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CNRS and Université de Montpellier (UMR-5299), Place Eugène Bataillon,

F-34095 Montpellier Cedex 05, France
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Galactic charged cosmic rays (notably electrons, positrons, antiprotons, and light antinuclei) are
powerful probes of dark matter annihilation or decay, in particular, for candidates heavier than a few MeV
or tiny evaporating primordial black holes. Recent measurements by PAMELA, AMS-02, or Voyager on
positrons and antiprotons already translate into constraints on several models over a large mass range.
However, these constraints depend on Galactic transport models, in particular, the diffusive halo size,
subject to theoretical and statistical uncertainties. We update the so-called MIN-MED-MAX benchmark
transport parameters that yield generic minimal, median, and maximal dark-matter-induced fluxes; this
reduces the uncertainties on fluxes by a factor of about 2 for positrons and 6 for antiprotons, with respect to
their former version. We also provide handy fitting formulas for the associated predicted secondary
antiproton and positron background fluxes. Finally, for more refined analyses, we provide the full details of
the model parameters and covariance matrices of uncertainties.

DOI: 10.1103/PhysRevD.104.083005

I. INTRODUCTION

The nature of the dark matter (DM) that dominates the
matter content of the Universe is still mysterious. DM is at
the basis of our current understanding of structure for-
mation, and it is one of the pillars of the standard Λ-cold
DM (ΛCDM) cosmological scenario [1–3], despite poten-
tial issues on subgalactic scales (see, e.g., [4]).
The recent decades have seen a number of different

strategies put in place in order to find explicit manifes-
tations of DM, which to date has been detected only
gravitationally. For instance, indirect searches (see, e.g.,
[5–7]) aim at discovering potential signals of annihilations
(or decays) of DM particles from galactic to cosmological

scales, in excess to those produced by conventional
astrophysical processes. In this paper, we focus on searches
for traces of DM annihilation or decay in the form of high-
energy antimatter cosmic rays (CRs) [5,6,8–15], the latter
being barely produced in conventional astrophysical
processes. Prototypical DM candidates leading to this kind
of signal are weakly interacting massive particles (WIMPs),
which are currently under close experimental scrutiny
[16,17]. WIMPs are an example of thermally produced
particle DM in the early Universe, a viable and rather
minimal scenario [18–24], in which effective interactions
with visible matter may be similar in strength to the
standard weak one (see, e.g., [25]). In this paper, for
illustrative purposes, we restrict ourselves to the conven-
tional case, i.e., annihilations that produce as much
matter as antimatter with speed-independent cross sections
(s-wave). However, we stress that the benchmark
propagation models we derive below are relevant for a
variety of other exotic processes or candidates, for which
antimatter is also a powerful probe (e.g., decaying DM,
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p-wave processes [26], complex exotic dark sectors [27], or
evaporation [28] of very light primordial black holes
[29–32]).
The source term composition, spectrum, and spatial

distribution (for DM-produced CRs) are dictated by both
the fundamental properties of particle DM (mass, annihi-
lation channels, and annihilation rates) and its distribution
properties on macroscopic scales. Once injected, the
produced CRs propagate in the turbulent magnetized
Galactic environment where they experience diffusion-loss
processes, which modify their initial features. Those reach-
ing Earth constitute the potential DM signal in positrons
and antiprotons (see, e.g., [33]), for many space-borne
experiments; notably PAMELA [34,35], Fermi [36],
AMS-02 [37–39], CALET [40], DAMPE [41], and
Voyager [42,43].1

A key aspect in making predictions is, therefore, to
assess, as realistically as possible, the systematic or
theoretical uncertainties affecting Galactic CR transport
(see, e.g., [46–52]). An effective way of providing the
signal theoretical uncertainties was proposed in Ref. [53].
In this reference, these authors introduced three
benchmark sets of Galactic propagation parameters
(known as MIN, MED, and MAX), picked among those
best-fitting B=C data at that time [54]. Of these, MED was
actually the best-fit model, while MIN and MAX were,
respectively, minimizing and maximizing the antiproton
signal predictions in some specific supersymmetric
DM scenarios. These models were also later used for
predictions of the positron signal, together with some
dedicated analogs [55]. They have been exploited by a
broad community for mainly two reasons: First, the
overall propagation framework was minimal enough to
allow for simple analytic or semianalytic solutions to the
CR transport equation [12,54,56–62]; second, the asso-
ciated astrophysical backgrounds were generally provided
in dedicated studies, so that setting constraints on DM
candidates required only calculations of the exotic signal.
These models were eventually included in public tools for
DM searches, such as Micromegas [63] or PPPC4DMID [14].
However, as a consequence of the plethora of increasingly
precise CR data, they are now outdated (see, e.g.,
[64–67]).
In this paper, we propose new benchmark MIN-MED-

MAX parameters for the three transport schemes introduced
in Ref. [66].2 These parameters are based on the analysis
of the latest AMS-02 [68–72] secondary-to-primary

ratios3 [67] and fully account for the breaks observed in
the diffusion coefficient at high [66,73–79] and low rigidity
[66,80]. In contrast with previous claims of a potential DM
signal in the CR antiprotons [81,82], these parameters and
their related uncertainties have also been shown to lead to
secondary antiprotons fluxes consistent [83] with AMS-02
data [84]. In contrast to the previous MIN-MED-MAX
benchmarks, we now account for the constraints on the
diffusive halo size L derived in Ref. [85]; these constraints
are set by radioactive CR species [86] and to a lesser extent
by the no-overshoot condition on secondary positrons [64].
We also go further in this paper in that we define newMIN-
MED-MAX sets which are valid for both antiprotons (and,
more generally, for light antinuclei) and positrons. In order
to reach a handy and universal definition of these transport
configurations (independent of DM mass, annihilation
channel, and subproducts), we devise a statistical method
to pick (in the hypervolume of allowed propagation param-
eters) the most representative benchmarks.
Computing the minimal, median, and maximal exotic

fluxes with our new benchmarks allows one to easily go
from conservative to aggressive new physics predictions,
i.e., to bracket the uncertainty on the detectability of DM
candidates. However, in principle, the MIN-MED-MAX
sets are more suited to derive constraints than to seek
excesses in antimatter CR data. Indeed, the latter should
rely on full statistical analyses including correlations of
errors (see, e.g., [33,83,87–89]). For more elaborate com-
parisons with existing data, one can still perform the full
CR analysis with USINE [52,62,90] or with other comple-
mentary codes like GALPROP [91,92], DRAGON [93–
95], or PICARD [96–98].
The paper develops as follows. In Sec. II, we quickly

review the formalism of Galactic CR transport and the basic
ingredients entering the DM source term. In Sec. III, we
pedagogically derive parameter combinations that drive the
DM-produced antimatter signals, for antiprotons and posi-
trons in turn. In Sec. IV, we introduce the statistical method
with which we define the sets of CR transport parameters
that maximize and minimize the exotic CR fluxes. We
present our results in Sec. V, where we also show
comparisons between fluxes calculated from the old and
new benchmarks. We conclude in Sec. VI.
We postpone to Appendixes some practical pieces of

information and more detailed considerations. In particular,
Appendix B may prove useful for many readers, as it
gathers transport parameters best-fit values and their
covariance matrices of uncertainties; the latter can be used
for a more evolved DM analysis, going beyond the simple
use of MIN-MED-MAX. We also provide parametric

1Although launched more than 40 years ago, the latter
missions are now playing a decisive role in the understanding
of CR propagation [44] as well as in constraining
DM [32,45].

2These schemes (denoted BIG, SLIM, and QUAINT) have
slightly different parametrizations of the diffusion coefficient and
include or not reacceleration. See Ref. [66] or Appendix B (in this
paper) for details.

3Secondary CRs are species absent from sources and created
only by nuclear fragmentation of heavier species during their
transport, while primary species are CRs present in sources and
subdominantly created during transport. Typical secondary-to-
primary ratios are 3He=4He, Li=C, Be=C, and B=C.
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formulas (and ancillary files) for the astrophysical back-
ground prediction (both antiprotons and positrons). In
Appendix C, we perform a cross-validation of the uncer-
tainties and correlations on the transport parameter.
Whereas the main text focuses on the SLIM propagation
scheme, Appendix D extends the discussion to the BIG and
QUAINT schemes.

II. GENERALITIES

A. Galactic cosmic-ray transport

In this section, we shortly recall the formalism and the
main ingredients of Galactic CR transport and of the DM
source term. These will be instrumental to discuss, in the
following section, the scaling of the DM-produced anti-
matter fluxes with the main propagation parameters, in
order to motivate the way we will define our MIN-MED-
MAX configurations.
The generic steady-state diffusion-loss equation for a CR

species a in energy (E) space (differential density per unit
energy ψa ≡ dna=dE) is [56]

− ∇⃗xðK∇⃗xψa − V⃗cψaÞ −
∂
∂E

�
blossψa þ KEE

∂ψa

∂E
�

¼ Qsrc prim
a þ

X
b

Γsrc sec
b→a ψb − Γsink

a ψa: ð1Þ

The first line describes the spatial diffusion KðEÞ and
convection Vc and the energy transport with energy losses
blossðEÞ≡ −dE=dt and energy diffusion KEE. More details
are given in Appendix B. In particular, the complete forms
of the diffusion coefficients used in this work are given in
Eq. (B1) (diffusion in real space) and in Eq. (B2) (diffusion
in energy space). The second line corresponds to the source
and sink terms that are listed below.

(i) The source terms include a primary contribution
Qsrc prim

a and secondary contributions Γsrc sec
b→a ≡

σbavbnism þ BRba=ðγbτbÞ. The latter arises from
the sum over (i) inelastic processes converting
heavier species of index b into a species (production
cross section σba from impinging CR at velocity vb
on the interstellar medium density nism at rest) and
(ii) decay of unstable species with a decay rate τb
and branching ratio BRba (γb is the Lorentz factor of
species b). Note that, for DM products, these
secondary contributions are part of the conventional
astrophysical background (there are very likely also
conventional astrophysical sources of primary posi-
trons [99–101] and antiprotons [102], which should
add up to the background).

(ii) The sink terms Γsink
a ≡ σavanism þ 1=ðγaτaÞ include

inelastic interactions on the ISM (destruction of a)
and decay—these terms are irrelevant for positrons.

In this study, the transport equation is solved semi-
analytically in a magnetic slab of half-height L (and radial

extent R) that encompasses the disk of the Galaxy and
inside which the spatial diffusion coefficient is assumed to
be homogeneous. The derived interstellar (IS) flux pre-
dictions are then compared to top-of-atmosphere (TOA)
data by means of the force-field approximation [103,104],
which allows one to account for solar modulation effects
[105]. The modulation level appropriate to any dataset
can be inferred from neutron monitor data [106] and
be retrieved online from the CR database [107–109].
Note that charge-sign dependence effects may lead
o different modulation levels for negatively charged
particles [110].
All transport processes introduced above are character-

ized by free parameters of a priori unknown magnitude,
except for energy loss, inelastic scattering, or decay, which
depend on constrained ingredients. These free parameters
are usually fitted to CR data, in particular, to the secondary-
to-primary CR ratios [the most conventionally used being
the boron-to-carbon (B=C) ratio], in which the source term
almost cancels out. Using AMS-02 B=C data, three differ-
ent propagation schemes, motivated by microphysical
considerations, were introduced in Ref. [66]; these schemes
are detailed in Appendix B. For each of them, we use the
associated propagation parameters constrained by the
recent analysis of AMS-02 Li=C, Be=C, B=C, and positron
data [67,85].
For DM searches in the GeV–TeVenergy range, the halo

size boundary L and spatial diffusion play the main role for
light antinuclei [61], supplemented by bremsstrahlung
[111], synchrotron, or inverse Compton energy losses for
positrons. The role of these parameters is highlighted in
Sec. III, where we pedagogically derive approximate
analytical expressions for the primary fluxes.
Complicated aspects regarding CR propagation at low
rigidity (combination of convection, reacceleration, low-
rigidity break in the diffusion coefficient, solar modulation,
etc.) remain important though, as shown in Sec. IV.

B. Dark matter source distribution

For annihilating DM, the appropriate source term Q
featuring in Eq. (1) is given (at some position x⃗s) by

Qχ;aðE; x⃗sÞ ¼ S⊙
χ
dNaðEÞ
dE

�
ρðx⃗sÞ
ρ⊙

�
2

; ð2Þ

where dNa=dE is the spectrum of CRs of species a injected
by the self-annihilation process, ρðx⃗sÞ is the mass density
profile, ρ⊙ is the DM density at the position of the Solar
System, and

S⊙
χ ≡ ξ

hσvi
2

�
ρ⊙
mχ

�
2

: ð3Þ

Above, mχ is the DM particle mass, hσvi the thermally
averaged annihilation cross section (times speed), ξ ¼ 1 (or
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1=2) if DM particles are (not) self-conjugate, and ρðx⃗sÞ is
the mass density profile of the dark halo.
Such a profile is expected to behave approximately like

r−γ in the inner parts of the Milky Way within the Solar
circle, where r is the Galactocentric distance and γ ∼ ½0; 1�
(i.e., between a core and a cusp) [112–114]—this is
consistent with current kinematic data [115,116].
Therefore, the source may strongly intensify toward the
Galactic Center, which is located at a distance of R⊙ ∼
8.2 kpc from the Solar System [117] and where a very hot
spot of DM annihilation lies in the case of a cuspy halo (see
the next section). For definiteness, our illustrations of the
MIN-MED-MAX fluxes are based on a Navarro-Frenk-
White (NFW) profile [113], ρðrÞ ¼ ρsðr=rsÞ−1ð1þ r=rsÞ2,
where ρs is the scale DM density, but our benchmark
transport parameters apply to any profile.

III. DEPENDENCE OF DM-PRODUCED PRIMARY
CRs ON PROPAGATION PARAMETERS

Diffusion occurs in a magnetic slab of half-height L,
beyond which magnetic turbulences decay away, leading to
CR leakage (free streaming). Therefore, L characterizes a
specific spatial scale beyond which CRs can escape from
the Milky Way. One can easily deduce that an important
consequence for the DM-produced CR flux is related to L
itself [118,119] and to the possible hierarchy between L
and R⊙. In particular, L≲ R⊙ leads to a flux approximately
set by the local DM density, and L≳ R⊙ leads to an
additional important contribution from the Galactic Center.
From this very simple argument, it is already clear that L
will play an important role in defining parameter sets that
maximize or minimize the DM-produced CR flux, as we
will see below.
Note that, since L is usually found to be much smaller

than the typical scale radius rs ∼ 20 kpc of the DM halo
[115,116], we approximate (for this section only) the DM
density profile by

ρðrÞ ≃ ρ⊙

�
r
R⊙

�
−γ
: ð4Þ

We derive below, under simplifying assumptions, the
dependence of antiproton and positron exotic signals on the
halo size L and the diffusion coefficient KðRÞ. We high-
light, in particular, the specific dependence of the Galactic
Center hot-spot source term. Note that the following
approximate analytical results are not meant to be com-
pared with accurate predictions but rather to highlight the
decisive role of some of the propagation parameters from
concrete physical arguments.

A. Light antinuclei

We start with the case of light antinuclei, in general, but
stick to antiprotons without loss of generality—arguments

similar to those presented below can be found in several
past studies, e.g., [12,53,61,120].
Since we are interested in the flux prediction above a few

GeV, we can approximately describe the antiproton propa-
gation as being entirely of diffusive nature (neither
energy loss nor gain). Forgetting for the moment the spatial
boundary conditions associated with our slab model, we
can start the discussion in terms of the three-dimensional
(3D) Green function, derived with spatial boundaries
sent to infinity. In that case, the Green function associated
with the steady-state propagation equation is simply
given by

Gp̄ðE; x⃗⊙ ← x⃗sÞ ¼
1

4πKðEÞjx⃗⊙ − x⃗sj
; ð5Þ

where KðEÞ is the scalar, rigidity-dependent (equivalently,
energy-dependent) diffusion coefficient. The Green func-
tion is related to the probability for an antiproton injected at
point x⃗s to reach a detector located at Earth at point x⃗⊙.
For relativistic antiprotons (with speed v ∼ c), the flux at
the detector position derives from the Green function
through

dϕp̄ðE; x⃗⊙Þ
dE

¼ v
4π

Z
slab

d3x⃗sGp̄ðE; x⃗⊙ ← x⃗sÞQχ;p̄ðE; x⃗sÞ:

ð6Þ

Here Qχ;p̄ðE; x⃗sÞ is the source term for DM-induced
antiproton CRs, which has been introduced in Eq. (2).
Now, let us try to artificially introduce the vertical

boundary condition, i.e., the most stringent one, in the
form of an absolute horizon of size αL, where α is a number
of order Oð1Þ. Crudely assuming that the DM density is
quasiconstant within the magnetic slab, one can readily
integrate Eq. (6) to get

dϕp̄ðE; x⃗⊙Þ
dE

≈
v
4π

α2L2

KðEÞ hQχ;p̄ðE; x⃗sÞiV⊙
L

⇒
dϕp̄ðE; x⃗⊙Þ

dE
∝

L2

KðEÞ : ð7Þ

Above, h� � �iV⊙
L
represents an average over a volume V⊙

L ∝
ðαLÞ3 centered at Earth and delineated by an horizon of size
αL. Equation (7) displays the main dependence of the light
nuclei fluxes in terms of the main propagation parameters,
∝ L2=K. It can also be easily shown that this same ratio,
which has the dimensions of a time, corresponds to the
typical residence time of CRs inside the magnetic halo, τres.
The physical interpretation is, therefore, simple: The flux
scales linearly with the time that CRs spend diffusing
before escaping.
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An even simpler scaling relation emerges if one adds the
information that K=L is strongly constrained by measure-
ments of secondary-to-primary ratios (see, e.g., [54]). In
particular, if the DM density were to be constant, the flux of
primary antinuclei would merely scale linearly with L [61].
In reality, except for the case of an extended-core DM
halo, the source term is not constant: It can be assumed to
scale like 1=r2 for DM self-annihilation and in a cuspy
NFW halo. Placing oneself in the observer frame
(x⃗s=⊙ ¼ x⃗s − x⃗⊙) and taking Q⊙

χ;p̄ðEÞ ¼ S⊙
χ dNp̄ðEÞ=dE,

one can get

dϕp̄ðE; x⃗⊙Þ
dE

≈
v
4π

Q⊙
χ;p̄ðEÞ ×

Z
V⊙
L

d3x⃗s=⊙
ð R⊙
jx⃗s=⊙þx⃗⊙jÞ

2

4πKðEÞjx⃗s=⊙j

≈
vR2

⊙

4πKðEÞQ
⊙
χ;p̄ðEÞ

X∞
l¼1

ðαL=R⊙Þ2l
2lð2l − 1Þ : ð8Þ

This generalizes Eq. (7), and indeed the l ¼ 1 term
gives back the scaling relation previously derived. This
series approximation is valid for αL ≪ R⊙, but it is
enough to grasp the growing impact of L when it
increases up to the Galactic Center distance R⊙. We
emphasize that this very simple calculation does qualita-
tively capture the exact DM phenomenology very well
(see Sec. V).
Below a few GeV, this simple picture might be altered as

other processes become more efficient than spatial diffu-
sion. This can typically occur in the QUAINT propagation
scheme [66], in which diffusive reacceleration could be
strong without spoiling energetics considerations [121].
Diffusive reacceleration redistributes low-energy particles
toward slightly higher energy and can affect the GeV and
sub-GeV predictions significantly [53]. This occurs when
the typical timescale for reacceleration ∝ KðEÞ=V2

a
becomes smaller than other timescales, like the disk-
crossing diffusion [∝ hL=KðEÞ, where h is the typical
ISM disk half-height] or the convective wind (∝ h=Vc)
timescales. Therefore, reacceleration may play a role at low
energy when the Alfvén speed Va becomes large, which

can further be used to maximize the flux of DM-produced
antinuclei in this energy range (see Sec. IV).

B. Positrons

We now turn to the case of positrons (identical consid-
erations apply to electrons). We can basically use the same
reasoning as for antiprotons and antinuclei, except that, at
energies above a few GeV, both spatial diffusion and energy
losses are important in characterizing their propagation in
the magnetic halo. We can again start from the infinite 3D
Green function [122]:

GeþðE; x⃗⊙ ← Es; x⃗sÞ ¼
1

bðEÞ
e−

jx⃗⊙−x⃗s j2
2λ2

ð2πλ2Þ3=2 ; ð9Þ

where we define the energy-dependent positron propaga-
tion scale λ as

λ2 ¼ λ2ðE; EsÞ ¼ 2

Z
Es

E
dE0KðE0Þ

bðE0Þ

⇒ λ2 ¼ 2K⋆τl
ðω − δ − 1Þ ε

−ωþδþ1

�
1 −

�
εs
ε

�
−ωþδþ1

�
: ð10Þ

In the latter step, we have assumed that the diffusion
coefficient and the energy-loss rate obey single power
laws in energy, with KðεÞ ¼ K⋆εδ and bðεÞ ¼ ðE⋆=τlÞεω,
defining the dimensionless energy ε≡ E=E⋆, where E⋆ is
a reference energy4 (or the energy of interest). Above a
few GeV, energy losses are mostly due to synchrotron and
inverse Compton losses, with ω ¼ 2 and τl ≈ 1016 s (for
E⋆ ¼ 1 GeV) [101]. In the inertial regime of spatial
diffusion, typical values for δ are currently found around
0.5 [66,67,85]. Correctly including the spatial boundary
conditions would significantly affect the legibility of the
exact solution to the transport equation [65,123–125],
but, like for antinuclei, we can roughly account for the
vertical boundary by limiting the spatial integration to the
local volume within αL, V⊙

L . The positron flux is then
given by

dϕeþðE; x⃗⊙Þ
dE

¼ v
4π

Z
∞

E
dEs

Z
V⊙
L

d3x⃗sGeþðE; x⃗⊙ ← Es; x⃗sÞQχ;eðEs; x⃗sÞ; ð11Þ

where an integral over energy has appeared, making the
phenomenological discussion slightly more tricky than for
antinuclei.
Note that if the dimensionless source energy εs ≫ ε, then

it no longer affects the propagation scale λ, whose order-of-

magnitude estimate, taking E⋆ ¼ 1 GeV, reads

4Note that this form of the energy losses is used only
for this analytical argument, and in our computations in the next
section we account for all the relevant interaction processes; see
Sec. VA.
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λ2 ≈ ð4.5 kpcÞ2
�

K⋆
0.05 kpc2=Myr

τl
1016 s

��
E

10 GeV

�
−1=2

:

ð12Þ

CR propagation becomes quickly short range for positron
energies above ∼10 GeV, which can be used to simplify
the discussion.
Thus, let us consider two different regimes for the

propagation scale λ. When the positron energy ε is large,
or when ε → εs, we are in the regime of vanishing
propagation scale, λ → 0. In that case, the Green function
simplifies to

GeþðE; x→⊙ ← Es; x⃗sÞ !λ→0 δ3ðx⃗⊙ − x⃗sÞ
bðEÞ θðEs − EÞ; ð13Þ

such that the DM-produced positron flux is readily
given by

dϕeþðE; x⃗⊙Þ
dE

!λ→0 vS⊙
χ

4πbðEÞ
Z

∞

E
dEs

dNeþðEsÞ
dEs

: ð14Þ

This result is important, because it implies that, at suffi-
ciently high energy, the positron flux no longer depends
on propagation parameters related to spatial diffusion
and is not sensitive to spatial boundary effects either. It
depends on only the local energy-loss rate, such that the
prediction uncertainties are essentially set by those in the
Galactic magnetic field and in the interstellar radiation field
(ISRF)—for details, see, e.g., [101,126].
In the opposite regime (small positron energy ε),

we can proceed as we did for antinuclei, and, if λ≳ L,
we can neglect the Gaussian suppression in Eq. (9) such
that the DM-annihilation-induced positron flux scales
roughly as

dϕeþðE; x⃗⊙Þ
dE

≈
dϕeþðE; x⃗⊙Þ

dE

����
λ→0

þ vS⊙
χ R3

⊙

bðEÞ
X∞
l¼1

ðαL=R⊙Þ2lþ1

ð2lþ 1Þð2l − 1Þ
Z

∞

E>

dEs

ð2πλ2Þ3=2
dNeþðEsÞ

dEs
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The first term on the right-hand side is the λ → 0 limit
derived in Eq. (14) above, corresponding to the subdomi-
nant local yield when E ← Es in the energy integral, and
the second term adds up farther contributions from source
energies beyond a critical value of E> ≳ E, for which λ is
assumed to be of the order of L [corresponding to the GeV
energy range; see Eq. (12)]. The series expansion is
performed supposing a source term scaling like the
(squared) density profile given in Eq. (4) with γ ¼ 1
(i.e., an NFW halo profile) and is formally valid in the
regime L ≪ R⊙. As for the case of antinuclei [see Eq. (7)],
this helps understand the growing impact of L as it
increases (terms l > 1 needed), which implies collecting
annihilation products closer and closer to the Galactic
Center. The leading l ¼ 1 term exhibits a dependence in
the same combination of transport parameters, L2=K⋆, as
for antinuclei (though to a different power). Recall that
K⋆, the normalization of the simple power-law approxi-
mation of the diffusion coefficient, can be traded for the
standard K0 normalization of the complete expression
given in Appendix B; mind also the specific energy
dependence.
Finally, we stress that positrons are much more sensi-

tive to low-energy processes than light antinuclei, simply
due to their comparatively smaller inertia. They are
particularly responsive to diffusive reacceleration, which
may strongly affect their low-energy spectra up to

∼5–10 GeV when efficient enough [65,127]. As already
mentioned above, some of the propagation configurations
we consider, the QUAINT model, for instance, feature a
potentially high level of reacceleration, which could imply
a transition from energy-loss-dominated (at high energy)
to reacceleration-dominated transport (at low energy) for
positrons. In that case, low-energy yields which may
originate from the Galactic Center are pushed to slightly
higher energies, which leads to a significant “bumpy”
increase of the DM-induced flux. Like for antinuclei, this
occurs whenever the typical timescale for reacceleration
∝ KðEÞ=V2

a becomes smaller than the other relevant
timescales, naturally selecting large values of the
Alfvén speed Va.

C. Hierarchy of relevant parameters

We have just shown that DM-produced primary fluxes of
antimatter CRs scale like powers of L2=K, i.e., powers of
the diffusion time across the magnetic halo; see Eqs. (7),
(8), and (15). The parameter L itself plays a special role by
enlarging the CR horizon toward the Galactic Center hot
spot. An exception arises for high-energy positrons (typ-
ically E≳ 10 GeV), for which only inverse Compton and
synchrotron energy losses matter, so that the resulting flux
becomes independent of the propagation parameters; see
Eq. (14). More subtle effects may add up at GeV energies,
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like diffusive reacceleration. In that case, propagation
uncertainties are set by uncertainties in the modeling of
the magnetic field and of the interstellar radiation field that
enter the energy-loss rate (the larger the loss rate, the
smaller the flux). For more details on these uncertainties,
see, e.g., [101,126].
Since L=K is strongly constrained (L=K0∼ const), the

main hierarchy in the exotic flux calculation is therefore
set by a selection over L. It is necessary to further select on
the remaining transport parameters to ensure the consis-
tency of the hierarchy down to the lowest energies. For
instance, the SLIM and BIG schemes, close to pure
diffusion models, have a low-rigidity break index δl.
This parameter is correlated to other transport parameters,
and it strongly impacts on the residence time of CRs in the
halo and thereby affects the hierarchy in the flux pre-
dictions. Besides, the QUAINT scheme can allow for a
significant amount of reacceleration, which also impacts
on the primary fluxes (by pushing upward the low-energy
yield and padding the flux at some critical energy that
minimizes the relative reacceleration timescale). For these
reasons, the dependence of both L and δl for SLIM and
BIG and L and Va for QUAINT are also used in the
following to define our reference models MIN, MED,
and MAX.

IV. STATISTICAL METHOD

In this section, we first give the best fit and covariance
matrix of the transport parameters coming from secondary-
to-primary ratio analyses. We encourage the use of this
matrix in refined statistical analyses looking for DM in
antiparticle fluxes. Alternatively, in a second part, we
provide MIN, MED, and MAX benchmarks and describe
the statistical method used to derive the corresponding
parameters. For simplicity, we focus on the SLIM scheme,
which has five free parameters, namely, L, δ, K0, Rl, and δl.
Note that δl drives the low-energy behavior of the diffusion
coefficient, whereas δ corresponds to the rigidity index of
the inertial regime (see details in Appendix B 1). The same
approach can also be applied to the BIG and QUAINT
schemes (see Appendix D).

A. Best fit and covariance matrix of the
transport parameters

We provide below the best-fit parameter values of the
model and their correlation matrix of uncertainties. Both
come from the analyses discussed in Refs. [67,85]. We
stress that all the values below correspond to the combined
analysis using Li=B, Be=B, and B=C AMS-02 data and
low-energy 10Be=Be and 10Be=9Be data (Ace-Cris, Ace-Sis,
Imp7 and 8, Isee3-Hkh, Ulysses-Het, Isomax, and Voyager
1 and 2; see details and references in Ref. [85]), in order to
obtain the most stringent constraints on the halo size L.
How this matrix was obtained in the original analysis,

and further checks on its validity, are presented in
Appendix C.
In the matrices shown below, the rows and

columns correspond to the ordering of the best-fit para-
meters. We stress that parameters with a nearly Gaussian
probability distribution function (see Appendix C)
in the covariance matrices are log10½L=ð1 kpcÞ� and
log10½K0=ð1 kpc2 Myr−1Þ�—log10 L and log10 K0 for
short—,not L and K0.

1. Parameter values and covariance matrix for SLIM

log10L δ log10K0 Rl δl

0.668 0.499 −1.444 4.482 −1.1100
BBBBBBBB@

þ1.13e-2 −2.05e-4 þ1.10e-2 þ1.96e-3 þ2.41e-3

−2.05e-4 þ1.06e-4 −3.91e-4 þ1.03e-6 −3.38e-4
þ1.10e-2 −3.91e-4 þ1.12e-2 þ1.79e-3 þ3.28e-3

þ1.96e-3 þ1.03e-6 þ1.79e-3 þ2.80e-2 þ1.42e-2

þ2.41e-3 −3.38e-4 þ3.28e-3 þ1.42e-2 þ1.88e-2

1
CCCCCCCCA
:

Details on how to draw parameters from this matrix are
given in Appendix B 4.

B. Definition of the benchmarks
MIN, MED, and MAX

From the best-fit values and covariance matrix of
uncertainties presented in the previous section, we draw
a collection of 105 SLIM (correlated) propagation param-
eters. This sample is displayed in the ðL; δlÞ plot in Fig. 1.
Each blue point stands for a particular model within the
SLIM propagation scheme. The constellation of dots is
nearly circular, indicating that the CR parameters log10 L
and δl are not correlated with each other.
To define the MAX (respectively, MIN) configuration,

we start selecting a subsample of SLIM models whose
quantiles relative to log10 L and to δl are both larger
(respectively, smaller) than a critical value of

qMAX
MIN

¼ 1

2

�
1� erf

�
nffiffiffi
2

p
��

; ð16Þ

where erfðxÞ ¼ 2=
ffiffiffi
π

p R
x
0 e

−t2dt is the error function. Along
each of the directions log10 L and δl, these models are
located at more than n standard deviations from the average
configuration. We have checked with the results presented
in the next section that a value of n ¼ 2 defines MAX
(respectively, MIN) as a conservative two-sigma upper
(respectively, lower) bound on the DM-produced primary
fluxes, for any annihilation channel that we consider (see
Table II in Appendix A). In Fig. 1, this subsample
corresponds to the red dots lying in the upper-right corner
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(respectively, green points in the lower-left corner) of the
blue constellation. Once this population has been drawn,
the MAX (respectively, MIN) model is defined as its
barycenter inside the multidimensional space of all CR
parameters. It is identified by the upward (respectively,
downward) black triangle.
For the MED model, we proceed slightly differently. The

orange square in Fig. 1 corresponds to a subsample of
models whose quantiles relative to log10 L and to δl are both
in the range extending from qMED − p=2 to qMED þ p=2,
with qMED ¼ 0.5 and p a “width parameter” specified
below. Once that population is selected, the MED model
corresponds once again to its barycenter configuration in
the multidimensional space of all CR parameters. It is
shown as a black square lying at the center of the orange
square. The parameters of the MED model have been
derived with p ¼ 0.03. However, Fig. 1 has been made
using p ¼ 0.1 for legibility, as a smaller value would shrink
the orange zone underneath the square.
The probability distribution functions (PDFs) of the

SLIM propagation parameters have been extracted for
the entire population of 105 randomly drawn models.
They are represented in Fig. 2 by the blue curves labeled
All. Similar PDFs have also been derived for the MIN,
MED, and MAX subsamples. They, respectively, corre-
spond to the green dashed, orange solid, and red dotted
lines. As in Fig. 1, we have used a width of p ¼ 0.1 to show
the PDFs for the MED population. We first notice that the

blue PDFs (All) extend broadly over the entire accessible
range of propagation parameters. They correspond to the
global sample. This is not quite the case for the PDFs

FIG. 1. The constellation of blue dots features a sample of 105

randomly drawn SLIM models. Along each of the directions
log10 L and δl, the red and green models are located at more than
two standard deviations from the mean. The barycenters of these
populations, defined with respect to all CR parameters, respec-
tively, yield the MAX and MIN configurations, depicted by the
upward and downward black triangles. The MED model corre-
sponds to the barycenter of the orange subsample. The latter is
defined by requiring that the quantiles with respect to log10 L and
δl are equal to the average value qMED ¼ 0.5 up to a width p.

FIG. 2. Probability distribution functions for the SLIM propa-
gation parameters. The blue curves correspond to the full collec-
tion (All) of 105 randomly drawn SLIMmodels. The green dashed,
orange solid, and red dotted distributions stand, respectively, for
the MIN, MED, and MAX subsamples, and the symbols corre-
spond to the determined benchmark values (see the text).
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relative to the MIN, MED, and MAX subsamples. These
populations have been extracted by selecting particular
values of log10 L and δl. It is, therefore, no surprise if the
corresponding PDFs are quite narrow and well separated
from each other in the two upper panels in Fig. 2. The PDFs
relative to the normalization K0 of the diffusion coefficient
are shown in the middle panel. As said previously, a
correlation between log10 K0 and log10 L directly arises
from calibrating propagation on secondary-to-primary
ratios—this appears explicitly in Fig. 7 in Appendix C.
This translates into fairly peaked PDFs for K0. The MIN
and MAX models are, thus, respectively, characterized by
lower and larger values for L, δl, and K0. The separation
induced by a selection of MIN-MED-MAX models from L
and δl is less striking in the PDFs of the inertial diffusion
index δ and of the position of the low-rigidity break Rl
but is still observed (they actually slightly correlate with K0

and more strongly with δl). Our selection procedure allows
us to fully account for these slighter correlations, even if
these latter parameters have much less impact on the
primary fluxes. In each panel, we finally notice that the
blue and orange PDFs have the same mean. The MED
configuration is actually defined as the barycenter of a
subpopulation of models selected for their average values
of log10 L and δl. This subsample sits in the middle of the
entire population.
The sets of values of the propagation parameters for the

MIN, MED, and MAX benchmarks are listed in Table I.
Similar tables for the BIG and QUAINT cases are shown in
Appendix D.

V. NEW MIN-MED-MAX FLUXES ON SELECTED
EXAMPLES

Equipped with the samples derived in Sec. IV, we
compute numerically some primary fluxes to check if
the half-height L of the magnetic halo efficiently gauges
them, as proposed in Sec. III. We first derive the positron
flux for some representative annihilation channels. To do
so, we use the so-called pinching method in a 2D setup
[65], which is the most up-to-date semianalytical procedure
to incorporate all CR transport processes. The DM halo
profile is borrowed from Ref. [115] with a galactocentric
distance R⊙ of 8.21 kpc, a local DM density ρ⊙ of
0.383 GeV cm−3, and a scale radius rs set to 18.6 kpc.
To ensure a fast convergence of the Bessel series expansion,
the central divergence is smoothed according to the method

detailed in Sec. II.D in Ref. [55] with a renormalization
radius of 0.1 kpc. For definiteness, we use the thermal
cross section hσvith ¼ 3 × 10−26 cm3 s−1, but this
parameter can be factored out and is not relevant to our
analysis.

A. Fluxes

In the upper panel in Fig. 3, we present a first example of
such calculations. The primary positron flux is calculated
for a subset of the SLIM models derived in Sec. IV and a
DM mass of 100 GeV. The pink and blue curves,
respectively, correspond to bb̄ and eþe− channels. The
injection spectra dNeþ=dEs are taken from an improved
version of PPPC4DMID [128].5 Here, to compute these
fluxes, we are using an up-to-date code using the full and
detailed expressions for interactions and energy losses:
inverse Compton (with ISRF M1 of Ref. [55]), synchrotron
(B ¼ 1 μG), adiabatic energy losses, and other ISM
interactions (ionization, Coulomb, bremsstrahlung, and
annihilation).
For positrons, we first notice that, whatever the CR

model, the predictions for a given annihilation channel
converge to the same value at high energy. When the
positron energy E is close to the DM mass, the propa-
gation scale λ is much smaller than both L and R⊙. As
predicted in Sec. III, the positron flux is then given by
Eq. (14) and is not impacted by diffusion or the magnetic
halo boundaries. Moving toward smaller positron ener-
gies, the various curves separate from each other while
keeping their respective positions down to approximately
1 GeV. At even lower energies, they are intertwined with
one another and the high-energy ordering of the primary
fluxes is lost. In the case of the SLIM parametrization, the
low-energy index δl of the diffusion coefficient comes into
play and redistributes the fluxes in the sub-GeV range.
However, because the MIN, MED, and MAX models
(represented by the black lines) have actually been
selected from both L and δl, they do not exhibit that
trend, and the corresponding fluxes follow the expected
hierarchy. In particular, the extreme MIN (dashed) and
MAX (dotted) curves nicely encapsulate the bulk of flux
predictions down to the lowest energies. Although they
have been derived from CR parameters alone, the MIN
and MAX configurations can, thus, be used to determine
the range over which primary positron fluxes are expected
to lie. This was actually expected from the discussion in
Sec. III.

TABLE I. Propagation parameters for the MIN, MED, and
MAX benchmarks for SLIM.

SLIM L [kpc] δ log10 K0 [kpc2 Myr−1] Rl [GV] δl

MAX 8.40 0.490 −1.18 4.74 −0.776
MED 4.67 0.499 −1.44 4.48 −1.11
MIN 2.56 0.509 −1.71 4.21 −1.45

5With respect to the original 2010 one [14], this version is
based on an updated release of the collider Monte Carlo code
PYTHIA [129], which includes, in particular, up-to-date informa-
tion from the LHC runs and an almost complete treatment of
electroweak radiations. For all the practical purposes of the
examples presented in the section, however, the differences are
negligible.
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In the lower panel in Fig. 3, the antiproton flux
(calculated with the USINE code) is derived for the same
bb̄ channel as for the positrons, but here with a thermal
annihilation cross section. This time, diffusion alone
dominates over the other CR transport processes.
Consequently, whatever the energy, the antiproton flux
scales like L2=K, which boils down to L insofar as the ratio
L=K is fixed by B=C data. We notice that the pink curves,
which can be considered as a representative sample of all
possible antiproton flux predictions, are once again con-
tained within the band delineated by the MIN (dashed) and
MAX (dotted) lines. The width of this band is furthermore
independent of energy and corresponds to a factor of ∼3.

B. Relative variations and correlations

In the upper panels in Fig. 4, the relative variations of the
positron flux fϕeþ − hϕeþig=hϕeþi are plotted as a function
of the half-height L for a population of 104 SLIM
configurations drawn as in Sec. IV. Each panel corresponds
to a different positron rigidity. The flux hϕeþi is the
population average at that rigidity. Each blue dot represents
a different CR model. Fluxes are derived for the bb̄
channel. We first notice a clear correlation between the
positron flux and the half-height L at 1 and 10 GV. The
points are aligned along a thin line and feature the expected
increase of ϕeþ with L. In the upper-left panel, the same
trend is visible, but the distribution of blue dots signifi-
cantly broadens for large values of L. This can be under-
stood as follows. At low rigidity, positrons lose energy
mostly in the Galactic disk and propagate like nuclei, albeit
with a much larger energy-loss rate. If the magnetic halo is
thin, the CR horizon shrinks with L and the positron flux at
Earth has a local origin. At 0.1 GV, for instance, energy
losses dominate over other CR processes and ϕeþ is well
approximated by Eq. (14); its variance is small. Conversely,
if L is large, the positron horizon reaches the Galactic
Center, which substantially contributes now to the flux.
This nonlocal contribution sensitively depends on the ratio
L2=K⋆, where K⋆ stands for the diffusion coefficient at the
energy at which ϕeþ is calculated. Here, K⋆ is taken at
0.1 GV and strongly depends on the low-energy parameter
δl. At sub-GeVenergies, the ratio L=K⋆ is less constrained
by the B=C ratio than in the GeV range, hence a large
variance which translates into the observed broadening of
the flux predictions.
The same behavior is observed in the lower panels in

Fig. 4 devoted to antiprotons. At moderate and high
rigidities, the relative variations of the antiproton flux
fϕp̄ − hϕp̄ig=hϕp̄i are nicely correlated with the half-
height L as expected from the discussion in Sec. III. At
low rigidity, the same reasoning as for positrons can be
applied to antiprotons. In the sub-GeV region, energy
losses mildly dominate over diffusion. Antiprotons are
mostly produced locally, and their flux at Earth depends on
their energy-loss rate, especially if the magnetic halo is
thin. However, for large values of L, the Galactic Center
with its dense DM distribution becomes visible. Diffusion
starts to compete with energy losses. The flux increases like
L2=K⋆, where K⋆ is dominated by the low-energy param-
eter δl. Like for positrons, the variance of the antiproton
flux predictions increases, hence the observed broadening
of the blue population when L is large.
In each panel in Fig. 4, the green, orange, and red dots,

respectively, correspond to the MIN, MED, and MAX
subsamples selected as explained in Sec. IV, i.e., taking
n ¼ 2 and p ¼ 0.03 for both parameters L and δl. The
green and red populations lie at the lower-left and upper-
right boundaries, respectively, of the constellation of blue
dots, while the orange subset sits in the middle. In Fig. 5,

FIG. 3. In the upper panel, the primary positron fluxes are
plotted as a function of positron energy for two different
annihilation channels, i.e., bb̄ in pink and eþe− in blue. The
annihilation cross section has been, respectively, set to 1.5 ×
10−24 and 3 × 10−25 cm3 s−1, to obtain primary fluxes roughly at
the same level as the AMS-02 data [130], just for illustration
purposes. The lower panel features the antiproton yield for the
same DM species and bb̄ channel as above, with a thermal
annihilation cross section. For each channel, 50 CR models have
been randomly selected and drawn in color. The MIN, MED, and
MAX configurations, respectively, correspond to the dashed,
solid, and dotted black curves. All fluxes are modulated, with a
Fisk potential of ΦF ¼ 700 MV.
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the same behavior is observed for positrons produced by a
DM species annihilating through the eþe− (left) and τþτ−
(right) channels.

C. Comparison with previous MIN-MED-MAX

The MIN, MED, and MAX models allow one to gauge
the uncertainty arising from CR propagation. As the
precision of CR measurements has been considerably
improving in the past decade, so has the accuracy of the
theoretical predictions. This trend is clear in Fig. 6, where
several uncertainty bands are featured for the bb̄ and eþe−
channels. The light-gray bands correspond to the original
analysis by Ref. [53] for antiprotons and by Ref. [55] for
positrons. As mentioned in Sec. I, the corresponding
configurations were derived by inspecting the behavior
of primary antiprotons. A slightly more refined version of
the MIN-to-MAX uncertainties was proposed in the frame-
work of PPPC4DMID by Ref. [131] for antiprotons and by
Ref. [132] for positrons. They are represented as hatched
gray regions. The latest determinations, derived in the

present work, lie within the pink (bb̄) and blue (eþe−)
strips, for positrons (left and middle panel) and for
antiprotons (right panel). These are significantly less
extended than in the past, hence a dramatic improvement
of how DM-induced fluxes are currently determined. For
example, for the bb̄ channel, compared to their former
version [53], from 1 to 10 GV the uncertainty band is
reduced by a factor of 2 for the case of positrons and 6 for
the antiprotons. Note that an additional difference for
positrons comes from the fact that different prescriptions
for energy losses were used in these works. This is seen at
high energy where all curves would converge, should
energy losses be the same.

VI. SUMMARY AND CONCLUSION

The propagation in the Galactic environment of the CRs
produced by DM annihilations or decays in the diffusion
halo is a source of significant uncertainty. Reliably and
consistently estimating this uncertainty represents a crucial
step toward a better understanding of the potential of

FIG. 4. The relative spread of primary fluxes is plotted as a function of the half-height L of the magnetic halo, at three different
rigidities. Here we considered a DM particle of mass 100 GeV that annihilates through the bb̄ channel. Positrons and antiprotons,
respectively, correspond to the upper and lower panels. Solar modulation is included with a Fisk potential of ΦF ¼ 700 MV. In each
panel, the green, orange, and red points, respectively, correspond to the MIN, MED, and MAX samples selected, as explained in Sec. IV.
For illustrative purposes, in this figure, 104 SLIM models are randomly drawn (as opposed to the larger ensembles we use in the main
analysis), so each colored sample contains around a dozen models. The black squares and triangles indicate the actual loci of the MED,
MIN, and MAX configurations.
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indirect detection to constrain the DM properties and,
ultimately, to the possible discovery of a DM signature
in CRs. This is particularly important in light of the recent
harvest of accurate CR data, which are opening the way to
precision DM searches. These same data allow one to pin
down, with unprecedented accuracy, the different aspects of
CR propagation.
In this spirit, in this paper, we have derived new MIN,

MED, andMAX benchmark parameter sets that correspond
to the minimal, median, and maximal fluxes of DM-
produced CRs in the Milky Way (as allowed by constraints
set by standard CRs). They replace their former version,
previously used in the literature for antiprotons and
positrons. The new derived parameters are actually valid
for both species, and for light antinuclei more generally,
scaling down the uncertainty by a factor of ∼2. We have
worked in the framework of the state-of-the-art Galactic
propagation schemes SLIM, BIG, and QUAINT. The MIN-
MED-MAX parameters for SLIM are given in Table I and
represent the main output of our work. For convenience, we
also provide parametric fits for the associated secondary
astrophysical predictions in Appendix B 5. The corre-
sponding sets for BIG and QUAINT (see Appendix D)
are given in the form of ancillary files. In practice, the DM
practitioner interested in estimating, in an economical and
effective way, the variability of DM CR fluxes induced by
Galactic propagation can use the SLIM MIN-MED-MAX
sets. For a more complete analysis, the user can also use the
BIG version (the BIG scheme retains the full complexity of
the transport process, with little approximations) and the
QUAINT one (the QUAINT scheme puts the accent on
reacceleration and convection). Going beyond the MIN-
MED-MAX references can also be achieved in more
involved analyses using the covariance matrices of the
propagation parameters provided in Appendix B 3.

FIG. 6. The theoretical uncertainty on primary fluxes owing to CR propagation has been shrinking as a result of more accurate
measurements. The light-gray bands correspond to the original determination of the MIN, MED, and MAX models by Ref. [53] for
antiprotons and by Ref. [55] for positrons. The hatched gray regions feature the slightly improved predictions proposed in the framework
of PPPC4DMID by Ref. [131] for antiprotons and Ref. [132] for positrons. The results of this work are illustrated in the SLIM case by
the pink (bb̄ channel) and blue (eþe−) strips, for positrons (left and middle panel) and for antiprotons (right panel). They point toward a
dramatic improvement of how DM-induced fluxes are now calculated.

FIG. 5. We observe the same trend as in the previous figure for
positrons produced from a DM species annihilating into eþe−

(left) and τþτ− (right) pairs. The positron fluxes are taken at 1 GV.
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The computation of CR propagation itself can be
performed with semianalytic codes such as USINE or, of
course, via a dedicated numerical or semianalytical CR
propagation work. In the future, these new benchmarks
configurations will also be implemented in ready-to-use,
DM-oriented numerical tools such as PPPC4DMID.
Our revised MIN-MED-MAX parameter sets lead to

significant changes. As illustrated in the several examples
above, they reduce by a factor of Oð10Þ the width of the
uncertainty band. Hence, any new DM ID analysis employ-
ing these new sets can be expected to reduce the uncertainty
of the DM properties (most notably, the constraints on the
annihilation cross section or the decay rate) by the same
factor.
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appel à projets: Diffusion from Galactic High-Energy
Sources to the Earth (DIGHESE), by the national CNRS/
(Institut national des sciences de l'Univers), PNHE
(Programme National Hautes Energies), and Programme
National de Cosmologie et de Galaxies (PNCG) programs,
cofunded by INP, IN2P3, CEA, and CNES, and by Villum
Fonden under Project No. 18994. We also acknowledge
financial support from theANRProject No.ANR-18-CE31-
0006, the Origines, Constituants et EVolution de l'Univers
(OCEVU) Labex (ANR-11-LABX-0060), from the
European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie Grant Agree-
ment No. 860881-HIDDeN, and from the CNRS 80| PRIME

grant scheme (“DaMeFer” project).M. C. acknowledges the
hospitality of the Institut d’Astrophysique de Paris (IAP),
where part of this work was done.

APPENDIX A: STATISTICAL RELEVANCE OF
THE MIN AND MAX BENCHMARKS FOR SLIM

After performing the cuts in the propagation parameter
space (on log10 L and δl) presented in Sec. IV, we check that
by choosing n ¼ 2 the model MAX (respectively, MIN)

defines a conservative two-sigma upper (respectively,
lower) bound for the annihilation channels considered in
this study. In Table II, we report the probability of the flux
to be above MAX (respectively, below MIN) for the case of
a DM particle of mass 100 GeVannihilating into bb̄ for the
antiproton case and bb̄ and eþe− for the positron case.
These probabilities are always below 0.022, i.e., above the
2σ limit.

APPENDIX B: PROPAGATION MODEL,
PARAMETERS, AND ANCILLARY FILES

This Appendix is devoted to a more thorough description
of the propagation formalism used in the main text and its
individual elements.
The ingredients of the 2D propagation model are recalled

in Sec. B 1. The propagation parameter values are taken
from the 1D model analysis of Refs. [67,85], and we show
in Sec. B 2 why we can adopt them for our 2D model, too.
For readers who wish to go beyond the MIN-MED-MAX
parameter sets for their analyses, we provide in Sec. B 3 the
best fit and covariance matrix of uncertainties on the
parameters for various configurations and specify how to
draw from them in Sec. B 4. We also provide in Sec. B 5 a
parameterized formula for the secondary p̄ and eþ fluxes,
that should prove useful for readers who wish to study the
DM contribution together with a reference background
calculation.

1. 2D thin disk–thick halo model, diffusion coefficient,
and configurations

The general steady-state transport equation has been
introduced above in Eq. (1). Following Refs. [53,54], CRs
propagate and are confined in a cylindrical geometry of
half-thickness L (diffusive halo) and radius R. Standard CR
sources and the gas are pinched in an infinitely thin disk of
half-thickness h ¼ 100 pc ≪ L, whereas exotic sources are
distributed following, for instance, the DM distribution.
Only sources inside the diffusive halo are considered here,
since it was shown (see Appendix B in Ref. [31]) that
sources outside have a negligible contribution—see, how-
ever, [133] for calculations with a position-dependent
diffusion coefficient leading to estimates of ∼25% of
the total.
For transport, the model assumes (i) a constant con-

vection term Vc perpendicular to the disk (positive above
and negative below), (ii) an isotropic and homogeneous
diffusion coefficient with a broken power law at low
(index l) and high (index h) rigidity,

KðRÞ¼βηK0

�
1þ

�
Rl

R

�−δlþδ
sl

�sl� R
1GV

�
δ
�
1þ

�
R
Rh

�Δh
sh

�−sh
;

ðB1Þ

and (iii) a diffusion in energy space [134],

TABLE II. Probability that a propagation configuration in the
SLIM parameter space yields a flux above MAX or below MIN,
for DM particles (mχ ¼ 100 GeV) annihilating in the indicated
channels and producing positrons or antiprotons. The probabil-
ities expressed in Gaussian sigmas are given for three energies.

Energy [GeV] 0.1 1 10

Channels bb̄ eþe− bb̄ eþe− bb̄ eþe−

PðΦeþ > ΦMAX
eþ Þ½σ� 2.9 2.8 2.8 2.4 2.5 2.4

PðΦeþ < ΦMIN
eþ Þ½σ� 2.9 3.0 2.6 2.5 2.5 2.5

Channels bb̄ bb̄ bb̄
PðΦp̄ > ΦMAX

p̄ Þ½σ� 2.9 2.9 2.1

PðΦp̄ < ΦMIN
p̄ Þ½σ� 2.9 2.7 2.4
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KEE ¼ β2Kpp;

with KppðR; x⃗Þ ¼
4

3

1

δð4 − δ2Þð4 − δÞ
V2
ap2

KðRÞ ; ðB2Þ

whose strength is mediated by the speed of plasma waves
Va (the Alfvénic speed).6

Based on the analysis of AMS-02 B=C data [66] (in a 1D
model), three different transport schemes were introduced
(BIG, SLIM, and QUAINT), with the presence or absence
of a low-energy break or reacceleration. The fixed and free
parameters of these configurations are reported in Table III,
and they are also used for the 2D model here (see the next
section).

2. Best-fit parameters from AMS-02 LiBeB data

A state-of-the-art methodology to analyze AMS-02 data
and constrain propagation parameters—accounting for
uncertainties in production cross sections and covariance
matrix of CR data uncertainties—was proposed in
Ref. [52]. This methodology was used in Refs. [67,85]
for the combined analysis of AMS-02 Li=C, Be=B, and
B=C data, to obtain the transport parameters in several
configurations (recalled in Table III). However, this analy-
sis was performed in a 1D model, whereas for dark matter
studies, a 2D version of the model is mandatory. Indeed, in
the 1D model the Galactic diffusive halo is considered as an
infinite slab in the radial direction, and the vertical direction
z is the only variable. As the DM distribution has a

nontrivial radial profile, an appropriate modeling in the r
direction becomes necessary.
Compared to the 1D model, the 2D model requires two

extra parameters: a radial boundary (taken at R ¼ 20 kpc)
and a radial distribution of CR sources. The latter, for the
case of astrophysical sources, can be estimated from the
distribution of supernova remnants [136,137] or pulsars
[138,139]. In order to decide which transport parameters to
use for this analysis, we performed a comparison (with the
USINE package [62]) of the B=C predictions obtained
in the 1D model and in the 2D model for various
assumptions.

(i) Using a constant CR source distribution in the 2D
model gives similar results as in the 1D model as
long as L ≪ LR (where LR ¼ R − R⊙), i.e., if the
distance between the observer and the radial boun-
dary is much smaller than the halo size. Indeed,
contributions from sources farther away than a
boundary are exponentially suppressed in diffusion
processes [118]. If LR ∼ L, the radial boundary
becomes a new suppression scale, which breaks
down the equivalence with the 1D model. We
observe a few percent (energy-dependent) impact
on the B=C calculation for L ¼ 5 kpc. This ampli-
tude of the effect is correlated with the value of L.

(ii) Using a more realistic spatial distribution of
sources, the above radial boundary effect is miti-
gated (using Ref. [137]) or slightly amplified (using
Refs. [138,139]). This is understood as the sharply
decreasing source distribution with the modeling
radius implies that fewer sources are suppressed by
the radial boundary. A detailed analysis of these
subtle effects goes beyond the scope of this paper
and will be discussed elsewhere.

In summary, the 1D model or the 2D version with a
realistic source distribution are expected to provide similar
results (at a few percent level) and, thus, similar best-fit
transport parameters and uncertainties; we explicitly
checked it for the SLIM model using the radial distribution
from Ref. [137] with R ¼ 20 kpc. For these reasons, we
conclude that the 1D model parameters found in
Refs. [67,85] can be used “as is” in the context of 2Dmodels.

3. Best-fit values and covariance matrix of uncertainties
for BIG and QUAINT

We provide below the best-fit parameter values of the
schemes BIG and QUAINT and their correlation matrix of
uncertainties.
In the matrices shown below, the rows and

columns correspond to the ordering of the best-fit para-
meters. We stress that parameters with a nearly Gaussian
probability distribution function (see Appendix C)
in the covariance matrices are log10½L=ð1 kpcÞ� and
log10½K0=ð1 kpc2 Myr−1Þ�—log10 L and log10 K0 for
short—not L and K0.

TABLE III. Fixed (numbers) and free (✓) parameters in
Eq. (B1) for the transport configurations BIG, SLIM, and
QUAINT [66]. See Sec. B 3 for the best-fit values of the free
parameters.

Parameters Units BIG SLIM QUAINT

η 1 1 ✓
δl ✓ ✓ n/a
sl 0.05 0.05 n/a
Rl [GV] ✓ ✓ n/aa

Va [km=s] ✓ n/a ✓
Vc [km=s] ✓ n/a ✓
K0 [kpc2=Myr] ✓ ✓ ✓
δ ✓ ✓ ✓
Δh 0.18 0.19 0.17
Rh [GV] 247 237 270
sh 0.04 0.04 0.04
L [kpc] ✓ ✓ ✓

aIn practice, for QUAINT the rigidity Rl is set to 0 in Eq. (B1).

6The reacceleration is pinched in the Galactic plane, and,
therefore, Va values in this model should be scaled by a factor offfiffiffiffiffiffiffiffiffi

h=L
p

before any comparison against theoretical or observatio-
nal constraints [121,135].
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a. Parameter values and covariance matrix for BIG

log10L δ log10K0 VA Rl δl Vc

0.667 0.498 −1.446 5.000 4.493 −1.102 0.1400
BBBBBBBBBBBBB@

þ4.20e-3 þ3.53e-4 þ3.94e-3 þ1.49e-2 þ2.57e-3 −1.48e-3 þ4.56e-2

þ3.53e-4 þ4.19e-4 þ7.06e-4 þ3.96e-3 þ2.89e-3 −1.41e-3 þ3.24e-3

þ3.94e-3 þ7.06e-4 þ5.48e-3 þ1.86e-2 þ4.67e-3 −2.18e-3 þ4.57e-2

þ1.49e-2 þ3.96e-3 þ1.86e-2 þ2.02eþ 1 þ6.00e-2 −4.52e-2 þ1.96e-1

þ2.57e-3 þ2.89e-3 þ4.67e-3 þ6.00e-2 þ2.92e-2 −1.30e-2 þ2.15e-2

−1.48e-3 −1.41e-3 −2.18e-3 −4.52e-2 −1.30e-2 þ2.11e-2 −1.28e-2
þ4.56e-2 þ3.24e-3 þ4.57e-2 þ1.96e-1 þ2.15e-2 −1.28e-2 þ1.86eþ 0

1
CCCCCCCCCCCCCA

:

b. Parameter values and covariance matrix for QUAINT

log10L δ log10K0 VA Vc ηt

0.611 0.458 −1.405 52.208 0.000 −1.9450
BBBBBBBBB@

þ6.12e-3 þ7.07e-4 þ4.75e-3 þ3.12e-1 þ2.60e-3 þ1.82e-2

þ7.07e-4 þ6.43e-4 þ1.26e-3 þ2.87e-1 þ8.72e-4 þ1.45e-2

þ4.75e-3 þ1.26e-3 þ7.58e-3 þ9.22e-1 þ1.76e-3 þ3.06e-2

þ3.12e-1 þ2.87e-1 þ9.22e-1 þ1.95eþ 2 þ7.14e-1 þ7.47eþ 0

þ2.60e-3 þ8.72e-4 þ1.76e-3 þ7.14e-1 þ3.31e-1 þ3.01e-2

þ1.82e-2 þ1.45e-2 þ3.06e-2 þ7.47eþ 0 þ3.01e-2 þ5.02e-1

1
CCCCCCCCCA
:

4. Drawing from the covariance matrix in practice

For a DM analysis using the full statistical information
on the transport parameters, one needs to draw from best-fit
values and the associated covariance matrix of uncertainties
presented in Appendix B 3. The following NumPy [140]
command can be used, for instance:

random:multivariate normalðpars; cov; size ¼ NÞ;

where pars is an array of the best-fit parameters, cov is the
associated covariance matrix, and N is the number of
samples to draw.
By construction, the parameter distributions are sym-

metric, so that nonphysical negative values can be obtained
for Va and Vc: The sample behaving so should be discarded
(or, alternatively, used with Va and Vc set to zero).
There are also a few other important points to be kept
in mind.

(i) Full list of parameters.—For a full description of the
model and, in particular, of the diffusion coefficient

Eq. (B1), the parameters drawn must be comple-
mented by the “fixed” parameter values given in
Table III (no associated covariance matrix of un-
certainties).

(ii) Meaning of Va < 5 km s−1.—As discussed in
Ref. [52], we enforce (obviously positive but also)
non-null values of Va for numerical issues. As a
result, any value of Va smaller than 5 km s−1 should
be understood as Va ¼ 0.

(iii) Specific form of KðRÞ for QUAINT.—This model
does not enable a low-energy break, and one needs
to remove in Eq. (B1) the associated terms (first
square bracket) or, alternatively, to set Rl to zero.

5. Parametrization for reference secondary p̄ and e +

In order to set constraints on DM candidates, it is
mandatory to know the astrophysical secondary fluxes of
CR on top of which the DM signal is searched for. To
enable this kind of search, we provide here a parametric
formula for such secondary backgrounds:
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log10

�
ϕIS

1=ðUx m2 s srÞ
�
¼ c0 þ

X10
i¼1

ci

�
log10

�
x
xth

��
i
;

ðB3Þ

where x (and the corresponding unit Ux) is the rigidity R
(Ux ¼ GV) when considering p̄ or the kinetic energy Ek
(Ux ¼ GeV) when considering positrons.

a. Coefficients for p̄

The fit is based on the calculation presented in Ref. [83].
The coefficients to apply below and above xth ¼ 8 GV
are given in Table IV: Eleven coefficients were needed to
reproduce the fluxes with a precision better than 1%,
and the formula applies to IS rigidities from 0.9 GV
to 10 TV.
In principle, for an exotic flux calculation from a given

set of transport parameters (drawn from the covariance
matrix above), the secondary flux should be recalculated.
However, the secondary flux calculation requires the full
propagation of all nuclear species and the inclusion of
many extra ingredients. Because this complicates and
greatly slows down the calculation (compared to the
exotic-flux-only calculation) and because the secondary
flux varies “only” within 10%–20% over the transport
parameter space [83], the use of the reference secondary
flux formula remains useful and a very good first approxi-
mation to quickly explore the parameters space of new
physics models.

b. Coefficients for e+

The fit is based on the calculation we presented in
Ref. [85]. The coefficients to apply below and above

xth ¼ 1 GeV are presented in Table V: We also took 11
coefficients to reproduce the fluxes at the percent level
precision, and the formula applies to IS kinetic energies
from 2 MeV to 1 TeV.
We stress that this positron flux accounts for only the

astrophysical secondary flux but does not account for
astrophysical primary contributions [85].
Note that these parametrizations concern only the

secondary predictions for the SLIM model. For complete-
ness, we also provide on reasonable request the secondary
TOA fluxes for eþ and p̄ for the two other models (BIG and
QUAINT) in the form of ancillary files.

TABLE V. Coefficients for the reference secondary eþ IS fluxes
of Ref. [85] in ðGeVm2 s srÞ−1. This parametrization [see
Eq. (B3)] is valid for kinetic energies from 0.002 GeV to 1 TeV.

(<1 GeV) (≥1 GeV)

SLIM (MIN)
c0 þ4.996550 × 10−1 c0 þ5.075677 × 10−1

c1 −1.128052 c1 −1.443865
c2 þ8.821920 × 10−1 c2 þ1.877049
c3 þ1.157137 × 101 c3 −1.066219 × 101

c4 þ3.806619 × 101 c4 þ1.319804 × 101

c5 þ6.252870 × 101 c5 −6.512217
c6 þ5.736342 × 101 c6 −8.868464 × 10−3

c7 þ3.097409 × 101 c7 þ1.500031
c8 þ9.799701 c8 −7.040355 × 10−1

c9 þ1.682151 c9 þ1.401731 × 10−1

c10 þ1.210159 × 10−1 c10 −1.074125 × 10−2

SLIM (MED)
c0 þ6.525177 × 10−1 c0 þ6.461406 × 10−1

c1 −1.588678 c1 −1.384556
c2 þ4.078335 × 10−1 c2 −4.774200
c3 þ1.069849 × 101 c3 þ1.366313 × 101

c4 þ3.723089 × 101 c4 −2.902370 × 101

c5 þ6.209276 × 101 c5 þ3.638689 × 101

c6 þ5.723649 × 101 c6 −2.734189 × 101

c7 þ3.094710 × 101 c7 þ1.258343 × 101

c8 þ9.790895 c8 −3.485906
c9 þ1.679555 c9 þ5.346104 × 10−1

c10 þ1.207142 × 10−1 c10 −3.491387 × 10−2

SLIM (MAX)
c0 þ7.593070 × 10−1 c0 þ7.480398 × 10−1

c1 −2.339091 c1 −1.915233
c2 þ9.758912 × 10−6 c2 −6.642892
c3 þ1.276888 × 101 c3 þ2.428124 × 101

c4 þ4.395641 × 101 c4 −5.077192 × 101

c5 þ7.102167 × 101 c5 þ6.136908 × 101

c6 þ6.382395 × 101 c6 −4.511720 × 101

c7 þ3.384382 × 101 c7 þ2.058580 × 101

c8 þ1.054571 × 101 c8 −5.705532
c9 þ1.787170 c9 þ8.807590 × 10−1

c10 þ1.271850 × 10−1 c10 −5.812954 × 10−2

TABLE IV. Coefficients for the reference secondary p̄ IS fluxes
of Ref. [83] in ðGVm2 s srÞ−1. This parametrization [see Eq. (B3)]
is valid for rigidities from 0.9 GV to 10 TV. These coefficients
hold for MIN, MED, and MAX, since the differences are small.

(<8 GV) (≥8 GV)

SLIM
c0 −2.059841 c0 −2.041091
c1 −3.742100 c1 −2.125402
c2 −3.853337 × 101 c2 −1.754931
c3 −3.921245 × 102 c3 þ2.370157
c4 −2.139289 × 103 c4 −2.168217
c5 −6.615346 × 103 c5 þ1.164920
c6 −1.245434 × 104 c6 −2.432764 × 10−1

c7 −1.457810 × 104 c7 −6.773555 × 10−2

c8 −1.037382 × 104 c8 þ5.097495 × 10−2

c9 −4.114799 × 103 c9 −1.102931 × 10−2

c10 −6.986690 × 102 c10 þ8.537912 × 10−4
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APPENDIX C: MCMC VERSUS MINOS RESULTS

In this Appendix, we show that the covariance matrix of
uncertainties reconstructed with the help of MINUIT [141]
provides a sufficient description of the behavior of the
transport parameter uncertainties.
To do so, we perform a Markov chain Monte Carlo

(MCMC) analysis of the transport parameters and compare
the results with those obtained from theHESSE andMINOS
algorithms in MINUIT. In the latter approach, HESSE
provides a covariance (symmetric) matrix of uncertainties
on the model parameters but whose uncertainties (from

MIGRAD) are not very robust. In order to obtain a more
reliable covariance matrix, we rescale the HESSE covari-
ance matrix by the symmetrized MINOS errors; doing so

TABLE VI. Propagation parameters for the MIN, MED, and
MAX configurations of the BIG models.

L log10 K0 Va Rl Vc
BIG [kpc] δ [kpc2/Myr] [km=s] [GV] δl [km=s]

MAX 6.637 0.529 −1.286 6.002 4.755 −1.455 1.819
MED 4.645 0.498 −1.446 4.741 4.490 −1.102 0.459
MIN 3.206 0.465 −1.616 4.277 4.208 −0.742 0.066

FIG. 7. Comparison of constraints on transport parameters obtained from an MCMC engine or via the HESSE-MINOS algorithms. In
off-diagonal plots, the black squares and red crosses show the best-fit values from the former and latter results, respectively, MCMC
points are shown in blue (from which 68% confidence level contours are extracted in black), and red ellipses are based on symmetrized
MINOS errors (dash-dotted or dotted lines for the fit accounting for nuisance parameters). In diagonal plots, the blue histograms
correspond to the 1D probability distribution function (MCMC), and the 68% C.L. contours are shown as vertical blue lines (MCMC)
and red vertical lines (HESSE-MINOS). We recall that the 1D 68% C.L. on any given parameter is not expected to match the projected
value obtained from the 2D 68% C.L. See the text for discussion.
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ensures that we keep the “correct” correlations, but
now with our best knowledge on the error size. The
MCMC engine provides the full PDF on the parameters.
If the PDFs are Gaussian, we should obtain similar
confidence levels and contours on the parameters from both
approaches.
This analysis follows closely that of Ref. [85], and we

only briefly highlight the most important elements or
differences. The determination of the transport parameters
and halo size of the Galaxy (L) are based on AMS-02 Li=B,

Be=B, and B=C data [70], and the analysis with MINUIT

matches exactly that described in Ref. [85]. For the MCMC
analysis, we relied on the PyMC3 package [142] and its
Metropolis-Hastings sampler.7 More details and references
on this algorithm and the various steps associated with the
postprocessing of the chain (burn-in length, trimming, etc.)
can be found, for instance, in Ref. [144], where a similar
algorithm and approach was first considered (in a cosmic-
ray propagation context).
We show in Fig. 7 the result of the comparison on the

propagation configuration SLIM only. In the latter, the
free transport parameters are the normalization and slope
of the diffusion coefficient at intermediate rigidities (K0

and δ), the position and strength of a possible low-energy
break (Rl and δl), and the halo size of the Galaxy (L). First,
as a sanity check, the red crosses and black squares in 2D
plots of the parameters (off-diagonal) show that both
approaches provide the same best-fit values; we also
recognize the tight correlation between K0 and L param-
eters. On the same off-diagonal plots, the black solid lines
correspond to 68% confidence level (C.L.) contours of the
MCMC analysis, while the red dash-dotted lines corre-
spond to 68% C.L. ellipses from the MIGRAD-MINOS
approach, and both match very well. A similar informa-
tion is shown in the 1D plots (diagonal), where the red
dash-dotted (from MIGRAD-MINOS) is superimposed on
the black solid lines (MCMC). The full information on the
PDF is provided by the blue histograms. As already
observed in Ref. [145] (see their Appendix C) and also
seen here, the transport parameters are Gaussian at first
order. Hence, using the covariance matrix of uncertainties
(as built above) is a very good approximation to using the
full PDF information, and it will eventually depart from
the latter only if too large confidence levels are
considered.
There are possibly a few caveats to these conclusions.

First, due to fact that MCMC analyses are computation-
ally demanding, we performed the comparison only for
the SLIM model. However, we do not expect different
behaviors for the other configurations (BIG and
QUAINT), especially for the most relevant parameters

FIG. 8. The same as in Fig. 1 for the BIG (up) and QUAINT
(down) declensions of CR propagation models. The constella-
tions of blue dots contain each 105 randomly drawn models. The
MIN, MED, and MAX subsamples together with their barycen-
tric configurations are defined as explained in Sec. IV. For BIG,
the selection is still built on the parameters log10 L and δl,
whereas for QUAINT, it is based on the couple log10 L and Va. In
the latter case, an additional skimming of the MED and MAX
populations is performed, requiring that the secondary positron
flux does not exceed the observations [130]. The configurations
which actually pass this test are shown in dark green.

TABLE VII. Propagation parameters for the MIN, MED, and
MAX configurations of the QUAINT models.

L log10 K0 Va Vc
QUAINT [kpc] δ [kpc2=Myr] [km=s] [km=s] η

MAX 6.840 0.504 −1.092 83.929 0.469 −1.001
MED 4.080 0.451 −1.367 52.066 0.239 −2.156
MIN 2.630 0.403 −1.643 18.389 0.151 −3.412

7Technically, we took advantage of PyBind11 [143] to enable
the interface with Python libraries of the C++ propagation code
USINE [62].
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in a dark matter context (K0, δ, and L), as these parameters
behave similarly in terms of their MINOS uncertainties
[85]. Second, the above comparisons were made
without nuisance parameters (nuclear cross sections and
solar modulation parameters), despite their importance for
the determination of the transport parameters [52,66,67].
This is illustrated comparing the red dash-dotted and
dotted lines in Fig. 7: Accounting for nuisance parameters
enlarges the contours (larger uncertainties) for almost all
parameters. We tried to run MCMC chains with nuisance
parameters, but the latter strongly increase the correlations
length of the chains (they are correlated with other
parameters and partly degenerate). So far, we did not
succeed in obtaining reliable results for an MCMC
analysis. Lastly, the comparisons were made in the context
of the 1D diffusion model and not in the 2D one that is
used in the main text. However, as shown in Ref. [145]
(with an MCMC analysis), the propagation parameters are
very similar whether determined in a 1D or 2D model, as
long as L≲ 10 kpc, which is the case here (see also the
previous section).

APPENDIX D: THE MIN, MED, AND
MAX CONFIGURATIONS FOR THE QUAINT

AND BIG MODELS

The SLIM and BIG benchmarks are fairly similar. In the
latter case, two additional parameters are introduced, i.e.,
the Alfvénic speed Va and the convective wind velocity Vc
to recover more easily the behavior of the B=C ratio in the
GeV range. Actually, the low-energy parameters δl and Rl
are enough to reach a good agreement with data. That is
why the values of Va and Vc provided by the fits to CR
nuclei are small, as shown in Table VI. In order to define
the MIN, MED, and MAX models for the BIG benchmark,
we have proceeded as in the SLIM case, using the
parameters log10 L and δl. The result is shown in the top
panel in Fig. 8. The values of the quantiles qMIN, qMED, and

qMAX and of the width parameter p are the same as those
in Sec. IV.
The QUAINT benchmark makes use of the low-energy

parameters Va, Vc, and η and disregards Rl and δl.
Reproducing theB=CGeVbump requires fairly large values
of the Alfvénic speed Va as can be appreciated from
Table VII. This parameter controls diffusive reacceleration
which pushes sub-GeV CR species upward in the GeV
energy region. We have used it together with log10 L to
define theMIN,MED, andMAXsubsamples extracted from
a population of 105 randomly drawn QUAINT models. The
procedure is the same as before except that δl has been
replaced by Va as shown in the bottom panel in Fig. 8.
There is, however, a slight complication that arises

because the Alfvénic speed is high. For large values of
Va, the secondary positron flux exhibits, like theB=C ratio, a
bump at a few GeV. In some cases, it even exceeds the
observations. To remove these pathological models from the
MAX and MED subsamples, where they tend to appear, we
have required the secondary positron flux not to overshoot
by more than three standard deviations the lowest AMS-02
data point [130]. To be conservative, we have used a Fisk
potentialΦF of 750 MV. The red and orange populations in
the right panel in Fig. 8 are the result of this skimming.
Remarkably, the parameter values of the MED benchmark
are found very close to the combined p̄ and B=C best fit in
Ref. [89], with only η differing by one sigma from our value.
Finally, the theoretical uncertainties arising from CR

propagation are summarized in Fig. 9 for the three bench-
marks SLIM, BIG, and QUAINT. The pink and blue strips,
respectively, stand for bb̄ and eþe− channels. Antiproton
primary fluxes are presented in the right panel, while the
left and middle ones are devoted to positrons. This plot
summarizes our entire analysis. The various bands overlap
each other, indicating that, in spite of their differences, the
three benchmarks supply similar predictions for primary
fluxes.

FIG. 9. The theoretical uncertainty on primary fluxes owing to CR propagation for the three benchmarks SLIM, BIG, and QUAINT.
The panels are similar to those in Fig. 6. The pink and blue strips, respectively, correspond to bb̄ and eþe− channels. The right panel is
devoted to antiprotons, while the others feature results for positrons. The bands nicely overlap each other. Although different in spirit, the
three benchmarks yield similar predictions.

NEW MINIMAL, MEDIAN, AND MAXIMAL PROPAGATION … PHYS. REV. D 104, 083005 (2021)

083005-19



[1] P. J. E. Peebles, Astrophys. J. Lett. 263, L1 (1982), articles
.adsabs.harvard.edu/full/1982ApJ...263L...1P.

[2] G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J.
Rees, Nature (London) 311, 517 (1984).

[3] G. Bertone and D. Hooper, Rev. Mod. Phys. 90, 045002
(2018).

[4] J. S. Bullock and M. Boylan-Kolchin, Annu. Rev. Astron.
Astrophys. 55 (2017), https://doi.org/10.1146/annurev-
astro-091916-055313.

[5] L. Bergström, Rep. Prog. Phys. 63, 793 (2000).
[6] J. Lavalle and P. Salati, C.R. Phys. 13, 740 (2012).
[7] J. M. Gaskins, Contemp. Phys. 57, 496 (2016).
[8] J. Silk and M. Srednicki, Phys. Rev. Lett. 53, 624 (1984).
[9] S. Rudaz and F. Stecker, Astrophys. J. 325, 16 (1988).

[10] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep.
267, 195 (1996).

[11] F. Donato, N. Fornengo, and P. Salati, Phys. Rev. D 62,
043003 (2000).

[12] D. Maurin, R. Taillet, F. Donato, P. Salati, A. Barrau, and
G. Boudoul, arXiv:astro-ph/0212111.

[13] T. A. Porter, R. P. Johnson, and P.W. Graham, Annu. Rev,
Astron. Astrophys. 49, 155 (2011).

[14] M. Cirelli, G. Corcella, A. Hektor, G. Hütsi, M. Kadastik,
P. Panci, M. Raidal, F. Sala, and A. Strumia, J. Cosmol.
Astropart. Phys. 3 (2011) 051; 10 (2012) E01.

[15] T. Aramaki et al., Phys. Rep. 618, 1 (2016).
[16] G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini,

M. Pierre, S. Profumo, and F. S. Queiroz, Eur. Phys. J. C
78, 203 (2018).

[17] R. K. Leane, T. R. Slatyer, J. F. Beacom, and K. C. Y. Ng,
Phys. Rev. D 98, 023016 (2018).

[18] I. B. Zeldovich and I. D. Novikov, Structure and Evolution
of the Universe (Moscow, Izdatel’stvo Nauka, 1975).

[19] B. W. Lee and S.Weinberg, Phys. Rev. Lett. 39, 165 (1977).
[20] J. E. Gunn, B. W. Lee, I. Lerche, D. N. Schramm, and G.

Steigman, Astrophys. J. 223, 1015 (1978).
[21] A. D. Dolgov and Y. B. Zeldovich, Rev. Mod. Phys. 53, 1

(1981).
[22] P. Binétruy, G. Girardi, and P. Salati, Nucl. Phys. B237,

285 (1984).
[23] M. Srednicki, R. Watkins, and K. A. Olive, Nucl. Phys.

B310, 693 (1988).
[24] G. Steigman, B. Dasgupta, and J. F. Beacom, Phys. Rev. D

86, 023506 (2012).
[25] J. L. Feng, Annu. Rev. Astron. Astrophys. 48, 495 (2010).
[26] M. Boudaud, T. Lacroix, M. Stref, and J. Lavalle, Phys.

Rev. D 99, 061302 (2019).
[27] J. Alexander et al., arXiv:1608.08632.
[28] S.W. Hawking, Nature (London) 248, 30 (1974).
[29] M. S. Turner, Nature (London) 297, 379 (1982).
[30] J. H. MacGibbon and B. J. Carr, Astrophys. J. 371, 447

(1991).
[31] A. Barrau, G. Boudoul, F. Donato, D. Maurin, P. Salati,

and R. Taillet, Astron. Astrophys. 388, 676 (2002).
[32] M. Boudaud and M. Cirelli, Phys. Rev. Lett. 122, 041104

(2019).
[33] A. Reinert and M.W. Winkler, J. Cosmol. Astropart. Phys.

01 (2018) 055.
[34] PAMELA Collaboration et al., Astropart. Phys. 27, 296

(2007).

[35] PAMELACollaboration et al., Phys. Rep. 544, 323 (2014).
[36] W. B. Atwood et al. (Fermi-LAT Collaboration), Astro-

phys. J. 697, 1071 (2009).
[37] R. Battiston (AMS 02 Collaboration), Nucl. Instrum.

Methods Phys. Res., Sect. A 588, 227 (2008).
[38] A. Kounine, Int. J. Mod. Phys. E 21, 1230005 (2012).
[39] AMS Collaboration et al., Phys. Rev. Lett. 110, 141102

(2013).
[40] CALET Collaboration et al., Phys. Scr. 95, 074012 (2020).
[41] DAMPECollaboration et al., Astropart. Phys. 95, 6 (2017).
[42] E. C. Stone, R. E. Vogt, F. B. McDonald, B. J. Teegarden,

J. H. Trainor, J. R. Jokipii, and W. R. Webber, Space Sci.
Rev. 21, 355 (1977), http://articles.adsabs.harvard.edu/full/
1977SSRv...21..355S.

[43] E. C. Stone, A. C. Cummings, F. B. McDonald, B. C.
Heikkila, N. Lal, and W. R. Webber, Science 341, 150
(2013).

[44] A. C. Cummings, E. C. Stone, B. C. Heikkila, N. Lal, W.
R. Webber, G. Jóhannesson, I. V. Moskalenko, E. Orlando,
and T. A. Porter, Astrophys. J. 831, 18 (2016).

[45] M. Boudaud, J. Lavalle, and P. Salati, Phys. Rev. Lett. 119,
021103 (2017).

[46] A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annu.
Rev. Nucl. Part. Sci. 57, 285 (2007).

[47] I. A. Grenier, J. H. Black, and A.W. Strong, Annu. Rev.
Astron. Astrophys. 53, 199 (2015).

[48] E. Amato and P. Blasi, Adv. Space Res. 62, 2731 (2018).
[49] P. D. Serpico, J. Astrophys. Astron. 39, 41 (2018).
[50] S. Gabici, C. Evoli, D. Gaggero, P. Lipari, P. Mertsch, E.

Orlando, A. Strong, and A. Vittino, Int. J. Mod. Phys. D
28, 1930022-339 (2019).

[51] C. Evoli, R. Aloisio, and P. Blasi, Phys. Rev. D 99, 103023
(2019).

[52] L. Derome, D. Maurin, P. Salati, M. Boudaud, Y. Génolini,
and P. Kunzé, Astron. Astrophys. 627, A158 (2019).

[53] F. Donato, N. Fornengo, D. Maurin, P. Salati, and R.
Taillet, Phys. Rev. D 69, 063501 (2004).

[54] D. Maurin, F. Donato, R. Taillet, and P. Salati, Astrophys.
J. 555, 585 (2001).

[55] T. Delahaye, R. Lineros, F. Donato, N. Fornengo, and P.
Salati, Phys. Rev. D 77, 063527 (2008).

[56] V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic
Rays (MacMillan, New York, 1964).

[57] V. S. Berezinsky, S. V. Bulanov, V. A. Dogiel, and V. S.
Ptuskin, Astrophysics of Cosmic Rays (North-Holland,
Amsterdam, 1990).

[58] V. S. Ptuskin, F. C. Jones, and J. F. Ormes, Astrophys. J.
465, 972 (1996).

[59] F. C. Jones, A. Lukasiak, V. Ptuskin, and W. Webber,
Astrophys. J. 547, 264 (2001).

[60] R. Taillet, P. Salati, D. Maurin, and E. Pilon, arXiv:physics/
0401099.

[61] D. Maurin, R. Taillet, and C. Combet, arXiv:astro-ph/
0609522.

[62] D. Maurin, Comput. Phys. Commun. 247, 106942 (2020).
[63] G. Bélanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-

Lees, P. Salati, and A. Semenov, Comput. Phys. Commun.
182, 842 (2011).

[64] J. Lavalle, D. Maurin, and A. Putze, Phys. Rev. D 90,
081301 (2014).
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