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Relations between generalized parton distributions and transverse
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We investigate the relations between transverse momentum dependent parton distributions (TMDs) and
generalized parton distributions (GPDs) in a light-front quark-diquark model motivated by soft-wall AdS/
QCD. Many relations are found to have similar structure in different models. It is found that a relation
between the Sivers function and the GPD E, can be obtained in this model in terms of a lensing function.
The quark orbital angular momentum is calculated and the results are compared with the results in other
similar models. Implications of the results are discussed. Relations among different TMDs in the model are

also presented.
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I. INTRODUCTION

Understanding the structure of the nucleon in terms of its
fundamental constituents, quarks and gluons, in three
dimensions has attracted quite a lot of interest in hadron
physics in recent days. These are investigated in terms of
the different distributions of quarks and gluons that encode
their internal dynamics, as well as the correlations between
the intrinsic momentum and spin. The parton distributions
are probed traditionally in high energy scattering experi-
ments, where the interactions take place through the quarks
and gluons, and the scattering cross section depends on the
probability to find a quark with momentum fraction x
inside the parent nucleon at a given momentum scale
(energy of the experiment). These are called collinear
parton distributions as they are not sensitive to the intrinsic
transverse momentum of the quarks and gluons. However,
single spin asymmetries observed in semi-inclusive deep
inelastic scattering (SIDIS) or Drell-Yan (DY) processes,
where the target or one of the proton beams is polarized,
depend on transverse momentum dependent parton distri-
bution (TMDs) [1] that give the distribution of quarks and
gluons in three-dimensional momentum space. The TMDs
are functions of the longitudinal momentum fraction x and
transverse momentum pr of the partons. There are eight
leading quark TMDs for the proton, each encode a different
momentum-momentum or momentum-spin correlation.
These TMDs can be expressed in terms of the quark field
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operators, and in order to have color gauge invariance one
needs the inclusion of a Wilson line or gauge link. Also
known as the initial and/or final state interaction, these
basically resum the soft gluon exchanges between the hard
part and the soft part of the process. The gauge links are
process dependent and thus they introduce a process
dependence in the TMDs. For the so-called time reversal
odd (T-odd) TMDs like Sivers function or Boer-Mulders
function the inclusion of the gauge link is essential [2].

Another set of observables that have gained a lot of
interest in recent days are the generalized parton distribu-
tions (GPDs) of the nucleon [3]. These are probed in
exclusive processes like the deeply virtual Compton scat-
tering or the deeply virtual meson production. GPDs can be
expressed in terms of off-forward matrix elements of a
bilocal operator, and these do not have probabilistic
interpretation. There are eight leading GPDs for the quarks.
In the forward limit or when the momentum transfer in the
process is zero, GPDs reduce to the collinear parton
distribution function (pdf); whereas when integrating them
over x one gets the form factors. When the momentum
transfer Ay is purely in the transverse direction, by taking a
Fourier transform with respect to Ay one obtains impact
parameter dependent parton distributions (IPDpdfs) [4] that
are functions of x and the transverse impact parameter by.
These have a probabilistic interpretation: they give the
distribution of quarks with longitudinal momentum fraction
x in the b7 plane.

As a matter of fact, there is no direct one-to-one
correspondence between the TMDs and GPDs. This is
because by and p; are not Fourier conjugate variable to
each other. b7 is the Fourier conjugate to the momentum
transfer Ay, and pr may be interpreted as the average
momentum of the active quark. However, by and pr obey
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Heisenberg’s uncertainty principle as the corresponding
operators do not commute. So although both the GPDs and
TMDs give a three-dimensional quark-gluon picture of the
nucleon, one is not related to the other through a Fourier
transform. A model-independent connection between the
GPDs and the TMDs can be obtained through the gener-
alized transverse momentum dependent pdfs (GTMDs) or
Wigner functions, which are Fourier transforms of the
GTMDs [5,6]. These give the most general tomographic
picture of the nucleon. Integration over by sets Ay = 0 and
the Wigner distributions become the TMD correlators. On
the other hand, integrating over p; sets transverse sepa-
ration zy = 0 and they reduce to IPDpdfs.

However, in some models, certain relations between the
TMDs and GPDs are found to hold. One such relation is
between the Sivers function and the GPD E, in impact
parameter space, in some particular model where the final
state interaction can be factored out in what is called a
“chromodynamic lensing function” [7,8]. This gives an
intuitive picture of the Sivers effect in such models in terms
of distortions in transverse impact parameter space, due to the
nonzero orbital angular momentum of the active quark. Such
relations do not hold if higher-order corrections are included.
Thus, model-dependent relations are important as they help
to understand the physics related to these TMDs in the
framework of the effective theory on which such models are
based. In [9], a systematic study of all possible nontrivial
model-dependent relations between TMDs and GPDs was
performed and such relations were arranged in four catego-
ries depending on the number of derivatives in impact
parameter space. In [10] it was shown that the relation
connecting a T-odd TMD to a distortion in impact parameter
space through a lensing function holds only in models where
the nucleon is described as a two-particle bound state, like a
quark and a diquark. Further, such relations are not satisfied if
axial-vector diquarks are included in the model.

In the present work, we investigate model relations in a
light-front diquark model where the analytic form of the
light-front wave functions (LFWF) is motivated by the
AdS/QCD correspondence. The model includes both scalar
and axial-vector diquarks [11]. Total nucleon wave func-
tions are obtained by the light-front holographic wave
function multiplied by the momentum dependent helicity
wave functions. Finally, we incorporate the final state
interaction in the wave functions to evaluate the T-odd
TMDs. We also calculate the orbital angular momentum of
the quarks in this model and discuss the results.

The plan of the paper is as follows. In Sec. II, we introduce
the light-front quark-diquark model used in this work. The
modification of the wave functions to incorporate the final
state interaction (FSI) effect is given in Sec. Il A. Then, in
Sec. III, we define the GPDs and TMDs in this model.
Model-independent relations among the GPDs and TMDs
are also presented in this section. Then we present the
model-dependent relations between the GPDs and TMDs in

Sec. IV. The model result of the lensing function is discussed
in Sec. IV B and the relations among different TMDs are
presented in Sec. V. In Sec. VI, different definitions of orbital
angular momentum in terms of GPDs and TMDs are
evaluated. Finally, we conclude the paper in Sec. VII.

II. LIGHT-FRONT QUARK-DIQUARK MODEL

Here we briefly introduce the light-front quark-diquark
model developedin [11,12] with the wave functions modeled
from the effective two-particle wave function predicted by
AdS/QCD. The particular model of nucleons employed in
this work is considered to be a linear combination of a quark-
diquark state including both the scalar diquark and axial-
vector diquarks [11]. With the SU(4) spin-flavor structure,
the proton states can be written as [13]

|P;4) = Cg|uS)* + Cy|uA®)* 4 Cyy|dAN)E. (1)

S and A represent the scalar and axial-vector diquarks with
isospin at their superscripts. Under the isospin symmetry, the
neutron state can be obtained from the above expression
[Eq. (1)] with the interchange of u <> d. The two-particle
Fock state expansion for J¢ = 41 for a spin-0 diquark is
given by

dxdsz

Jusy* = /2(zn)3,/x(1 )

1
+§,O;xP*,pr>

x {wf(”(x, Pr)

+ w2 (x, pr)

1
_E’O;XP+’pT>:|’ (2)

where |Aq, 0; xP*, k) represents the two-particle Fock state
with an active quark with helicity 4, = +1 and carrying
longitudinal momentum xP* and transverse momentum k,,
and a scalar diquark with helicity A = 0. Similarly the state
with a spin-1 diquark is given as

- dxd?p;
l04)* _/2(271')3 x(1-x)

1
+_+IQXP+7PT>

2

« [wﬁ” (x.p7)

v 1 v
—&-l//j_EJ(r)(x’PT) _§+ 1§XP+,PT> ‘*“/’i(() >(x,pT)

1 ) 1
+§O;XP+’pT> +u (xpr) _EO;XP+spT>

) 1
+y " (xpr) +§—1;xP+,pT>

, 1
+Wj—E£L)(x»pT) _5_ 1§XP+,pT>] s (3)
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where |A,, 4; xP", pr) represents a two-particle state with a
quark of helicity 1, = i% and an axial-vector diquark with
helicity 4, = %1, Otriplet).

A. Final state interaction and T-odd TMDs

The FSIs [14] provide a nontrivial phase in the ampli-
tude which is required to produce nonvanishing spin
|

1;/< (x,pr) = Ng [1 +i—
w1 (x,pr) = Ns

—(u)
wi(x,pr)

w (x.pr) = Ns [1 +ife
(b) for axial-vector diquark (for J = +1/2),

ll/+<+)(x Pr) =

+(v)

1 . 2

w [2(p —ip

N 22
! 3( xM )[
ll/+(l/)(xp )IN(D)\/g 1—|—i€1€2
- BT LV3 87

o /1 ere
vl omn) =N 3[4

asymmetries in SIDIS processes associated with T-odd
TMDs. In this model, the contribution of the FSI is
included in the light-front wave functions [15] to evaluate
the leading twist T-odd TMDs, i.e., the Sivers function,
4(x,p3), and the Boer-Mulders function, h;9(x,p%).
With the inclusion of FSI, the process dependent wave

functions [16] are given by (a) for scalar diquark,

2 (b2 4 B)g l] o (x, pr)

+1P>[ +l€1€2

o (p7 + B)Qz] o3 (x, pr)

(-
= Ns <p1x > {1 +i S—(PT + B)gz] 9y (x.pr)

2 (p3 + B)gl:|¢1 (x.pr). (4)

.e¢e v
LY B)gz] o9 (x.py)

87

(p7 + B)gl} o (x,pr)

(p7 + B)gl] (Pgw (x.pr)

v y /1 P1+iP2 .epe
wté><x,pr>=zvé>\/§(— Ui 2 (07 + B)ga| 0 (x.pr)

xM
u/ﬂ')(x, pr)=0
—1_—9/) (x, pT) = 0,
and, for J = —1/2,
l[/;g:) (x’ pT) =
1//:5:) (x.pr) =

—(v v 1 pl_ipz
e {2

— 1 e
w_é)(x,pT)=Né>\£{1+lé—2

—( o /2
U/+(—)(vaT) = _N(l )\/;[1 +1 —(PT + B)gl]% (x.p7)

—w 2(p +ip
e = (5|

(5)
.epe v
1+ lé—;(p% +B)92] o (x,pr)
(P7 +B)91}¢(1 )(x,pr)
.epe v
1+ G 0+ Bl (), G
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TABLE I. In the light-front AdS/QCD axial-vector diquark model, the values of the fitted parameters for u and d
quarks at py = 0.313 GeV.
v ay by as by g
u 0.280 £ 0.001 0.1716 + 0.0051 0.84 +£0.02 0.2284 + 0.0035 1.0
d 0.5850 + 0.0003 0.7000 = 0.0002 0.94340:0017 0.64+0:0082 1.0
where, log(l)
— SV X
1 B a(x) =46 prTELE (12)
= / da (7)
0 a(l - a)py + amj + (1 - a)B The parameters a?, b?, and " are obtained by fitting the
| —u electromagnetic form factors. The wave function [Eq. (10)]
= / da (8) reduces to the AdS/QCD prediction [17] for the parameters
o a(l—a)p; +amj+ (1 -a)B @ =b"=0and & = 1. We use the AdS/QCD scale para-
meter k = 0.4 GeV [18] and the quark masses are assumed
and to be zero. For completeness and to be self-contained, we list
5 ) the parameters obtained in Ref. [11]. The normalization
B=x(1-x) <—M2 + mq + &) 9) constants are N, = 2.0191, Nj = 3.2050, Ng = 5.9423,
x o 1-x N¥ =0.9895, N¢ = 1.1616, C? = 1.3872, C} = 0.6128,

Here, M, m,, mp and m, are the masses of the proton,
struck quark, diquark, and the gluon, respectively. e¢; and e,
are the color charges of the struck quark and diquark,
and the FSI gauge exchange strength is 2. We take
m, =0 at the end of the calculations. NS,NO, and NY
are the normalization constants. The LFWFs ¢%(x, pT)
are modified from the soft-wall AdS/QCD predictions
as [11]

and C3,, = 1.0, and the other parameters are listed in Table I.
Henceforth, we refer to this model as the LFQDQ model.

The nucleon parton distributions like GPDs, TMDs, and
Wigner distributions are already calculated in this model and
the model has been shown to reproduce different spin
asymmetries in the SIDIS processes [16,19-22]. TMDs,
Wigner distributions, and Husimi distributions are also cal-
culated in a light-front quark-diquark model in Refs. [23,24].
Recently, gluonic distributions like PDFs, TMDS, GPDs, etc.
have also been calculated in AdS/QCD [25,26].

III. DEFINITIONS AND TRIVIAL RELATIONS

A. Generalized parton distributions

The GPDs (for a review, see Ref. [3]) are defined as off-
forward matrix elements of the bilocal operator of light-
front correlation functions of vector, axial-vector, and
tensor current. The off-forward correlator is given by

1
Falll(x, A; 2, 1) _z/dz ”‘Z<P’ /1’|w(—§z>l"
2z

o (x.pr) = Af(x)expl-a(x)p}l.  (10)

with

) B V¥4 log( ) b

e e (1 —x)%, (11)

and
|
X Wapp <_

where P(P’

1 1
EZ,§Z>V/<§Z> ’P,l>

) and A(1’) denote the momenta and the helicity of the initial (final) state of the proton, respectively. The object T’

: (13)

7t=0",2;=0,

is a generic matrix in Dirac space, at leading twist; it can be y*,y*y>, or 671y>. The Wilson line, Wgpp, is required for

gauge invariance of the correlator and is given by

1.1
2°2%) 1.

Warp | =
=0".27=07

1 1
0+, —ZZ_,0T§0+’2Z_,0T:|

(1/2)z~
= Pexp (—lg/
(1/2)z~

dy-raA;<o+,y—,oT>), (14)
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where P is the path ordering and ¢, represents the Gell-Mann matrices. For the three particular I in Eq. (13) we can obtain

the leading twist GPDs [9] as

. 1
Farl(x, A;2,0) = ST

Falrtrs] (x, A4, 0) = BT

Falorsl (x, Ay 2, X)) =

where M denotes the mass of the proton and j = 1,2 is a
transverse index, P = (P + P')/2 denotes the average
nucleon momentum, and A = P’ — P is the momentum
transfer to the nucleon. The H and E, the so-called
unpolarized GPDs, and the helicity dependent GPDs, H
and E are chiral-even, while Hy, Ay, E7, and E; are chiral-
odd. There exist eight leading twist quark GPDs. All GPDs

are real valued which follows from time reversal and
depend on the three variables x = P+, E=— and

t=—-0?

fined as x

2P+’
= A?; where the light-cone coordinates are de-

+ \/—( X0+ x%), x7 = (x!,x?). We choose the

light-front gauge A™ = 0, so that the gauge link appearing
in between the quark fields in Egs. (15)—-(17) becomes
unity, or, in other words, there is no FSI contribution to the
GPDs.

B. GPDs in impact parameter space

The GPDs with zero skewness (¢ =0) in impact
parameter space are important for various reasons:
(1) the density interpretation of the GPDs holds only
in the impact parameter space for zero skewness
[27], (ii) the intuitive picture for various transverse
single spin asymmetries (SSAs) in semi-inclusive proc-
esses is based on the impact parameter representation of
GPD E9 [7,28], (iii) it gives an intuitive connection
between the Sivers asymmetry and the quark orbital
angular momentum in certain models, (iv) the impact
parameter representation allows us to make analogies
between chiral-odd quark GPDs and TMDs [29]. The
parton correlator in impact parameter space is given by
the Fourier transform as

F(x.bp:8) = / gzgexp(—iAT.bT)F(x,AT;S). (18)

Here, S denotes the polarization of the target.
The impact parameter by is conjugate to the transverse
part of the momentum transfer A;. The correlator
defining the GPDs in impact parameter space is
written as

—u(P', ) [H’%a“;g + H

WP, ) [Hw +E%owa}u<a ). (15)
~ ~ }/5A+
——a(P' ) [qu+y5+Eq 2M]M(P,z), (16)
eI, P €PNy o, €TTPPLy
o L+ EY T L i Plup,2),  (17)

[
1 [dz
q[T’] cS) ==
F (vaTvs) 2/271_

X Wepp(21: 22)w(22)|PT. 073 S),  (19)

e (P, 07; S|r(z)T

with zy, = (O*,:F%z_,br). Although the GPDs are
expressed as off-forward matrix elements and do not
have a density interpretation, in the impact parameter
representation we can obtain diagonal matrix elements
and thus impact parameter dependent pdfs have a
probabilistic interpretation. The IPDpdfs are given by

X(x,b}) = / i :)2 e"Arbrx(x,0,—A2),  (20)

where X(x,0,—AZ%) are the GPDs. The GPD correlators
[Egs. (15)—(17)] for different I'" in the impact parameter
space are then obtained [9] as

Fi(x,br;8) = Fr'l(x, by S)

ei/bi Sf

= Hi(x,b) + == (€ b)), (21)

Fi(x,by;S) = Fvsl(x, by §) = AH9(x, b3),  (22)
f%j('xi st ) = fQ[mj+y5] (x» bT’S)
€”b‘ -
T L(&%(x.b}) + 2H](x.b7))
J q 2 b% 7q 2
+ 87 HT(X’ br) - WAZJHT(X’ bT)
2bib; - S; — Sib2 .
+ T (R (b))
(23)
where
2\\/ a 2
(X(x,b3)) ZW(A’()@ b7)), (24)
T
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1o [ , 0

ApX(x,b3) = 5 —— b2
PP = 25,7 T b2

X, b2)|.  (25)

Equation (21) describes the distribution of unpolar-
ized quarks carrying the longitudinal momentum frac-
tion x at a transverse position br. For a transversely
polarized target, this distribution has a spin-independent
part given by H and a spin-dependent part proportional
to the first order derivative of £ Due to the spin-
dependent term, the distribution in impact parameter
space is not axially symmetric as it depends on the
direction of the impact parameter by, i.e., the spin-
dependent term causes a distortion of the distribution.
This distortion effect can be quantified through the
flavor dipole moment [30]:

/dx/dszb Fi(x,br;S)

ij
_ 5t /deq(x 0,0) =

ij o
_Er5T 4
2M

(26)

Here «? is the contribution of the quark flavor ¢ to
the anomalous magnetic moment of the nucleon. The
flavor dipole moments for the light quarks in the
nucleon are therefore of the order 0.2 fm, which is
quite significant in comparison to the size of the
nucleon. Similarly, in Eq. (23) there are two terms
which generate distortions, one is determined by the
first derivative of £ + 2%, and the other is given by
the second derivative of ;. We will see later that the
specific form of the relations between GPDs and TMDs
depends on the number of the derivatives of the GPDs
in impact parameter space.

C. Transverse momentum dependent parton
distributions (TMDs)

The quark TMDs are defined through the unintegrated
quark-quark correlator for SIDIS [31,32]. The TMDs
depend on the longitudinal momentum fraction x of the
active quark and the quark transverse momentum py;. The
TMDs provide a three-dimensional view of the parton
distributions in momentum space. In a hadronic state |P, S)
with momentum P and polarization S, the TMDs can be
defined through the quark-quark correlation function as

| [dz b1 . (1
= Py S ——z |
2/2n’(2)e T2t

11 1
XWTMD <—§Z;§Z>l//<§z> |P;S>
z

in which a summation over the color of the quark fields
is implicit. In the chosen frame, the nucleon four

@4 (x,p7:8)

s
+—(+

(27)

momentum P = (P*,ll‘f+ ,0), and virtual photon momen-

tum g = (xzP* e P+ ,0), where xp = % is the Bjorken
variable and Q> = —g?. The covariant spin vector S for
the nucleon with helicity 4 is defined as (S* =%,
ST = —%,ST). The Wilson line in TMD correlators is
far more complicated than that in the GPD correlators and

is given by [13]

Wrmp (—%z;%z) .
= |:O+,—%Z_,—%ZT;0+,+OO_,—%ZT]
X [O*’,—I—oo_,—lzT;O*,—l—oo‘,lzT]
2 2
X [0+,+oo‘,lzT;0+,lz‘,lzT}, (28)
2 22

where the future pointing Wilson line is running along
the positive z~ direction to oo for SIDIS, while in the
Drell-Yan process the Wilson lines runs along the
opposite direction, towards —oo [33]. The leading twist
quark TMDs are obtained from correlator in (27) by
using the same three I'" matrices (y*,y'ys,67/ys). The
corresponding antiquark TMDs can be obtained by the
same light-cone correlation functions by using charge
conjugated fields. There exist eight leading twist quark
TMDs, which are all real valued. Taking I'=y" in
Eq. (27), we get

D7 (x,pr; S) = U (x, pr; S)

€ijpi Sj
= fie.pp) = A7 (xpR). (29)

7 is the unpolarized quark distribution for a quark

flavor q, and flLT" represents the (naive) T-odd Sivers
function which appears for a transversely polarized
target (S7 # 0). The Sivers function describes the dis-
tribution of the unpolarized quark carrying a longi-
tudinal momentum fraction x and transverse momentum
pr in a transversely polarized target. If the second term
on the right-hand side in (29) is nonzero then the quark
TMD correlator 7 is not axially symmetric in the pr
plane, i.e., the distribution becomes distorted. This
distortion is supposed to be the origin of various
observed single spin asymmetries in hard semi-inclusive
reactions [34,35]. Setting I'=y"ys and ic/Tys in
Eq. (27), we have

dalrrs] (x, Pr S)
pr-Sr

&)q(%PT;S) =

=g, (x.p}) +

gir(x.p3).  (30)
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q’%j(x» pr;S) = @475l (x, pry S)

€ijpi 1 /11) 1
—%hlq( ,pT)+7Th 7 (x, p?)

P L
- () + i)

2p}pr - Sy -
+ 2M?

SR plaeph). 1)

Here, hqu is the Boer-Mulders function, which gives
the distribution of transversely polarized quarks inside
an unpolarized hadron. The process dependence of the
Wilson line leads to a sign difference in the T-odd
TMDs, e.g.. f1lsipis = —f12|py: whereas in hadron-
hadron scattering with hadronic final states, even more
complicated paths for the Wilson line can arise [36-39].
There are altogether six T-even TMDs and two (Sivers
and Boer Mulders) T-odd TMDs. The p; integrated
function of f¥(x,p%) gives the unpolarized parton
distribution f%(x) and ¢, (x, p7) gives the helicity
distribution ¢4, (x). The transversity TMD 7%(x, p7) is
defined as

PT

(P}, (32

i (x,p7) = M (x,p7) + 5.5
and when integrated over the transverse momentum
gives the transversity parton distribution 7Y (x).

Like the p; integrated TMDs, some GPDs in the limit
& =1t =0, are also related to the twist-2 pdfs. Thus we get

some model-independent relations between GPDs and
TMDs:

fix) —/dzprf’f(x,p%) = H%(x,0,0)

= / d’b;HY9(x, b2, (33)

gi(x) = / d*prygi, (x,p7) = H(x,0,0)

= / d®brH(x, b3), (34)

i) = [ e (it txwh) + 2wtz )

= H%(x,0,0)
— / d2bT(H;(x, b2) - ;’; AyHE(x, b2)>. (35)

These relations give important constraints on models,
and are satisfied in our model. Next, we investigate a few
nontrivial model-dependent relations.

IV. MODEL-DEPENDENT RELATIONS BETWEEN
GPDs AND TMDs

In [9], all possible model-dependent relations between
GPDs and TMDs are systematically studied. The model-
independent relations as given in the previous section are
called relations of the first kind. There are a few relations in
momentum space. There are also model-dependent rela-
tions that connect the GPDs to the IPDpdfs or their
derivatives in by space. These relations are called second,
third, and fourth type depending on the number of deri-
vatives present in the relation. In this section, we investigate
nontrivial relations between the TMDs and GPDs, as well
as some relations between the different TMDs in our
model. We also compare LFQDQ model results with the
results of two other spectator models, namely, the scalar
diquark spectator model of the nucleons [40] and a quark
target model treated in perturbative QCD [9].

Incorporating the FSI effect into the wave functions [41],
the Sivers fi7 and the Boer- Mulders A, functions can be
written as

h) = (Ve -y ) rad. G6)

1 2
i mh) = (g (3N 30 ) €3 ) e
@)

where

) = (-Cpa) [P PO i P21 EL)

X AY)AY () expl-a(p}. (38)

1673
and where B(x) and a(x) are defined in Egs. (9) and (12),
respectively, and C4 = Cy(Cyy) for u(d) quark. In
the final state interactions, gluon exchange strength
2 — —Cray, while the pretzelosity thq TMDs can be
written as [21]

) ) 15\ 2In(1/x)
ited) = - (e - v ) 2

x x2472(1 — x)*2"Vexp [—a(x)p?], (39)

and are found to satisfy the inequality relation [16]

| (e, p7)| > [f17(x, p7)- (40)

From Egs. (36) and (37), we can easily check that the
Boer-Mulders function is proportional to the Sivers func-
tion. The Boer-Mulders function can be parametrized
[16,42] as
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hi*(x,p7) = X fi#(x,p7), (41)
where

(CSNG + GNG* +3NP)CH)

=
(NG~ 1GNg)

(42)

Putting in the model parameters in Eq. (42), we get A* =
2.29 and 1¢ = —1.08. Since the Sivers function is negative
for up quarks and positive for down quarks, from the above
expression [Eq. (41)] we can conclude that the Boer-
Mulders function is negative for both up and down quarks.

A. Moment relations between GPDs and TMDs
in momentum space

The n™ moment of the GPD X is defined as

1 A2 n—1 A2
= 32,2 d2A —L X 5 07 -—T 5
2M° / r (2M2> (x (1—-x)

(43)

X" (x)

and similarly the moment of the TMD Y is defined as
Pr \"
yo) = [ ewr () vouwh. @
The moments for GPD E¢ and (E% + 2H?) are obtained as

1 1"
E10)(x) = — (czNg -3 c},Ngf) a2l (W) I'(n)

x X1 (] — x)b7+b;+z< 10g(1/x)4) _"’

K*(x—1)
(45)
and
EX (x) + 20" (x)
_ C2N2+C2 1N02+%NU2 omn L nF( )
= sV a\z%o 3N z M2 n
bt b log(1/x) \ ™"
X X +ah 1(1 _x>hl+h2+2 (ﬁ) ) (46)

The analytic form of the moments for Sivers and Boer-
Mulders functions are too complicated and lengthy to
present here. The moment relation between Sivers function
and GPD EY in the scalar diquark model was obtained in [9]
and has the general form

Feges(1—x) (m, +xM)M*"%(x)H_,
16(2x)? 2"M*"~Lsin(nr)
e e H_,I'(2-2n)

E— 4 —n a(n) (x).
2(27)*(1=x) T%(1-n) B (47)

() =

The relation given by Eq. (47) generally holds for
0<n <1, ie., nis not necessarily an integer where H,
is the analytic continuation of the harmonic number for
noninteger n. In the LFQDQ model, it is not possible to
obtain a similar relation analytically for a general value of
n, however, relations similar to Eq. (47) can be derived
in the scalar diquark model [9] for three particular values
of n, as

e, e
i) = m g 0.0, (48)
2e,e,1n(2)
f_;](l/Z)(x) _ my(l/z)@), (49)
e e,
La(t) () — q E1D(x), (50)

YT 421 —x)

the moment relations for the Sivers function, f qu , and the
corresponding GPD E? in the LFQDQ model are evaluated
numerically and the results for the up quarks are compared
with scalar diquark model results in Fig. 1. It is seen from
the plot that the zeroth moment of the Sivers function in
both models obey the same relation for x > 0.5; although
the qualitative behavior for the next two moments (n =
1/2,1) are similar, they do not match except for a narrow
range roughly in the region 0.1 < x < 0.5. Furthermore, in
the LFQDQ model, a kink appears at around x = 0.05. This
is due to that fact that both the functions f 1qu (x) and the
GPD E4(x) have maxima at the same x. The other T-odd
TMD, i.e., Boer-Mulders function and the corresponding
GPD, also show similar behavior, which can be seen
in Fig. 2.

In the LFQDQ model, the relations between the pretze-
losity, 7, and the GPD, A%, can be given analytically. By
using Eqs. (43) and (44), the n* moment of the pretzelosity
TMD, 4,7, and the n™* moment of the corresponding

GPD, I:I’}(”), is given as

L 1o, \217 1\
thq< () = - (C?N? - §C3‘N02> 2 \M?
X (1 4 1)x25=2(1 — x)24-2

« log G)a(x)—n—l (s1)

i 1 . .
"2 (x) = (C%N% -3 CﬁNgZ) A2 (] — x)2hH3

« (#) "Ln)a(x), (52)

and they satisfy the relation
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P i
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= |2 10 i
Nl = H
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0.5+ /
0.0
0.0 1.0

FIG. 1. The left plot is corresponding the ratio of the zeroth moment of the Sivers TMD for the up quarks f# © (x) to the

corresponding GPD E*(x, 0, 0). The right plot is for the ratio of /7
to E“(x).

Lg(n) 21_2’1F(” +1) [:Iq(")<x) (53)

T a1 =x)(n) T

which holds for 0 <n < 1. Note that this relation is the
same with or without the axial-vector diquark in the model.
The explicit forms of the relation in Eq. (53) for three

different values of n are as follows:

1g(0 2 ~
B () — T 0.0, (54)
1 -
) = . 659
1 -
W (x) = = a4 (x). (56)

These relations can be compared with the corresponding
relations in the scalar diquark model and quark target

models, which are given by [9]

1072) (x) to E*(1/2)(x), and the lower plot is for the ratio of 1" (x)

3
hll;f(o)(x) = - 5 H1(x,0,0), (57)
8 -
it 0 = o P 9
1 .
) =g )

Note that Eq. (56) exactly matches with Eq. (59), and the
other two relations (Egs. (54) and (55) have similar
structure to Egs. (57) and (58), except the constant factors,
which may be model dependent. The ratios of 714" (x) and
A% (x) for 0<n<1 go as 1/(1—x)? in the scalar
diquark model considered in [9], as well as in our model
with or without the axial-vector diquark. It needs to be
investigated whether this is true in any diquark-type model.
The general structure of the relations in Eqgs. (48)—(50),
and the relations in Egs. (54)—(56), is not same due to the
FSI contribution to the T-odd TMDs, like the Sivers and
Boer-Mulders functions. The pretzelosity distribution is a
T-even quantity and at the level of one gluon exchange does
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» 3
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w
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hiLq(l/Z)(x)

1.0 . .
— LFQDQ model

----- SDM model

g 1)

r X
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15
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FIG. 2. The left plot is corresponding the ratio of the zeroth moment of Boer-Mulders TMD for the up quarks hll

1.0

“O)(x) to the

corresponding GPD, E%(x,0,0) + 2% (x, 0,0). The right one is for the ratio of the #-?"/? (x) to EX"? (x) + 2E%"? (x), and the

lower one is for the ratio of the hqu(l)(x) to ET( )( )+ 2H”< )( ).

not receive contribution from the Wilson line. For this
reason, coupling constants appear in the relations involving
T-odd TMDs. Also the relative power of (1 — x) between
the moments of the TMDs and of GPDs differs in these two
types of relations. In Fig. 3 we have compared LFQDQ
results in Eqs. (54)—(56) to the scalar diquark model results
in Egs. (57)-(59).

The n" moment of the GPD A% can be written in terms
of the second derivative of the impact parameter distribu-
tion ﬂ? [9]. Here we consider n = 1 to have

2 bT q "
[ e g2 b))

1 -
= —ﬂA db%WZ(H%(x, b%v))/
T o~
= WH(;(.X, 0)

1

_ Fra(1) %)
= ami = (60)

In the above equation we take the Fourier transform of GPD
H(x,t) and perform the integration by parts. Then we
arrive at the relation

Lg(1 P7
OE / dp; 21\;2 Iy (x. p3)

/ b, 2T 2

This relation is also valid for both the scalar diquark model
and quark target model [9].

Hi(x.,b3))". (61)

B. Lensing function
In [28], a nontrivial model-dependent relation was found
between GPD E? in impact parameter space and the Sivers

function fﬁ? . The average transverse momentum of an
unpolarized quark in a transversely polarized target [43] is
defined by

(P () yr = /afzprpmq(x,pr;s)

e p'S
— [P TR ) (62)

b]Sk
/deTI‘“be) T (i b3)) . (63)
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FIG. 3. The left plot is corresponding to the ratio of the zeroth moment of pretzelosity TMD [hllT” © (x)] to the corresponding GPD,
L2 (4) 1o B4 (x), and the lower one is the ratio of i7" (x) to A4/ (x)

H%(x,0,0). The right plot is the ratio of &

The above relation (63) is applicable in models where the
nucleon state is approximated as an effective two-particle
bound state like a diquark model and at the level of one
gluon exchange [44]; however it is found to be not valid
when vector and axial-vector diquarks are included [10].
Here Z9 contains the effect of the FSI, i.e., the one gluon
exchange in the final state between the active quark and the
spectator system. In such models, Eq. (63) provides the
intuitive understanding of the origin of the Sivers trans-

verse SSA.
However, in general, the average transverse momentum

(p%'(x)) 7 caused by the Sivers effect can not be factor-
ized into the lensing function Z%' and the distortion of the
impact parameter distribution of quarks in a transversely
polarized target which is determined by (£9). So, the
relation (63) is model dependent and no model-independent
relation has been established between the Sivers function
f 1qu and GPD EY. In our model we have scalar as well as
vector and axial-vector diquark contributions. One can still
obtain a relation connecting the Sivers function to a
distortion of the GPD E? in impact parameter space by
using an ansatz for the lensing function and obtaining
a fit. Two different analytic forms of the function are

needed for the low-x and high-x regions. In the lower x
region, 0 < x < 0.2, we got the expression for the lensing

1\ b
X bT2 ’
and for the higher x region, i.e., in the region 0.2 < x < 1,
the lensing function takes the form
1
X

= 2C;as V(1 = x)log
The lensing function is model dependent but does not
depend on the parton type. The corresponding plots for the
Eq. (63) by using Egs. (64) and (65) are shown in Fig. 4.
The lensing function in the scalar diquark model is
relatively easier to extract and is valid for the whole range

of x(0 <x < 1):

function as

. 5C
T (x,by) = 2La~s‘x3/2(1 _ x)—l/S 10g5 (64)

T

by

b (69

Z% (x, by)

by

=8 (66)

,- 5
T (x.by) = ;(CFOCS)(I - X)
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FIG. 4. Lensing function obtained from the Sivers function.
The average transverse momentum evaluated using Sivers func-
tion [Eq. (62)] and lensing function [Eq. (63)] are shown for
LFQDQ and SDM models. For the LFQDQ model, the lensing
function is given in Egs. (64) and (65), while the lensing function
for the SDM model is given in Eq. (66).

In Fig. 4, the results for the scalar diquark model are also
shown. The momentum distributions in the two models are
not the same; in the scalar diquark model, the distribution
peaks at around x ~ 0.2 while inclusion of the axial diquark
enhances the diquark contribution and shifts the peak
towards the lower x.

The average transverse momentum ( p"T"(x))’}U of a
transversely polarized quark (with polarization along
j-direction) in an unpolarized nucleon can be expressed
in terms of the Boer-Mulders function which is again
related with the GPDs [44,45],

(P ()i = / PP (x. py: )

2 iel;jpl; Llq 2
=—/d prTThl (X,PT) (67)
kj 1k
i € b
— / d*brTE(x, br) er
x (E4(x,b%) + 2HL(x,b2)). (68)

The Sivers and Boer Mulder’s TMDs are the same in this
model except the normalization constant and corresponding
GPD Ef. + 27 also has the same structure as the GPD E9.
The lensing function is also exactly the same as quarks
Sivers effect, which means that it is not only independent of
the parton type but also of its polarization. The magnitude
of the Boer-Mulder function is directly proportional to
the distortion of the impact parameter distribution of
the transversely polarized quarks inside an unpolarized
nucleon [46]. The distortion can be given by the first

=

_ f ks 5 (43 (1RQDO)

-—- f dzbrfq'i(xsbr)i#)(Sqr(xsbzr)"'z'ié(xybzr)]' [LFQDQ] |
ik, i ok
""" - ity s i) rspwn

i
----- f szTI"-"(x,bT)i—M ':s’ (E4(xb3)+2F(7(x,b%))' [SDM]

<k (x)>1y

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 5. Lensing function for Boer-Mulders function. The
average transverse momentum evaluated using Boer-Mulders
function and lensing function are shown for the LFQDQ and
SDM models. For the LFQDQ model, the lensing function is
given in Eqgs. (64) and (65), while the lensing function for the
SDM model is given in Eq. (66).

derivative of £%(x,b?) + 2H%(x, b2). The corresponding
plots for Egs. (67) and (68) by using Egs. (64) and (65) for
the LFQDQ model and Eq. (66) for the SDM model are
shown in Fig. 5.

V. RELATIONS AMONG TMDs

The TMDs are found to satisfy many interesting model-
dependent relations. Many such relations have been found
for the scalar diquark model [47]. Though the scalar
diquark model satisfies the saturation limit of the Soffer
bound, with inclusion of the axial-vector diquark, the
inequality relation of the Soffer bound is satisfied:

N 1 N N
W (xp3) <5 U1 (e p) + 61 (x pR). - (69)

The ratio of ¢t (x, p2) and 7" (x, p2) is found to be

independent of transverse momentum py:

q(s) 2
M =J(x) = zxa;—aq—l(l

—x)hi b,
W (x, p3)

(70)

The two nonlinear relations which connect T-even chirally
odd leading twist TMDs in the scalar diquark model
[47,48] are

s 2 s lg(s
(g7 (x, p2))” + 2009 (x, p2) i (x, p2) = 0, (71)

s lg(s 1 s)L 2
W) (x, p2) ) (x, p2) = =S (R0 (v, p2)T.

5 (72)
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Eq. (72) implies that hi’(‘v) and h‘l’;T> must have opposite
signs. The relations with axial-vector diquarks are more
involved compared to the relations in the scalar diquark
model. The relations in Egs. (71) and (72) have been shown
to be a consequence of spherical symmetry [48]. The
corresponding relations with the axial-vector diquark are

A 2 A 1g(A
(g7 (x, p3))? + 208 (x, p2) i (x, p2) =0 (73)

wF Y (x, p3), (74)

(N2 —21v42)

1lg(A 2 A
Y (x, p2))° = =200 (x, p3)

> (0 and
(s)

where the proportionality constant A7 = 7

the similar conclusion about the opposite polarity of A7

and h?;s ) holds. Two more interesting relations with the
axial-vector diquark are

q2

q(A) 2 Ny
g X PT) = 5 <o
1T ( T) Ngz + ZN,{Z

= ¢' (x, p2) < WY (x, p3), (75)

1.
m Y (x, p2)

Pr oL
L it p3) = K () = W (k. p3). - (76)

The relations among the TMDs for the full LFQDQ model
(scalar diquark + axial-vector diquark model) can be
given as

i (x, ) (77)

)P (x, p7) - (78)

g?T(xv P%) = /Iqh

—a'+al-
gir(x. p3) =[x\ (1 -

hir(x. p%) = 23 f1(x. p7) (79)

hip(x, p3) + 21#‘1( . pE) = hi(x,p3)  (80)

M
(gl7(x. P3))? + 20 (x, p3) Iy}

L 1
(hqu(x PT)) = —lgh‘l](x, P%)hqu

CINP-3CIN?
3c21\/2+c2 (NI —2N)
the parameter values we have A} = 0.48,/1‘11 = 1.08, /1‘2’:

3CINI-CINY
3CINI+CI(NE+2NT)

f(x.pp) =0 (81)

(x.p7).  (82)

where 1 = and where substituting

The values of the constant A5=0.44,
|

N2 2 , ) 2
H"(x,0,1) = (C%N% + Ci <T+§N11’2>> (x2a1(1 —x)2b1+] S —

2§ =-0.93 imply that for d-quark 1¢,(x, p%) is of opposite

3CIN2+C (NP 2N
sign of f9(x,p%) and 2! = 2! [3C%N%—C§Ngz]21 )
24 =8.55 and ¢ = 1.71. Similarly the simple relations
among the T-odd (Sivers and Boer-Mulders) TMDs in the
scalar diquark model,

, giving

“(x, p3) = F17 (2 ). (83)

translates into the relation in the scalar and axial-vector
diquark model as [Eq. (41)]

4 L
hy(x. p) = 2913 (x. pF). (84)
(CANTHANE NP, J

S(C?N"Z—lczzv‘ﬂ) A =229,40 =

Note that for only the scalar diquark, the Sivers and the
Boer-Mulders functions are the same which changes when
axial-vector diquarks are included.

where A9 = —1.08.

VI. QUARK ORBITAL ANGULAR MOMENTUM
IN A PROTON

The orbital angular momentum (OAM) of a quark inside
the nucleon plays an important role in the spin sum rule of
the nucleon [49]. One can extract the total quark contri-
bution to the nucleon spin from the combination of the
GPDs using Ji’s sum rules as

L :% / dxx[H(x,0,0) + E/(x,0,0)]  (85)

by subtracting the half of the axial charge Ag =
[ dxH(x,0,0) which has the physical interpretation as
the spin contribution of quarks with flavor ¢ to the nucleon
spin. We can extract the orbital angular momentum of the
quark as [50]

1 -
L= 5/ dx[x(H(x,0,0) + E4(x,0,0)) — H4(x,0,0)],
(86)
where H?(x, &, t) and E9(x, &, t) are unpolarized GPDs and

HY (x, &, 1) is the helicity dependent GPD. GPDs HY, HY,
and E1 respectively in the LFQDQ model can be given as

2a-2 1= 2b%+3
Mlogl)” . T )

x<1 ||log(1/x)>exp[ ||log(l/x)} (87)
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fad ND2 2 v L K2 V__ L
H‘I(x’ O’ t) — (C?N? + C%( 30 _ §Nll/2>) <x2al (1 _ x)Zb]Jrl _ M2 log(x) x2u2 2(1 _ x)2b2+3>
t t
X ( —%log(l/x)) exp {—%log(l/x)], (88)
1 v v L L t
E?(x,0,1) = 2<C§N§ - gcifo)xaﬁaz—‘ (1 —x)bi+7+2 exp [—J—Llog(l /x)] . (89)
K

The OAM expressed in terms of the GPDs is usually called the kinetic OAM. Wigner distributions also contain the full
correlation between the quark transverse position and three momentum and one can express the orbital angular momentum
in terms of the Wigner distribution. This is known as the canonical OAM. The average quark OAM in a nucleon polarized in
the z direction can be written as

P 1 [ded*zy . . _, .. _ . V- -
fZ(b 7bT7 p+7 pT) _Z/ (271_)3Te P Zl// (b 7bT)y+(bT X (_laT))l// (b —Z 7bT)' (90)

The OAM density operator can be expressed in terms of the Wigner correlator as
2; = (br x PT)WVWL (91)

Thus, in the light-front gauge, the average canonical OAM for the quark is written in terms of Wigner distributions as

) AN PAL s . ) R
7= WU’ s S|EIPLS) = | dxd*prd*br(br x pr) o7 (br, pr, X, S)). (92)

The distribution p*"I(by, pz. x.S.) can be written as [5]
P (by.pr. x, +Sz) = piu(br, pr.x) + piy(br, Pr. X), (93)
where pyy is the Wigner distribution of an unpolarized quark in an unpolarized nucleon, and py y; is the Wigner distribution

of an unpolarized quark in a longitudinally polarized nucleon. Thus, Eq. (92) can be decomposed into two parts. The term
involving pyy gives zero:

/dXdszJZbT(bT X PT)Z/’lfJU<bT, pr.x) =0, (94)

which implies that in an unpolarized nucleon there is no net quark OAM; while the other part can be related to the twist-2
quark canonical OAM in light-front gauge and can be written in terms of GTMDs as

2
v p v
£ = —/dxdszVTzFlA(x,O,p%,O,O). (95)

The correlation between the proton spin and quark canonical OAM can be understood from £%. If £% > 0, it means the quark
OAM is parallel to the proton spin, and if #7 < 0, then the quark OAM is antiparallel to the proton spin. In the LFQDQ
model the GTMD F’f_4(x,0,p%,0,0) can be given as

1 2 vl (1=
P 0.00.0.0) =~ (A4 G (3M-2m) ) (o U s P eplatapt,  06)
: 3 3 167° x
and by using Eq. (95) the canonical OAM can be written as
2

1 2 v K y_ v
z,”g(x) = (C%N% + C%/ (gN% —§N%>> W(l/x)xzaz 2(1 —x)2b2+4 (97)
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FIG. 6. The variation of canonical OAM #*(x) and kinetic OAM L¥(x), as well as £¥ with longitudinal momentum fraction x, for the u

quark and d quarks.

while the kinetic OAM (86) can be calculated from
Eqgs. (87)—(89). In this model we get LY < 0 for both the
up and the down quarks. The canonical OAM, ¢ > 0 at
o = 0.313 GeV. This means that the quark OAM is
parallel to the proton spin for both u and d quarks. Note
also that in a scalar diquark model [51] with AdS/QCD
wave functions, the OAM is found to be positive for both
quarks. This result is model dependent and may be due to
the particular form of the AdS/QCD wave functions. The
variations of the canonical quark OAM ¢%(x) and the
kinetic quark OAM LY(x) (given in Eq. (86)) with
longitudinal momentum fraction x are shown in Fig. 6
for both u and d quarks. A few interesting points about the
OAM in spectator type models are to be noted. In a model
without gluons, kinetic and canonical OAM are expected to
be equal [5], as the difference between these two are
expressed in terms of a gauge potential. The quark OAM
was investigated in a simple spectator model with scalar
and axial-vector diquarks in [52]. It was found that the
relation between the kinetic OAM and the gravitational
form factors is not valid in such models, which implied that
the kinetic OAM of the quarks is not given by Eq. (86) in
such models. In fact, we observed that the kinetic and
canonical OAM are not equal in our model, which means
that a similar conclusion may be drawn here as well.

In some models, the pretzelosity h#’ (x, p%) (39) dis-
tribution is also related to the quark OAM [53-55],

2
P
ot = [apr S nipenh) (98)
which in the LFQDQ model has the form
,CD(X) — C2N2_lc2Ny2 Kiz
z SEYS 3 A*Y0 leog(l/x)
X X242 (] — x)2ate, (99)

The variation of the £¥ with x is shown in Fig. 6 for both
u and d quarks and is compared with the OAM through
GTMDs [Eq. (95)]. In the LFQDQ model we got £¥ > 0
for the up quark and £¢ < 0 for down quarks II, while
for the scalar diquark model the OAM is £? > 0 for both
the up and down quarks, as also found in Ref. [23].
The pretzelosity distribution was found not to be related
to the quark OAM in a diquark model with axial-vector
diquarks [52]; in our model also, as seen in Fig. 6, we
find that is it different from the canonical OAM. In [55],
it was shown that the pretzelocity TMD in spherically
symmetric quark models can be related to the total OAM,
however it does not give access to the intrinsic OAM of
each quark flavor.

Wigner distributions also allow us to study the correla-
tion between the spin and OAM of the quark, which is
given by the operator [5] as

1 (dz d*z N
Celbmbrppr) = [ e (b br)

It can be expressed either in terms of the Wigner distri-
butions p%;;, or equivalently in terms of the GTMD as

TABLE II. In the light-front AdS/QCD axial-vector diquark
model, the values of the canonical OAM ¢%; LY, and the kinetic
OAM LY for the u, d quarks.

q u d

£? Eq. (95) 0.256 0.201
LY Eq. (86) -0.410 -0.592
L4 Eq. (98) 0.124 -0.218
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¢, = /dx‘{sz‘{sz(bT X PT)szJL(bT,PT,X)

2
- / dxd®p; 2L G | (x,0.p3.0,0). (101)

M2

The GTMD G’f_l(x,O,p%,0,0) in the LFQDQ model has
the form

1 2 4

Gt (x.0.9.0.0) = =33+ G (3345 )
1 (1-x)

1673 x?

|45 (x)[* exp[—a(x)p7].
(102)

For C% > 0 the quark spin and the quark OAM are aligned,
while for C¥ < 0 they are antialigned to each other. From
Eq. (102), we calculate C¥ at py = 0.313 GeV. In the
LFQDQ model the numerical values are C¥ = —0.284 and
C? = —0.234 for u and d quarks, respectively. C¥ <0
implies that the quark OAM is antiparallel to the quark spin,
as observed in the scalar diquark model [51], whereas in the
light-cone constituent quark model [5], the CY values are
found to be positive for both u# and d quarks. The numerical
values of the kinetic OAM [Eq. (86)], and the canonical
quark OAM [Egs. (98) and (95)] for the up and down
quarks in the LFQDQ model are given in Table II. The spin
contribution of the quark to the proton spin is defined as

1 1 -
Sg = Egz = 2/dxH”(x,0, 0)

1
- / dxdp; G ,(x,0.p3.0.0),  (103)

where ¢4 is the axial charge, and the GTMD is

1 2
crnrion - (e (b )

3 3
1 AV 2 p% AY 2
X [T = o g
x expl-a(x)p3]. (104)

We should note that the axial charges are highly scale
dependent and are measured at high energies, whereas the
LFQDQ model has a low initial scale of yy = 0.313 GeV.
So we need to consider the scale evolution of the distri-
butions before comparing them with the measured data. For
the d quark, the axial charge is known to be negative at
larger scales. In Ref. [19] the scale evolution of axial
charges are given, where it is shown that the axial charges
for the d quarks become negative for x> > 0.15 GeV?2. In
the LFQDQ model we got the axial charges for the up quark
and the down quark as s =1.142 and s¢ = 0.340 at
Uy = 0.313 GeV. while at 4> = 1 GeV? the axial charges

for the up quark and the down quarks are given by s¥ =
0.73 and s¢ = —0.54, respectively [19].

A few observations about other calculations in the
literature based on diquark models: in [13], a more
phenomenological version of a diquark model was used,
with the inclusion of both scalar and axial-vector diquarks.
The LFWFs were parametrized using fit of polarized and
unpolarized pdf data at the lowest scale. It was found that
the momentum sum rule cannot be satisfied in such models.
The spin sum rule has not been investigated in this
reference. The quark OAM has also been investigated in
[23] using a LFWF obtained from soft-wall ADs/QCD; the
spin sum rule has not been explored in this model. In our
model, which follows a similar approach, the parameters in
the LFWFs, that consist of one quark and one diquark, are
obtained from fits to electromagnetic form factors and pdf
data at the initial scale. The spin sum rule constrains the
total angular momentum of the diquark.

VII. CONCLUSIONS

As GPDs and TMDs encode information about the three-
dimensional structure of the nucleons and their spin and
orbital angular momentum, these distributions are being
investigated in different models. Both GPDs and TMDs are
not physical observables, but many quantities like orbital
angular momentum, average momentum of a parton, etc.
can be related to different TMDs and GPDs. Though there
is no one-to-one correspondence between TMDs and
GPDs, they satisfy many interesting relations. Except a
few, most of the relations are model dependent. In this work
we have explored the possible relations in a light-front
quark-diquark model of the proton. An analytic formula for
the lensing function has been formulated in this model. The
lensing function is model dependent but is independent of
quark flavor and is the same for unpolarized quarks in a
transversely polarized proton or transversely polarized
quarks in an unpolarized proton. Different types of relations
with GPDs and TMDs and their momenta are discussed in
this model. These relations are important for model build-
ing of the distribution functions for the nucleons. We also
calculated the quark orbital angular momentum using
different relations. The results are compared with other
calculations in similar models. It is observed that the kinetic
OAM in this model is not the same as the canonical OAM,
which is an indication that the total angular momentum of
the quark is not expressed in terms of the gravitational form
factors, as was also observed earlier in the literature in a
diquark spectator model. The pretzelosity distribution in
this model also does not give the quark OAM.
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