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We introduce a numerical method and PYTHON package, CHiMES, that simulates quantum systems
initially well approximated by mean field theory using a second order extension of the classical field
approach. We call this the field moment expansion method. In this way, we can accurately approximate the
evolution of first and second field moments beyond where the mean field theory breaks down. This allows
us to estimate the quantum break time of a classical approximation without any calculations external to the
theory. We investigate the accuracy of the field moment expansion using a number of well studied quantum
test problems. Interacting bosonic systems similar to scalar field dark matter are chosen as test problems.
We find that successful application of this method depends on two conditions: the quantum system
must initially be well described by the classical theory, and the growth of the higher order moments
must be hierarchical.
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I. INTRODUCTION

Interacting many body bosonic systems describe a wide
array of interesting phenomena. This includes Bose-
Einstein condensates (BEC) [1,2], electromagnetic radia-
tion [3], and scalar field dark matter (SFDM) [4–6]. Their
dynamical properties are often explored using a classical
mean field theory (MFT) approximation, the Gross-
Pitaevskii equations, or Schrödinger-Poisson equations in
the case of SFDM [4,6–11].
Numerically, MFT is preferable to an exact quantum

field description which, for a system with M interacting
modes and total number of particles ntot, would involve
simulating a Hilbert space of dimensional ∼nM−2

tot [12].
For large M or ntot an exact quantum treatment is
infeasible. Rather than try and implement an exact quantum
solver it is simpler to extend the classical theory using
correction terms that capture quantum effects on the
classical physics [13–19].
When occupation numbers are large and interactions

weak, the MFT is known to accurately describe the
dynamics of these systems [3,8,20–22]. However, any
interacting system with a nonlinearity will exhibit quantum
corrections on some timescale [18,23–28]. The MFT,
tracking only the mean value of the field operator, cannot
account for these quantum terms [13]. This means that

effects such as phase diffusion, quantum squeezing, and
fragmentation inherently require a beyond MFT approach
[11,13,18,23]. The effect of these corrections on MFT is a
current topic of interest [7,12,13,18,19,26,28–31]. This
motivates the development of numerical methods which
can capture beyond MFT physics [13–19]. We will refer to
the time at which MFT can no longer accurately approxi-
mate the evolution of the underlying system as the
“quantum break time.”
The classical theory is generally achieved as a limit of the

quantum field theory. When the expectation value of the
field operator is large compared to the variance of the field
operator, it is sensible to replace the field operators in the
quantum field theory with their expectation values [32].
The expectation value of the quantum field is then called
the classical field. Quantum coherent states, with param-
eters large compared to unity, satisfy this approximation
criterion [32]. Tracking higher order moments and their
effects on the evolution of observables has been studied
with success for position and momentum operators [14,16].
Likewise, conceptually similar methods of expanding the
field about its mean value have proven useful as corrections
to MFT [17,19,33,34] as well as helping explore interesting
physics [8,15,35,36].
We apply these techniques to extend the MFT

approximation to include terms proportional to higher
order central moments and then integrate coupled differ-
ential equations governing the evolution of the mean and
these higher order moments. We will refer to this method as
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the “field moment expansion” (FME). The main focus of
this work will be to introduce a publicly available code
repository which implements a solver which tracks both
the mean field values and the second moments of the field.
In this way we can simulate systems initially well described
by MFT into regimes where quantum corrections become
important.
There are two main benefits to this approach. First, prior

to the quantum break time, FME produces a more accurate
approximation of the quantum field expectation values than
MFT. Second, FME provides an internal estimation of the
break time and can therefore estimate its own regime of
validity. This internal assessment means no calculations
external to the theory are necessary to estimate the quantum
break time. This is in contrast to approximations of this
timescale calculated by methods external to MFT (see for
example [29,30,37]). Additionally, when compared with
other mean field extensions [13], the FME scales as
OðM2 logMÞ, depending only on the grid size as opposed
to the particle occupation numbers np.
The method is applicable to any interacting scalar field

system assuming that a number of criteria are met. First,
the initial correction terms must be subleading order. The
method predictions cannot be trusted past the time when the
quantum corrections become large. However, we will show
that the FME is able to approximate the evolution of the
quantum system longer than MFT. Second, the correction
terms must grow hierarchically. For a term, F of order m
written as a function of moments of order less than and
equal to m, given Fmðmoments of order ≤ mÞ, the evolu-
tion the terms must satisfy F1 > F2 > F3 � � �. Generally,
these criteria will be met if the initial conditions are a
coherent state with large mode occupation numbers.
In this work we test the field moment expansion using

two test problems that have been well studied in the
literature, for which exact quantum solutions are possible
and that exhibit a breakdown of the MFT on some
timescale [7,12,23,38]. For each we show that the
FME provides a more accurate solution until the quantum
break time. Most importantly, we demonstrate that the
method can be used in this case to accurately predict the
quantum break time.
The paper is organized as follows. In Sec. II, we discuss

the background on interacting bosonic systems, the MFT,
and FME approximations. Section III explains our numeri-
cal implementation. In Sec. IV, we demonstrate that FME
is accurate for a number of quantum test problems.
Conclusions regarding the overall utility of these methods
and future directions are presented in Sec. V.

II. BACKGROUND

A. Quantum description

We start from the following Hamiltonian, used to
describe nonrelativistic scalar fields [7,12,38]:

Ĥ ¼
XM
j

ωjâ
†
j âj þ

XM
ijkl

Λij
kl

2
â†kâ

†
l âiâj; ð1Þ

where the sums are performed over the M system modes.
For appropriately chosen Λ, ω, and M this Hamiltonian
describes a wide range of physical systems. The first sum
describes the kinetic energy of the system and the second
the self-interactions. âi is the annihilation operator on
mode i, which is defined by its commutation and action
on number eigenstates. A number eigenstate is written as

jfngi ¼ jn1; n2;…; nMi; ð2Þ

where ni describes the number of particles occupying the ith
mode. Here we will take the modes to represent momentum
eigenstates with momentum pi. The number eigenstates
form an orthonormal basis such that hn0jjnii ¼ δijδnn0 . We
can now describe the â operators as follows:

½âi; âj� ¼ 0; ð3Þ

½âi; â†j � ¼ δij; ð4Þ

â†j jnji ¼ ðnj þ 1Þ1=2jnj þ 1i; ð5Þ

âjjnji ¼ n1=2j jnj − 1i; ð6Þ

N̂jjnji≡ â†j âjjnji ¼ njjnji: ð7Þ

The annihilation operator can also be used to define the
complex quantum field ψ̂ðxÞ, which is related to â by
Fourier transform,

ψ̂ðxÞ ¼
X
i

âiu
†
i ðxÞ; ð8Þ

where u†i ðxÞ is the eigenstate of the momentum operator
with eigenvalue pi. The Heisenberg equation describes the
dynamics of these operators. For an arbitrary operator Â
with a time independent Hamiltonian the equation of
motion is written

∂tÂ ¼ i
ℏ
½Ĥ; Â�: ð9Þ

Hereafter we set ℏ≡ 1. We can now solve for the
evolution of our field operators,

∂tâp ¼ i½Ĥ; âp� ¼ −i
�
ωpâp þ

X
ijl

Λij
plâ

†
l âiâj

�
: ð10Þ

In this work we will be taking the constants Λij
pl to be of

the following form:
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Λij
pl ¼

�
C

2ðpp − piÞ2
þ C
2ðpp − pjÞ2

þ Λ0

�
δijpl; ð11Þ

where the constant C describes a long range r−1 potential
and Λ0 characterizes the strength of contact interactions.
δijpl is the Kroneker delta. If C ¼ −4πGm2

L and Λ0 ¼ 0, then
taking a Fourier transform of Eq. (33) yields the familiar
second quantized Schrödinger-Poisson equations, where G
is the gravitational constant, L is the volume of the box for
which the quantum field is periodic, and m is the mass of
the field. Here we are working in one dimension (1D),

∂tψ̂ðxÞ ¼ −i
�
−∇2

2m
þmV̂ðxÞ

�
ψ̂ðxÞ; ð12Þ

∇2V̂ ¼ 4πGmψ̂†ðxÞψ̂ðxÞ: ð13Þ

Here we have started with a complex quantum field
operator. However, it is possible to derive this set of
equations as a nonrelativistic and weak gravity limit of
the real scalar Klein Gordon field. This can be done
following the derivation in [19,39]. These limits need to
be kept in mind when determining where this set of
equations and approximations of it are valid.
While the above analysis is true for an arbitrary quantum

state, within the stated limits, it is useful to define an initial
quantum state for which the mean field theory starts as
an accurate approximation of the quantum field theory.
The “most classical” state is the coherent state, for which
MFT is initially exact, parametrized by the complex vector
z⃗ ∈ CM, which can be written as a sum of number
eigenstates as

jz⃗i ¼ ⊗
M

i¼1
exp

�
−
jzij2
2

�X∞
ni¼0

zniiffiffiffiffiffiffi
ni!

p jnii: ð14Þ

When representing a coherent state numerically we trun-
cate the above sum when the square norm of hz⃗jz⃗i ≥ 0.995.
A coherent state is thought to describe the initial state

of the axion field if produced via the misalignment
mechanism [40,41].
This state implies that a measurement of the particle

number in the mode i would be Poisson distributed with
expectation value jzij2. This state is special because it has
the property that the expectation value any normally
ordered operator composed of â and â† with respect to
this state is given by simply replacing the operators with the
parameter z, i.e.,

hz⃗jfðfâ†gÞgðfâgÞjz⃗i ¼ fðz⃗†Þgðz⃗Þ: ð15Þ

This will be important when deriving the mean field
theory.

B. Mean field approximation

The mean field is simply the expectation value of the
field operator; we define a mean field in position and
momentum space, respectively, as

ψðxÞ≡ hψ̂ðxÞi; ð16Þ

ai ≡ hâii: ð17Þ

The higher order moments can then be calculated from
the mean field operators. Occupation numbers, Ncl, are
given as the amplitude of the field operators, e.g.,

Ncl
i ¼ jaij2: ð18Þ

The mean field theory is attained simply by taking an
expectation value of the equations of motion and then
approximating the operators by their expectation value.
Let us say that the operator Â evolves according to the
following equation of motion:

∂tÂ ¼ fðÂÞ: ð19Þ

And that Â corresponds to some dynamic observable of
the system. If the expectation value of Â is large compared
to its root variance, then we can make the following
approximation:

∂thÂi ¼ hfðÂÞi ≈ fðhÂiÞ: ð20Þ

This approximation is one way to transition to a mean
field theory description. It is identical to the Ehrenfest
theorem if we replaced the position and momentum
operators with field operators.
This statement that the mean field theory is accurate at a

time T implies the following conditions:

E½ÂðTÞ� ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½ÂðTÞ�

q
: ð21Þ

Note this is a condition on both the evolution of the
operator Â and the quantum state that the expectation is
taken with respect to.
For the mean field approximation to hold we need only

that the approximation in Eq. (20) remain accurate on the
timescale of the evolution. We will make the requirements
more precise in the next section, but from here we can see
qualitatively why a large occupation number tends to
motivate the mean field theory approximation.
Let us assume that Â ¼ fâ; â†;…g is the set of operators

generated by field operators â and â†, as will be the case in
the next sections. It is always possible to write the right-
hand side of Eq. (19) in terms of normally ordered
operators. This means that if we are in a coherent state
by Eq. (15), the mean field approximation is an equality so
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long as we remain in a coherent state. This is true regardless
of the expected occupation number; however, if we are only
in an approximately coherent state with jzj2 ¼ n ≫ 1, then
we can expect the variance in our field operators to be
approximately governed by a Poisson distribution; i.e.,
E½N̂� ∼ Var½N̂� ∼ jzj2 ¼ n, and this means that the frac-
tional deviation in the expectation value will go asffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½N̂�

q
=E½N̂� ∼ 1=

ffiffiffiffi
N

p
. This is easily made into an

estimate of the fractional field variance by recalling that
N̂ ¼ â†â. So the fractional deviation in the field values is
small for large occupation numbers n ≫ 1.
Large occupation numbers are not enough on their own

to ensure an accurate MFT description. The mean field
theory will be accurate if the occupation numbers are large
but also if the quantum state remains approximately
coherent or, equivalently, if the distribution of the number
operator has Poisson distributed expectation and variance
proportional to some power of n. But the actual condition
that needs to be satisfied is Eq. (21).
It is easy to imagine a state for which this assumption is

not met. A number eigenstate, jfngi, for example has field
expectation hfngjâjfngi ¼ 0 even when n ≫ 1. Therefore,
it does not satisfy the condition in Eq. (21) and will not be
well described by a single classical field even for large n. It
was demonstrated in [12,27] that a number eigenstate did
not approach a single classical field description even at a
large occupation number. It was then shown in [7] that this
state could be approximated by an ensemble of classical
fields with ensembled expectation 0 and amplitude n.
It is important to note that alarge occupation number is

only a proxy for the accuracy of the mean field theory. For
example, a coherent state evolved by the free particle
Hamiltonian will always be perfectly described by classical
field theory even as E½N̂� ≪ 1. Conversely, a number
eigenstate will never be well described by a single classical
field even as E½N̂� ≫ 1. Going forward we will phrase our
estimation of the accuracy of the classical field theory in
terms of the condition described in Eq. (21) for the field
operator â.
It should also be noted that it is possible to reproduce the

quantum evolution of the number operator without repro-
ducing the evolution of the field itself. For example, a so-
called field number state in the large N limit approaches the
classical evolution of the mode occupations; however, it has
a vanishing field expectation regardless of N. For states
such as these, Eq. (21) should be expressed in terms of the
number operator.

C. Quantum corrections

Systems initially well described by the mean field theory
will eventually diverge from this description on some
timescale if the Hamiltonian is nonharmonic. The specific
causes of this are of interest in the literature [18,23–25,28]
but for our purposes we can think of them generally as a

delocalization in phase space. In this section we will show
an example of how deviation from the classical field theory
occurs and discuss a way to parametrize it.
Specifically that the variance in the field operators

becomes of order the expectation value violating the
condition in Eq. (21). We will clarify this point using
the following example:
Consider the toy Hamiltonian on one mode,

Ĥ ¼ p̂2

2m
þ λLq̂2 þ λNLq̂4; ð22Þ

where p≡ −iℏ∇q. The first two terms define a harmonic
oscillator and the last term some nonlinearity. The set
of operators that we are interested in are the position
and momentum operators Â ¼ fq̂; p̂g. Note that this
Hamiltonian can be recast in terms of the â operator using
the relation

â ¼ 1ffiffiffi
2

p ðq̂þ ip̂Þ; ð23Þ

but this does not change the analysis.
The classical equations of motion can be found using

Eqs. (9) and (22) as well as the commutation relation
½q; p� ¼ iℏ and then applying Ehrenfest’s theorem. For
the classical variables p, q related to the classical field by
a ¼ 1ffiffi

2
p ðqþ ipÞ (recall there is only a single mode), we

obtain the following equations of motion:

∂tp ¼ −2λLq − 4λNLq3; ð24Þ

∂tq ¼ p; ð25Þ

with ðq; pÞjt¼0 ¼ ðqi; 0Þ. We use a symplectic leapfrog
integrator to solve the classical equations of motion.
Our initial wave function will be Gaussian, which is

initially well localized in q,

hqjϕi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffiffiffiffiffiffi
2πσ

p
s

exp

�
−
ðq − qiÞ2

4σ2

�
: ð26Þ

The quantum equations can be solved by integrating
Schrödinger’s equation

∂tjϕi ¼ −iĤjϕi: ð27Þ

We use a symplectic spectral leapfrog integrator to
perform the integration.
Let us also parametrize the inequality in Eq. (21) by

defining the following quantity Qq:

Qq ≡ hq̂2i − hq̂i2
q2i

: ð28Þ
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This can be used to parametrize the quantum theories’
deviation from the classical theory because the nonlinearity
is spatial. It should be noted that this is not the only
parameter that can be constructed with this property.
In Fig. 1 we track a quantum phase space analog, the

Husimi function [32], of the wave function, the classical
mean field theory approximation of E½â�, the exact quantum
value of E½â� for two different strength nonlinearities.
In both cases the initial spread of the wave function is
σ ¼ 0.025, the initial location qi ¼ 0.25, ℏ ¼ 0.01,
λL ¼ 100. This means that our parameter Qq ¼ 0.01.
Note also that Eq. (23) implies that the occupation number
here is n ¼ q2i ¼ 0.0625. Clearly we are not in the high
occupation regime. The top row and bottom rows have
λNL ¼ 0.073 and λNL ¼ 73, representing the weakly non-
linear and strongly nonlinear, respectively.
For the nonlinear case we see in the second panel that

squeezing and phase diffusion have caused the Husimi
function to be poorly localized around the classical sol-
ution; however, at this time the Husimi function is still well
approximated by a squeezed Gaussian. At this time the
classical and quantum solutions begin to diverge. This is
approximately the quantum break time, where the Qq

parameter is starting to approach Oð1Þ. In the rightmost
panel of the nonlinear evolution we see that phase diffusion

has removed most of the information about the phase of the
field. The classical and quantum solutions now deviate by
an Oð1Þ fraction.
Throughout this work we will be interested in functions

of the field operators and their Fourier transforms. We will
define the quantum break time as we have done in this
section, by first defining a quantity that parametrizes the
deviation from the classical theory. The following defini-
tion will be used moving forward:

Q≡XM
i

hδâ†i δâii
ntot

; ð29Þ

where ntot ≡P
M
i ni and δâ≡ â − hâi.

When Q is small, a single classical field can accurately
capture both the first and second moments of the field
operator and the classical approximation in Eq. (18) is
valid. When this parameter ceases being small, such a
description inaccurately captures both the field and occu-
pation number expectations. Therefore, we will use Q to
define a quantum break time, tbr condition as when
Q ¼ 0.15, i.e.,

QðtbrÞ≡ 0.15: ð30Þ

Note that this is not intended to be the unique usable
definition of the quantum break time. It is only intended to
allow us to quantify when the assumption in Eq. (18) breaks
down. The specific value 0.15 is arbitrary and the scaling
of the break time with the occupation number should
be relatively insensitive to the specific choice of QðtbrÞ.
We choose this specific value because it indicates that the
correction terms are becoming the same order as the leading
order classical terms and analysis of our test problems
indicate that the field moment solver reliably reproduces
quantum results when Q < 0.15.

D. Field moment expansion

For well-behaved probability distributions with well-
defined moments, we can uniquely identify the distribution
by its moments. This is true for functions of quantum
mechanical operators. Consider a set of operators Â and the
function of this set fðÂÞ. Let us assume we can write f as a
sum of products of normally ordered generators of Â, and
that there exists some integer R for which every term
contains R or fewer elements of the generator of Â. Let us
also assume that the ith moment of each element of
Â is well-defined for i ≤ R. We can then write the expect-
ation value of f as a sum of terms weighted by central
moments as

hfðÂÞi ¼ fðhÂiÞ þ
XR
j¼2

1

j!

�Yj
k¼1

�X
â∈Â

δ̂â

��
fðhÂiÞ; ð31Þ

FIG. 1. Here we show how quantum corrections cause devia-
tions from the mean field theory. Plotted are the Husimi functions
for two different nonlinear models at three different times.
The top row corresponds to the weakly nonlinear case with
λNL ¼ 0.073, and the bottom row to the strongly nonlinear case
with λNL ¼ 73. Each column corresponds to a different time T in
the evolution. The red dot in each panel indicates the solution
solved obtained using the classical mean field theory, a. The cyan
triangle in each panel represents the actual mean of the â operator
hâi. At all times the weakly nonlinear model closely adheres
to the classical solution. The strongly nonlinear case has the
classical field theory start as a good approximation but strongly
diverge over the course of the evolution.
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where hÂi≡ fha1i; ha2i;…g is the set of the expectation
values of the elements of the set Â and the product of the δ̂â
operators is defined as

δ̂â1 δ̂â2…≡ hδâ1δâ2 � � �i
∂

∂hâ1i
∂

∂hâ2i � � � ; ð32Þ

where the operators δâ are normally ordered.
Consider the Hamiltonian in Eq. (1). We can solve for the

equation of motion for the â operator using Eq. (9) giving

∂tâp ¼ i½Ĥ; âp� ¼ −i
�
ωpâp þ

X
ijl

Λij
plâ

†
l âiâj

�
: ð33Þ

We see that the highest order operator in the equation of
motion is third order in â and â†. Replacing the â and â†

operators with their expectation values in this equation
gives the classical field theory given by the following
inequality:

∂thâpi ¼ ih½Ĥ; âp�i

¼ −i
�
ωphâpi þ

X
ijl

Λij
plhâ†l âiâji

�
ð34Þ

≈ − i

�
ωphâpi þ

X
ijl

Λij
plhâ†l ihâiihâji

�
: ð35Þ

We can rewrite Eq. (34) in the form of Eq. (31),

∂thâpi ¼ ih½Ĥ; âp�i

¼ −i
�
ωphâpi þ

X
ijl

Λij
plhâ†l âiâji

�

¼ −i
�
ωphâpi þ

X
ijl

Λij
plðhâ†l ihâiihâji ð36aÞ

þ hδâiδâjihâ†l i þ hδâ†l δâiihâji þ hδâ†l δâjihâii
ð36bÞ

þhδâ†l δâiδâjiÞ
�

ð36cÞ

≈−i
�
ωphâpiþ

X
ijl

Λij
plðhâ†l ihâiihâjiþhδâiδâjihâ†l i

þhδâ†l δâiihâjiþhδâ†l δâjihâiiÞ
�
: ð36dÞ

We see in this form that the classical equations of motion
are given by Eqs. (36a), and then (36b) and (36c) act as
“quantum” corrections to the mean field theory. We can
also see now the manner in which our classicality condition
in Eq. (21) is technically imprecise. What is actually
required is that the terms in (36b) and (36c) remain small
compared to the terms in (36a). However, it is important to
keep in mind that the accuracy of the mean field theory
is not intrinsically a function of the occupation number
but instead a property of how the moments of the field
operators compare.
The condition in Eq. (21) comes about by assuming that

the moments grow hierarchically; that is, that the first order
terms in (36a) start out the largest and that the terms in
(36b) grow faster than the terms in (36c) and so on. If we
then also assume that the second order central moments in
(36b) are all approximately the same order, and that the
dynamics are approximately number conserving, we see
that taking a ratio of the first and second order terms gives
us the parameter Q and asserting that Q ≪ 1 is equivalent
then to Eq. (21).
In order to integrate Eq. (36) we couple the evolution of

the field operator â to the evolution of the central moments.
If we assume that the central moments grow hierarchically
and we are interested in evolution only until the classical
field theory breaks, we can truncate Eq. (36) at the second
order terms; this has the benefit of better computational
scaling. The equations of motion for the higher order
moments can be found using Eq. (9) and then expanding
to second order using Eq. (31). We will start with the
Cov½âi; âj� operator which has the following equation of
motion:

∂thδâiδâji ≈ −i
�
ðωi þ ωjÞhδâiδâji þ

X
kp

Λkp
ji hâkihâpi

þ
X
kpl

Λkp
ji ðhδâlδâjihâ†kihâpi

þ hδâjδâpihâ†kihâli þ hδâ†kδâjihâlihâpiÞ

þ ði ↔ jÞ
�
: ð37Þ

This equation can be broken down into three types of
terms. The first term and the second line of terms are the
kinetic and potential terms, respectively. The terms are
proportional to the covariance operator. The second term on
the second line is proportional to both the potential energy
and ½â; â†�. This term guarantees that the covariance
operator will grow even if initially zero so long as there
is some nonlinearity in the Hamiltonian.
We can solve for the Cov½â†i ; âj� operator in the same

manner,
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∂thδâ†i δâji ≈ i

�
ðωi − ωjÞhδâ†i aji

þ
X
kpl

Λkp
ji ðhδâjδâkihâ†pihâ†l i

þ hδâ†pδâjihâ†l ihâki þ hδâ†l δâlihâ†pihâkiÞ

þ ðc:c:; i ↔ jÞ
�
; ð38Þ

which has the same structure as the previous equation
without the term proportional to the commutation operator.
c.c. indicates complex conjugate.
The term in Eq. (37) proportional to the commutation

between â and â† gives us a qualitative sense of how a large
occupation number implies classicality. If the quantum
state is approximately coherent, then these second order
central moments are near 0 by Eq. (15). On a timescale
∼OðΛ−1Þ the second order central moments will have
grown by a factor of ½â; â†� ¼ 1. In the large occupation
number limit ½â; â†� ¼ 1 ≪ 1, meaning our lowest order
quantum corrections contribute vanishingly to the evolution
of the mean field.

E. Penrose-Onsager criterion

When the Penrose-Onsager (PO) criterion [42] is sat-
isfied, we can write

hâ†i âji ¼ z⃗†i z⃗j: ð39Þ

That is, that the expectation values of the second field
moment matrix Mij ≡ hâ†i âji can be written as an outer
product of a single vector z⃗ with its complex conjugate.
When the PO criterion is satisfied, M̂ij contains a single

nonzero eigenvalue, called the principal eigenvalue,
equal to the square norm of z⃗, i.e., λp ¼ P

i jzij2, where
z⃗=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i jzij2

p
is the corresponding principal eigenvector, ξ⃗p.

This vector is not a priori equal to the classical field, but
when the classical field adequately describes the system,
we expect the PO criterion to be satisfied.
Note that Tr½M̂ij� ¼ ntot and, therefore, in number

preserving systems the trace of M̂ij is a conserved quantity.
When the system is well described by the classical theory,
we expect that the principal eigenvalue is very close to ntot,
and more specifically we expect [8]

λp
ntot

− 1 ≪ 1: ð40Þ

Because the FME tracks both second central moments
hδâ†i δâji and hâii, we can use this method to approximate
M̂ij as

M̂FME
ij ¼ hδâ†i δâjiFME þ ðhâii†hâjiÞFME: ð41Þ

It is important to note that while both Q and Eq. (40)
parametrize the deviation from the classical theory the two
are technically distinct in the following way:
When Q≪1, it implies that the classical approximation

in Eq. (18) is breaking down, i.e.,Q ∼ 1;→ jhâij2 ≠ hâ†âi.
Note that this is not a useful parametrization for states
which track the evolution of the mode occupations but
not the field values themselves. On the other hand,
λp=ntot − 1≪1 implies that M̂ij cannot be described by a
single eigenvector. Neither explicitly implies that the
classical field poorly approximates occupation numbers,
but both can be used to give an approximate sense of how
closely a system is adhering to the classical field theory.

III. NUMERICAL IMPLEMENTATION

A. Mean field theory

The evolution of the mean field, acl, is solved by
integrating the classical field equations of motion
given by

∂taclp ¼ −i
�
ωpaclp þ

X
ijl

Λkp
ji a

cl†
l acli a

cl
j

�
: ð42Þ

The initial conditions are chosen such that the field values
correspond to a coherent state with parameter z⃗ ¼ a⃗cl.
Note that this implies the initial square amplitudes of
the classical field give the mode occupation number
expectations, i.e.,

jaclp j2jt¼0 ¼ E½N̂p�: ð43Þ

We use a fourth order Runga-Kutta update scheme to
update the field [43,44]. The update function for the field at
mode p is given as

FðapÞ ¼ apð1 − iωpΔtÞ − ifðaÞpΔt; ð44Þ

and the update scheme is then
(1) k1 ¼ Fðaclp ðtÞÞ
(2) k2 ¼ Fðaclp ðtÞ þ k1=2Þ
(3) k3 ¼ Fðaclp ðtÞ þ k2=2Þ
(4) k4 ¼ Fðaclp ðtÞ þ k3Þ
(5) aclp ðtþ ΔtÞ ¼ 1

6
ðk1 þ 2k2 þ 2k3 þ k4Þ,

which takes the field at a time t, aclðtÞ, to a time tþ Δt,
aclðtþ ΔtÞ. The function fðaÞ defines the potential term
and is given as follows:

fðaÞp ¼ F ½VðxÞψðxÞ�p;

VðxÞ ¼ F−1
�
F ½ψ†ðyÞψðyÞ�i

�
C
k2i

þ Λ0

��
ðxÞ; ð45Þ
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where F and F−1 define the Fourier transform and inverse
Fourier transform, respectively. ψðxÞ ¼ P

i a
cl
i u

†
i ðxÞ, as in

Eq. (8); i.e., ψ is the inverse Fourier transform of acl. In
these simulations we use nonperiodic boundary conditions.
This is achieved by padding the ends of the arguments of
the Fourier transform withM=2 zeros, meaning our discrete
Fourier transforms are defined as follows:

F ½ψðxÞ�p ¼
XMþM=2

x¼−M=2

ψ̃ðxÞupðxÞ; ð46aÞ

F−1½ap�ðxÞ ¼
XMþM=2

p¼−M=2

ãpu
†
pðxÞ; ð46bÞ

and the padded fields are given by

ψ̃ðxÞ ¼
�
ψðxÞ 0 ≤ x ≤ M

0 else
; ð47aÞ

ãp ¼
�
ap 0 ≤ p ≤ M

0 else
: ð47bÞ

The unpadded fields can be recovered by looking only at
the modes ∈ ½0;M�.

B. Field moment expansion

The evolution of the field moments is solved by
integrating the coupled equations (36d), (37), and (38).
The initial conditions are chosen such that the initial values
of the moments correspond to those of a coherent state with
parameter z⃗. Meaning

hâpiFMEjt¼0 ¼ zp; ð48Þ

hδâiδâjiFMEjt¼0 ¼ 0; ð49Þ

hδâ†i δâjiFMEjt¼0 ¼ 0: ð50Þ

This solver uses the following updated functions

FFME
a ðap; δAij; δBijÞ ¼ apð1 − iωpΔtÞ − iΔtðfða1Þp þ g1ða; δAijÞp þ g2ða; δBijÞpÞ; ð51Þ

FFME
aa ðap; δAij; δBijÞ ¼ δAijð1 − iðωi þ ωjÞΔtÞ − iΔtðhðaÞij þ g3ða; δAijÞij þ g4ða; δBijÞijÞ; ð52Þ

FFME
ba ðap; δAij; δBijÞ ¼ δBijð1þ iðωi − ωjÞΔtÞ − iΔtðg5ða; δAijÞij þ g6ða; δBijÞijÞ: ð53Þ

We use the following Runga-Kutta integration scheme to update the field moments:
(1) ka1 ¼ FFME

a ðhâpiFMEðtÞ; hδâiδâjiFMEðtÞ; hδâ†i δâjiFMEðtÞÞ
(2) kaa1 ¼ FFME

aa ðhâpiFMEðtÞ; hδâiδâjiFMEðtÞ; hδâ†i δâjiFMEðtÞÞ
(3) kba1 ¼ FFME

ba ðhâpiFMEðtÞ; hδâiδâjiFMEðtÞ; hδâ†i δâjiFMEðtÞÞ
(4) ka2 ¼ FFME

a ðhâpiFMEðtÞ þ ka1=2; hδâiδâjiFMEðtÞ þ kaa1 =2; hδâ†i δâjiFMEðtÞ þ kba1 =2Þ
(5) kaa2 ¼ FFME

aa ðhâpiFMEðtÞ þ ka1=2; hδâiδâjiFMEðtÞ þ kaa1 =2; hδâ†i δâjiFMEðtÞ þ kba1 =2Þ
(6) kba2 ¼ FFME

ba ðhâpiFMEðtÞ þ ka1=2; hδâiδâjiFMEðtÞ þ kaa1 =2; hδâ†i δâjiFMEðtÞ þ kba1 =2Þ
(7) ka3 ¼ FFME

a ðhâpiFMEðtÞ þ ka2=2; hδâiδâjiFMEðtÞ þ kaa2 =2; hδâ†i δâjiFMEðtÞ þ kba2 =2Þ
(8) kaa3 ¼ FFME

aa ðhâpiFMEðtÞ þ ka2=2; hδâiδâjiFMEðtÞ þ kaa2 =2; hδâ†i δâjiFMEðtÞ þ kba2 =2Þ
(9) kba3 ¼ FFME

ba ðhâpiFMEðtÞ þ ka2=2; hδâiδâjiFMEðtÞ þ kaa2 =2; hδâ†i δâjiFMEðtÞ þ kba2 =2Þ
(10) ka4 ¼ FFME

a ðhâpiFMEðtÞ þ ka3; hδâiδâjiFMEðtÞ þ kaa3 ; hδâ†i δâjiFMEðtÞ þ kba3 Þ
(11) kaa4 ¼ FFME

aa ðhâpiFMEðtÞ þ ka3; hδâiδâjiFMEðtÞ þ kaa3 ; hδâ†i δâjiFMEðtÞ þ kba3 Þ
(12) kba4 ¼ FFME

ba ðhâpiFMEðtÞ þ ka3; hδâiδâjiFMEðtÞ þ kaa3 ; hδâ†i δâjiFMEðtÞ þ kba3 Þ
(13) hâpiFMEðtþ ΔtÞ ¼ 1

6
ðka1 þ 2ka2 þ 2ka3 þ ka4Þ

(14) hδâiδâjiFMEðtþ ΔtÞ ¼ 1
6
ðkaa1 þ 2kaa2 þ 2kaa3 þ kaa4 Þ

(15) hδâ†i δâjiFMEðtþ ΔtÞ ¼ 1
6
ðkba1 þ 2kba2 þ 2kba3 þ kba4 Þ,

which takes the field moments at time t, hâiFMEðtÞ, hδâiδâjiFMEðtÞ, hδâ†i δâjiFMEðtÞ, to a time tþ Δt, hâiFMEðtþ ΔtÞ,
hδâiδâjiFMEðtþ ΔtÞ, hδâ†i δâjiFMEðtþ ΔtÞ, where the functions are given by

EBERHARDT, KOPP, ZAMORA, and ABEL PHYS. REV. D 104, 083007 (2021)

083007-8



g1ða; hδaiδajiÞp ¼ F
�
F−1

�
F y½hδψðxÞδψðyÞiψ†ðyÞ�i

�
C
k2i

þ Λ0

��
ðx; xÞ

�
p
; ð54Þ

g2ða; hδa†i δajiÞp ¼ F
�
F−1

�
F x½hδψ†ðxÞδψðyÞiψðxÞ�i

�
C
k2i

þ Λ0

��
ðx; xÞ

�
p

þ F
�
F−1

�
F ½hδψ†ðxÞδψðxÞi�i

�
C
k2i

þ Λ0

��
ðxÞψðxÞ

�
p
; ð55Þ

hðaÞij ¼ F xy½Kðx; yÞψðxÞψðyÞ�ij; ð56Þ

g3ða; hδaiδajiÞij ¼ F xy

�
F−1

�
F y½hδψðxÞδψðyÞiψ†ðxÞ�i

�
C
k2i

þ Λ0

��
ðx; yÞψðxÞ

�
ij

þ F xy

�
F−1

�
F ½jψðxÞj2�i

�
C
k2i

þ Λ0

��
ðxÞhδψðxÞδψðyÞi

�
ij
þ ði ↔ jÞ; ð57Þ

g4ða; hδa†i δajiÞij ¼ F xy

�
F−1

�
F x½hδψ†ðxÞδψðyÞiψðxÞ�i

�
C
k2i

þ Λ0

��
ðx; yÞψðxÞ

�
ij
þ ði ↔ jÞ; ð58Þ

g5ða; hδaiδajiÞij ¼ F xy

�
F−1

�
F x½hδψðxÞδψðyÞiψ†ðxÞ�i

�
C
k2i

þ Λ0

��
ðx; yÞψ†ðxÞ

�
ij
− ðc:c:; i ↔ jÞ; ð59Þ

g6ða; hδa†i δajiÞij ¼ F xy

�
F−1

�
F x½hδψ†ðxÞδψðyÞiψðxÞ�i

�
C
k2i

þ Λ0

��
ðx; yÞψ†ðxÞ

�
ij

þ F xy

�
F−1

�
F ½jψðxÞj2�i

�
C
k2i

þ Λ0

��
ðxÞhδψ†ðxÞδψðyÞi

�
ij
− ðc:c:; i ↔ jÞ: ð60Þ

We again define our discrete Fourier transforms as in
Eq. (46) in order to enforce nonperiodic boundary con-
ditions. The position space fields are related to the
momentum space arguments by

ψðxÞ ¼
X
i

aiu
†
i ðxÞ; ð61Þ

hδψ†ðxÞψðyÞi ¼
X
ij

hδâ†i δâjiuiðxÞu†jðyÞ; ð62Þ

hδψðxÞψðyÞi ¼
X
ij

hδâiδâjiu†i ðxÞu†jðyÞ: ð63Þ

C. Quantum field theory

The evolution of the quantum system is solved by
integrating Schrödinger’s equation

∂tjz⃗i ¼ −iĤjz⃗i: ð64Þ

We integrate this equation using the QIBS repository
available at [45].

IV. TEST PROBLEMS

The purpose of this section is to compare the FME and
MFT approximations of quantum systems using solutions
which can be evaluated exactly, either analytically or
numerically. In general, we will look to demonstrate that
the field moment expansion is successful based on the
following criteria:
(1) Provides a more accurate approximation of the

expectation value of the field operator hâi at least
until the quantum break time as defined in Eq. (30).

(2) An accurate approximation of when the quantum
break time occurs.

Note that the expectation values of the occupation
numbers can be found using Q, ntot, and hâi. Therefore,
achieving the two goals listed above also implies that the
field moment expansion can accurately approximate the
expectation values of the occupation numbers.
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A. Kerr nonlinearity

In this section we examine the Kerr nonlinearity which
can be described by the following Hamiltonian:

Ĥ ¼ ωâ†âþ Λ0

2
ðâ†âÞ2

¼
�
ωþ Λ0

2

�
â†âþ Λ0

2
â†â†â â

¼ ω0â†âþ Λ0

2
â†â†â â : ð65Þ

This is a special case of our Hamiltonian in Eq. (1) with
C ¼ 0, M ¼ 1.
This problem is interesting because it admits an exact

solution, and so the timescales on which it diverges from
the classical solution can be found analytically [23,36].
Our initial condition will be a coherent state; see Eq. (14).
The exact wave function can be given as a function of time
as follows:

jϕðtÞi ¼ exp

�
−
jzj2
2

�X
n

e−itðΛ0n2=2þωnÞ znffiffiffiffiffi
n!

p jni: ð66Þ

Given this, it is straightforward to calculate the exact
evolution of the normally ordered central moments and the
field expectation. The quantum evolution of the expectation
of the field is characterized by a decaying amplitude which
is not captured in the classical theory, as shown in the top
left panel of Fig. 2. Here we set z ¼ 5, Λ ¼ 1 × 10−3,
and ω ¼ 1.
The far left column of Fig. 3 shows the result of

applying the field moment expansion to this system. We
can see that Q effectively parametrizes the time when the
fractional error in the classical theory is no longer small.
Until this point the field moment expansion provides a
solution with a much lower fractional deviation. Likewise,
until the break time the field moment expansion estimate
of Q remains accurate. Therefore, the field moment
expansion both provides a more accurate solution until
the break time and successfully provides an accurate
estimation of this time.
The evolution central moments are shown in Fig. 4.

As expected for an initially coherent state the central
moments all start out at 0 and then grow on a timescale set
by the nonlinearity. We see also that the moments grow
hierarchically, with the second central moments, normal-
ized by jzj3, becoming ∼Oð1Þ faster than the third central
moment. We see both the initial accuracy of the mean field
theory and the hierarchically growth conditions that are
met for this system.
The field moment expansion remains more accurate, past

the break time; however, we can see in Fig. 4 that past this
time the third moment begins to become relevant. Since we
have truncated our expansion at second order past this time,

this is where we expect our solver to fail. Therefore, even
assuming hierarchical growth, the field moment expansion
is not reliable past the time when the highest moment in its
truncation becomes large.

B. Contact interactions

Unlike the previous test problem, scalar field dark matter
systems involve a large number of modes. Therefore, it is
prudent to test the accuracy of the field moment expansion
on a system with multiple modes. We select the system
given by the Hamiltonian in Eq. (1) with M ¼ 5. This
Hamiltonian has been used as a test problem in [7,12,38]
and so will serve as a good benchmark to test the field
moment expansion. It also contains a self-interaction term
which is present in many models of scalar field dark matter.
This system models a contact interaction and linear

dispersion, which implies the following:

FIG. 2. Here we show the evolution of the mean field for a given
more for each method in each of our test problems. The Kerr
nonlinearity is shown in the top left. The repulsive and attractive
contact interactions are in the top and bottom right, respectively.
Attractive long range interactions are shown in the bottom left.
Nonzero coupling constants and mode numbers are given in each
panel. On the vertical axis we plot the absolute value of the
expectation of one of the mode field operators as a fraction of the
initial value. On the horizontal axis we plot the time as a fraction
of the quantum break time. Therefore, t ¼ 1 corresponds to the
quantum break time in all plotted systems, shown by the dashed
light gray line. In all cases, the classical field solution, shown in
the dotted red line, has diverged from the exact quantum solution,
shown in the solid blue line. However, the field moment
expansion solution, shown in the dashed green line, remains
an accurate approximation of the exact quantum solution at least
until the break time.
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Λij
pl ¼ Λ0δ

ij
pl; ð67Þ

ωj ¼ jω0; ð68Þ

whereΛ0 < 0 defines an attractive interaction andΛ0 > 0 a
repulsive one. We evolve a coherent state defined by
parameter z⃗ ∈ C5. In order to test how the solution behaves
with a scaled occupation number we will simulate a
benchmark coherent state jz⃗; ri where z⃗ ¼ ð0; ffiffiffiffiffi

2r
p

eiθ1 ;ffiffiffiffiffi
2r

p
eiθ2 ;

ffiffiffiffiffi
1r

p
eiθ3 ; 0Þ and the phases are drawn from a

uniform random distribution, θi ∼U½0; 2πÞ with a fixed
random seed.
For this system, in general, the occupations of the modes

will thermalize and the expectation of the field itself will
decay. This is shown in the right two columns of Fig. 5.
Here we set Λ0 ¼ �0.1, ω0 ¼ 1, M ¼ 5, and r ¼ 3.
We now test the field moment expansion to assess its

accuracy and ability to approximate the quantum break
time. As in the previous problem we can see that the field
moment expansion solution remains close to the quantum
solution past where the deviation between the classical field
theory and quantum field theory becomes large. This is

shown for mode 3 in the middle two columns of Fig. 2. The
field moment expansion also successfully predicts the
quantum break time. This is shown for r ¼ 3 in the middle
two columns of Fig. 3. We can see that the field moment
expansion approximation of the field as well as the Q
parameter remains accurate until past the break time. We
use the field moment expansion to estimate the break time
for a number of different values of r. This is shown for the
repulsive and attractive potentials in the top and middle
panels, respectively, of Fig. 6. There we also show an
approximation of the break time using the PO condition.
The results of the two break time definitions approximately
agree. We see that the field moment expansion closely
approximates the break time in all cases.

C. Long range interactions

SFDM can include self-interactions such as those in the
previous section. However, given that we expect dark
matter to be nearly collisionless, long range interactions
such as those found in gravity are going to govern much of
the evolution. Therefore, we now turn toward modeling a
system with a 1=r potential.

FIG. 3. Here we show the fractional error and approximation of Q for each method in each of our test problems. In the top row we
show the error in each method’s approximation of the magnitude of the mean field as a fraction of the exact value of the mean field. In the
bottom row we show each method’s approximation of Q. The Kerr nonlinearity is shown on the far left column. The repulsive and
attractive contact interactions are in the middle left and right columns, respectively. Attractive long range interactions are shown in the
far right column. Nonzero coupling constants and mode numbers are given above each column. On the horizontal axis we plot the time
as a fraction of the quantum break time. Therefore, t ¼ 1 corresponds to the quantum break time in all plotted systems, shown in the
dashed light gray line. In all cases, the classical field, shown in the dotted red line, has a relatively large fractional error by the break time.
However, the field moment expansion solution, shown in the dashed green line, remains an accurate approximation of the exact quantum
solution, shown in the blue line, until at least the break time. Likewise, the field moment expansion accurately approximates Q until the
break time.
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We still start with the Hamiltonian described in Eq. (1).
As in contact interaction test problems we will use M ¼ 5.
Long range interactions and a quadratic dispersion relation
can be modeled using the following constants:

Λij
pl ¼

�
C

2ðpp − piÞ2
þ C
2ðpp − pjÞ2

�
δijpl; ð69Þ

FIG. 4. Here we show the evolution of the central field
moments, normalized by jzj3, over time. We see all three
moments become ∼Oð1Þ on a timescale set by the non-
linearity. The second moments become relatively large by the
quantum break time, shown in the dashed light gray line. The
moments growth is hierarchical; i.e., the second moments
become large before the third moment. Here we set z ¼ 5,
Λ ¼ 1 × 10−3, and ω ¼ 1.

FIG. 6. Here we show FME, in the green line, estimate of the
break time compared to the exact quantum result, in the blue line,
for a number of r values. We show both the results of an analysis
using Q and the PO condition, dashed and solid lines, respec-
tively. We see that FME provides a close estimate of the break
time. Here we set ω0 ¼ 1, M ¼ 5.

FIG. 5. Here we plot the evolution of the expectation of the
number and field operators. In the top row we show the expect-
ation value of the occupation of each mode. In the bottom row we
show the amplitude of the expectation of the field operator. In
general this amplitude decays over time due to quantum effects
such as phase diffusion. The middle and left columns show the
results of simulating contact interactions. The left column shows
the repulsive case with Λ0 > 0 and the middle column the
attractive case with Λ0 < 0. The rightmost column shows
evolution of the long range attractive interactions. For reference,
the quantum break time for each system is shown in the dashed
light gray line. Nonzero nonlinear parameters are given above
each column. In all cases ω0 ¼ 1, M ¼ 5, and r ¼ 3.
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ωj ¼
j2

2
ω0; ð70Þ

where againC < 0 gives an attractive potential andC > 0 a
repulsive one. Here we evolve the same benchmark
coherent state, jz⃗; ri, as the last section, where z⃗ ¼ ð0;
2reiθ1 ; 2reiθ2 ; 1reiθ3 ; 0Þ and the phases are drawn from a
uniform random distribution, θi ∼ U½0; 2πÞ with fixed
random seed.
The density of dark matter is well measured [46]. And

therefore the quantity ntotC should be fixed as we vary the
occupation number. This means that larger occupation
results in a lower value of C. As we scale our reference
state, then we will also scale the coupling constant send-
ing C → C=r.
The evolution of this system is shown in the right column

of Fig. 5 for r ¼ 3. The field moment expansion produces
an accurate estimation of the field until the break time;
see the rightmost column of Fig. 2. We can see that the
fractional error in the field moment expansion estimation of
the field is close to zero up to and past the break time.
Additionally, the field moment expansion successfully
predicts Q until the break time and consequently the break
time itself, shown in the rightmost column of Fig. 3.

V. CONCLUSIONS

In all the test problems the FME successfully approxi-
mated the first and second order moments of the exact
quantum evolution when the correction terms were sub-
leading order, i.e., when Q≁1. Therefore, we can say that
the FME provides
(1) A more accurate approximation of the expectation

value of the field operator, hâi at least until the
quantum break time is as defined in Eq. (30).

(2) An accurate approximation of when the quantum
break time occurs.

This is not terribly surprising because we solved the FME
to second order. Intuitively, a second order approximation
should remain accurate for longer than a first order
approximation such as MFT. Likewise, because the bench-
marks of classicality we used, the Q parameter and the PO
condition, are themselves based on second order moments
of the evolution, the fact that the FME can approximate the
break time is not surprising.
However, it is important to note that the method makes a

number of assumptions about the system. Specifically, we
make an assumption about the initial conditions and the
evolution of the system as follows:

(1) Initial conditions assumption: The initial conditions
should be well approximated by the MFT. That is
initially, Q ≪ 1 and 1 − λp=ntot ≪ 1.

(2) Evolution assumption: The evolution of the field
moments should be hierarchical. That is, for a term
in the equations of motion of the field operators, F of
order m written as a function of moments of order
less than and equal to m, given Fm moments of
order ≤ m), over the evolution the terms must
satisfy F1 > F2 > F3 � � �.

For coherent state initial conditions and the Hamiltonian in
Eq. (1), these assumptions are generally satisfied. However,
for initial conditions such as number eigenstates, which do
not have hierarchically ordered moment terms, neither
FME or MFT will accurately approximate the quantum
evolution. The specific manner in which the quantum
solutions approach a classical description will be explored
in a later paper.
If it is known that the initial conditions of a system are

well described by MFT, as in the case of coherent states,
then the FME can provide a reliable check of the timescales
on which the MFT approximation remains valid. This
method could be applied to the evolution of ultralight
scalar field dark matter created via the misalignment
mechanism. Because the misalignment mechanism creates
a system initially well-described by the classical theory,
FME could be used to approximate the quantum break time
of this system. This application will be explored in a later
publication.
In this work we have focused on the results of solvers

that integrate equations expanded to second order in the
field moments. The equations of motion are obtained via a
truncation of an infinite series of coupled differential
equations. However, it may be numerically feasible to
instead create a closure relation usingWick’s theorem, or as
is done in [14], which allows moments beyond second
order to be approximated using lower order moments. Such
a solver may remain accurate for longer than the current
implementation.

The full code repository for the simulation and data
analyses of the classical and expanded field theories
performed here is publicly available at [47].
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