to the parameter combinations shown in Table I.
For comparison, the dotted-dashed line shows the MIT bag model EOS used by Parisi et al. in Ref. [45]. (b) Speed of sound for the same
parameter choices.

TABLE I. Parameter sets used in the figures.

Set BQCD ðMeV=fm3Þ ξ ðMeV−1Þ
I 70 0.0011
II 60 0.0016
III 50 0.0022

FIG. 3. Mass-radius diagram for combinations of BQCD and ξ
allowed by the stability conditions. Sets I, II, and III correspond
to the parameter combinations shown in Table I. The points
represent the region favored by the measurements reported by the
NICER and XMM-Newton Collaborations [33–38]. The hori-
zontal line shows the mass of the compact object observed in
event GW190814.
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where C≡M=R is the compactness of the star, and k2 is the tidal Love number, which is given by [47–49]

k2 ¼
8C5

5
ð1 − 2CÞ2½2þ 2Cðy − 1Þ − y�f2C½6 − 3yþ 3Cð5y − 8Þ�

þ 4C3½13 − 11yþ Cð3y − 2Þ þ 2C2ð1þ yÞ�
þ 3ð1 − 2CÞ2½2 − yþ 2Cðy − 1Þ� lnð1 − 2CÞg−1; ð11Þ

where

y ¼ RβðRÞ
HðRÞ −

4πR3ϵsup
M

; βðrÞ ¼ dHðrÞ
dr

: ð12Þ

In the above equation, the second term is a correction due to the fact that in our model the energy density at the surface of the
star, ϵsup ≡ ϵðP ¼ 0Þ is not zero [48]. The functionsH and β can be obtained by solving the following system of differential
equations:

H0ðrÞ ¼ βðrÞ; ð13Þ
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þ 4πrPðrÞ
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r

�
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: ð14Þ

The Love number k2 measures how easily the bulk of the
matter in a star is deformed. The Love number also encodes
information about the stars degree of central condensation.
Stars that are more centrally condensed will have a smaller
response to a tidal field, resulting in a smaller Love number.
The Love number decreases with increasing compactness,
and from Eq. (11), it can be seen that k2 vanishes at the
compactness of a black hole (M=R ¼ 0.5) regardless of the
EOS-dependent quantity y. The tidal Love numbers of
strange quark matter stars are qualitatively different from
those of hadronic matter stars [48,50,51]. The latter
decrease strongly for small values of the compactness.
In Fig. 4(a), we show the Love number k2 as a function

of the compactness C. We expect that a very compact star
for any EOS is harder to deform then a less compact one.
This is what we see in the figures. It is interesting to
observe that the same variation of BQCD and ξ which
produces visible effects in the equation of state and in the
mass-radius diagram does not lead to appreciable
differences in the k2-C plot. The curves shown in
Fig. 4(a) are practically identical to the curves in the
analogous plots shown in Refs. [48,50,51], which were
obtained with strange quark matter equations of state. This
suggests that a wide variety of quark matter EOSs lead to
the same values of k2. We also note that our curves are
close to the one obtained with the ultrarelativistic EOS with
the speed of sound c2s ¼ 1=3 [51]. For completeness, in

Fig. 4(b) we show the Love number k2 as a function of the
variable y.
As pointed out in [48], in contrast to the Love number,

the tidal deformability has a wide range of values, spanning
roughly an order of magnitude over the observed mass
range of neutron stars in binary systems. The updated
version of the tidal deformability estimate for a 1.4 M⊙
neutron star based on the gravitational-wave event
GW170817 [39] implies that

70 < Λ1.4 < 580: ð15Þ

This interval represents a 90% credible level obtained from
a symmetric credible interval of the probability density
function. Moreover, this interval is usually obtained with-
out considering the heaviest observed pulsar. Therefore,
equations of state yielding Λ1.4 > 580 are not necessarily
invalid. They are just less likely.
In Fig. 5, we show our results for Λ as a function of the

star mass M. As it can be seen, the constraint (15) can be
satisfied. We note, however, the visible tension between
this constraint and those shown in the mass-radius plot. The
larger values of the radius required to fit the NICER points
seem to be somewhat difficult to reconcile with the Λ
values required by the GW170817 estimates. Other calcu-
lations performed with quark matter stars [44,52–55] or
hybrid stars [19,56–60] arrive at similar results. On the
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other hand, calculations of the tidal deformability with
purely hadronic equations of state [61–63] seem to repro-
duce the experimental data more easily.
Having fitted the data, we now to make some comments

on the constraints that these fits impose on the parameters of
our model. The data analysis only allows for the determi-
nation of ξ, and it is difficult to disentanglemG and g from ξ.
Nevertheless, it is possible to have some idea of the values of
these quantities by doing some estimates. In our formalism, g
is supposed to be small because it is the coupling in vertices
with hard gluons, where presumably there is large momen-
tum transfer. Therefore, we would expect that g < 1, but we
emphasize that in our formalism there is nothing that
depends crucially on the smallness of g. We do not have,
for example, any expansion in powers of g.
One can focus on the value of g and write g ¼ ξmG.

Considering the most extreme scenario, i.e., maximal value

of ξ (from set III, among those listed in Table I) and maximal
value of mG, we obtain g ¼ 1.32. The corresponding value
of mG (¼ 600 MeV) comes from estimates made in
the vacuum. In our formalism, mG is proportional to the
dimension-2 gluon condensate, and it was estimated with
the current values used for this condensate in the vacuum.
We expect that, at higher densities, all the condensates will
be reduced and hence also mG, bringing g to values smaller
than 1. We could also obtain reasonable values for g without
saying anything about mG, just by disconsidering set III (in
which we have the maximal ξ ¼ 0.0022), which seems to be
anyway the least favored by the current experimental data. In
short, with values of ξ extracted from experiment and with
the current estimates of mG, we have room to accommodate
reasonable values of g.
In Fig. 1, the stability region is the central area defined by

the two lines. It defines our parameter space. Within this
region, we could determine a smaller area, containing the
values of ξ and BQCD which lead to star masses, radii, and
tidal deformabilities compatible with the current observa-
tions. We could further narrow down the parameter space by
requiring that the coupling g be smaller than some value and
also that the gluon mass be within a range of acceptable
values. This kind of “precision analysis” is beyond the scope
of the present work, but it is feasible. We plan to do it after
introducing some improvements in our microscopic model,
such as the dependence of the condensates on the density.

VI. CONCLUSION

In [41], a new equation of state for cold quark matter was
presented. It was soon applied to the study of neutron stars,
treated as self-bound strange quark stars. In this paper, almost
ten years later, we have updated the calculations published in
[10] and checked whether that EOS can still account for the
most recent astrophysical data. We find that MFTQCD is still
a viable option. However, we observe that the parameter

FIG. 5. The tidal deformability parameter Λ as a function of the
star mass. The different lines correspond to the three parameter
sets listed in Table I. The vertical bar is the empirical tidal
deformability at M ¼ 1.4 M⊙ inferred from the Bayesian analy-
sis of the GW170817 data at the 90% confidence level [39].

(a) (b)

FIG. 4. (a) Tidal Love number k2 as a function of the compactness. (b) k2 as a function of y. The different lines correspond to the three
parameter sets listed in Table I.
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window is closing. A confirmation of the existing data and
the reduction of the error bars in the tidal deformability and in
the NICER neutron star radii data will be crucial to rule out
strange quark star models and reduce the freedom in the
choice of the equation of state.
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