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The ongoing development of the space-based laser interferometer missions is aiming at unprecedented
gravitational wave detections in the millihertz frequency band. The spaceborne nature of the experimental
setups leads to a degree of subtlety regarding the otherwise overwhelming laser frequency noise. The
cancellation of the latter is accomplished through the time-delay interferometry technique. Moreover, to
eventually achieve the desired noise level, the phase fluctuations of the onboard ultrastable oscillator must
also be suppressed. This can be fulfilled by introducing sideband signals which, in turn, give rise to an
improved cancellation scheme accounting for the clock-jitter noise. Nonetheless, for certain Sagnac-type
interferometry layouts, it can be shown that resultant residual clock noise found in the literature can be
further improved. In this regard, we propose refined cancellation combinations for two specific clock noise
patterns. This is achieved by employing the so-called geometric time-delay interferometry interpretation. It
is shown that for specific Sagnac combinations, the residual noise diminishes significantly to attain the
experimentally acceptable sensitivity level. Moreover, we argue that the derived combination, in addition to
the existing ones in the literature, furnishes a general-purpose cancellation scheme that serves for arbitrary
time-delay interferometry combinations. The subsequential residual noise will only involve factors
proportional to the commutators between the delay operators. Our arguments reside in the form of the
clock noise expressed in terms of the coefficients of the generating set of the first module of syzygies, the
linear combination of which originally constitutes the very solution for laser noise reduction.
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I. INTRODUCTION

One of the major endeavors in modern physics is the
detection of gravitational waves (GWs) predicted by
Einstein’s general relativity, which was first accomplished
by the LIGO and Virgo Collaborations [1–7]. Such an
experimental breakthrough opens up a new window to test
general relativity, and in particular, to explore the nature of
gravity in the strong-field regime. Owing to its extraordi-
narily insignificant coupling to the mass, these ripples of
spacetime are capable of propagating over an extensive
distance without suffering much loss. Therefore, GW
astronomy is expected to decode information from exotic
stellar objects in an undisturbed fashion. The latter involves
a variety of physical systems, which consists of black hole
binaries and inspiralling neutron stars, and for a broad
frequency range from nHz to kHz.

The laser interferometry is a rather efficient approach to
measure the motions between separated free masses,
induced by the GWs. The experimental layout implies that
the distance between the test masses are allowed to be
significantly large. Moreover, a broad span of frequencies is
expected to fall within the sensitivity range, which is
experimentally acceptable. The construction of laser inter-
ferometers is feasible both on the ground and in the space.
Notable ground-based interferometers include Advanced
LIGO [8,9] and Virgo [10] experiments operating in the US
and Italy, the KAGRA [11,12] detector from Japan, and the
INDIGO project [13] developed in India. These detectors
are aiming at the GWs at relatively high frequencies
>10 Hz. A natural limit that occurs at the lower frequency
bound is the armlength in addition to the gravity-gradient
noise. Presently, the operational laser interferometers
around the globe are all ground based. Additionally, a
few pioneering programs regarding spaceborne interfer-
ometer are being actively developed. The ongoing projects
consist of LISA [14,15] proposed by ESA, TianQin [16]
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and Taiji [17] put forward in China, as well as DECIGO
[18] planned by Japan. As characterized by more signifi-
cant arms and the absence of the gravity-gradient noise, the
detectors are designed to operate largely at a lower-
frequency regime. To be specific, LISA, TianQin, and
Taiji are designed to operate in the range of 10−4 Hz to
0.1 Hz, while DECIGO aims for the frequency band of
0.1 Hz–10 Hz. As a result, they are capable of measuring
the GWs emanating from the coalescence of a broad variety
of galactic compact objects as well as supermassive black
hole binaries.
Regarding the space-based GW detector, the currently

employed experimental configuration leads to a further
technical subtlety. The layout of the interferometric detec-
tors is to measure the relative frequency shifts among the
laser beams, which are interchanged between three remote
spacecrafts. In practice, the armlengths of the interferom-
eter are not only of more significant size, but vary as well
during the course of the evolution. As a result, the
measurement might be substantially plagued by the laser
phase noise. In particular, the size of the noise, when
comparing to the gravitational wave of dimensionless
amplitudes [19], is estimated to be more significant by
several orders of magnitude. Such a difficulty can be
resolved in practice by employing the time-delay interfer-
ometry (TDI) technique [19–43]. To be specific, one makes
use of the fact that the noise folded into different beams are
of a common origin, and therefore, they might be canceled
out by deliberately introducing the time-shifts for specific
TDI combinations. Mathematically, such combinations
furnish the kernel of a homomorphism which is defined
as a map from a module over a direct product of rings of
polynomials to a ring of polynomials. The latter is known
as the first module of syzygies, which can be determined by
evaluating the Gröbner basis for the ideal governed by the
coefficients of the homomorphism. The feasibility of
employing the module over polynomial rings is based
on the approximation of ignoring the contribution from the
time-delay commutators, whose magnitudes are largely
insignificant. If one further considers nonvanishing-delay
commutators, the subtracted data streams will involve such
commutators while proportional to the laser phase noise.
Moreover, in such circumstances, the onboard anti-aliasing
filters are shown to play a role. When the armlengths are
expanded to first order in time, the remaining terms in
question can be expressed in powers of the time derivatives
of the armlengths and filter terms [41].
The syntheses of the TDI combinations are performed on

ground in postprocessing. Therefore, the onboard inter-
ferometric readout data need to be digitized by the analog to
digital converters in order to record the beat-note frequency
and relative phase shifts by the phase meter. Each space-
craft hosts a free-running ultrastable oscillator (USO) that
triggers the analog to digital converter. However, the
triggered signal does not have a completely constant

frequency, and therefore, the precision of the digital signal
might also be undermined by clock errors. Regarding the
frequency band of interest, the characteristic Allan standard
deviation of USO reads σA ≈ 10−13, when averaged for the
relevant interval of 1 s − 104 s [15]. As a result, in the case
of the unequal-arm Michelson interferometry X, the square
root of the power spectral density (PSD) associated with the
USO’s relative frequency fluctuations would be about three
orders of magnitude larger than those due to the residual
noise sources, such as the optical path and test mass [44]. In
this regard, the technique introduces the notion of sideband
[44–46] by comparing those of the received beam against
the emitted beam. The essence of the approach is to
generate additional independent measurements, which
are subsequently manipulated to cancel the clock-jitter
noise. In specific, six additional one-way phase differences
are analyzed, allowing the USO’s phase fluctuations to be
calibrated for the existing TDI combination. Meanwhile,
the gravitational-wave signals are preserved in the resulting
USO-calibrated data.
The USO noise-cancellation scheme for a Michelson

interferometer with a static array configuration was first
discussed in [45]. Further developments are proposed in
[46] for the unequal-arm Michelson X and Sagnac α for a
static array, which are referred to as the first-generation TDI
combinations in the literature. Subsequently, it is general-
ized in [47] to the second-generation TDI combinations for
realistic LISA trajectory. In [44], it is extended to all the
first-generation TDI combinations. More recently, it has
been further improved [48] to handle a large class of TDI
combinations. For time-varying armlengths, the residual
clock noise has been derived and given up to the first-order
time-delay commutators [48]. A compatible algorithm for
clock and laser noise correction in rotating, nonbreathing
constellations have also been discussed in [49].
Furthermore, an alternative approach can be employed to
use optical frequency comb to simultaneously eliminate
both laser and clock noise [50], which calibrates out the
microwave-signal phase fluctuations due to the onboard
USOs. The recent experimental results demonstrate suc-
cessful suppressions of both laser and clock noises, as it
reaches below the setup noise floor, by seven and 1.5 orders
of magnitude, respectively [51].
As discussed above, the existing clock-jitter suppression

schemes established in the literature are capable of success-
fully eliminating most of the clock noise for a large class
TDI combinations. However, for the first-generation
Sagnac combinations and fully symmetric Sagnac combi-
nations, the clock correction algorithms have not been
exhaustively enumerated [46–48]. As shown explicitly
below, the residual clock-jitter noise still persists. In the
present study, we demonstrate that such residues can be
entirely removed regarding the first-generation Sagnac
combinations. To be specific, we propose a generalized
USO-calibration algorithm, which eliminates the USO
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noise further down to the setup noise floor. We show that it
can be achieved by explicitly establishing and exploiting
the relations between the independent measurements and
the USO phase noise. In particular, it is demonstrated that
for the first-generation Sagnac combinations and fully
symmetric Sagnac combinations, the resulting residuals
are reduced significantly to attain the experimentally
acceptable sensitivity performance levels. Subsequently,
for various TDI combinations, the PSD of the residual
clock noise are exhaustively enumerated and evaluated.
The remainder of the paper is organized as follows. In

Sec. II, the notations and conventions used in the paper are
presented. We introduce the definitions for various inter-
mediate TDI variables and discuss different sources of
noise as well as their respective magnitudes. The main
strategy of the algebraic manipulations, as well as impor-
tant equations utilized in the derivations, are presented.
Consequently, in Sec. III, we present the relation between
the independent measurements ri and the USO phase noise
qi, which is essential for the geometric TDI interpretation
employed in the study. We then show that further elimi-
nation of the clock-jitter noise can be carried out for two
specific Sagnac-type TDI combinations. Moreover, it is
argued that the derived combination, in addition to the
existing ones in the literature, furnishes a general-purpose
cancellation scheme. It serves for arbitrary time-delay
interferometry combinations, and the resultant residual
only involves factor proportional to the commutators of
the delay operators. The applications of the algorithm are
then given in Sec. IV, where the improved clock noise
corrections for first-generation Sagnac and fully symmetric
Sagnac variables are presented. Section V is devoted to the
concluding remarks. The detailed derivations of the PSD of
the residual clock noise for different TDI combinations,
before and after the proposed calibration, are delegated to
the Appendix.

II. INTERFEROMETRIC DATA STREAMS AND
TIME DELAY INTERFEROMETRY

A. Notations and conventions

In this section, we introduce the notations and conven-
tions following those defined for the LISA array given in
[38]. As illustrated in Fig. 1, each of the three spacecraft
carries two almost identical optical benches, oriented facing
the other two spacecrafts. One set of the optical benches is
labeled by 1,2,3, while the other is denoted by 10; 20; 30. The
distances between a pair of spacecraft on opposite sides of
i, i0 are indicated by Li; Li0, where the propagation of the
light forms a counterclockwise or clockwise (with prime)
trajectory. The unit vectors n⃗i are along the directions of the
propagation of the laser beams, in a counterclockwise
fashion. Similarly, n⃗i0 ¼ −n⃗i, in a clockwise manner.
For convenience, one introduces the time-delay oper-

ators. To be specific, there are a total of six time-delay

operators, namely,Di,Di0 , with i¼1, 2, 3 and i0 ¼ 10; 20; 30.
By acting on any data streams fðtÞ, we have [52]

DjfðtÞ ¼ fðt − LjðtÞÞ;
DkDjfðtÞ ¼ Dkfðt − LjðtÞÞ

¼ fðt − LkðtÞ − Ljðt − LkðtÞÞÞ; ð1Þ

where the indices j, k take the values 1; 2; 3; 10; 20; 30 and
agreed the speed of light c ¼ 1.

B. Interferometric measurements

Now we enumerate the basic quantities involved in the
measurements regarding the optical benches depicted in
Fig. 2. One primarily encounters two classes of measure-
ments regarding the phase difference. The first class,
consisting of sci and s

sb
i , measures the interference between

light beams emitted by optical benches from different
spacecraft, where the GW signal is potentially involved.
The interference regarding the sideband, ssbi , is introduced
for further elimination of the clock-jitter noise. The second
one, εi and τi, concerns the interference between the light
beams from adjacent optical benches from an individual
spacecraft. For εi, the light beams are bounced off from test
mass deliberately in order to capture its mechanical motion.
For τi, on the other hand, the associated trajectory is mostly
identical to the former but does not involves the test mass.
The most elementary measurement is furnished by the

interference between the incoming laser beam from a
distant spacecraft and a local reference laser beam. Since
the incident laser carries possible information about the
GWs, this measurement is called a science interferometer
signal. It is also referred to as the interspacecraft carrier to
carrier one-way heterodyne base-band measurements, indi-
cated by the superscript “c”. It reads [47]

FIG. 1. Notation defined in the space-based interferometric
layout consists of GW detector, lasers and links.
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sci ¼ ½Hi þDi−1pðiþ1Þ0 − pi þ 2πνðiþ1Þ0 ðn⃗i−1 ·Di−1Δ⃗ðiþ1Þ0 þ n⃗ði−1Þ0 · Δ⃗iÞ þ Nopt
i � − aiqi þ Ns

i ;

sci0 ¼ ½Hi0 þDðiþ1Þ0pi−1 − pi0 þ 2πνi−1ðn⃗ðiþ1Þ0 ·Dðiþ1Þ0Δ⃗i−1 þ n⃗iþ1 · Δ⃗i0 Þ þ Nopt
i0 � − ai0qi þ Ns

i0 : ð2Þ

Here, Hi and Hi0 represent the contributions due to the
possible presence of a transverse-traceless GW signal, pi,
pðiþ1Þ0 , pi−1, and pi0 indicate the laser’s phase noise, which
perturb around the center frequency νi ≈ 282 THz, Δi,
Δðiþ1Þ0 , Δi−1, and Δi0 measure the mechanical vibrations
of the optical benches which are projected onto the
direction of the light beam, qi is the clock-jitter noise,
Nopt

i and Nopt
i0 are the optical-pathlength noise, Ns

i and Ns
i0

are the readout noise entering via power measurements at
the photodetectors. The coefficients ai; ai0 are related to the
phase beat note, which possesses the form

ai ¼
νðiþ1Þ0 ð1 − _Li−1Þ − νi

fi
;

ai0 ¼
νi−1ð1 − _Lðiþ1Þ0 Þ − νi0

fi
; ð3Þ

where νi represents laser frequency, fi is the USOs’ pilot-
tone frequency fq, Li and _Li are the interspacecraft relative
optical paths and their time derivatives. As _Li ≪ c ¼ 1, on
the other hand, the Doppler effect can be estimated and
subtracted in spaceborne GW detection. It is an appropriate
approximation to ignore the Doppler effect, and one has
ai þ aðiþ1Þ0 ≈ 0; ai0 þ ai−1 ≈ 0. The test mass motion can
also be read out interferometrically. In particular, the local
oscillator of the optical bench i interferes with that of the
adjacent optical bench i0. The signal is delivered through
the ‘back-link’ fiber and reflected off the test mass. Such a
measurement is known as the test mass interferometer

output, which is also referred to as the test mass to optical
bench measurements. It is expressed as

εi ¼ ½pi0 − pi − 4πνi0 ðn⃗ði−1Þ0 · δ⃗i − n⃗ði−1Þ0 · Δ⃗iÞ þ μi0 �
− biqi þ Nε

i ;

εi0 ¼ ½pi − pi0 − 4πνiðn⃗iþ1 · δ⃗i0 − n⃗iþ1 · Δ⃗i0 Þ þ μi�
− bi0qi þ Nε

i0 ; ð4Þ

where δ⃗i and δ⃗i0 are associated with the mechanical
vibrations of test mass with respect to the local inertial
reference frame, μi and μi0 are due to the optical fibers
linking the two optical benches. The coefficients bi; bi0 are
again related to the phase beat-note, which reads

bi ¼
νi0 − νi
fi

;

bi0 ¼ −bi: ð5Þ

Moreover, the interference between the two laser sources
from the adjacent optical benchs i and i0 are taken without
bouncing off from any test mass. This gives rise to the
reference interferometer output, which is also known as the
bench to bench metrology measurements.

τi ¼ ½pi0 − pi þ μi0 � − biqi þ Nτ
i ;

τi0 ¼ ½pi − pi0 þ μi� − bi0qi þ Nτ
i0 : ð6Þ

FIG. 2. Schematic diagram of test masses plus optical benches onboard the spacecraft.
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However, the above three sets of data are insufficient to
remove the clock noise. A clock-tone transfer chain using
sideband modulations, first proposed in [53] and developed
further in [54], provides additional information to cancel

clock noise. This leads to the sideband to sideband one-way
heterodyne base-band measurements. They define the
phase difference between the distant and local upper
sidebands as

ssbi ¼½HiþDi−1pðiþ1Þ0 −piþmðiþ1Þ0Di−1qiþ1−miqiþ2πνðiþ1Þ0 ðn⃗i−1 ·Di−1Δ⃗ðiþ1Þ0 þ n⃗ði−1Þ0 ·Δ⃗iÞþNobt:sb
i �−ciqiþNsb

i ;

ssb
10 ¼ ½Hi0 þDðiþ1Þ0pi−1−pi0 þmi−1Dðiþ1Þ0qi−1−mi0qiþ2πνi−1ðn⃗ðiþ1Þ0 ·Dðiþ1Þ0Δ⃗i−1þ n⃗iþ1 ·Δ⃗i0 ÞþNobt:sb

i0 �−ci0qiþNsb
i0 : ð7Þ

Here, mi, mi0 ,mi−1, and miþ10 are integers that represent the
modulation frequencies [47], ci; ci0 are respectively

ci ¼
ðνðiþ1Þ0 þmðiþ1Þ0fiþ1Þð1 − _Li−1Þ − ðνi þmifiÞ

fi
;

ci0 ¼
ðνi−1 þmi−1fi−1Þð1 − _Lðiþ1Þ0 Þ − ðνi0 þmi0fiÞ

fi
: ð8Þ

In order to eliminate the noise due to the laser phase
fluctuations with primed indices, one introduces the fol-
lowing intermediary variables according to [47]. First, the
intermediate variables ξi and zi are defined by

ξi≡si−
νðiþ1Þ0
νi0

ðεi− τiÞ
2

−
νðiþ1Þ0
νiþ1

Di−1
ðεðiþ1Þ0 − τðiþ1Þ0 Þ

2
;

ξi0 ≡si0 −
νi−1
νi

ðεi0 − τi0 Þ
2

−
νi−1
νði−1Þ0

Dðiþ1Þ0
ðεi−1− τi−1Þ

2
; ð9Þ

and

zi ≡ ðτi − τi0 Þ
2

: ð10Þ

It is straightforward to show that, by taking suitable
linear combinations of data streams, one may construct the
intermediary variables ηi and ηi0 where the laser phase
fluctuations with primed indices, as well as those of the
optical bench, are canceled out,

ηi ≡ ξi −Di−1ziþ1;

ηi0 ≡ ξi0 þ zi: ð11Þ

To be more specific, by combining Eqs. (2)–(6) and
(9)–(11), one finds

ηi ¼ Hi þDi−1piþ1 − pi − aiqi þ biþ1Di−1qiþ1 þ 2πνðiþ1Þ0 n⃗ði−1Þ½Dði−1Þδ⃗ðiþ1Þ0 − δ⃗i� −
1

2
Di−1½μðiþ1Þ0 − μiþ1� þ Nopt

i ;

ηi0 ¼ Hi0 þDðiþ1Þ0pi−1 − pi þ ð−ai0 þ bi0 Þqi þ 2πνði−1Þn⃗ðiþ1Þ½δ⃗i0 −Dðiþ1Þ0 δ⃗ði−1Þ� −
1

2
ðμi − μi0 Þ þ Nopt

i0 : ð12Þ

The algebraic manipulations carried out in the remainder of
the paper will be formulated essentially in terms of the
above observables.

C. Time delay interferometry

In addition to the laser noise, Eq. (12) contains several
noise terms that affect the detection of GWs. It is noted
that the optical fiber is reciprocal, for which the combina-
tions μiðtÞ − μi0 ðtÞ or μðiþ1Þ0 ðtÞ − μiþ1ðtÞ may effectively
suppress the phase noise. We will not consider this
aspect in the present study. Acceleration noise (the test
mass displacements δ⃗i; δ⃗i

0) and readout noise Nopt
i ; Nopt

i0 are
inevitable ones [52]. The PSD of the test mass displace-
ment noise in terms of optical phase is about 4.5 ×
10−101=f2 rad=ð ffiffiffiffiffiffi

Hz
p

s2Þ at millihertz frequency band

[52]. The readout noise consists of three parts, namely,
the shot noise due to the fluctuations of the number of
detected photons, the electronic noise from the photodetec-
tor electronics, and the relative power noise from the laser
light. The largest contribution to the readout noise are the
fundamental shot noise whose magnitude is about 5 ×
10−5 rad=

ffiffiffiffiffiffi
Hz

p
[52]. Other technical noises, such as laser

frequency and USO clock noise, should be suppressed to
below the inevitable noise level. When compared to others,
the laser phase noise pi are about 3 × 104 rad=

ffiffiffiffiffiffi
Hz

p
at

3 mHz [52], which is the dominant noise source in the
onboard measurements.
The TDI provides a synthetic data stream free of the laser

phase noise. To be specific, one constructs [48] the
following linear combination of ηi where the coefficients
Pi and Pi0 are polynomials of the delay operators
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TDI ¼
X3
i¼1

ðPiηi þ Pi0ηi0 Þ: ð13Þ

Once a given TDI combination, one may proceed to analyze the remaining noise by making use of the assumption that
different sources are independent. From Eqs. (12) and (13), the test-mass noise reads

TDIa ¼
X3
i¼1

f−½2πνðiþ1Þ0Pi þ 2πνiPðiþ1Þ0Dði−1Þ0 �n⃗i−1δ⃗i þ ½2πνi0Pi−1Diþ1 þ 2πνi−1Pi0 �n⃗iþ1δ⃗i0g: ð14Þ

By further assuming that the mechanical vibrations of different test masses 2πνiδi are uncorrelated while possessing the
same form of PSD SpfðωÞ, the resultant PSD is found to be

STDIaðωÞ ¼ SpfðωÞ
X3
i¼1

½jP̃iðωÞ þ P̃ðiþ1Þ0 ðωÞD̃ði−1Þ0 ðωÞj2 þ jP̃iðωÞD̃i−1ðωÞ þ P̃ðiþ1Þ0 ðωÞj2�; ð15Þ

Here, P̃i represents the polynomial of the Fourier transform
of the delay operators [48], namely, D̃i. The dimensionless

relatively-shifted PSD Spf ¼ s2a
ð2πfcÞ2, where sa is the ampli-

tude spectral densities (ASD) of the test-mass acceleration
noise, c is the speed of light, and f ¼ ω=2π is the GW
frequency. Similarly, the shot noise for the TDI combina-
tion reads

TDIshot ¼
X3
i¼1

PiN
opt
i þ Pi0N

opt
i0 ; ð16Þ

and the corresponding PSD is found to be

STDIshotðωÞ ¼ SoptðωÞ
X3
i¼1

½jP̃iðωÞj2 þ jP̃i0 ðωÞj2�; ð17Þ

where the dimensionless relatively-shifted PSD Sopt ¼
ð2πfÞ2s2x

c2 with sx being ASD of shot noise. As TDI suppresses
laser phase noise, the next leading disturbance in the
measurements is the clock noise. The linear spectral density
is about 30 radffiffiffiffi

Hz
p · ð3 mHz

f Þ9=5 for common USOs [55]. Again,

by using Eqs. (12) and (13), the terms associated with the
clock noise are [48]

TDIq ¼−
X3
i¼1

½aiPiþai0Pi0 −bi0 ðPi0 −Pi−1Diþ1Þ�qi: ð18Þ

If one assumes that all the clock noise are uncorrelated but
have the same form of PSD SqðωÞ, the resultant PSD reads

STDIqðωÞ ¼ SqðωÞ
X3
i¼1

jaiP̃iðωÞ þ ai0P̃i0 ðωÞ − bi0 ½P̃i0 ðωÞ − P̃i−1ðωÞD̃iþ1ðωÞ�j2: ð19Þ

The above expressions will be utilized to evaluate the
clock noise and inevitable noises (the test-mass noise and
the shot noise) levels for different TDI combinations. As an
example, for X1, namely, the first generation of the
Michelson combination [52], the coefficients Pi and Pi0

of the delay operators are found to be

P1 ¼ ðD202− 1Þ; P2 ¼ 0; P3 ¼ ðD20 −D33020 Þ;
P10 ¼ ð1−D330 Þ; P20 ¼ ðD2023−D3Þ; P30 ¼ 0: ð20Þ

By combining Eqs. (15), (17), and (20), the PSD of the test-
mass noise and the shot noise are

SX1
¼ s2aL2

u2c4
ð8 sin2 2uþ 32 sin2 uÞ þ 16

u2s2x
L2

sin2 u; ð21Þ

where u ¼ 2πfL
c is a dimensionless quantity. Combining

Eqs. (19) and (20), the PSD of clock noise before
calibration is

SXq
1
ðωÞ ¼ f2q

ν20
4 sin2 uSqðωÞ½ða1 − a10 Þ2 þ a2

20

þ a23 þ 4b10 ða1 − a10 þ b10 Þ sin2 u�: ð22Þ

For the second-generation Michelson combination X2 [52],
one finds
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SX2
≈ 4 sin2 2uSX1

; ð23Þ

and

SXq
2
ðωÞ ≈ 4 sin2 2uSXq

1
ðωÞ: ð24Þ

In Figs. 3 and 4, we depict the square root of the PSD of
the frequency fluctuations for the Michelson X TDI
combinations by using the typical parameters of the
LISA mission. The armlength L ¼ 2.5 × 106 km, the
ASDs of the test-mass noise and shot noise are respectively,

sLISAa ¼3×10−15ms−2=Hz and sLISAx ¼ 10 × 10−12 m=Hz
[14]. The coefficients aifi; bifi fall into a range of
�5 MHz to �25 MHz. We therefore choose a1fq ¼
a2fq ¼ a3fq ¼ 10 MHz and b1fq ¼ b2fq ¼ b3fq ¼
10 MHz to give a numerical estimation. The PSD of the
fractional-frequency deviation of the clock is modeled by a
flicker noise Sy ¼ 6.7 × 10−27=f. It can be clearly seen
from the noise curve shown in Figs. 3 and 4 that for the
frequencies below 10−2 Hz, the clock noise is more
significant than the acceleration and optical-path noise in
the Michelson combination. It is also demonstrated in the
Appendix that the clock noise mostly overwhelms the
inevitable noises for other TDI combinations. Therefore, it
is meaningful to further develop the algorithm to suppress
the clock noise to below the level determined by the setup
noise floor.

III. GENERALIZED USO
CALIBRATION ALGORITHM

A. Cancellation of two specific Sagnac-type
clock noise terms

In the literature, there are two approaches to suppress
clock noise. The first one is to introduce sideband signals
[44–48], the other is to utilize the optical frequency comb
technique [50,51]. In the present study, we will employ the
first approach to cancel the USO noise. First, one intro-
duces the following linear combination of carrier to carrier
sci and sideband to sideband ssbi one-way heterodyne base-
band measurements [44,47],

ri ≡ sci − ssbi
mðiþ1Þ0fiþ1

; ri0 ≡ sci0 − ssbi0
mi−1fi−1

: ð25Þ

The essence of our present approach is based on the
relationships between the above variable ri and the clock
noise qi. After some algebra while neglecting the Doppler
effect, one finds

ri ¼ qi −Di−1qiþ1; ri0 ¼ qi −Dðiþ1Þ0qi−1; ð26Þ

where ri and ri0 are six additional independent measure-
ments that the space-based GW detectors perform in order
to eliminate the USO noise. By comparing Eq. (26) with
Eq. (12), it is observed that the clock noise terms in ri
possess the same pattern as those of the laser noise in ηi.
Therefore, as first pointed out in [48], it seems rather
inviting to employ a similar strategy of the geometric TDI
[31] to further eliminate the USO noise terms.
To proceed further, one needs to find explicit expressions

so that the residual clock noise (e.g., those on the right-hand
side of Eq. (18) can be expressed in terms of measurements
ri. In what follows, such relations are established and
presented in Tables I and II, whose validity can be readily
verified by employing Eq. (26). Typically, the USO noise

FIG. 4. The same as Fig. 3 but for the Michelson X2 TDI
combination.

FIG. 3. The square root of the PSD of the frequency-fluctuation
(strain) noise for the Michelson X1 TDI combination. The red
curve represents the contribution from the acceleration and
optical-path noise for X1. The blue curve corresponds to the
USO noise level in X1 before the calibration procedure is applied.
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qj appears in the polynomial ðDilil−1���i1 −Dimim−1���i1Þqj.
Here, the indices on the subscript ilil−1 � � � i1 constitutes
a valid path between spacecraft. To be specific, it bears the
physical interpretation that the laser emits from the space-
craft j is split into two beams which pass through two
different virtual photon paths and eventually recombine on
the spacecraft k. As demonstrated below, by exploiting
various combinations of the calibrated data ri; ri0 , the USO
noise qi can be largely canceled out up to a few commu-
tators of the delay operators.
As an example, let us consider the term ðD30 −D12Þq1,

which is shown in the schematic diagram of ðD30 −D12Þq1
of Fig. 5(a). For this specific case, the laser beam is
emitted from spacecraft 1 splits and passes through two
different virtual photons paths L30 (dark-red lines) and
L1L2 (red lines), and eventually converges at spacecraft 2.
Subsequently, one establishes the following relation

ðD30 −D12Þq1 ¼ D1r3 þ r2 − r20 : ð27Þ

Similarly, schematic diagram of ð1 −D312Þq1 is shown in
Fig. 5(b), which gives rise to r1 þD3r2 þD31r3 (see the
two leftmost columns on the sixth row of Table I).
Besides, some combinations involve a common photon

path and/or back and forth trajectory. We will take the term
ðD1 −D3020 ÞD2q1 as an example. The schematic diagram of
the virtual photon path is shown in Fig. 6(a). First, one
observes that the photon path of ðD1 −D3020 Þq3 as the light
starts from spacecraft 3, passing through two different
virtual photons paths L1 and L30L20 , and converges at
spacecraft 2. Equivalently, by replacing q3 by D2q1, one
may consider spacecraft 1 as the starting point. The light
beam splits and goes through two different paths L1L2 (red

lines) and L30L20L2 (dark-red lines) and converges on
spacecraft 2. In this sense, the following relation can be
constructed

ðD1 −D3020 ÞD2q1 ¼ ðD30r10 þ r20 − r2Þ − ðD1 −D3020 Þr3:
ð28Þ

In a similar fashion, the schematic diagram of
ðD10 −D23ÞD30q1 is shown in Fig. 6(b), which gives
ðD2r1 þ r3 − r30 Þ − ðD10 −D23Þr20 (see the two rightmost
columns on the fourth row of Table I). The resultant
relations are summarized in Table I. By cyclic permuta-
tions, the corresponding expressions for q2 and q3 can also
be obtained.
However, by employing the same strategy, one

encounters some subtlety when dealing with the form
ðD1 −D3020 Þq1. Intuitively, the main difficulty is that
neither D1q1 or D3020q1 forms a continuous photon path.
In this case, we may insert identity operation D2̄D2ð¼1Þ to
construct the desired form ðD1 −D3020 ÞD2q1. As a price,
the clock noise term still persists in the resulting expression
but proportional to the commutator of delay operators. To
be specific, the residual commutator reads _L

c, which is
expected to be less significant. Some straightforward
manipulations lead to

ðD1 −D3020 Þq1 ¼ D2̄½ðD30r10 þ r20 − r2Þ − ðD1 −D3020 Þr3�
þD2̄½D2; ðD1 −D3020 Þ�q1: ð29Þ

where D2̄ is an advance operator which is the inverse of the
corresponding delay operator, satisfyingD2D2̄¼D2̄D2¼1.

TABLE I. The list of relations between ri and qi which does not involve commutators of the delay operators.

Clock terms qi Independent measurement ri Clock terms qi Independent measurement ri

ðD30 −D12Þq1 D1r3 þ r2 − r20 ðD20 −D31ÞD2q1 ðD3r2 þ r1 − r10 Þ − ðD20 −D31Þr3
ðD2 −D1030 Þq1 D10r20 − r3 þ r30 ðD3 −D2010 ÞD30q1 ðD20r30 þ r10 − r1Þ − ðD3 −D2010 Þr20
ð1 −D202Þq1 r10 þD20r3 ðD10 −D23ÞD30q1 ðD2r1 þ r3 − r30 Þ − ðD10 −D23Þr20
ð1 −D330 Þq1 r1 þD3r20 ð1 −D220 ÞD2q1 D2ðr10 þD20r3Þ
ð1 −D312Þq1 r1 þD3r2 þD31r3 ð1 −D303ÞD30q1 D30 ðr1 þD3r20 Þ
ð1 −D201030 Þq1 r10 þD20r30 þD2010r20 ð1 −D101ÞD2q1 ðr30 þD10r2Þ − ð1 −D101Þr3
ðD1 −D3020 ÞD2q1 ðD30r10 þ r20 − r2Þ − ðD1 −D3020 Þr3 ð1 −D110 ÞD30q1 ðr2 þD1r30 Þ − ð1 −D110 Þr20

TABLE II. The list of relations between ri and qi, which inevitably involves commutators of the delay operators.

Clock terms qi Independent measurement ri Commutation term

ðD1 −D3020 Þq1 D2̄½ðD30r10 þ r20 − r2Þ − ðD1 −D3020 Þr3� D2̄½D2; ðD1 −D3020 Þ�q1
ðD20 −D31Þq1 D2̄½ðD3r2 þ r1 − r10 Þ − ðD20 −D31Þr3� D2̄½D2; ðD20 −D31Þ�q1
ðD3 −D2010 Þq1 D3̄0 ½ðD20r30 þ r10 − r1Þ − ðD3 −D2010 Þr20 � D3̄0 ½D30 ; ðD3 −D2010 Þ�q1
ðD23 −D10 Þq1 D3̄0 ½ðD2r1 þ r3 − r30 Þ − ðD10 −D23Þr20 � D3̄0 ½D30 ; ðD10 −D23Þ�q1
ðD1−D10 Þq1þðD2−D20 Þq2þðD3−D30 Þq3 ðD1r10 −D10r1þD2r20 −D20r2þD3r30 −D30r3Þ ½D30 ;D2�q1þ½D10 ;D3�q2þ½D20 ;D1�q3
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Similar results have been obtained and presented in
Table II. In particular, to distinguish the clockwise loops
from the counter-clockwise ones, a general relation is given
on the last row in Table II. Now, as relations presented in

Tables I and II exhaustively enumerate the USO noise
terms, it can be readily utilized to eliminate the clock jitter
noise up to the commutator of the delay operators. For a
given TDI combination, one can look up in the tables and
substitute the USO noise terms. For instance, for the first-
generation Michelson combination, the residual clock noise
term reads

Xq
1 ¼ ½b10 Þ1 −D330 Þð1 −D202Þ − a10 Þ1 −D330 Þ þ a1ð1 −D202Þ�q1 þ ½a20 ð1 −D202ÞD3�q2 − ½a3ð1 −D330 ÞD20 �q3: ð30Þ

By cyclic permutating the spacecraft indices, all qi terms in Eq. (30) can be eliminated in favor of ri. In practice, one may
make use of Table I and replace ½ð1 −D202ÞD3�q2 → ½ð1 −D101ÞD2�q1 and ½ð1−D330 ÞD20 �q3→ ½ð1−D110 ÞD30 �q1.
Subsequently, we obtain

FIG. 5. Simplified schematic diagram of virtual photons paths
in space-based GW detector configuration. (a) represents the
diagram of ðD30 −D12Þq1. The red curve indicates virtual
photons path L1L2, and the dark red curve indicates virtual
photons path L30 . For these two different photon paths, the lights
are emitted from the spacecraft 1 and converge at spacecraft 2.
(b) represents the diagram of ð1 −D312Þq1. The red curve
indicates virtual photons path L3L1L2. The light comes from
spacecraft 1 and converges at spacecraft 1.

FIG. 6. Simplified schematic diagram of virtual photons paths
in space-based GW detector configuration. (a) represents the
diagram of ðD1 −D3020 ÞD2q1. The red curve indicates virtual
photons path L1L2, the dark-red curve indicates virtual photons
path L30L20L2. For these two different photon paths, the lights are
emitted from spacecraft 1 and converge at spacecraft 2. (b) rep-
resents the diagram of ðD10 −D23ÞD30q1. The red curve indicates
virtual photons path L10L30 , the dark-red curve indicates virtual
photons path L2L3L30 . For these two different photon paths, the
lights are emitted from spacecraft 1 and converge at spacecraft 3.
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KX1
≡ b10 ðI −D3D30 Þðr10 þD20r3Þ þ a1ðr10 þD20r3Þ − a10 ðr1 þD3r20 Þ

þ a20 ½r10 − ðI −D20D2Þr1 þD20r3� − a3½r1 − ðI −D3D30 Þr10 þD3r20 �: ð31Þ

This is the desired expression to eliminate the clock
noise [56]. The residual term gives Xc

1 ¼ Xq
1 − KX1

¼ 0.

B. A general scheme for clock noise cancellation for
arbitrary TDI combinations

Now we proceed to discuss the exhaustive nature of the
scheme presented in this study. We argue that the above
results presented in Tables I and II suffice to deal with the
general form of TDI combination. To be specific, in this
subsection, we prove the following statement. Tables I and
II furnish complete information to cancel out the clock
noise that appears in an arbitrary TDI combination, up to
minor terms. The latter involves factors of the commutators
between the delay operators, as long as the corresponding
TDI combination eliminates entirely the terms linear in
delay operator. The proof is primarily based on the proper-
ties of the corresponding module of syzygies constructed
over polynomial rings. It consists of three steps. First,
through a brief review of the procedure to derive the first-
generation TDI algorithm. This is a rather simplified
scenario, where one ignores any commutator between
delay operators as well as the difference between Di and
Di0 . We derive a relation between residual clock noise for
an arbitrary TDI combination and those for the basis of the
generating set of the first module of syzygies. Secondly, by
taking into account the difference between Di and Di0 , it is
shown that the above results can be readily generalized. To
be specific, instead of the generating set of the first module
of syzygies which consists of four linearly-independent
bases, one deals with a larger generating set consisting of
six members. Lastly, as one explicitly considers nonvan-
ishing commutators, we show that the above procedure
remains valid to remove clock noise up to the commutator
of delay operators. In this regard, the algorithm does not
eliminate the commutators in clock noise, but it guarantees
to eliminate entirely any contribution up to the terms
proportional to such commutators.
Let us first briefly revisit the process to derive the first-

generation TDI combination using the arguments based on
the algebraic geometry, which follows closely [57]. A TDI
combination correponds to encounter the coefficients Pi in
Eq. (13) which properly cancel the laser noise pi in ηi. As
first shown in [21,57], if one ignores the commutator
between delay operators, the problem reduces to find the
first module of syzygies. To be more precise, the latter
corresponds to the kernel of the homomorphism
φ∶R4 → R, where R is the polynomial ring defined by
three commutative time-delay operators. The domain of the
map isR4 since there are a total of six data streams ηi to be
combined to cancel out three independent laser noises pi.

The kernel in question can be determined by evaluating the
Gröbner basis for the corresponding ideal governed by the
coefficients of the homomorphism by the standard method
[33]. The resultant basis is complete in the sense that any
element of the kernel can be identified as a linear
combination of the basis. In this case, there are seven
generators from which one can choose four linearly-
independent ones, a common choice in the literature is
ðα; β; γ; ζÞ≡GðkÞ with k ¼ 1;…; 4 [33]. It is noted that
each basisGðkÞ possesses six elements related to the six data
streams, labeled by ði; i0Þ, as given by Eq. (12). To be
specific, any element of the kernel can be written as a linear
combination of the bases, namely,

Cααþ Cββ þ Cγγ þ Cζζ ≡
X4
k¼1

CðkÞGðkÞ; ð32Þ

where the coefficients ðCα; Cβ; Cγ; CζÞ≡ CðkÞ are polyno-
mials of the delay operators. In other words, for the
coefficients Pi and Pi0 of an arbitrary TDI combination,
we have

Pi ¼ Cααi þ Cββi þ Cγγi þ Cζζi ≡
X4
k¼1

CðkÞG
ðkÞ
i ;

Pi0 ¼ Cααi0 þ Cββi0 þ Cγγi0 þ Cζζi0 ≡
X4
k¼1

CðkÞG
ðkÞ
i0 ; ð33Þ

when expressed in accordance with Eq. (13).
Now, it is readily seen that, for a given TDI combination,

the clock noise takes the form of Eq. (18), where Pi is
determined by Eq. (33). Some straightforward algebra
gives,

TDIq ¼
X
k

CðkÞEðkÞ; ð34Þ

where

EðkÞ≡X3
i¼1

ð−1Þ½aiGðkÞ
i þai0G

ðkÞ
i0 −bi0 ðGðkÞ

i0 −GðkÞ
i−1Diþ1Þ�qi:

ð35Þ

There are a total of four terms EðkÞ, associated with the four
bases of the generating set GðkÞ, namely,
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Eð1Þ ¼ −½ða1 − a10 Þ þ b10 ð1þD312Þ�q1 − ½ða2 − b2ÞD3 þD2010 ðb20 − a20 Þ�q2 − ½D31ða3 − b3Þ þD2ðb30 − a30 Þ�q3;
Eð2Þ ¼ −½D12ða1 − b1Þ þD3ðb10 − a10 Þ�q1 − ½ða2 − a20 Þ þ b20 ð1þD123Þ�q2 − ½ða3 − b3ÞD1 þD32ðb30 − a30 Þ�q3;
Eð3Þ ¼ −½ða1 − b1ÞD2 þD13ðb10 − a10 Þ�q1 − ½D23ða2 − b2Þ þD1ðb20 − a20 Þ�q2 − ½ða3 − a30 Þ þ b30 ð1þD231Þ�q3;
Eð4Þ ¼ −½a1D1 þ b10D32 þ ðb10 − a10 ÞD1�q1 − ½a2D2 þ b20D13 þ ðb20 − a20 ÞD2�q2 − ½a3D3 þ b30D21 þ ðb30 − a30 ÞD3�q3:

ð36Þ
By making use of Tables I and II while assuming Di ¼ Di0 , it is manifestly feasible to enumerate all possible forms of the
clock noise presented in Eq. (36). In particular, it is not difficult to show that the following combinationQðkÞ can be used to
eliminate the clock noise associated with the term EðkÞ

QðkÞ ¼
X3
i¼1

ðQðkÞ
i ri þQðkÞ

i0 ri0 Þ; ð37Þ

where QðkÞ
i and QðkÞ

i0 possess the forms

Qð1Þ ¼ ½b10 þ b20 þ b30 þ a2 þ a3; ðb10 þ b30 þ a3ÞD3; b10D31; b20 þ b30 − a20 þ a30 ; 0; ðb20 − a20 ÞD2�;
Qð2Þ ¼ ½b20 þ b30 þ b10 þ a3 þ a1; ðb20 þ b10 þ a1ÞD1; b20D12; b30 þ b10 − a30 þ a10 ; 0; ðb30 − a30 ÞD3�;
Qð3Þ ¼ ½b30 þ b10 þ b20 þ a1 þ a2; ðb30 þ b20 þ a2ÞD2; b30D23; b10 þ b20 − a10 þ a20 ; 0; ðb10 − a10 ÞD1�;

Qð4Þ ¼
�
b20D1 −

1

3
ða30 − b30 þ a1 þ b20 ÞD1; b30D2 −

1

3
ða10 − b10 þ a2 þ b30 ÞD2; b10D3 −

1

3
ða20 − b20 þ a3 þ b10 ÞD3;

1

3
ða1 − 2a10 þ 2b10 þ b20 ÞD1;

1

3
ða2 − 2a20 þ 2b20 þ b30 ÞD2;

1

3
ða

3
− 2a30 þ 2b30 þ b10 ÞD3

�
: ð38Þ

Moreover, one observes that it is the TDI combination
Eq. (32) which eventually gives rise to the corresponding
linear combination Eq. (34). The noise cancellation scheme
for an arbitrary first-generation TDI combination is there-
fore determined by a similar combinationX

k

CðkÞQðkÞ: ð39Þ

To proceed further, we note that the above results are
limited in two aspects. First, it is noted that it has been
assumed that Di ¼ Di0 . Secondly, in the above derivation,
the contributions from the commutators between the delay
operators have been ignored. To improve upon the above

scheme, one may recognize the difference between differ-
ent opposite light paths so that Di ≠ Di0 . In this case, there
are still six data streams ηi, which leads to the kernel of the
homomorphism φ∶R04 → R0. However, the relevant poly-
nomial ringR0 in question is now defined in six variables in
terms of the time-delay operators. Again, the kernel
constitutes a first module of syzygies. As a result, there
are a total of ten generators from which one can choose six
linearly-independent ones, a common choice in the liter-
ature is dðkÞ ≡ GðkÞ with k ¼ 1;…; 6 [33]. Accordingly, the
summations in k as those in Eqs. (34) and (39) now involve
six terms. Subsequently, in the place of Eqs. (36) and (38),
the clock noise associated with the generating set reads

Eð1Þ ¼ ða1 þ b10 Þð1 −D101ÞD2q1 þ b20D23ð1 −D101Þq2 þ a2ðD32 −D10 Þq2
þ b30 ðD32 −D10 ÞD1q3 þ a3ð1 −D101Þq3 þ ðb30 − a30 Þð1 −D321Þq3;

Eð2Þ ¼ a1D10 ð1 −D220 Þq1 þ b10D2ðD3 −D2010 Þq1 þ ðb10 − a10 ÞðD10 −D32Þq1
þ b20D10 ð1 −D220 ÞD3q2 þ a3ðD3 −D2010 Þq3 þ ðb30 − a30 ÞD3ð1 −D220 Þq3;

Eð3Þ ¼ b10 ðD1 −D3020 ÞD2q1 þ ðb10 − a10 ÞðD30 −D21Þq1 þ ða2 þ b20 − a20 Þð1 −D202Þq2
þ b30D1ð1 −D202Þq3 þ a3ðD1 −D3020 Þq3;

Eð4Þ ¼ a1ðD30 −D21Þq1 þ b10D21ðD330 − 1Þq1 þ b20 ðD30 −D21ÞD3q2

þ a2ðD303 − 1Þq2 þ ðb20 − a20 ÞðD321 − 1Þq2 þ ðb30 þ a3ÞðD303 − 1ÞD1q3;
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Eð5Þ ¼ ða1 þ b10 − a10 ÞðD101 − 1Þq1 þ b20D3ðD101 − 1Þq2 þ a2ðD2010 −D3Þq2
þ b30 ðD2010 −D3ÞD1q3 þ ðb30 − a30 ÞðD31 −D20 Þq3;

Eð6Þ ¼ a1ðD2 −D3010 Þq1 þ b10D2ð1 −D303Þq1 þ b20 ðD2 −D3010 ÞD3q2

þ ðb20 − a20 ÞðD10 −D32Þq2 þ ða3 þ b30 − a30 Þð1 −D303Þq3; ð40Þ

which can be eliminated by the following coefficients

Qð1Þ ¼ −½b20D23 − a30 ; ða1 þ b10 ÞD10 − a2 − a30D3;

− ða1 þ b10 Þð1 −D101Þ − a2D1 þ b30D20 þ a3D20 − a30D31; b30 þ a3; b20D233 þ a2; a1 þ b10 �;
Qð2Þ ¼ −½−b10D23̄0 − ðb10 − a10 ÞD3̄02 þ ðb30 − a30 ÞD3; b20D1010 − a3D2̄;

a1D1020 − ðb10 − a10 ÞD3̄0 − b20D10 ð1 −D101Þ − a3D2̄ðD1 −D3020 Þ;
a1D10 þ b10D23̄0 þ a3D2̄30 ; a3D2̄ þ ðb30 − a30 ÞD33 − b10D23̄0 ðD3 −D2010 Þ þ ðb10 − a10 ÞD3̄0 ðD10 −D23Þ;
b10D23̄020 þ ðb10 − a10 ÞD3̄0 þ b20D10 �;

Qð3Þ ¼ −½b30D1;−a10 þ ða2 þ b20 − a20 ÞD2̄10 ;−b10 ðD1 −D3020 Þ þ ðb10 − a10 ÞD1 − ða2 þ b20 − a20 ÞD2̄ð1 −D101Þ − a3;

b10D30 ; a10 þ b30D13 þ a3D10 ; ða2 þ b20 − a20 ÞD2̄ þ a3�;
Qð4Þ ¼ −½−b10D21 þ a20 ; a1 − ðb20 − a20 ÞD3 − ðb30 þ a3ÞD10 ;

a1D1 − b20 ðD20 −D31Þ − a2D20 − ðb20 − a20 ÞD31 þ b30 þ a3ð1 −D101Þ;−ðb20 þ a2Þ;−ða1 þ b10D213Þ;−ðb30 þ a3Þ�;
Qð5Þ ¼ ½b20D3; ða1 þ b10 − a10 ÞD2̄10 − a30 ;−ða1 þ b10 − a10 ÞD2̄ð1 −D101Þ − a2 − b30 ðD1 −D3020 Þ þ ðb30 − a30 ÞD1;

b30D30 ; b20D3 þ a2D10 þ a30 ; ða1 þ b10 − a10 ÞD2̄ þ a2�;
Qð6Þ ¼ −½b10D2; ða3 þ b30 − a30 ÞD2̄10 − a20 ;−a1 − b20 ðD1 −D3020 Þ þ ðb20 − a20 ÞD1 þ ða3 þ b30 − a30 ÞD2̄ð1 −D101Þ;

b20D30 ; a1D10 þ b10D23 þ a20 ; a1 þ ða3 þ b30 − a30 ÞD2̄�: ð41Þ

Now, regarding the second aspect, when the delay
operators do not commute, the problem seems to become
rather complex. However, one observes that any TDI
combination, and inclusively the cases with four or six
generators, always falls back to a linear combination of the
generation set GðkÞ if one ignores the commutator of time-
delay operators. Alternatively, the above statement can be
reversed and one concludes that an arbitrary TDI combi-
nation can be rewritten as a summation of two parts. The
first part consists of a linear combination of the generation
set GðkÞ, while one simply assumes that the time-delay
operators furnish polynomials where everything commutes.
The second part, on the other hand, corresponds to the
contributions left out, once the noncommutative nature of
the time-delay operator is carefully taken into account.
Although the second part is not unambiguously defined, it
is apparent that it will only contain terms that are propor-
tional to the commutators. The latter is guaranteed by the
fact that the TDI combination must be simplified to that of
the first generation when one ignores the commutators. We,
therefore, arrive at the desired conclusion. In this context,
we argue that the proposed scheme is meaningful on

general grounds. In the following section, we will illustrate
its application by examples of specific TDI combinations,
where the improvement with respect to existing results will
also be discussed.

IV. APPLICATIONS

In this section, we apply the proposed algorithm to more
realistic scenarios, such as the first-generation Sagnac and
fully symmetric Sagnac combinations. We also discuss how
the cancellation scheme can be viewed in terms of the
generating set discussed in Sec. III B. Before proceeding
further, we briefly review the Fourier transforms of the
commutators between delay operators which was first
derived in [41]. The resulting expressions will be utilized
below when one computes PSD of the residual noise, after
the dominant clock noise have been eliminated.

A. The second-order delay commutators

By repeatedly using Eq. (1), the nested delay operators in
the time domain give [41]
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Di1���infðtÞ ¼ f

�
Snt −

Xn
k¼1

Sn
Sk

Lik

�
; ð42Þ

where the derivation can be facilitated by noticing [41]

ð1− _LnÞt−Ln

⇒ ð1− _LnÞ½ð1− _Ln−1Þt−Ln−1�−Ln

⇒ ð1− _LnÞ½ð1− _Ln−1Þ½ð1− _Ln−2Þt−Ln−2�−Ln−1�−Ln

…: ð43Þ

Here, for convenience, one introduces the shorthand
Sk ¼

Q
k
p¼1ð1 − _LipÞ, for k > 0, and S0 ¼ 1.

The Fourier transform of Eq. (42) is given by [41]

1

Sn
exp

�
−jω

Xn
k¼1

Lik

Sk

�
f̃

�
ω

Sn

�
: ð44Þ

Let us consider the commutator involves n delay oper-
ators while applied to a signal fðtÞ, namely, yðtÞ ¼
Di1���DinfðtÞ −Dimþ1…DinDi1…DimfðtÞ. According to
Eq. (42),

yðtÞ ¼ f

�
Snt −

Xn
k¼1

Sn
Sk

Lik

�

− f

�
Snt −

Xm
k¼1

Sm
Sk

Lik −
Xn

k¼mþ1

SnSm
Sk

Lik

�
: ð45Þ

By expanding the above expression to second order in
powers of the armlength derivatives _Li, one may, according
to Eq. (43), rewrite the right-hand side of Eq. (45) as

1 −
Sn
Sm

¼
Xn

k¼mþ1

_Lik

�
1 −

Xn
l>k

_Ljl

�
;

Xm
k¼1

Sm
Sk

Lik ¼
Xm
k¼1

Lik −
Xm
k¼2

_Lik

Xk−1
l¼1

Lil ;

1 − Sm ¼
Xm
k¼1

_Lik

�
1 −

Xm
l>k

_Ljl

�
;

Xn
k¼mþ1

Sn
Sk

Lik ¼
Xn

k¼mþ1

Lik −
Xn

k¼mþ2

_Lik

Xk−1
l¼mþ1

Lil : ð46Þ

For convenience, one makes use of the definitions
La ≡P

m
k¼1 Lik , Lb ≡P

m
l>k Lil ; Lp ≡P

n
k¼mþ1 Lik , and

Lq ≡P
n
l>k Ljl . Here, the summation for indices a, b, p,

and q are implied together with the conditions
b > a; a; b ∈ ½1; m�; q > p; p; q ∈ ½mþ 1; n�.
One finds, by some straightforward algebra, Eq. (45)

gives

yðtÞ ≈ −½Lp
_La − La

_Lp þ La
_Lpð _Lq þ _LbÞ − Lp

_Lað _Lb þ _LqÞ�
df
dt

ðt − nLÞ: ð47Þ

Subsequently, the corresponding Fourier transform ỹðωÞ reads

ỹðωÞ ≈ −jωe−jωnL½Lp
_La − La

_Lp þ La
_Lpð _Lq þ _LbÞ − Lp

_Lað _Lb þ _LqÞ�f̃ðωÞ: ð48Þ

We note that similar results were first obtained [41] in the
study of the effect of the onboard anti-aliasing filters, where
the residual noise is given up to the first-order commuta-
tors. The above results have taken into consideration up to
the second-order commutators.

B. The clock-jitter correction for Sagnac combinations

For Sagnac combinations, light originating from space-
craft i is simultaneously sent around the array on clockwise
and counter-clockwise loops. The two returning beams are
then recombined. Aiming at eliminating the laser fluctua-
tions that affect both beams, the first-generation α1 combi-
nation reads [21]

α1 ¼ η1 − η10 þD3η2 −D2010η20 þD31η3 −D20η30 : ð49Þ

The PSDs of optical-path and test-mass noise in the first-
generation Sagnac combinations can be obtained as

Sα1 ¼ 8
s2aL2

u2c4

�
sin2

3

2
uþ 2 sin2

u
2

�
þ 6

u2s2x
L2

: ð50Þ

By substituting the clock noise terms of Eq. (12) into
Eq. (49), we have

αq1 ¼ −½ða1 − a10 Þ þ b10 ð1þD312Þ�q1
− ½ða2 − b2ÞD3 þD2010 ðb20 − a20 Þ�q2
− ½D31ða3 − b3Þ þD20 ðb30 − a30 Þ�q3: ð51Þ

Now, we will focus on clock noise terms. “By combining
Eqs. (19) and (51), the PSD of clock noise can be
obtained [48]”
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Sαq
1
ðωÞ ¼ f2q

ν20
½ða1 þ b10 Þ2 þ ða2 þ b20 Þ2 þ ða3 þ b30 Þ2 þ ða10 − b10 Þ2 þ ða20 − b20 Þ2 þ ða30 − b30 Þ3 − 2a1a10

− 2½ða2 þ b20 Þða20 − b20 Þ þ ða3 þ b30 Þða30 − b30 Þ� cosωLþ 2b10 ða1 − a10 þ b10 Þ cos 3ωL�SqðωÞ: ð52Þ

In deriving the above expression, we have made use of the
fact that the clock noise have zero mean, i.e., hq̃iðωÞi ¼ 0
for all i. In addition, different clock noise are uncorrelated,
i.e., hq̃iðωÞq̃jðωÞi ¼ 0 if i ≠ j. Besides, we assume that
these are white noise with identical strength, denoted by
SqðωÞ. In Fig. 7, we depict the square root of the PSD of the
frequency fluctuations for the first-generation Sagnac
combinations. It can be clearly seen that the clock noise
are more significant than the acceleration and optical-path
noise in frequency band 10−4 Hz–10−2 Hz. Therefore, it is

indeed meaningful to prioritize the elimination of the clock-
jitter noise. In literature, the expression aiming at the
clock-noise elimination for the first-generation Sagnac
combination has been previously proposed in [44].
There, the analyses have been performed by assuming that
Li ¼ Li0 . Further improvements have been introduced
concerning the case Li ≠ Li0 [48]. However, the clock-
jitter noise are not entirely eliminated, as residual terms
proportional to Li − Li0 still persist. In [47,48], the follow-
ing combination is proposed

Kα1 ≡ b10

2
½ðr1 þD3r2 þD31r3Þ þ ðr10 þD20r30 þD2010r20 Þ� þ ðb20 þ a2Þr1

þ ðb20 − a20 Þðr10 þD20r30 Þ þ ðb30 − a30 Þr10 þ ðb30 þ a3Þðr1 þD3r2Þ: ð53Þ

We note that although the difference αc1 ¼ α1 − Kα1 is
largely free of clock noise, the scheme proposed in the
previous section can be employed to further reduce
the clock noise. To illustrate this point, we substitute the
specific forms of Eq. (26) into Eq. (53) to find [48]

αc;q1 ¼ −
b10

2
ðD312 −D201030 Þq1; ð54Þ

The residual term is then only proportional to ðD312−
D201030 Þq1 ¼ ½ð1 −D201030 Þ − ð1 −D312Þ�q1. According to
Table I, the latter can be again expressed in terms of the
combinations of ri. As a result, the elimination of the clock
noise can be further refined by constructing

Kα1
0 ≡ b10 ðr1 þD3r2 þD31r3Þ þ ðb20 þ a2Þr1

þ ðb20 − a20 Þðr10 þD20r30 Þ þ ðb30 − a30 Þr10
þ ðb30 þ a3Þðr1 þD3r2Þ: ð55Þ

It is straightforward to find that the difference αc1
0 ¼

α1 − Kα1
0 ¼ 0. According to the [41], in data analysis,

anti-aliasing filters are usually employed for the frequency
band of interest to prevent power folding. The residual
clock jitter including the filter coupling effect is insignifi-
cant but nonvanishing. To quantify the magnitude of the
residual noise terms that containing delay-filter commuta-
tors, we find

αF ;c
1 ¼b10D31½D2;F �q1

þf−a1½D3;F �þðb20 −a20 ÞD20 ½D10 ;F �gq2
þfða10 −b10 Þ½D20 ;F �þðb10 þb30 þa3ÞD3½D1;F �gq3:

ð56Þ

Also, the corresponding PSD is found to be

FIG. 7. The square root of the PSD of the frequency fluctuation
(strain) noise evaluated for the first-generation Sagnac combi-
nation α1. The red curve represents the contribution from the
acceleration and optical-path noise. The blue curve corresponds
to the USO noise level before the calibration. The green curve
corresponds to the USO noise level after the calibration in
Ref. [48]. The black curve corresponds to the USO noise level
after the calibration in this work.
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SαF ;c
1
ðωÞ ¼ f2q

ν20

1

c2
ω2KfðωÞf½ðb20 − a20 Þ2 þ ðb10 þ b30 þ a3Þ2� _L2

1 þ ½b2
10 þ ða10 − b10 Þ2� _L2

2 þ a21 _L
2
3

þ 2 _L1½−a1ðb20 − a20 Þ _L3 þ ða10 − b10 Þðb10 þ b30 þ a3Þ _L2� cosωLgSqðωÞ; ð57Þ

which possesses a dependance on the filter. As an estimation,
onemay assume that the physical sampling timeΔt ¼ 0.05 s

and the Doppler term
_Li
c is about 3 × 10−8. Subsequently, the

resultant clock noise is found to be suppressed by a factor of

ω2KF ðωÞ ¼ ω2j df̃ðωÞdðωÞ j2 ¼ ω2ðΔtÞ2 · 102 ≪ 1. It is there-

fore confirmed that the contributions associated with the
filtering terms are indeed negligibly small.

C. The clock-jitter correction for fully symmetric
Sagnac combinations

By following the definitions in the literature, the first-
generation ζ1 reads [21]

ζ1 ¼D1η1þD2η2þD3η3−D10η10 −D20η20 −D30η30 : ð58Þ

The PSDs of the optical-path and test-mass noise are
found as

Sζ1 ¼ 6

�
4
s2aL2

u2c4
sin2

1

2
uþ u2s2x

L2

�
: ð59Þ

By substituting clock noise terms of Eq. (12) into Eq. (58),
we have

ζq1 ¼ −½a1D1 þ b10D32 þ ðb10 − a10 ÞD10 �q1 − ½a2D2 þ b20D13 þ ðb20 − a20 ÞD20 �q2 − ½a3D3 þ b30D21 þ ðb30 − a30 ÞD30 �q3:
ð60Þ

Furthermore, by combining Eqs. (19) and (60), the PSD of clock noise is

Sζq
1
ðωÞ ¼ f2q

ν20
fða1 − a10 þ b10 Þ2 þ ða2 − a20 þ b20 Þ2 þ ða3 − a30 þ b30 Þ2 þ b2

10 þ b2
20 þ b2

30

þ 2½ða1 − a10 þ b10 Þb10 þ ða2 − a20 þ b20 Þb20 þ ða3 − a30 þ b30 Þb30 � cosωLgSqðωÞ: ð61Þ

As is clearly demonstrated in Fig. 8, the clock noise is
more significant than the inevitable noise sources. This,
again, justifies the elimination of the clock noise to below
the level of the setup noise floor. The clock-noise reducing
expression for the ζ1 combination was proposed in [46]. In
[44], Tinto et al. improve the expression according to the
relations between ri and Dq1, and the resultant USO noise-
free expression is derived. Based on these results, we now
further distinguish the difference between the clockwise
and counter-clockwise virtual photon pathes. In this regard,
the following relations between ri and qi can be established

D32q1 ¼ D1q1 −D3r3 þD3r30 −D1r1 − ðD1 −D10 ÞD3q2

þ ½D3;D10 �q2;
D2q2 ¼ D2r20 þD230q1;

D13q2 ¼ D1q1 −D1r1;

D20q2 ¼ D20r20 þD2030q1;

D3q3 ¼ D3r3 þD32q1;

D21q3 ¼ D230q1 −D2ðr2 − r20 Þ;
D30q3 ¼ D30r3 þD302q1: ð62Þ

FIG. 8. The square root of the PSD of the frequency fluctuation
(strain) noise evaluated for the first-generation fully symmetric
Sagnac combination ζ1. The red curve represents the contribution
from the acceleration and optical-path noise. The blue curve
corresponds to the USO noise level before the calibration. The
green curve indicates the residual USO noise spectrum after
applying the calibration procedure.
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By employing the proposed scheme and using the last row of Table II, one proceeds to eliminate the clock noise. We
construct the following quantity

Kζ1 ¼ −
1

3
½−3b20D1r1 þ ða1 − 2a10 þ 2b10 þ b20 ÞD1r10 þ ða30 − b30 þ a1 þ b20 ÞD10r1

− 3b30D2r2 þ ða2 − 2a20 þ 2b20 þ b30 ÞD2r20 þ ða10 − b10 þ a2 þ b30 ÞD20r2

− 3b10D3r3 þ ða3 − 2a30 þ 2b30 þ b10 ÞD3r30 þ ða20 − b20 þ a3 þ b10 ÞD30r3�: ð63Þ

By subtracting Kζ1 from ζq1 , it can be shown that the resultant quantity ζc1 ¼ ζq1 − Kζ1 gives

ζc1 ¼ −
2

3
½ða1 þ a10 þ b20 − b10 ÞðD1 −D10 Þq1 þ ða2 þ a20 þ b30 − b20 ÞðD2 −D20 Þq2

þ ða3 þ a30 þ b10 − b30 ÞðD3 −D30 Þq3�

¼ 2

3
ð2v1 − v2 − v3ÞðD1 −D10 Þq1 þ

2

3
ð2v2 − v3 − v1ÞðD2 −D20 Þq2 þ

2

3
ð2v3 − v1 − v2ÞðD3 −D30 Þq3: ð64Þ

From the last line, if one notices 2v1 − v2 − v3 ≈ 0, it is
evident that the clock noise of the first generation fully
symmetric Sagnac combination is eliminated to a very
low level.
By assuming σLi

¼ Li − Li0 ; σL1
¼ σL2

¼ σL3
, the PSD

of the residual clock noise is given as

Sζc
1
¼ f2q

ν20

4

3
ða1 þ a10 þ b20 − b10 Þ2 sin2

ωσL
2

SqðωÞ: ð65Þ

As shown in Fig. 8 that we have successfully suppressed
the noise of the clock jitter below the level of those due to
acceleration and optical path, in which we chosed
σLi

¼ 3.6 × 103 m.
The resultant expressions regarding other TDI combi-

nations are also derived and presented in the Appendix. In
Sec. III B, we have shown that Tables I and II furnish a
general schemewhich can be applied to an arbitrary form of
TDI combination. In the following subsection, we give
explicit example about how the scheme is implemented.

D. Derivation of the clock-noise cancellation scheme
using the generating set

In this subsection, we show how the general scheme
discussed in Sec. III B can be implemented. In what
follows, one considers a few examples of the TDI combi-
nations, namely, the first-generation Michelson, the modi-
fied Sagnac, and the modified fully symmetric Sagnac
combinations. To be specific, instead of straightforwardly
employing the Tables I and II, one explicitly identifies the
coefficients CðkÞ in Eq. (32) onto the generators given in
Eqs. (36) and (40). Subsequently, one employs Eqs. (38)
and (41) to derive a clock-noise cancellation scheme. As
discussed above, if one assumes Di ¼ Di0 , one finds four
generators, namely, k ¼ 1;…; 4. On the other hand, if one
considers Di ≠ Di0 , we have k ¼ 1;…; 6.

In the first example, we consider the case of the
first-generation Michelson combination X1. The clock
noise Eq. (30) can be decomposed according to Eq. (33),
onto the basis of the module, one finds the coefficients
CðkÞ are

Cð1Þ ¼ −D20 ;

Cð2Þ ¼ D1;

Cð3Þ ¼ −D3;

Cð4Þ ¼ 0;

Cð5Þ ¼ −1;

Cð6Þ ¼ 0: ð66Þ

It is straightforward to verify that by substituting
the above coefficients and Eq. (41) into Eq. (34), the
clock noise is reduced up to the commutator of delay
operators.
As a second example, let us consider the modified

Sagnac combination α2. Here, the clock noise possesses
the form [47],

αq2 ¼ ½ðD312
− IÞðb10 −a10 Þ− ðD201030 −1Þð−a1þb1D312

Þ�q1
þ½ðD312

− IÞD2010 ðb20 −a20 Þ
− ðD201030 −1ÞD3ð−a2þb2Þ�q2
þ½ðD312

− IÞD20 ðb30 −a30 Þ
− ðD201030 −1ÞD31ð−a3þb3Þ�q3; ð67Þ

and the corresponding coefficients extracted from the TDI
combination read
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Cð1Þ ¼ 0;

Cð2Þ ¼ D1;

Cð3Þ ¼ 0;

Cð4Þ ¼ −D10D20 ;

Cð5Þ ¼ −1;

Cð6Þ ¼ 0: ð68Þ

Also, we find that Eq. (41) serves to suppress the clock
noise given above up to the commutator of delay operators.
As a last example, we consider the modified fully

symmetric Sagnac combination ζ2. In this case, the clock
noise reads

ζq2¼
�
b20 ðD110−D203010 Þ−ða1þb20 ÞðD110−D203010 Þ
þða10−b10 ÞðD101−D321Þ−b10 ðD13−D20303ÞD2

�
q1

þ
�
b30 ðD1020−D3220 Þ−ða2þb30 ÞðD1020−D3220 Þ
þða20−b20 ÞðD1020−D3220 Þ−b20 ðD110−D203010 ÞD3

�
q2

þ
�
b10 ðD13−D20303Þ−ða3þb10 ÞðD13−D20303Þ
þða30−b30 ÞðD13−D20303Þ−b30 ðD1020−D3220 ÞD1

�
q3;

ð69Þ

and the corresponding coefficients are

Cð1Þ ¼ D20 ;

Cð2Þ ¼ −D1;

Cð3Þ ¼ 0;

Cð4Þ ¼ 0;

Cð5Þ ¼ 0;

Cð6Þ ¼ −D20 : ð70Þ

Again, one finds that the clock noise is reduced as
expected.
Before closing this section, we note there is some

subtlety for the fully-symmetry Sagnac combinations. As
the cancellation schemewas initially proposed by assuming
Di ¼ Di0 , it qualifies as a first-generation TDI scheme. In
the literature, the scheme has been generalized [47,48] by
further introducing the terms involving Di0 . However, it is
readily seen that such scheme does not entirely eliminate,
from the laser fluctuation noise, all linear terms in Di and
Di0 . To be specific, the remaining residuals are proportional
to the difference ðDi −Di0 Þ, which are insignificant in
practice. However, from a mathematical viewpoint, by
definition, such a cancellation scheme does not constitute
a solution for the kernel of the first module of syzygies. As
a result, different from most other cases, one cannot
straightforwardly construct the corresponding clock-noise
cancellation scheme as discussed in Sec. III B. In this

regard, what one can achieve, as has been carried out in
Sec. IV C, is to establish a clock-noise cancellation scheme,
whose residual is also proportional to ðDi −Di0 Þ.

V. CONCLUSION

To summarize, in the present study, we have focused on
the second largest noise source after laser frequency noise,
namely, the clock-jitter noise. Based on the principles of the
TDI technique as well as sideband techniques, we proposed
a generalized USO calibration algorithm. Explicit relations
between specific noise forms and the corresponding can-
cellation schemes have been established. By employing
such relations, presented in two tables, we managed to
eliminate the USO noise further down to the setup noise
floor. The PSDs of the residual clock noise were sub-
sequently evaluated for various TDI combinations, which
can be readily applied for GW detection. In particular, it
was shown that for Sagnac combinations and fully sym-
metric Sagnac combinations, the resulting residuals can be
reduced significantly to reach the experimentally accept-
able levels. Moreover, we demonstrated that such a scheme
is meaningful in a general context, as it is capable to applied
to arbitrary TDI combinations to reduce clock noise to the
commutators of the time-delay operators. A few examples
were discussed to illustrate the above cancellation algo-
rithm based on the generating set of the first module of
syzygies.
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APPENDIX: PSD OF THE RESIDUAL CLOCK
NOISE FOR DIFFERENT TDI COMBINATIONS

To intuitively see the suppression level before and after
calibrating clock jitter, we derive the expressions of the
PSD for individual TDI combinations. For the Michelson
and Sagnac combinations, the residual noise associated
with the commutators between the delay and filtering
opetators is insignificant but nonvanishing. For other
TDI combinations, the residual noise is given in terms

REFINED CLOCK-JITTER REDUCTION IN THE SAGNAC-TYPE … PHYS. REV. D 104, 082002 (2021)

082002-17



of the commutators between delay opetators. For the
following formulation, the subscript 1 and 2 represents,
respectively, the first- and second-generation TDI
combinations.

1. Michelson combination

For the Michelson combination, Eqs. (21)–(24) show
the PSD of inevitable noises and clock noise before
calibration.

The residual noise terms after calibration are

XF ;c
1 ¼ b10 ð1 −D330 ÞD20 ½F ;D2�q1 þ a1ð1 −D202Þ½F ;D3�q2 þ ðb10 − a10 Þð1 −D330 Þ½F ;D20 �q3; ðA1Þ

and

XF ;c
2 ¼ b10 ð1 −D330 −D330202 þD202330330 ÞD20 ½F ;D2�q1 þ a1ð1 −D202 −D202330 þD330202202Þ½F ;D3�q2

þ ðb10 − a10 Þð1 −D330 −D330202 þD202330330 Þ½F ;D20 �q3: ðA2Þ

The PSDs of residual noise after calibration are [48]

SXc;F
1
ðωÞ ¼ 4

f2q
ν20

1

c2
ω2f½b2

10 þ ða10 − b10 Þ2� _L2
2 þ a21 _L3

2gsin2uSqðωÞKfðωÞ; ðA3Þ

and

SXc;F
2
ðωÞ ≈ 4sin2ð2uÞSXc;F

1
ðωÞ: ðA4Þ

2. Sagnac combination

For the second-generation Sagnac combination, the PSD of acceleration and optical-path noise is

Sα2ðωÞ ≈ 4 sin2
�
3u
2

�
Sα1ðωÞ: ðA5Þ

The PSD expression of clock noise before calibration is

Sαq
2
ðωÞ ≈ 4 sin2

�
3u
2

�
Sαq

1
ðωÞ: ðA6Þ

The residual noise term is

αF ;c
2 ¼ b10 ð1 −D201030 ÞD31½F ;D2�q1 − ½a1ð1 −D201030 Þ½F ;D3� þ ða20 − b20 Þð1 −D312ÞD20 ½F ;D10 ��q2

þ ½ða10 − b10 Þð1 −D312Þ½F ;D20 � þ ða3 þ b10 þ b30 Þð1 −D201030 ÞD3½F ;D1��q3: ðA7Þ

The PSD expression can be obtained as [48]

SαF ;c
2
ðωÞ ¼ 4ω2 sin2

3u
2
½ðA2

2 þ A2
3Þ _L2

1 þ ðb2
10 þ A2

1Þ _L2
2 þ a21 _L

2
3 þ 2 _L1ðA1A3

_L2 þ a1A2
_L3Þ cos u�KfðωÞSqðωÞ; ðA8Þ

with A1 ¼ a10 − b10 ; A2 ¼ a20 − b20 ; A3 ¼ a3 þ b10 þ b30 .
For the following combinations, as the residual clock noise due to commutators between delay operators is not

completely canceled out; the smaller filtering effects will not presented.
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3. Fully symmetric Sagnac combinations

For fully symmetric Sagnac combination, the PSD of acceleration and optical-path noise is

Sζ2ðωÞ ≈ 4 sin2
u
2
Sζ1ðωÞ: ðA9Þ

The clock noise through TDI technique is expressed as

Sζq
2
ðωÞ ¼ 4 sin2

u
2
Sζq

1
ðωÞ: ðA10Þ

The residual noise term after calibration is

ζc2 ¼ ½ða1 þ b20 ÞfD20 ½D30 ;D10 � þD2̄½½D101;D2� þD2½D10 ;D1��g þ ða10 − b10 ÞfD3½D1;D2� þD2̄½D2;D101�g�q1
þ ða2 þ b30 − a20 þ b20 Þf½D20 ;D10 � þ ½D3;D220 � þ ½D2;D20 �D3gq2
þ ða3 þ b10 − a30 þ b30 Þf½D3;D1� þ ½D20 ;D303� þ ½D30 ;D3�D20gq3: ðA11Þ

The PSD expression can be obtained as

Sζc
2
ðωÞ¼ f2q

ν20

1

c2
ω2

L2

c2
×fða1þb20 Þ2½2ð _L3− _L1Þ2þ4½ð _L1− _L2Þ2þð _L2− _L3Þ2�−4ð _L3− _L1Þ2 cosu�

þða10 −bÞ2½ð _L1− _L2Þ2ð6−4cosuÞþ4ð _L3− _L2Þ2þ4ð _L3− _L2Þð _L2− _L1Þcosu�
þða10 −b10 Þða1þb20 Þf2ð _L3− _L1Þð _L1− _L2Þ−8ð _L1− _L2Þ2þ½4ð _L3− _L1Þð _L2− _L1Þþ4ð _L1− _L2Þ2�cosugSqðωÞ:

ðA12Þ

The square root of these PSDs are shown in Fig. 9.

4. Beacon combination

For beacon combination, the PSD of acceleration and optical-path noise are

SP1
ðωÞ ¼ s2aL2

u2c4

�
8 sin2 uþ 32 sin2

u
2

�
þ u2s2x

L2

�
8 sin2

u
2
þ 8 sin2 u

�
; ðA13Þ

and

FIG. 9. The square root of the PSD of the frequency fluctuation (strain) noise entering in the second-generation TDI combination ζ2.
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SP2
ðωÞ ≈ 4 sin2 uSP1

ðωÞ: ðA14Þ

The expression of clock noise before calibration are

SPq
1
ðωÞ ¼ 4

f2q
ν20

f½b2
10 þ ða20 − b20 Þ2 − a2ða20 − b20 Þ þ ða3 þ b30 Þ2 − a30 ða3 þ b30 Þ� sin2 uþ ða22 þ a2

30 Þ sin2
u
2
gSqðωÞ; ðA15Þ

and

SPq
2
ðωÞ ¼ 4 sin2 uSPq

1
ðωÞ: ðA16Þ

The residual clock noise after calibration is

Pc
1 ¼ ½ða2 þ b30 Þf½D3̄10 ;D303� −D3̄½D2;D3�g þ ða20 − b20 Þ½D110 ;D2��q2

þ ½ða3 þ b10 Þf½D2̄0110 ;D3020 � þ ½D30 ;D110 � þ ½D3020 ; D2̄�g − ða30 − b30 Þf½D2̄01;D220 � þ ½D20 ;D2̄030 �g�q3; ðA17Þ

and

Pc
2 ¼ ða2 þ b30 Þf−D30 ½D22;D110 � þD30 ½D10 ;D1�D22 þD2½D3030 ;D101�D10 þD2½D10 ;D1�D303010 gq2

þ ða30 − b30 ÞfD2½D3030 ;D101� −D30 ½D22;D110 �D1 þD30 ½D10 ;D1�D221gq3: ðA18Þ

The PSD expression can be obtained as

SPc
1
ðωÞ ¼ f2q

ν20

1

c2
ω2

L2

c2
fða2 þ b30 Þ2½8ð _L1 − _L3Þ2 þ 2ð _L2 − _L3Þ2 − 4ð _L2 − _L3Þ2 cos u� þ 4ða20 − b20 Þ2ð _L1 − _L2Þ2

þ ða2 þ b30 Þða20 − b20 Þ½8ð _L1 − _L3Þð _L1 − _L2Þ cos u − 4ð _L2 − _L3Þð _L1 − _L2Þ cos 2u�
þ ða3 þ b10 Þ2½ð2 _L1 þ _L3 − 3 _L2Þ2 þ ð _L2 − _L3Þ2 þ 2ð2 _L1 þ _L3 − 3 _L2Þð _L2 − _L3Þ cos 2u�
− ða3 þ b10 Þða30 − b30 Þ½2ð2 _L1 þ _L3 − 3 _L2Þð _L1 − _L2Þ cos u
þ ð2 _L1 þ _L3 − 3 _L2Þð _L2 − _L3Þ cos 2uþ 2ð _L1 − _L2Þð _L2 − _L3Þ cos uþ 2ð _L2 − _L3Þ2�gSqðωÞ; ðA19Þ

and

SPc
2
ðωÞ ¼ 16

f2q
ν20

1

c2
ω2

L2

c2
fða2 þ b30 Þ2½ð _L2 − _L1Þ2 þ ð _L3 − _L1Þ2 − 2ð _L2 − _L1Þð _L3 − _L1Þ cosωL�

þ ða30 − b30 Þ2½ð _L3 − _L1Þ2 þ ð _L2 − _L1Þ2 − 2ð _L3 − _L1Þð _L2 − _L1Þ cosωL�gSqðωÞ: ðA20Þ

The square root of these PSDs are shown in Fig. 10.

5. Monitor combination

For monitor combination, the PSD of acceleration and optical-path noise are

SE1
ðωÞ ¼ s2aL2

u2c4

�
8 sin2 uþ 32 sin2

u
2

�
þ u2s2x

L2

�
8 sin2

u
2
þ 8 sin2 u

�
; ðA21Þ

and

SE2
ðωÞ ≈ 4 sin2 uSE1

ðωÞ: ðA22Þ

The expression of clock noise before calibration are
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SEq
1
ðωÞ ¼ 4

f2q
ν20

f½ða10 − a1 − b10 Þ2 þ b2
20 þ a2b20 � sin2 uþ a22 sin

2
u
2
gSqðωÞ; ðA23Þ

and

SEq
2
ðωÞ ≈ 4 sin2 uSEq

1
ðωÞ: ðA24Þ

The residual clock noise after calibration are,

Ec
1 ¼ fða1 þ b20 ÞfD3̄0 ½½D110 ;D30 � þD30 ½D1;D10 �� þ ½D10 ;D1�g − ða10 − b10 ÞD2̄½½D101;D2� þD2½D10 ;D1��gq1; ðA25Þ

and

Ec
2 ¼ fða1 þ b20 Þ½½D2̄10 ;D12� þD110 ½D12;D2̄10 � þD110 ½D10 ;D1� þ ½D1;D10 ��

þ ða10 − b10 Þ½½D1030 ;D3̄01� þD101½D3̄01;D1030 � þD101½D10 ;D1� þ ½D1;D10 ��gq1
þ ða2 þ b30 Þf½D33;D3̄101� þD3½D1;D10 � þ ½D2̄0110 ;D2020 �D10 þD20 ½D1;D10 �D10 gq2
þ ða30 − b30 Þf½D2̄0110 ;D2020 � þD20 ½D1;D10 � þ ½D33;D3̄101�D1 þD3½D1;D10 �D1gq3: ðA26Þ

The PSD expression can be obtained as

SEc
1
ðωÞ ¼ 4

f2q
ν20

1

c2
ω2

L2

c2
½ða1þb20 Þ2ð _L1− _L3Þ2þða10 −b10 Þ2ð _L1− _L2Þ2− 2ða1þb20 Þða10 −b10 Þð _L1− _L3Þð _L1 − _L2Þ�2SqðωÞ;

ðA27Þ

and

SEc
2
ðωÞ ¼ f2q

ν20

1

c2
ω2

L2

c2
f½4ða1þb20 Þ2ð _L1− _L2Þ2þða10 −b10 Þ2ð _L3 − _L1Þ2þ 4ða1þb20 Þða10 −b10 Þð _L1− _L2Þð _L3− _L1Þ�4sin2 u

þ 32ða2þb30 Þ2½ð _L3 − _L1Þ2þð _L1− _L2Þ2þ 2ð _L3 − _L1Þð _L1 − _L2Þcosu�gSqðωÞ: ðA28Þ

The square root of these PSDs are shown in Fig. 11.

FIG. 10. The square root of the PSD of the frequency fluctuation (strain) noise entering in the second-generation TDI combination P2.
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6. Relay combination

For relay combination, the PSD of acceleration and optical-path noise are

SU1
ðωÞ ¼ s2aL2

u2c4

�
16 sin2

u
2
þ 8 sin2 uþ 16 sin2

3u
2

�
þ u2s2x

L2

�
4 sin2

u
2
þ 8 sin2 uþ 4 sin2

3u
2

�
; ðA29Þ

and

SU2
ðωÞ ≈ 4sin2

3u
2
SU1

ðωÞ: ðA30Þ

The expression of clock noise before calibration are

SUq
1
ðωÞ ¼ f2q

ν20
½4a22 sin2

3u
2
þ 4½ða10 − b10 Þ2 þ ðb20 − a20 Þ2 þ b2

30 � sin2 uþ 4a2
30 sin

2
u
2

þ 2a2ðb20 − a20 Þð1þ cos u − cos 2u − cos 3uÞ − 2a30b30 ð1 − cos u − cos 2uþ cos 3uÞ�SqðωÞ; ðA31Þ

and

SUq
2
ðωÞ ≈ 4 sin2

3u
2
SUq

1
ðωÞ: ðA32Þ

The residual clock noise after calibration are,

Uc
1 ¼ 0; ðA33Þ

and

Uc
2 ¼ ða10 − b10 ÞfD1½D3020 ;D10 �D30 þ ½D302010 ;D1110 �D30gq1

þ ða20 − b20 ÞfD1½D3020 ;D10 � þ ½D302010 ;D1110 �gq2
þ ða30 − b30 Þf½D3020 ;D1110 � þD3020 ½D10 ;D11� þD1½D3020 ;D103020 �gq3: ðA34Þ

The PSDs of residual clock noise after calibration are,

FIG. 11. The square root of the PSD of the frequency fluctuation (strain) noise entering in the second-generation TDI combination E2.
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SUc
1
ðωÞ ¼ 0; ðA35Þ

and

SUc
2
ðωÞ ¼ f2q

ν20

1

c2
ω2

L2

c2
f2½ða10 − b10 Þ2 þ ða20 − b20 Þ2�ð _L3 þ _L2 − 2 _L1Þ2ð5þ 3 cos 2uÞ

þ 2ða30 − b30 Þ2ð _L3 þ _L2 − 2 _L1Þ2ð5þ 3 cos uÞgSqðωÞ: ðA36Þ

The square root of these PSDs are shown in Fig. 12.
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