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We investigate the relations between transverse momentum dependent parton distributions (TMDs) and
generalized parton distributions (GPDs) in a light-front quark-diquark model motivated by soft-wall AdS/
QCD. Many relations are found to have similar structure in different models. It is found that a relation
between the Sivers function and the GPD Eq can be obtained in this model in terms of a lensing function.
The quark orbital angular momentum is calculated and the results are compared with the results in other
similar models. Implications of the results are discussed. Relations among different TMDs in the model are
also presented.
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I. INTRODUCTION

Understanding the structure of the nucleon in terms of its
fundamental constituents, quarks and gluons, in three
dimensions has attracted quite a lot of interest in hadron
physics in recent days. These are investigated in terms of
the different distributions of quarks and gluons that encode
their internal dynamics, as well as the correlations between
the intrinsic momentum and spin. The parton distributions
are probed traditionally in high energy scattering experi-
ments, where the interactions take place through the quarks
and gluons, and the scattering cross section depends on the
probability to find a quark with momentum fraction x
inside the parent nucleon at a given momentum scale
(energy of the experiment). These are called collinear
parton distributions as they are not sensitive to the intrinsic
transverse momentum of the quarks and gluons. However,
single spin asymmetries observed in semi-inclusive deep
inelastic scattering (SIDIS) or Drell-Yan (DY) processes,
where the target or one of the proton beams is polarized,
depend on transverse momentum dependent parton distri-
bution (TMDs) [1] that give the distribution of quarks and
gluons in three-dimensional momentum space. The TMDs
are functions of the longitudinal momentum fraction x and
transverse momentum pT of the partons. There are eight
leading quark TMDs for the proton, each encode a different
momentum-momentum or momentum-spin correlation.
These TMDs can be expressed in terms of the quark field

operators, and in order to have color gauge invariance one
needs the inclusion of a Wilson line or gauge link. Also
known as the initial and/or final state interaction, these
basically resum the soft gluon exchanges between the hard
part and the soft part of the process. The gauge links are
process dependent and thus they introduce a process
dependence in the TMDs. For the so-called time reversal
odd (T-odd) TMDs like Sivers function or Boer-Mulders
function the inclusion of the gauge link is essential [2].
Another set of observables that have gained a lot of

interest in recent days are the generalized parton distribu-
tions (GPDs) of the nucleon [3]. These are probed in
exclusive processes like the deeply virtual Compton scat-
tering or the deeply virtual meson production. GPDs can be
expressed in terms of off-forward matrix elements of a
bilocal operator, and these do not have probabilistic
interpretation. There are eight leading GPDs for the quarks.
In the forward limit or when the momentum transfer in the
process is zero, GPDs reduce to the collinear parton
distribution function (pdf); whereas when integrating them
over x one gets the form factors. When the momentum
transfer ΔT is purely in the transverse direction, by taking a
Fourier transform with respect to ΔT one obtains impact
parameter dependent parton distributions (IPDpdfs) [4] that
are functions of x and the transverse impact parameter bT.
These have a probabilistic interpretation: they give the
distribution of quarks with longitudinal momentum fraction
x in the bT plane.
As a matter of fact, there is no direct one-to-one

correspondence between the TMDs and GPDs. This is
because bT and pT are not Fourier conjugate variable to
each other. bT is the Fourier conjugate to the momentum
transfer ΔT, and pT may be interpreted as the average
momentum of the active quark. However, bT and pT obey

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 076028 (2021)

2470-0010=2021=104(7)=076028(18) 076028-1 Published by the American Physical Society

https://orcid.org/0000-0001-7388-3455
https://orcid.org/0000-0002-0558-3132
https://orcid.org/0000-0002-4978-9140
https://orcid.org/0000-0003-0920-175X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.076028&domain=pdf&date_stamp=2021-10-27
https://doi.org/10.1103/PhysRevD.104.076028
https://doi.org/10.1103/PhysRevD.104.076028
https://doi.org/10.1103/PhysRevD.104.076028
https://doi.org/10.1103/PhysRevD.104.076028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Heisenberg’s uncertainty principle as the corresponding
operators do not commute. So although both the GPDs and
TMDs give a three-dimensional quark-gluon picture of the
nucleon, one is not related to the other through a Fourier
transform. A model-independent connection between the
GPDs and the TMDs can be obtained through the gener-
alized transverse momentum dependent pdfs (GTMDs) or
Wigner functions, which are Fourier transforms of the
GTMDs [5,6]. These give the most general tomographic
picture of the nucleon. Integration over bT sets ΔT ¼ 0 and
the Wigner distributions become the TMD correlators. On
the other hand, integrating over pT sets transverse sepa-
ration zT ¼ 0 and they reduce to IPDpdfs.
However, in some models, certain relations between the

TMDs and GPDs are found to hold. One such relation is
between the Sivers function and the GPD Eq in impact
parameter space, in some particular model where the final
state interaction can be factored out in what is called a
“chromodynamic lensing function” [7,8]. This gives an
intuitive picture of the Sivers effect in such models in terms
of distortions in transverse impact parameter space, due to the
nonzero orbital angular momentum of the active quark. Such
relations do not hold if higher-order corrections are included.
Thus, model-dependent relations are important as they help
to understand the physics related to these TMDs in the
framework of the effective theory on which such models are
based. In [9], a systematic study of all possible nontrivial
model-dependent relations between TMDs and GPDs was
performed and such relations were arranged in four catego-
ries depending on the number of derivatives in impact
parameter space. In [10] it was shown that the relation
connecting a T-odd TMD to a distortion in impact parameter
space through a lensing function holds only in models where
the nucleon is described as a two-particle bound state, like a
quark and a diquark. Further, such relations are not satisfied if
axial-vector diquarks are included in the model.
In the present work, we investigate model relations in a

light-front diquark model where the analytic form of the
light-front wave functions (LFWF) is motivated by the
AdS/QCD correspondence. The model includes both scalar
and axial-vector diquarks [11]. Total nucleon wave func-
tions are obtained by the light-front holographic wave
function multiplied by the momentum dependent helicity
wave functions. Finally, we incorporate the final state
interaction in the wave functions to evaluate the T-odd
TMDs. We also calculate the orbital angular momentum of
the quarks in this model and discuss the results.
The plan of the paper is as follows. In Sec. II, we introduce

the light-front quark-diquark model used in this work. The
modification of the wave functions to incorporate the final
state interaction (FSI) effect is given in Sec. II A. Then, in
Sec. III, we define the GPDs and TMDs in this model.
Model-independent relations among the GPDs and TMDs
are also presented in this section. Then we present the
model-dependent relations between the GPDs and TMDs in

Sec. IV. Themodel result of the lensing function is discussed
in Sec. IV B and the relations among different TMDs are
presented in Sec.V. In Sec.VI, different definitions of orbital
angular momentum in terms of GPDs and TMDs are
evaluated. Finally, we conclude the paper in Sec. VII.

II. LIGHT-FRONT QUARK-DIQUARK MODEL

Here we briefly introduce the light-front quark-diquark
model developed in [11,12]with thewave functionsmodeled
from the effective two-particle wave function predicted by
AdS/QCD. The particular model of nucleons employed in
this work is considered to be a linear combination of a quark-
diquark state including both the scalar diquark and axial-
vector diquarks [11]. With the SUð4Þ spin-flavor structure,
the proton states can be written as [13]

jP;�i ¼ CSjuS0i� þ CVjuA0i� þ CVVjdA1i�: ð1Þ

S and A represent the scalar and axial-vector diquarks with
isospin at their superscripts. Under the isospin symmetry, the
neutron state can be obtained from the above expression
[Eq. (1)] with the interchange of u ↔ d. The two-particle
Fock state expansion for Jz ¼ � 1

2
for a spin-0 diquark is

given by

juSi� ¼
Z

dxd2pT

2ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

×

�
ψ�ðuÞ
þ ðx;pTÞ

����þ 1

2
; 0; xPþ;pT

�

þ ψ�ðuÞ
− ðx;pTÞ

���� − 1

2
; 0; xPþ;pT

��
; ð2Þ

where jλq; 0; xPþ;kTi represents the two-particle Fock state
with an active quark with helicity λq ¼ � 1

2
and carrying

longitudinal momentum xPþ and transverse momentumkT ,
and a scalar diquark with helicity λS ¼ 0. Similarly the state
with a spin-1 diquark is given as

jvAi� ¼
Z

dxd2pT

2ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞp

×

�
ψ�ðvÞ
þþ ðx;pTÞ

����þ1

2
þ1;xPþ;pT

�

þψ�ðvÞ
−þ ðx;pTÞ

����−1

2
þ1;xPþ;pT

�
þψ�ðvÞ

þ0 ðx;pTÞ
����

þ1

2
0;xPþ;pT

�
þψ�ðvÞ

−0 ðx;pTÞ
����−1

2
0;xPþ;pT

�

þψ�ðvÞ
þ− ðx;pTÞ

����þ1

2
−1;xPþ;pT

�

þψ�ðvÞ
−− ðx;pTÞ

����−1

2
−1;xPþ;pT

��
; ð3Þ
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where jλq; λA; xPþ;pTi represents a two-particle statewith a
quark of helicity λq ¼ � 1

2
and an axial-vector diquark with

helicity λA ¼ �1, 0(triplet).

A. Final state interaction and T-odd TMDs

The FSIs [14] provide a nontrivial phase in the ampli-
tude which is required to produce nonvanishing spin

asymmetries in SIDIS processes associated with T-odd
TMDs. In this model, the contribution of the FSI is
included in the light-front wave functions [15] to evaluate
the leading twist T-odd TMDs, i.e., the Sivers function,
f⊥q
1T ðx;p2

TÞ, and the Boer-Mulders function, h⊥q
1 ðx;p2

TÞ.
With the inclusion of FSI, the process dependent wave
functions [16] are given by (a) for scalar diquark,

ψ ðuÞ
þ ðx;pTÞ ¼ NS

�
1þ i

e1e2
8π

ðp2
T þ BÞg1

�
φðuÞ
1 ðx;pTÞ

ψþðuÞ
− ðx;pTÞ ¼ NS

�
−
p1 þ ip2

xM

��
1þ i

e1e2
8π

ðp2
T þ BÞg2

�
φðuÞ
2 ðx;pTÞ

ψ−ðuÞ
þ ðx;pTÞ ¼ NS

�
p1 − ip2

xM

��
1þ i

e1e2
8π

ðp2
T þ BÞg2

�
φðuÞ
2 ðx;pTÞ

ψ ðuÞ
− ðx;pTÞ ¼ NS

�
1þ i

e1e2
8π

ðp2
T þ BÞg1

�
φðuÞ
1 ðx;pTÞ; ð4Þ

(b) for axial-vector diquark (for J ¼ þ1=2),

ψþðνÞ
þþ ðx;pTÞ ¼ NðνÞ

1

ffiffiffi
2

3

r �
p1 − ip2

xM

��
1þ i

e1e2
8π

ðp2
T þ BÞg2

�
φðνÞ
2 ðx;pTÞ

ψþðνÞ
−þ ðx;pTÞ ¼ NðνÞ

1

ffiffiffi
2

3

r �
1þ i

e1e2
8π

ðp2
T þ BÞg1

�
φðνÞ
1 ðx;pTÞ

ψþðνÞ
þ0 ðx;pTÞ ¼ −NðνÞ

0

ffiffiffi
1

3

r �
1þ i

e1e2
8π

ðp2
T þ BÞg1

�
φðνÞ
1 ðx;pTÞ

ψþðνÞ
−0 ðx;pTÞ ¼ NðνÞ

0

ffiffiffi
1

3

r �
p1 þ ip2

xM

��
1þ i

e1e2
8π

ðp2
T þ BÞg2

�
φðνÞ
2 ðx;pTÞ

ψþðνÞ
þ− ðx;pTÞ ¼ 0

ψþðνÞ
−− ðx;pTÞ ¼ 0; ð5Þ

and, for J ¼ −1=2,

ψ−ðνÞ
þþ ðx;pTÞ ¼ 0

ψ−ðνÞ
−þ ðx;pTÞ ¼ 0

ψ−ðνÞ
þ0 ðx;pTÞ ¼ NðνÞ

0

ffiffiffi
1

3

r �
p1 − ip2

xM

��
1þ i

e1e2
8π

ðp2
T þ BÞg2

�
φðνÞ
2 ðx;pTÞ

ψ−ðνÞ
−0 ðx;pTÞ ¼ NðνÞ

0

ffiffiffi
1

3

r �
1þ i

e1e2
8π

ðp2
T þ BÞg1

�
φðνÞ
1 ðx;pTÞ

ψ−ðνÞ
þ− ðx;pTÞ ¼ −NðνÞ

1

ffiffiffi
2

3

r �
1þ i

e1e2
8π

ðp2
T þ BÞg1

�
φðνÞ
1 ðx;pTÞ

ψ−ðνÞ
−− ðx;pTÞ ¼ NðνÞ

1

ffiffiffi
2

3

r �
p1 þ ip2

xM

��
1þ i

e1e2
8π

ðp2
T þ BÞg2

�
φðνÞ
2 ðx;pTÞ; ð6Þ
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where,

g1 ¼
Z

1

0

dα
−1

αð1 − αÞp2
T þ αm2

g þ ð1 − αÞB ; ð7Þ

g2 ¼
Z

1

0

dα
−α

αð1 − αÞp2
T þ αm2

g þ ð1 − αÞB ; ð8Þ

and

B ¼ xð1 − xÞ
�
−M2 þm2

q

x
þ m2

D

1 − x

�
: ð9Þ

Here, M, mq, mD and mg are the masses of the proton,
struck quark, diquark, and the gluon, respectively. e1 and e2
are the color charges of the struck quark and diquark,
and the FSI gauge exchange strength is e1e2

4π . We take
mg ¼ 0 at the end of the calculations. Ns; Nν

0, and Nν
1

are the normalization constants. The LFWFs φν
i ðx;pTÞ

are modified from the soft-wall AdS/QCD predictions
as [11]

φðνÞ
i ðx;pTÞ ¼ Aν

i ðxÞ exp½−aðxÞp2
T �; ð10Þ

with

Aν
i ðxÞ ¼

4π

κ

ffiffiffiffiffiffiffiffiffiffiffiffi
logð1xÞ
1 − x

s
xa

ν
i ð1 − xÞbνi ; ð11Þ

and

aðxÞ ¼ δν
logð1xÞ

κ2ð1 − xÞ2 : ð12Þ

The parameters aνi , b
ν
i , and δν are obtained by fitting the

electromagnetic form factors. The wave function [Eq. (10)]
reduces to the AdS/QCD prediction [17] for the parameters
aνi ¼ bνi ¼ 0 and δν ¼ 1. We use the AdS/QCD scale para-
meter κ ¼ 0.4 GeV [18] and the quark masses are assumed
to be zero. For completeness and to be self-contained, we list
the parameters obtained in Ref. [11]. The normalization
constants are Ns ¼ 2.0191, Nu

0 ¼ 3.2050, Nd
0 ¼ 5.9423,

Nu
1 ¼ 0.9895, Nd

1 ¼ 1.1616, C2
s ¼ 1.3872, C2

V ¼ 0.6128,
andC2

VV ¼ 1.0, and the other parameters are listed in Table I.
Henceforth, we refer to this model as the LFQDQ model.
The nucleon parton distributions like GPDs, TMDs, and

Wigner distributions are already calculated in this model and
the model has been shown to reproduce different spin
asymmetries in the SIDIS processes [16,19–22]. TMDs,
Wigner distributions, and Husimi distributions are also cal-
culated in a light-front quark-diquark model in Refs. [23,24].
Recently, gluonic distributions like PDFs, TMDS, GPDs, etc.
have also been calculated in AdS/QCD [25,26].

III. DEFINITIONS AND TRIVIAL RELATIONS

A. Generalized parton distributions

The GPDs (for a review, see Ref. [3]) are defined as off-
forward matrix elements of the bilocal operator of light-
front correlation functions of vector, axial-vector, and
tensor current. The off-forward correlator is given by

Fq½Γ�ðx;Δ; λ; λ0Þ ¼ 1

2

Z
dz−

2π
eik·z

	
P0; λ0jψ̄

�
−
1

2
z

�
Γ

×WGPD

�
−
1

2
z;
1

2
z

�
ψ

�
1

2
z

�
jP; λi

����
zþ¼0þ;zT¼0T

; ð13Þ

where PðP0Þ and λðλ0Þ denote the momenta and the helicity of the initial (final) state of the proton, respectively. The object Γ
is a generic matrix in Dirac space, at leading twist; it can be γþ; γþγ5, or σþ⊥γ5. The Wilson line, WGPD, is required for
gauge invariance of the correlator and is given by

WGPD

�
−
1

2
z;
1

2
z

�����
zþ¼0þ;zT¼0T

¼
�
0þ;−

1

2
z−; 0T ; 0þ;

1

2
z−; 0T

�

¼ P exp

�
−ig

Z ð1=2Þz−

−ð1=2Þz−
dy−taAþ

a ð0þ; y−; 0TÞ
�
; ð14Þ

TABLE I. In the light-front AdS/QCD axial-vector diquark model, the values of the fitted parameters for u and d
quarks at μ0 ¼ 0.313 GeV.

ν aν1 bν1 aν2 bν2 δν

u 0.280� 0.001 0.1716� 0.0051 0.84� 0.02 0.2284� 0.0035 1.0
d 0.5850� 0.0003 0.7000� 0.0002 0.9434þ0.0017

−0.0013 0.64þ0.0082
−0.0022 1.0
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where P is the path ordering and ta represents the Gell-Mann matrices. For the three particular Γ in Eq. (13) we can obtain
the leading twist GPDs [9] as

Fq½γþ�ðx;Δ; λ; λ0Þ ¼ 1

2P̄þ ūðP0; λ0Þ
�
Hqγþ þ Eq i

2M
σþαΔα

�
uðP; λÞ; ð15Þ

Fq½γþγ5�ðx;Δ; λ; λ0Þ ¼ 1

2P̄þ ūðP0; λ0Þ
�
H̃qγþγ5 þ Ẽq γ5Δ

þ

2M

�
uðP; λÞ; ð16Þ

Fq½σþjγ5�ðx;Δ; λ; λ0Þ ¼ 1

2P̄þ ūðP0; λ0Þ
�
Hq

Tσ
þjγ5 þ H̃q

T

ϵþjαβΔαPβ

M2
þ Eq

T

ϵþjαβΔαγβ
2M

þ Ẽq
T

ϵþjαβPαγβ
M

�
uðP; λÞ; ð17Þ

where M denotes the mass of the proton and j ¼ 1, 2 is a
transverse index, P̄ ¼ ðPþ P0Þ=2 denotes the average
nucleon momentum, and Δ ¼ P0 − P is the momentum
transfer to the nucleon. The H and E, the so-called
unpolarized GPDs, and the helicity dependent GPDs, H̃
and Ẽ are chiral-even, whileHT , H̃T , ET , and ẼT are chiral-
odd. There exist eight leading twist quark GPDs. All GPDs
are real valued which follows from time-reversal and
depend on the three variables x ¼ pþ

P̄þ, ξ ¼ − Δþ
2P̄þ, and

t ¼ −Q2 ¼ Δ2; where the light-cone coordinates are de-
fined as x� ¼ 1ffiffi

2
p ðx0 � x3Þ;xT ¼ ðx1; x2Þ. We choose the

light-front gauge Aþ ¼ 0, so that the gauge link appearing
in between the quark fields in Eqs. (15)–(17) becomes
unity, or, in other words, there is no FSI contribution to the
GPDs.

B. GPDs in impact parameter space

The GPDs with zero skewness ðξ ¼ 0Þ in impact
parameter space are important for various reasons:
(i) the density interpretation of the GPDs holds only
in the impact parameter space for zero skewness
[27], (ii) the intuitive picture for various transverse
single spin asymmetries (SSAs) in semi-inclusive proc-
esses is based on the impact parameter representation of
GPD Eq [7,28], (iii) it gives an intuitive connection
between the Sivers asymmetry and the quark orbital
angular momentum in certain models, (iv) the impact
parameter representation allows us to make analogies
between chiral-odd quark GPDs and TMDs [29]. The
parton correlator in impact parameter space is given by
the Fourier transform as

F ðx;bT ; SÞ ¼
Z

d2ΔT

ð2πÞ2 expð−iΔT:bTÞFðx;ΔT ; SÞ: ð18Þ

Here, S denotes the polarization of the target.
The impact parameter bT is conjugate to the transverse
part of the momentum transfer ΔT. The correlator
defining the GPDs in impact parameter space is
written as

F q½Γ�ðx;bT ; SÞ ¼
1

2

Z
dz−

2π
eixP

þz−hPþ; 0T ; Sjψ̄ðz1ÞΓ

×WGPDðz1; z2Þψðz2ÞjPþ; 0T ; Si; ð19Þ

with z1=2 ¼ ð0þ;∓ 1
2
z−;bTÞ. Although the GPDs are

expressed as off-forward matrix elements and do not
have a density interpretation, in the impact parameter
representation we can obtain diagonal matrix elements
and thus impact parameter dependent pdfs have a
probabilistic interpretation. The IPDpdfs are given by

Xðx;b2
TÞ ¼

Z
d2ΔT

ð2πÞ2 e
−iΔT ·bTXðx; 0;−Δ2

TÞ; ð20Þ

where Xðx; 0;−Δ2
TÞ are the GPDs. The GPD correlators

[Eqs. (15)–(17)] for different Γ in the impact parameter
space are then obtained [9] as

F qðx;bT ; SÞ ¼ F q½γþ�ðx;bT ; SÞ

¼ Hqðx;b2
TÞ þ

ϵijT b
i
TS

j
T

M
ðEqðx;b2

TÞÞ0; ð21Þ

F̃ qðx;bT ; SÞ ¼ F̃ q½γþγ5�ðx;bT ; SÞ ¼ λH̃qðx;b2
TÞ; ð22Þ

F q;j
T ðx;bT ; SÞ ¼ F q½iσjþγ5�ðx;bT ; SÞ

¼ ϵijT b
i
T

M
ðEq

Tðx;b2
TÞ þ 2H̃q

Tðx;b2
TÞÞ0

þ SjT

�
Hq

Tðx;b2
TÞ −

b2
T

M2
ΔbH̃

q
Tðx;b2

TÞ
�

þ 2bjTbT · ST − SjTb
2
T

M2
ðH̃q

Tðx;b2
TÞÞ00;

ð23Þ

where

ðXðx;b2
TÞÞ0 ¼

∂
∂b2

T
ðXðx;b2

TÞÞ; ð24Þ
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ΔbXðx;b2
TÞ ¼

1

bT
2

∂
∂bT

2

�
bT

2
∂

∂bT
2
Xðx;b2

TÞ
�
: ð25Þ

Equation (21) describes the distribution of unpolar-
ized quarks carrying the longitudinal momentum frac-
tion x at a transverse position bT . For a transversely
polarized target, this distribution has a spin-independent
part given by H and a spin-dependent part proportional
to the first order derivative of E. Due to the spin-
dependent term, the distribution in impact parameter
space is not axially symmetric as it depends on the
direction of the impact parameter bT, i.e., the spin-
dependent term causes a distortion of the distribution.
This distortion effect can be quantified through the
flavor dipole moment [30]:

dq;i ¼
Z

dx
Z

d2bTbiTF
qðx;bT ; SÞ

¼ −
ϵijT S

j
T

2M

Z
dxEqðx; 0; 0Þ ¼ −

ϵijT S
j
T

2M
κq: ð26Þ

Here κq is the contribution of the quark flavor q to
the anomalous magnetic moment of the nucleon. The
flavor dipole moments for the light quarks in the
nucleon are therefore of the order 0.2 fm, which is
quite significant in comparison to the size of the
nucleon. Similarly, in Eq. (23) there are two terms
which generate distortions, one is determined by the
first derivative of ET þ 2H̃T and the other is given by
the second derivative of H̃T . We will see later that the
specific form of the relations between GPDs and TMDs
depends on the number of the derivatives of the GPDs
in impact parameter space.

C. Transverse momentum dependent parton
distributions (TMDs)

The quark TMDs are defined through the unintegrated
quark-quark correlator for SIDIS [31,32]. The TMDs
depend on the longitudinal momentum fraction x of the
active quark and the quark transverse momentum pT . The
TMDs provide a three-dimensional view of the parton
distributions in momentum space. In a hadronic state jP; Si
with momentum P and polarization S, the TMDs can be
defined through the quark-quark correlation function as

Φq½Γ�ðx;pT ;SÞ¼
1

2

Z
dz−

2π

d2zT
ð2πÞ2e

ik·z

	
P;S

����ψ̄
�
−
1

2
z

�
Γ

×WTMD

�
−
1

2
z;
1

2
z

�
ψ

�
1

2
z

�
jP;S

�����
zþ¼0þ

;

ð27Þ
in which a summation over the color of the quark fields
is implicit. In the chosen frame, the nucleon four

momentum P≡ ðPþ; M
2

Pþ ; 0Þ, and virtual photon momen-

tum q≡ ðxBPþ; Q2

xBPþ ; 0Þ, where xB ¼ Q2

2P:q is the Bjorken

variable and Q2 ¼ −q2. The covariant spin vector S for
the nucleon with helicity λ is defined as ðSþ ¼ λPþ

M ;
S− ¼ − λP−

M ;STÞ. The Wilson line in TMD correlators is
far more complicated than that in the GPD correlators and
is given by [13]

WTMD

�
−
1

2
z;
1

2
z

�����
zþ¼0þ

¼
�
0þ;−

1

2
z−;−

1

2
zT ; 0þ;þ∞−;−

1

2
zT

�

×

�
0þ;þ∞−;−

1

2
zT ; 0þ;þ∞−;

1

2
zT

�

×

�
0þ;þ∞−;

1

2
zT ; 0þ;

1

2
z−;

1

2
zT

�
; ð28Þ

where the future pointing Wilson line is running along
the positive z− direction to þ∞ for SIDIS, while in the
Drell-Yan process the Wilson lines runs along the
opposite direction, towards −∞ [33]. The leading twist
quark TMDs are obtained from correlator in (27) by
using the same three Γ matrices ðγþ; γþγ5; σþjγ5Þ. The
corresponding antiquark TMDs can be obtained by the
same light-cone correlation functions by using charge
conjugated fields. There exist eight leading twist quark
TMDs, which are all real valued. Taking Γ ¼ γþ in
Eq. (27), we get

Φqðx;pT ;SÞ ¼ Φq½γþ�ðx;pT ; SÞ

¼ fq1ðx;p2
TÞ −

ϵijT p
i
TS

j
T

M
f⊥q
1T ðx;p2

TÞ: ð29Þ

fq1 is the unpolarized quark distribution for a quark
flavor q, and f⊥q

1T represents the (naive) T-odd Sivers
function which appears for a transversely polarized
target ðST ≠ 0Þ. The Sivers function describes the dis-
tribution of the unpolarized quark carrying a longi-
tudinal momentum fraction x and transverse momentum
pT in a transversely polarized target. If the second term
on the right-hand side in (29) is nonzero then the quark
TMD correlator Φq is not axially symmetric in the pT
plane, i.e., the distribution becomes distorted. This
distortion is supposed to be the origin of various
observed single spin asymmetries in hard semi-inclusive
reactions [34,35]. Setting Γ ¼ γþγ5 and iσjþγ5 in
Eq. (27), we have

Φ̃qðx;pT ; SÞ ¼ Φq½γþγ5�ðx;pT ; SÞ

¼ λgq1Lðx;p2
TÞ þ

pT · ST

M
gq1Tðx;p2

TÞ; ð30Þ
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Φq;j
T ðx;pT ;SÞ ¼ Φq½iσjþγ5�ðx;pT ; SÞ

¼ −
ϵijTp

i
T

M
h⊥q
1 ðx;p2

TÞ þ
λpj

T

M
h⊥q
1L ðx;p2

TÞ

þ SjT

�
hq1Tðx;p2

TÞ þ
p2
T

2M2
h⊥q
1T ðx;p2

TÞ
�

þ 2pj
TpT · ST − SjTp

2
T

2M2
h⊥q
1T ðx;p2

TÞ: ð31Þ

Here, h⊥q
1 is the Boer-Mulders function, which gives

the distribution of transversely polarized quarks inside
an unpolarized hadron. The process dependence of the
Wilson line leads to a sign difference in the T-odd
TMDs, e.g., f⊥q

1T jSIDIS ¼ −f⊥q
1T jDY ; whereas in hadron-

hadron scattering with hadronic final states, even more
complicated paths for the Wilson line can arise [36–39].
There are altogether six T-even TMDs and two (Sivers
and Boer Mulders) T-odd TMDs. The pT integrated
function of fν1ðx; p2

TÞ gives the unpolarized parton
distribution fν1ðxÞ and gν1Lðx; p2

TÞ gives the helicity
distribution gν1LðxÞ. The transversity TMD hν1ðx; p2

TÞ is
defined as

hν1ðx;p2
TÞ ¼ hν1Tðx;p2

TÞ þ
p2
T

2M2
h⊥ν
1T ðx;p2

TÞ; ð32Þ

and when integrated over the transverse momentum
gives the transversity parton distribution hν1ðxÞ.
Like the pT integrated TMDs, some GPDs in the limit

ξ ¼ t ¼ 0, are also related to the twist-2 pdfs. Thus we get
some model-independent relations between GPDs and
TMDs:

fq1ðxÞ ¼
Z

d2pTf
q
1ðx;p2

TÞ ¼ Hqðx; 0; 0Þ

¼
Z

d2bTHq=gðx;b2
TÞ; ð33Þ

gq1ðxÞ ¼
Z

d2pTg
q
1Lðx;p2

TÞ ¼ H̃qðx; 0; 0Þ

¼
Z

d2bTH̃
qðx;b2

TÞ; ð34Þ

hq1ðxÞ ¼
Z

d2pT

�
hq1Tðx;p2

TÞ þ
p2
T

2M2
h⊥q
1T ðx;p2

TÞ
�

¼ Hq
Tðx; 0; 0Þ

¼
Z

d2bT

�
Hq

Tðx;b2
TÞ −

b2
T

M2
ΔbH̃

q
Tðx;b2

TÞ
�
: ð35Þ

These relations give important constraints on models,
and are satisfied in our model. Next, we investigate a few
nontrivial model-dependent relations.

IV. MODEL-DEPENDENT RELATIONS BETWEEN
GPDs AND TMDs

In [9], all possible model-dependent relations between
GPDs and TMDs are systematically studied. The model-
independent relations as given in the previous section are
called relations of the first kind. There are a few relations in
momentum space. There are also model-dependent rela-
tions that connect the GPDs to the IPDpdfs or their
derivatives in bT space. These relations are called second,
third, and fourth type depending on the number of deri-
vatives present in the relation. In this section, we investigate
nontrivial relations between the TMDs and GPDs, as well
as some relations between the different TMDs in our
model. We also compare LFQDQ model results with the
results of two other spectator models, namely, the scalar
diquark spectator model of the nucleons [40] and a quark
target model treated in perturbative QCD [9].
Incorporating the FSI effect into the wave functions [41],

the Sivers f⊥q
1T and the Boer- Mulders h⊥q

1 functions can be
written as

f⊥q
1T ðx;p2

TÞ ¼
�
C2
SN

ν2
S −

1

3
C2
AN

ν2
0

�
fνðx;p2

TÞ; ð36Þ

h⊥q
1 ðx;p2

TÞ ¼
�
C2
SN

ν2
S þ

�
1

3
Nν2

0 þ 2

3
Nν2

1

�
C2
A

�
fνðx;p2

TÞ;

ð37Þ

where

fνðx;p2
TÞ ¼ ð−CFαsÞ ×

1

x

�
p2
T þ BðxÞ
p2
T

�
log

�
p2
T þ BðxÞ
BðxÞ

�

×
1

16π3
Aν
1ðxÞAν

2ðxÞ exp½−aðxÞp2
T �; ð38Þ

and where BðxÞ and aðxÞ are defined in Eqs. (9) and (12),
respectively, and CA ¼ CVðCVVÞ for uðdÞ quark. In
the final state interactions, gluon exchange strength
e1e2
4π → −CFαs, while the pretzelosity h⊥q

1T TMDs can be
written as [21]

hν⊥1T ðx;p2
TÞ ¼ −

�
C2
SN

ν2
S − C2

V
1

3
Nν2

0

�
2 lnð1=xÞ

πκ2

× x2a
ν
2
−2ð1 − xÞ2bν2−1 exp ½−aðxÞp2

T �; ð39Þ

and are found to satisfy the inequality relation [16]

jh⊥1 ðx;p2
TÞj > jf⊥1Tðx;p2

TÞj: ð40Þ

From Eqs. (36) and (37), we can easily check that the
Boer-Mulders function is proportional to the Sivers func-
tion. The Boer-Mulders function can be parametrized
[16,42] as
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h⊥ν
1 ðx;p2

TÞ ¼ λνf⊥ν
1T ðx;p2

TÞ; ð41Þ

where

λν ¼ ðC2
SN

ν2
S þ ð1

3
Nν2

0 þ 2
3
Nν2

1 ÞC2
AÞ

ðC2
SN

ν2
S − 1

3
C2
AN

ν2
0 Þ : ð42Þ

Putting in the model parameters in Eq. (42), we get λu ¼
2.29 and λd ¼ −1.08. Since the Sivers function is negative
for up quarks and positive for down quarks, from the above
expression [Eq. (41)] we can conclude that the Boer-
Mulders function is negative for both up and down quarks.

A. Moment relations between GPDs and TMDs
in momentum space

The nth moment of the GPD X is defined as

XðnÞðxÞ ¼ 1

2M2

Z
d2ΔT

�
Δ2

T

2M2

�
n−1

X

�
x; 0;−

Δ2
T

ð1 − xÞ2
�
;

ð43Þ
and similarly the moment of the TMD Y is defined as

YðnÞðxÞ ¼
Z

d2pT

�
p2
T

2M2

�
n

Yðx;p2
TÞ: ð44Þ

The moments for GPD Eq and ðEq
T þ 2H̃q

TÞ are obtained as

EqðnÞðxÞ ¼ −
�
C2
sN2

s −
1

3
C2
AN

ν2
0

�
π2nþ1

�
1

M2

�
n
ΓðnÞ

× xa
ν
1
þaν

2
−1ð1 − xÞbν1þbν

2
þ2

�
logð1=xÞ
κ2ðx − 1Þ4

�
−n
;

ð45Þ

and

EqðnÞ
T ðxÞ þ 2H̃qðnÞ

T ðxÞ

¼
�
C2
sN2

s þ C2
A

�
1

3
Nν2

0 þ 2

3
Nν2

1

��
π2n

�
1

M2

�
n
ΓðnÞ

× xa
ν
1
þaν

2
−1ð1 − xÞbν1þbν

2
þ2

�
logð1=xÞ
κ2ðx − 1Þ4

�
−n
: ð46Þ

The analytic form of the moments for Sivers and Boer-
Mulders functions are too complicated and lengthy to
present here. The moment relation between Sivers function
and GPD Eq in the scalar diquark model was obtained in [9]
and has the general form

f⊥qðnÞ
1T ðxÞ ¼−

g2eqesð1− xÞ
16ð2πÞ2

ðmqþ xMÞM̃2n−2ðxÞH−n

2nM2n−1 sinðnπÞ

¼−
eqes

2ð2πÞ2ð1− xÞ
H−nΓð2− 2nÞ
Γ2ð1−nÞ EqðnÞðxÞ: ð47Þ

The relation given by Eq. (47) generally holds for
0 ≤ n ≤ 1, i.e., n is not necessarily an integer where Hn
is the analytic continuation of the harmonic number for
noninteger n. In the LFQDQ model, it is not possible to
obtain a similar relation analytically for a general value of
n, however, relations similar to Eq. (47) can be derived
in the scalar diquark model [9] for three particular values
of n, as

f⊥qð0Þ
1T ðxÞ ¼ πeqes

48ð1 − xÞE
qðx; 0; 0Þ; ð48Þ

f⊥qð1=2Þ
1T ðxÞ ¼ 2eqes lnð2Þ

ð2πÞ3ð1 − xÞE
qð1=2ÞðxÞ; ð49Þ

f⊥qð1Þ
1T ðxÞ ¼ eqes

4ð2πÞ2ð1 − xÞE
qð1ÞðxÞ; ð50Þ

the moment relations for the Sivers function, f⊥q
1T , and the

corresponding GPD Eq in the LFQDQ model are evaluated
numerically and the results for the up quarks are compared
with scalar diquark model results in Fig. 1. It is seen from
the plot that the zeroth moment of the Sivers function in
both models obey the same relation for x > 0.5; although
the qualitative behavior for the next two moments ðn ¼
1=2; 1Þ are similar, they do not match except for a narrow
range roughly in the region 0.1 < x < 0.5. Furthermore, in
the LFQDQmodel, a kink appears at around x ¼ 0.05. This
is due to that fact that both the functions f⊥q

1T ðxÞ and the
GPD EqðxÞ have maxima at the same x. The other T-odd
TMD, i.e., Boer-Mulders function and the corresponding
GPD, also show similar behavior, which can be seen
in Fig. 2.
In the LFQDQ model, the relations between the pretze-

losity, h⊥q
1T , and the GPD, H̃

q
T , can be given analytically. By

using Eqs. (43) and (44), the nth moment of the pretzelosity

TMD, h⊥qðnÞ
1T , and the nth moment of the corresponding

GPD, H̃qðnÞ
T , is given as

h⊥qðnÞ
1T ðxÞ ¼ −

�
C2
sN2

s −
1

3
C2
AN

ν2
0

�
21−n

κ2

�
1

M2

�
n

× Γðnþ 1Þx2aν2−2ð1 − xÞ2bν2−2

× log

�
1

x

�
aðxÞ−n−1 ð51Þ

H̃qðnÞ
T ðxÞ ¼

�
C2
sN2

s −
1

3
C2
AN

ν2
0

�
π2nx2a

ν
2
−2ð1 − xÞ2bν2þ3

×

�
1

M2

�
n
ΓðnÞaðxÞ−n; ð52Þ

and they satisfy the relation
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h⊥qðnÞ
1T ¼ 21−2nΓðnþ 1Þ

πð1 − xÞ2ΓðnÞ H̃
qðnÞ
T ðxÞ; ð53Þ

which holds for 0 ≤ n ≤ 1. Note that this relation is the
same with or without the axial-vector diquark in the model.
The explicit forms of the relation in Eq. (53) for three
different values of n are as follows:

h⊥qð0Þ
1T ðxÞ ¼ 2

ð1 − xÞ2 H̃
q
Tðx; 0; 0Þ; ð54Þ

h⊥qð1=2Þ
1T ðxÞ ¼ 1

2πð1 − xÞ2 H̃
qð1=2Þ
T ðxÞ; ð55Þ

h⊥qð1Þ
1T ðxÞ ¼ 1

2πð1 − xÞ2 H̃
qð1Þ
T ðxÞ: ð56Þ

These relations can be compared with the corresponding
relations in the scalar diquark model and quark target
models, which are given by [9]

h⊥qð0Þ
1T ðxÞ ¼ 3

ð1 − xÞ2 H̃
q
Tðx; 0; 0Þ; ð57Þ

h⊥qð1=2Þ
1T ðxÞ ¼ 8

ð2πÞ2ð1 − xÞ2 H̃
qð1=2Þ
T ðxÞ; ð58Þ

h⊥qð1Þ
1T ðxÞ ¼ 1

2πð1 − xÞ2 H̃
qð1Þ
T ðxÞ: ð59Þ

Note that Eq. (56) exactly matches with Eq. (59), and the
other two relations (Eqs. (54) and (55) have similar
structure to Eqs. (57) and (58), except the constant factors,

which may be model dependent. The ratios of h⊥qðnÞ
1T ðxÞ and

H̃qðnÞ
T ðxÞ for 0 ≤ n ≤ 1 go as 1=ð1 − xÞ2 in the scalar

diquark model considered in [9], as well as in our model
with or without the axial-vector diquark. It needs to be
investigated whether this is true in any diquark-type model.
The general structure of the relations in Eqs. (48)–(50),

and the relations in Eqs. (54)–(56), is not same due to the
FSI contribution to the T-odd TMDs, like the Sivers and
Boer-Mulders functions. The pretzelosity distribution is a
T-even quantity and at the level of one gluon exchange does

FIG. 1. The left plot is corresponding the ratio of the zeroth moment of the Sivers TMD for the up quarks f⊥uð0Þ
1T ðxÞ to the

corresponding GPD Euðx; 0; 0Þ. The right plot is for the ratio of f⊥uð1=2Þ
1T ðxÞ to Euð1=2ÞðxÞ, and the lower plot is for the ratio of f⊥uð1Þ

1T ðxÞ
to Euð1ÞðxÞ.
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not receive contribution from the Wilson line. For this
reason, coupling constants appear in the relations involving
T-odd TMDs. Also the relative power of (1 − x) between
the moments of the TMDs and of GPDs differs in these two
types of relations. In Fig. 3 we have compared LFQDQ
results in Eqs. (54)–(56) to the scalar diquark model results
in Eqs. (57)–(59).
The nth moment of the GPD H̃q

T can be written in terms
of the second derivative of the impact parameter distribu-
tion H̃q

T [9]. Here we consider n ¼ 1 to haveZ
d2bT

b2
T

2M2
2ðH̃q

Tðx;b2
TÞÞ00

¼ −π
Z

∞

0

db2T
1

2M2
2ðH̃q

Tðx;b2
TÞÞ0

¼ π

M2
H̃q

Tðx; 0Þ

¼ 1

ð2πÞð1 − xÞ2 H̃
qð1Þ
T ðxÞ: ð60Þ

In the above equation we take the Fourier transform of GPD
H̃q

Tðx; tÞ and perform the integration by parts. Then we
arrive at the relation

h⊥qð1Þ
1T ðxÞ ¼

Z
d2pT

p2
T

2M2
h⊥q
1T ðx;p2

TÞ

¼
Z

d2bT
b2
T

2M2
2ðH̃q

Tðx;b2
TÞÞ00: ð61Þ

This relation is also valid for both the scalar diquark model
and quark target model [9].

B. Lensing function

In [28], a nontrivial model-dependent relation was found
between GPD Eq in impact parameter space and the Sivers
function f⊥q

1T . The average transverse momentum of an
unpolarized quark in a transversely polarized target [43] is
defined by

hpq;i
T ðxÞiUT ¼

Z
d2pTpi

TΦqðx;pT ;SÞ

¼−
Z
d2pTpi

T
ϵjkT p

j
TS

k
T

M
f⊥q
1T ðx;p2

TÞ ð62Þ

≃
Z
d2bTIq;iðx;bTÞ

ϵjkT b
j
TS

k
T

M
ðEqðx;b2

TÞÞ0: ð63Þ

FIG. 2. The left plot is corresponding the ratio of the zeroth moment of Boer-Mulders TMD for the up quarks h⊥uð0Þ
1 ðxÞ to the

corresponding GPD, Eu
Tðx; 0; 0Þ þ 2H̃u

Tðx; 0; 0Þ. The right one is for the ratio of the h⊥qð1=2Þ
1 ðxÞ to Euð1=2Þ

T ðxÞ þ 2H̃uð1=2Þ
T ðxÞ, and the

lower one is for the ratio of the h⊥qð1Þ
1 ðxÞ to Euð1Þ

T ðxÞ þ 2H̃uð1Þ
T ðxÞ.
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The above relation (63) is applicable in models where the
nucleon state is approximated as an effective two-particle
bound state like a diquark model and at the level of one
gluon exchange [44]; however it is found to be not valid
when vector and axial-vector diquarks are included [10].
Here Iq;i contains the effect of the FSI, i.e., the one gluon
exchange in the final state between the active quark and the
spectator system. In such models, Eq. (63) provides the
intuitive understanding of the origin of the Sivers trans-
verse SSA.
However, in general, the average transverse momentum

hpq;i
T ðxÞiUT caused by the Sivers effect can not be factor-

ized into the lensing function Iq;i and the distortion of the
impact parameter distribution of quarks in a transversely
polarized target which is determined by ðEqÞ0. So, the
relation (63) is model dependent and no model-independent
relation has been established between the Sivers function
f⊥q
1T and GPD Eq. In our model we have scalar as well as

vector and axial-vector diquark contributions. One can still
obtain a relation connecting the Sivers function to a
distortion of the GPD Eq in impact parameter space by
using an ansatz for the lensing function and obtaining
a fit. Two different analytic forms of the function are

needed for the low-x and high-x regions. In the lower x
region, 0 < x < 0.2, we got the expression for the lensing
function as

Iq;iðx;bTÞ ¼
5CFαS
2π

x3=2ð1 − xÞ−1=5 log5
�
1

x

�
biT
bT

2
; ð64Þ

and for the higher x region, i.e., in the region 0.2 < x < 1,
the lensing function takes the form

Iq;iðx;bTÞ ¼
2CFαS

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xÞ

p
log

�
1

x

�
biT
bT

2
: ð65Þ

The lensing function is model dependent but does not
depend on the parton type. The corresponding plots for the
Eq. (63) by using Eqs. (64) and (65) are shown in Fig. 4.
The lensing function in the scalar diquark model is
relatively easier to extract and is valid for the whole range
of xð0 < x < 1Þ:

Iq;i
SDMðx;bTÞ ¼

5

π
ðCFαSÞð1 − xÞ b

i
T

b2T
: ð66Þ

FIG. 3. The left plot is corresponding to the ratio of the zeroth moment of pretzelosity TMD [h⊥uð0Þ
1T ðxÞ] to the corresponding GPD,

H̃u
Tðx; 0; 0Þ. The right plot is the ratio of h⊥uð1=2Þ

1T ðxÞ to H̃uð1=2Þ
T ðxÞ, and the lower one is the ratio of h⊥uð1Þ

1T ðxÞ to H̃uð1=2Þ
T ðxÞ.
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In Fig. 4, the results for the scalar diquark model are also
shown. The momentum distributions in the two models are
not the same; in the scalar diquark model, the distribution
peaks at around x ∼ 0.2 while inclusion of the axial diquark
enhances the diquark contribution and shifts the peak
towards the lower x.
The average transverse momentum hpq;i

T ðxÞijTU of a
transversely polarized quark (with polarization along
j-direction) in an unpolarized nucleon can be expressed
in terms of the Boer-Mulders function which is again
related with the GPDs [44,45],

hpq;i
T ðxÞijTU ¼

Z
d2pTpi

TΦq;jðx;pT ;SÞ

¼ −
Z

d2pTpi
T
ϵkjT p

k
T

M
h⊥q
1 ðx;p2

TÞ ð67Þ

¼
Z

d2bTI
q;i
SDMðx;bTÞ

ϵkjT b
k
T

M

× ðEq
Tðx;b2

TÞ þ 2H̃q
Tðx;b2

TÞÞ0: ð68Þ

The Sivers and Boer Mulder’s TMDs are the same in this
model except the normalization constant and corresponding
GPD Eq

T þ 2H̃q
T also has the same structure as the GPD Eq.

The lensing function is also exactly the same as quarks
Sivers effect, which means that it is not only independent of
the parton type but also of its polarization. The magnitude
of the Boer-Mulder function is directly proportional to
the distortion of the impact parameter distribution of
the transversely polarized quarks inside an unpolarized
nucleon [46]. The distortion can be given by the first

derivative of Eq
Tðx;b2

TÞ þ 2H̃q
Tðx;b2

TÞ. The corresponding
plots for Eqs. (67) and (68) by using Eqs. (64) and (65) for
the LFQDQ model and Eq. (66) for the SDM model are
shown in Fig. 5.

V. RELATIONS AMONG TMDs

The TMDs are found to satisfy many interesting model-
dependent relations. Many such relations have been found
for the scalar diquark model [47]. Though the scalar
diquark model satisfies the saturation limit of the Soffer
bound, with inclusion of the axial-vector diquark, the
inequality relation of the Soffer bound is satisfied:

hqðsÞ1 ðx; p2
TÞ <

1

2
ðfqðsÞ1 ðx; p2

TÞ þ gqðsÞ1 ðx; p2
TÞÞ: ð69Þ

The ratio of gqðsÞ1T ðx; p2
TÞ and hqðsÞ1 ðx; p2

TÞ is found to be
independent of transverse momentum pT :

gqðsÞ1T ðx; p2
TÞ

hqðsÞ1 ðx; p2
TÞ

¼ J ðxÞ ¼ 2xa
ν
2
−aν

1
−1ð1 − xÞbν1−bν2 : ð70Þ

The two nonlinear relations which connect T-even chirally
odd leading twist TMDs in the scalar diquark model
[47,48] are

ðgqðsÞ1T ðx; p2
TÞÞ2 þ 2hqðsÞ1 ðx; p2

TÞh⊥qðsÞ
1T ðx; p2

TÞ ¼ 0; ð71Þ

hqðsÞ1 ðx; p2
TÞh⊥qðsÞ

1T ðx; p2
TÞ ¼ −

1

2
½hqðsÞ⊥1L ðx; p2

TÞ�2: ð72Þ

FIG. 4. Lensing function obtained from the Sivers function.
The average transverse momentum evaluated using Sivers func-
tion [Eq. (62)] and lensing function [Eq. (63)] are shown for
LFQDQ and SDM models. For the LFQDQ model, the lensing
function is given in Eqs. (64) and (65), while the lensing function
for the SDM model is given in Eq. (66).

FIG. 5. Lensing function for Boer-Mulders function. The
average transverse momentum evaluated using Boer-Mulders
function and lensing function are shown for the LFQDQ and
SDM models. For the LFQDQ model, the lensing function is
given in Eqs. (64) and (65), while the lensing function for the
SDM model is given in Eq. (66).
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Eq. (72) implies that hqðsÞ1 and hqðsÞ1T must have opposite
signs. The relations with axial-vector diquarks are more
involved compared to the relations in the scalar diquark
model. The relations in Eqs. (71) and (72) have been shown
to be a consequence of spherical symmetry [48]. The
corresponding relations with the axial-vector diquark are

ðgqðAÞ1T ðx; p2
TÞÞ2 þ 2hqðAÞ1 ðx; p2

TÞh⊥qðAÞ
1T ðx; p2

TÞ ¼ 0 ð73Þ

½h⊥qðAÞ
1L ðx; p2

TÞ�2 ¼ −λq1h
qðAÞ
1 ðx; p2

TÞh⊥qðAÞ
1T ðx; p2

TÞ; ð74Þ

where the proportionality constant λq1 ¼ ðNν2
0
−2Nq2

1
Þ2

Nq4
0

> 0 and

the similar conclusion about the opposite polarity of hqðsÞ1

and hqðsÞ1T holds. Two more interesting relations with the
axial-vector diquark are

gqðAÞ1T ðx; p2
TÞ ¼

Nq2
0

Nq2
0 þ 2Nq2

1

h⊥qðAÞ
1L ðx; p2

TÞ

⇒ gqðAÞ1T ðx; p2
TÞ < h⊥qðAÞ

1L ðx; p2
TÞ; ð75Þ

p2
T

2M2
h⊥qðAÞ
1T ðx; p2

TÞ ¼ hqðAÞ1 ðx; p2
TÞ − hqðAÞ1T ðx; p2

TÞ: ð76Þ

The relations among the TMDs for the full LFQDQ model
(scalar diquark + axial-vector diquark model) can be
given as

gq1Tðx; p2
TÞ ¼ λq1h

⊥q
1L ðx; p2

TÞ ð77Þ

gq1Tðx; p2
TÞ ¼ ½2xð−aq1þaq

2
−1Þð1 − xÞð−bq1þbq

2
Þ�hq1ðx; p2

TÞ ð78Þ

hq1Tðx; p2
TÞ ¼ λq2f

q
1ðx; p2

TÞ ð79Þ

hq1Tðx; p2
TÞ þ

p2
T

2M2
h⊥q
1T ðx; p2

TÞ ¼ hq1ðx; p2
TÞ ð80Þ

ðgq1Tðx; p2
TÞÞ2 þ 2hq1ðx; p2

TÞh⊥q
1T ðx; p2

TÞ ¼ 0 ð81Þ

ðh⊥q
1L ðx; p2

TÞÞ2 ¼ −λq3h
q
1ðx; p2

TÞh⊥q
1T ðx; p2

TÞ; ð82Þ

where λq1 ¼ C2
vN

q2
0
−3C2

sN2
s

3C2
sN2

sþC2
vðNq2

0
−2Nq2

1
Þ, and where substituting

the parameter values we have λu1 ¼ 0.48; λd1 ¼ 1.08, λq2¼
3C2

sN2
s−C2

vN
q2
0

3C2
sN2

sþC2
vðNq2

0
þ2Nq2

1
Þ. The values of the constant λu2¼0.44;

λd2¼−0.93 imply that for d-quark hd1Tðx; p2
TÞ is of opposite

sign of fd1ðx; p2
TÞ and λq3 ¼ 2

½3C2
sN2

sþC2
AðNq2

0
−2Nq2

1
Þ�2

½3C2
sN2

s−C2
AN

q2
0
�2 , giving

λu3 ¼ 8.55 and λd3 ¼ 1.71. Similarly the simple relations
among the T-odd (Sivers and Boer-Mulders) TMDs in the
scalar diquark model,

h⊥qðsÞ
1 ðx; p2

TÞ ¼ f⊥qðsÞ
1T ðx; p2

TÞ; ð83Þ

translates into the relation in the scalar and axial-vector
diquark model as [Eq. (41)]

h⊥q
1 ðx; p2

TÞ ¼ λqf⊥q
1T ðx; p2

TÞ; ð84Þ

where λq ¼ ðC2
SN

q2
S þð1

3
Nq2

0
þ2

3
Nq2

1
ÞC2

AÞ
ðC2

SN
q2
S −1

3
C2
AN

q2
0
Þ ; λu ¼ 2.29; λd ¼ −1.08.

Note that for only the scalar diquark, the Sivers and the
Boer-Mulders functions are the same which changes when
axial-vector diquarks are included.

VI. QUARK ORBITAL ANGULAR MOMENTUM
IN A PROTON

The orbital angular momentum (OAM) of a quark inside
the nucleon plays an important role in the spin sum rule of
the nucleon [49]. One can extract the total quark contri-
bution to the nucleon spin from the combination of the
GPDs using Ji’s sum rules as

Lq
z ¼ 1

2

Z
dxx½Hqðx; 0; 0Þ þ Eqðx; 0; 0Þ� ð85Þ

by subtracting the half of the axial charge Δq ¼R
dxH̃qðx; 0; 0Þ which has the physical interpretation as

the spin contribution of quarks with flavor q to the nucleon
spin. We can extract the orbital angular momentum of the
quark as [50]

Lq
z ¼ 1

2

Z
dx½xðHqðx; 0; 0Þ þ Eqðx; 0; 0ÞÞ − H̃qðx; 0; 0Þ�;

ð86Þ

where Hqðx; ξ; tÞ and Eqðx; ξ; tÞ are unpolarized GPDs and
H̃qðx; ξ; tÞ is the helicity dependent GPD. GPDs Hq, H̃q,
and Eq respectively in the LFQDQ model can be given as

Hνðx; 0; tÞ ¼
�
C2
sN2

s þ C2
A

�
Nν2

0

3
þ 2

3
Nν2

1

���
x2a

ν
1ð1 − xÞ2bν1þ1 þ κ2

M2 logðxÞ x
2aν

2
−2ð1 − xÞ2bν2þ3

�

×

�
1 −

jtj
4κ2

logð1=xÞ
�
exp

�
−

jtj
4κ2

logð1=xÞ
�
; ð87Þ
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H̃qðx; 0; tÞ ¼
�
C2
sN2

s þ C2
A

�
Nν2

0

3
−
2

3
Nν2

1

���
x2a

ν
1ð1 − xÞ2bν1þ1 −

κ2

M2 logðxÞ x
2aν

2
−2ð1 − xÞ2bν2þ3

�

×

�
1 −

jtj
4κ2

logð1=xÞ
�
exp

�
−

jtj
4κ2

logð1=xÞ
�
; ð88Þ

Eqðx; 0; tÞ ¼ 2

�
C2
sN2

s −
1

3
C2
AN

ν2
0

�
xa

ν
1
þaν

2
−1ð1 − xÞbν1þbν

2
þ2 exp

�
−

jtj
4κ2

logð1=xÞ
�
: ð89Þ

The OAM expressed in terms of the GPDs is usually called the kinetic OAM. Wigner distributions also contain the full
correlation between the quark transverse position and three momentum and one can express the orbital angular momentum
in terms of theWigner distribution. This is known as the canonical OAM. The average quark OAM in a nucleon polarized in
the z direction can be written as

l̂ν
zðb−;bT; pþ;pTÞ ¼

1

4

Z
dz−d2zT
ð2πÞ3 e−ip·zψ̄νðb−;bTÞγþðbT × ð−i∂TÞÞψνðb− − z−;bTÞ: ð90Þ

The OAM density operator can be expressed in terms of the Wigner correlator as

l̂ν
z ¼ ðbT × pTÞŴν½γþ�: ð91Þ

Thus, in the light-front gauge, the average canonical OAM for the quark is written in terms of Wigner distributions as

lν
z ¼

Z
dΔþd2ΔT

2Pþð2πÞ3 hP
00; Sjl̂ν

zjP0; Si ¼
Z

dxd2pTd2bTðbT × pTÞzρν½γþ�ðbT;pT; x; ŜzÞ: ð92Þ

The distribution ρν½γþ�ðbT;pT; x; ŜzÞ can be written as [5]

ρν½γþ�ðbT;pT; x;þŜzÞ ¼ ρνUUðbT;pT; xÞ þ ρνLUðbT;pT; xÞ; ð93Þ

where ρUU is the Wigner distribution of an unpolarized quark in an unpolarized nucleon, and ρLU is the Wigner distribution
of an unpolarized quark in a longitudinally polarized nucleon. Thus, Eq. (92) can be decomposed into two parts. The term
involving ρUU gives zero: Z

dxd2pTd2bTðbT × pTÞzρνUUðbT;pT; xÞ ¼ 0; ð94Þ

which implies that in an unpolarized nucleon there is no net quark OAM; while the other part can be related to the twist-2
quark canonical OAM in light-front gauge and can be written in terms of GTMDs as

lν
z ¼ −

Z
dxd2pT

p2
T

M2
Fν
1;4ðx; 0;p2

T; 0; 0Þ: ð95Þ

The correlation between the proton spin and quark canonical OAM can be understood from lν
z. If lν

z > 0, it means the quark
OAM is parallel to the proton spin, and if lq

z < 0, then the quark OAM is antiparallel to the proton spin. In the LFQDQ
model the GTMD Fν

1;4ðx; 0;p2
T; 0; 0Þ can be given as

Fν
1;4ðx; 0;p2

T; 0; 0Þ ¼ −
�
C2
SN

2
S þ C2

V

�
1

3
N2

0 −
2

3
N2

1

��
ν 1

16π3
ð1 − xÞ
x2

jAν
2ðxÞj2 exp½−aðxÞp2

T �; ð96Þ

and by using Eq. (95) the canonical OAM can be written as

lν
zðxÞ ¼

�
C2
SN

2
S þ C2

V

�
1

3
N2

0 −
2

3
N2

1

��
ν κ2

M2 logð1=xÞ x
2aν

2
−2ð1 − xÞ2bν2þ4 ð97Þ
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while the kinetic OAM (86) can be calculated from
Eqs. (87)–(89). In this model we get Lν

z < 0 for both the
up and the down quarks. The canonical OAM, lν

z > 0 at
μ0 ¼ 0.313 GeV. This means that the quark OAM is
parallel to the proton spin for both u and d quarks. Note
also that in a scalar diquark model [51] with AdS/QCD
wave functions, the OAM is found to be positive for both
quarks. This result is model dependent and may be due to
the particular form of the AdS/QCD wave functions. The
variations of the canonical quark OAM lν

zðxÞ and the
kinetic quark OAM Lν

zðxÞ (given in Eq. (86)) with
longitudinal momentum fraction x are shown in Fig. 6
for both u and d quarks. A few interesting points about the
OAM in spectator type models are to be noted. In a model
without gluons, kinetic and canonical OAM are expected to
be equal [5], as the difference between these two are
expressed in terms of a gauge potential. The quark OAM
was investigated in a simple spectator model with scalar
and axial-vector diquarks in [52]. It was found that the
relation between the kinetic OAM and the gravitational
form factors is not valid in such models, which implied that
the kinetic OAM of the quarks is not given by Eq. (86) in
such models. In fact, we observed that the kinetic and
canonical OAM are not equal in our model, which means
that a similar conclusion may be drawn here as well.
In some models, the pretzelosity h⊥q

1T ðx; p2
TÞ (39) dis-

tribution is also related to the quark OAM [53–55],

Lq
z ¼ −

Z
dxd2pT

p2
T

2M2
h⊥q
1T ðx;p2

TÞ; ð98Þ

which in the LFQDQ model has the form

Lν
zðxÞ ¼

�
C2
SN

2
S −

1

3
C2
AN

ν2
0

�
κ2

M2 logð1=xÞ
× x2a

ν
2
−2ð1 − xÞ2bν2þ4: ð99Þ

The variation of the Lν
z with x is shown in Fig. 6 for both

u and d quarks and is compared with the OAM through
GTMDs [Eq. (95)]. In the LFQDQ model we got Lu

z > 0

for the up quark and Ld
z < 0 for down quarks II, while

for the scalar diquark model the OAM is Lν
z > 0 for both

the up and down quarks, as also found in Ref. [23].
The pretzelosity distribution was found not to be related
to the quark OAM in a diquark model with axial-vector
diquarks [52]; in our model also, as seen in Fig. 6, we
find that is it different from the canonical OAM. In [55],
it was shown that the pretzelocity TMD in spherically
symmetric quark models can be related to the total OAM,
however it does not give access to the intrinsic OAM of
each quark flavor.
Wigner distributions also allow us to study the correla-

tion between the spin and OAM of the quark, which is
given by the operator [5] as

Cν
zðb−;bT;pþ;pTÞ ¼

1

4

Z
dz−d2zT
ð2πÞ3 e−ip·zψ̄νðb−;bTÞ

× γþγ5ðbT × ð−i∂TÞÞψνðb− − z−;bTÞ:
ð100Þ

It can be expressed either in terms of the Wigner distri-
butions ρνUL, or equivalently in terms of the GTMD as

FIG. 6. The variation of canonical OAM lν
zðxÞ and kinetic OAM Lν

zðxÞ, as well as Lν
z with longitudinal momentum fraction x, for the u

quark and d quarks.

TABLE II. In the light-front AdS/QCD axial-vector diquark
model, the values of the canonical OAM lν

z; Lν
z , and the kinetic

OAM Lν
z for the u, d quarks.

q u d

lq
z Eq. (95) 0.256 0.201

Lq
z Eq. (86) −0.410 −0.592

Lq
z Eq. (98) 0.124 −0.218
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Cν
z ¼

Z
dxd2pTd2bTðbT × pTÞzρνULðbT;pT; xÞ

¼
Z

dxd2pT
p2
T

M2
Gν

1;1ðx; 0;p2
T; 0; 0Þ: ð101Þ

The GTMD Gν
1;1ðx; 0;p2

T; 0; 0Þ in the LFQDQ model has
the form

Gν
1;1ðx;0;p2

T; 0; 0Þ ¼ −
�
C2
SN

2
S þC2

V

�
1

3
N2

0 þ
2

3
N2

1

��
ν

×
1

16π3
ð1− xÞ
x2

jAν
2ðxÞj2 exp½−aðxÞp2

T �:
ð102Þ

For Cν
z > 0 the quark spin and the quark OAM are aligned,

while for Cν
z < 0 they are antialigned to each other. From

Eq. (102), we calculate Cν
z at μ0 ¼ 0.313 GeV. In the

LFQDQ model the numerical values are Cu
z ¼ −0.284 and

Cd
z ¼ −0.234 for u and d quarks, respectively. Cν

z < 0
implies that the quark OAM is antiparallel to the quark spin,
as observed in the scalar diquark model [51], whereas in the
light-cone constituent quark model [5], the Cν

z values are
found to be positive for both u and d quarks. The numerical
values of the kinetic OAM [Eq. (86)], and the canonical
quark OAM [Eqs. (98) and (95)] for the up and down
quarks in the LFQDQ model are given in Table II. The spin
contribution of the quark to the proton spin is defined as

sνz ¼
1

2
gνA ¼ 1

2

Z
dxH̃νðx; 0; 0Þ

¼ 1

2

Z
dxd2pTGν

1;4ðx; 0;p2
T; 0; 0Þ; ð103Þ

where gνA is the axial charge, and the GTMD is

Gν
1;4ðx; 0;p2

T; 0; 0Þ ¼
�
C2
SN

2
S þ C2

V

�
1

3
Nν2

0 −
2

3
Nν2

1

��

×
1

16π3

�
jAν

1ðxÞj2 −
p2
T

M2x2
jAν

2ðxÞj2
�

× exp½−aðxÞp2
T �: ð104Þ

We should note that the axial charges are highly scale
dependent and are measured at high energies, whereas the
LFQDQ model has a low initial scale of μ0 ¼ 0.313 GeV.
So we need to consider the scale evolution of the distri-
butions before comparing them with the measured data. For
the d quark, the axial charge is known to be negative at
larger scales. In Ref. [19] the scale evolution of axial
charges are given, where it is shown that the axial charges
for the d quarks become negative for μ2 ≥ 0.15 GeV2. In
the LFQDQmodel we got the axial charges for the up quark
and the down quark as suz ¼ 1.142 and sdz ¼ 0.340 at
μ0 ¼ 0.313 GeV. while at μ2 ¼ 1 GeV2 the axial charges

for the up quark and the down quarks are given by suz ¼
0.73 and sdz ¼ −0.54, respectively [19].
A few observations about other calculations in the

literature based on diquark models: in [13], a more
phenomenological version of a diquark model was used,
with the inclusion of both scalar and axial-vector diquarks.
The LFWFs were parametrized using fit of polarized and
unpolarized pdf data at the lowest scale. It was found that
the momentum sum rule cannot be satisfied in such models.
The spin sum rule has not been investigated in this
reference. The quark OAM has also been investigated in
[23] using a LFWF obtained from soft-wall ADs/QCD; the
spin sum rule has not been explored in this model. In our
model, which follows a similar approach, the parameters in
the LFWFs, that consist of one quark and one diquark, are
obtained from fits to electromagnetic form factors and pdf
data at the initial scale. The spin sum rule constrains the
total angular momentum of the diquark.

VII. CONCLUSIONS

As GPDs and TMDs encode information about the three-
dimensional structure of the nucleons and their spin and
orbital angular momentum, these distributions are being
investigated in different models. Both GPDs and TMDs are
not physical observables, but many quantities like orbital
angular momentum, average momentum of a parton, etc.
can be related to different TMDs and GPDs. Though there
is no one-to-one correspondence between TMDs and
GPDs, they satisfy many interesting relations. Except a
few, most of the relations are model dependent. In this work
we have explored the possible relations in a light-front
quark-diquark model of the proton. An analytic formula for
the lensing function has been formulated in this model. The
lensing function is model dependent but is independent of
quark flavor and is the same for unpolarized quarks in a
transversely polarized proton or transversely polarized
quarks in an unpolarized proton. Different types of relations
with GPDs and TMDs and their momenta are discussed in
this model. These relations are important for model build-
ing of the distribution functions for the nucleons. We also
calculated the quark orbital angular momentum using
different relations. The results are compared with other
calculations in similar models. It is observed that the kinetic
OAM in this model is not the same as the canonical OAM,
which is an indication that the total angular momentum of
the quark is not expressed in terms of the gravitational form
factors, as was also observed earlier in the literature in a
diquark spectator model. The pretzelosity distribution in
this model also does not give the quark OAM.
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