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The nonperturbative functional renormalization group equation depends on the choice of a regulator
function, whose main properties are a “coarse-graining scale” k and an overall dimensionless amplitude a. In
this paper we shall discuss the limit a → 0with k fixed. This limit is closely related to the pseudoregulator that
reproduces the beta functions of the MS scheme that we studied in a previous paper. It is not suitable for
precision calculations but it appears to be useful to eliminate the spurious breaking of symmetries by the
regulator, both for nonlinear models and within the background field method.
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I. INTRODUCTION

The functional renormalization group (FRG) [1–4] is a
powerful tool to study quantum and statistical field theories
and their applications in statistical mechanics, condensed
matter theory, and high energy physics [5]. It describes a
continuous interpolation between an UV action describing
some microscopic physics and the effective action (EA)
where all the quantum/statistical fluctuations have been
integrated out. The functional that provides this interpola-
tion is called the effective average action (EAA) and is
denoted Γk½ϕ�, where ϕ are the fields, k is a coarse-graining
scale, and Γ0 ¼ Γ is the EA. The EAA can be defined by a
functional integral with a cutoff suppressing the contribu-
tion of low-momentum modes, thus realizing Wilson’s idea
of integrating out high momentum modes first. The cutoff
itself is implemented by adding to the action the term

ΔSk½ϕ� ¼
1

2

Z
ddxϕRkð−∂2Þϕ; ð1:1Þ

leading to the functional differential equation

k
dΓk

dk
¼ 1

2
Tr

�
δ2Γk

δϕδϕ
þ Rk

�−1
k
dRk

dk
: ð1:2Þ

This provides a nonperturbative definition of RG that
reduces to the perturbative one in the appropriate domain

[6–13]. In this context, comparison with the results of
dimensional regularization become meaningful. In
Ref. [14] we have discussed a two-parameter family of
regulators Rkða; ϵÞ that includes (for ϵ ¼ 0) a popular class
of regulators used in the FRG literature. On the other hand,
taking the limits a → 0 and ϵ → 0 (in this order), it
reproduces the beta functions of MS. In this paper we
shall discuss what happens when the limits are taken in the
opposite order (see Fig. 1).
We next discuss the motivation for this study. The

notation Γk½ϕ� emphasizes the important dependence of
this functional on the scale k, but Γk also depends on the
shape of the cutoff function Rk. The notation Γ½ϕ; Rk�
would thus be more appropriate, and Eq. (1.2) could be
replaced by a functional equation where the derivatives
with respect to k are replaced by functional derivatives with
respect to Rk. As mentioned above, all the relevant physical
information is contained in the EA and therefore a priori,
all the dependence on Rk is unphysical, including the
dependence on k. However, there are situations where k can
be identified with a physical parameter that acts in the
theory as an IR cutoff. In these cases, the dependence on k
can assume a physical meaning.
Even though in such cases the dependence on k

reproduces the dependence on physical parameters, the
dependence on the shape of Rk still remains unphysical.
Thus any observable must be independent of this shape. On
the other hand, when one makes approximations, even
physical observables will exhibit some spurious depend-
ence on the shape of the cutoff. We will refer to this as
“cutoff dependence.”1 For example, in statistical physics,
the position of a fixed point is not universal, but the critical

*abaldazz@sissa.it
†percacci@sissa.it
‡luca.zambelli@bo.infn.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1It is distinct from, but closely related to the “scheme
dependence” of renormalized perturbation theory.
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exponents are. Still, when one calculates the critical
exponents, one must use some approximation and the
results always depend on the shape of the regulator. In a
specific calculation, one can then try to exploit this cutoff
dependence to optimize the cutoff, i.e., to find the cutoff
that yields the best possible value for the observables. This
is, in practice, an important aspect of FRG studies [15–20].
The main motivation for this study comes from another

issue that arises in certain applications of the FRG. The
central idea is simple and can be stated in great generality.
Suppose that the action at the microscopic level is invariant
under certain transformations. Since the symmetry reflects
physical properties of the system, one would like to
maintain it in the course of the RG flow. However, for
technical reasons, it may be difficult to construct a regulator
that has the symmetry, and in this case the EAA will not
have it either. To be more precise, the classical symmetry of
the bare action is translated into a “quantum” symmetry of
the EAA, which is deformed by the presence of the
regulator. The latter symmetry is only implicitly deter-
mined, as the corresponding regulator-dependent Ward
identity cannot in general be analytically and exactly solved
[21]. This will give rise to unpleasant complications.
Intuitively, we may try to minimize the breaking of the
symmetry by making the regulator as “small” as possible.
Let us make this notion a bit more precise. For dimensional
reasons, we can write the regulator as

RkðzÞ ¼ k2raðyÞ ¼ k2ar1ðyÞ; ð1:3Þ

r1 is a dimensionless function of the dimensionless variable
y ¼ z=k2 that is assumed to satisfy the normalization

condition r1ð0Þ ¼ 1, and a is a positive real number.2 In
many applications it is convenient to choose a shape
function r1 depending on some of the parameters appearing
in the ansatz adopted for the EAA. The most common
example is the insertion of an overall wave-function-
renormalization factor Zk. In this paper we shall mainly
neglect these subtleties, as in most of our studies we will
truncate the effective action to a scale-dependent local
effective potential, and we will be concerned with the limit
a → 0, which we call the limit of vanishing cutoff.3 One
expects that in this limit the spurious effects due to the
breaking of the symmetry by the regulator can be removed,
or at least minimized. It may seem that this limit is trivial,
because for a ¼ 0 there is no cutoff, and the right-hand-side
(RHS) of the exact FRG equation vanishes, but we shall see
that some important physical information remains available
even in this limit.
Even though many of the challenges and properties of

the vanishing regulator limit can be expected to character-
ize large families of shape functions r1, in this paper we
mainly focus on the following regulator choice:

RkðzÞ ¼ aðk2 − zÞθðk2 − zÞ; ð1:4Þ

as in several interesting cases it is hardly feasible to study
the vanishing regulator limit without having first specified a
shape function. The reasons for this are explained in
Sec. III C and further discussed in Sec. VI.
In order to better explain the problems arising from the

use of vanishing regulators, and ways to circumvent them,
it is best to focus on simple and well-understood systems.
In Sec. II we consider the harmonic and anharmonic
oscillator. Some of the features of vanishing regulators
appear already in these cases. In Sec. III we deal with the
Z2-invariant scalar field theory in d ≥ 2 Euclidean dimen-
sions and its RG fixed point (representing the Ising
universality class). We find that the main features of the
Wilson-Fisher (WF) fixed point remain accessible in the
limit of a vanishing regulator, but the best approximation
(after this limit is taken and among all possible polynomial
truncations of the potential) for the correlation-length
critical exponent ν is obtained with the simplest truncation
that only involves relevant couplings (the mass and the
quartic coupling). There we also discuss the relation
between the vanishing-a limit of (1.4) and the constant
(momentum-independent) regulator, as well as the subtle-
ties concerning the application of vanishing regulators in an
even number of dimensions.
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FIG. 1. Blue continuous curve: a path that reproduces the beta
functions of dimensional regularization. Red dashed curve: the
limit of a vanishing regulator. For a more detailed discussion see
Sec. III.

2Consider a fixed shape function r1, such that r1ðyÞ ¼ 0 for
y > 1. The limit a → ∞ is expected to completely remove from
the path integral all the fluctuations with momenta q2 < k2. This
is often referred to as the sharp cutoff limit. Numerically optimal
results are usually obtained for a ≈ 1.

3Thus, the vanishing cutoff should not be misinterpreted
as k → 0.
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In Sec. IV we address the OðN þ 1Þ nonlinear sigma
model, using a particular coordinate system on the sphere
SN . This is an example of a system where the regulator
breaks the symmetry of the theory [respecting only the
subgroupOðNÞ] but in the limit of vanishing regulators the
symmetry is seen to be restored. In Sec. V we discuss a
similar problem that arises in applications of the back-
ground field method. It is generally the case that the
regulator breaks the symmetry of the classical action
consisting of equal and opposite shifts of the background
and fluctuation fields. Also this symmetry is seen to be
restored in the limit of vanishing regulators. We conclude in
Sec. VI with a brief discussion of our results and some
outlooks. Some auxiliary formulas and analyses are pro-
vided in two appendixes.

II. QUANTUM OSCILLATORS

In this section we shall consider a very simple applica-
tion of the FRG equation as a tool to compute the EA at
k ¼ 0. This will allow us to investigate the effect of the
vanishing regulators on the calculation of some physical
observable. We shall consider first the simple harmonic
oscillator and then the anharmonic one.
The general bare action we are interested in reads

S ¼
Z

dt

�
1

2
_x2 þ 1

2
ω2x2 þ λ

4!
x4
�
: ð2:1Þ

In the local potential approximation (LPA), which is the
first term in a derivative expansion, the EAA is approxi-
mated by

Γk ¼
Z

dt

�
1

2
_x2 þ VkðxÞ

�
: ð2:2Þ

Using the regulator in Eq. (1.4) we get the following flow
equation for the potential:

∂kVk ¼
1

π

 
a k arctan ðk

ffiffiffiffiffiffiffiffiffiffiffiffi
1−a

ak2þV 00
k

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − aÞðak2 þ V 00
kÞ

q

−
ffiffiffiffiffiffiffiffiffiffiffi
a

1 − a

r
arctan

� ffiffiffiffiffiffiffiffiffiffiffi
1 − a
a

r �!
: ð2:3Þ

The second term on the RHS is equal to the first term
evaluated at Vk ¼ 0. This subtraction is not ad hoc and is
actually always meant to be present in the FRG equation
[22], although in most applications it is dropped since it
only affects the ground-state energy.4 This term is due to the

regularization of the functional measure of the path
integral, which ensures complete suppression of the func-
tional integral in the k → ∞ limit. As it is uniquely defined
to reproduce the Weyl ordering prescription, it gives rise to
the conventional ground-state energies of the nongravitat-
ing quantum/statistical mechanical models [23,24].
Expanding the potential into a Taylor series

VkðxÞ ¼ Ek þ
1

2
ω2
kx

2 þ λk
4!
x4 þ � � � ; ð2:4Þ

the beta functions are

k∂kEk ¼
k
π

"
a arctanð

ffiffiffiffiffiffiffiffiffi
1−a
aþω̃2

k

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − aÞðaþ ω̃2
kÞ

q

−
ffiffiffiffiffiffiffiffiffiffiffi
a

1 − a

r
arctan

� ffiffiffiffiffiffiffiffiffiffiffi
1 − a
a

r �#
; ð2:5aÞ

k∂kω
2
k ¼ −

aλk
2πk

ffiffiffiffiffiffi
1−a

p ffiffiffiffiffiffiffiffiffi
aþω̃2

k

p
1þω̃2

k
þ arctan

� ffiffiffiffiffiffiffiffiffi
1−a
aþω̃2

k

q �
ðaþ ω̃2

kÞ3=2
ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p ; ð2:5bÞ

k∂kλk ¼
3aλ2k
4πk3

�
3þ 2aþ 5ω̃2

k

ð1þ ω̃2
kÞ2ðaþ ω̃2

kÞ2

þ
3 arctan

� ffiffiffiffiffiffiffiffiffi
1−a
aþω̃2

k

q �
ðaþ ω̃2

kÞ5=2
ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p
�
; ð2:5cÞ

where ω̃k ¼ ωk=k.

A. Harmonic oscillator

We start by addressing the computation of the vacuum
energy of the harmonic oscillator. When λk ¼ 0, Eq. (2.5b)
shows that ωk is independent of k, thus we shall simply
write ωk ¼ ω. The solution of (2.5a) is

Ek ¼
ω

2
þ k
π

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ ω̃2

1−a

r
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a
aþ ω̃2

r �

−
ffiffiffiffiffiffiffiffiffiffi
a

1−a

r
arctan

� ffiffiffiffiffiffiffiffiffiffi
1−a
a

r �
− ω̃arctan

�
1

ω̃

��
: ð2:6Þ

This function is plotted in Fig. 2 for various values of a.
First of all we see that E0 ¼ ω=2 for any a. The a
independence of the result is just an example of a more
general phenomenon: while the k dependence of any
quantity along an RG trajectory is sensitive to the func-
tional form of Rk, the boundary values at k → þ∞ and
k → 0 are not.
The second point to notice is that the convergence of the

flow toward the IR becomes faster for decreasing a. This
can be understood as follows. The regulator term is

4The correct counterpart of this term in applications to gravity,
especially within the background-field formulation, is still un-
certain.
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effective in suppressing the propagation when it becomes
comparable to or larger than the kinetic term, i.e., for
Rkðq2Þ > q2. For the regulator (1.4), this happens when

q2 < k2eff ≡ a
1þ a

k2: ð2:7Þ

Thus decreasing a has the same effect as decreasing keff .
From this discussion, there seems to be no issue with the

limit a → 0. Some subtlety appears, however, when we try
to construct the RG trajectory from the a → 0 limit of
Eq. (2.5a), which reads

k∂kEk ∼ −
k
2

ffiffiffi
a

p þOðaÞ: ð2:8Þ

This way of taking the limits is, of course, nonsensical, as
the resulting beta functions would be identically vanishing.
The ω independence is a consequence of the fact that the
numerator of the RHS of the FRG equation is already
proportional to a. However, we obtain a nontrivial equation
if we rescale

ω2 ¼ aω̂2; Ek ¼
ffiffiffi
a

p
Êk; ð2:9Þ

and then take the a → 0 limit of Eq. (2.5a). This leads to the
finite result

k∂kÊk ¼
1

2

�
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ω̂2
p − 1

�
þOð ffiffiffi

a
p Þ; ð2:10Þ

which is the same flow equation one would find with a
constant (often called a “Callan-Symanzik”) regulator,

Rk ¼ k2: ð2:11Þ

The latter leads to the flow

Ek ¼
1

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ω2

p
− kÞ; ð2:12Þ

which is plotted as the dashed curve in Fig. 2.
The rescaling (2.9) is formulated as an “active” trans-

formation of the couplings Ek and ωk through a factor offfiffiffi
a

p
, while the RG coordinate k stays independent of a.

Within the flow equations of the dimensionless couplings
Ẽk ≡ Ek=k and ω̃2, it is also possible to reinterpret it as a

“passive” transformation, in which the dimensionful cou-
plings Ek and ωk are independent of a, while the RG
coordinate changes by k ¼ k̂=

ffiffiffi
a

p
. This second interpreta-

tion is consistent with the observation that keff → k̂ for
a → 0 according to Eq. (2.7).

B. Anharmonic oscillator

Next, we turn to the anharmonic oscillator with λ ≠ 0. As
our interest is in comparing different possible prescriptions
for taking the a → 0 limit with the available solutions for
some interesting quantities, we do not address the numeri-
cal analyses needed to compute the energy levels, finding
analytical expressions more instructive. We therefore con-
sider only the first order of the expansion in λ. We see from
(2.5c) that at this order the beta function of λk is zero.
Therefore λk ¼ λ at all scales. Expanding the vacuum
energy parameter to first order in λ,

Ek ¼ Ekjλ¼0 þ
dEk

dλ

				
λ¼0

λþ � � � ; ð2:13Þ

and solving the flow equation with the initial condition that
limk→∞ Γk ¼ S is the bare action (2.1), we find that the first
order correction to the energy is

dEk

dλ

				
λ¼0

¼ 1

32ω2
þ
arctanð1ω̃Þ½2ω̃

ffiffiffiffiffiffiffiffiffi
1−a
aþω̃2

q
arctan

� ffiffiffiffiffiffiffiffiffi
1−a
aþω̃2

q �
þ ða − 1Þðπ þ arctan ð1ω̃Þ2Þ�

8π2ða − 1Þω2

−
arctan

� ffiffiffiffiffiffiffiffiffi
1−a
aþω̃2

q ��
π
ffiffiffiffiffiffiffiffiffi
1−a
aþω̃2

q
þ ω̃

aþω̃2 arctan
� ffiffiffiffiffiffiffiffiffi

1−a
aþω2

q ��
8π2ða − 1Þkω : ð2:14Þ

0
k

2

Ek

FIG. 2. The continuous curves are the RG trajectories (2.6) for
the harmonic oscillator ground-state energy Ek for the regulator
(1.4) and various values of a. From bottom to top: a → ∞ (sharp
cutoff, green), a ¼ 1 (black), a ¼ 1=10 (blue), a ¼ 1=100 (red),
a ¼ 1=10000 (pink). The dashed curve is the flow (2.12). The
horizontal axis has been rescaled by the function k ¼ tanðπx=2Þ.
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On the other hand, for the frequency we find to first order
in λ

ω2
k ¼ ω2 þ λ

4ω

�
1þ

2ω̃
ffiffiffiffiffiffiffiffiffi
1−a
aþω̃2

q
arctan

� ffiffiffiffiffiffiffiffiffi
1−a
aþω̃2

q �
πð1 − aÞ

−
2

π
arctan

�
1

ω̃

��
: ð2:15Þ

The quantities dEk
dλ jλ¼0 and ωk given in (2.14) and (2.15) are

the solutions of the flow equations at arbitrary k. They
interpolate between the initial conditions limk→∞

dEk
dλ jλ¼0¼0

and limk→∞ ωk ¼ ω and the corresponding parameters in
the EA at k ¼ 0.
Also in this case, it is not possible to directly take the

limit a → 0 in the flow equations, because then the beta
functions simply vanish. However, having solved the flow
equations one can take the limits a → 0 and k → 0 in any
order obtaining

ω2
0 ¼ ω2 þ λ

4ω
; ð2:16aÞ

E0 ¼
ω

2
þ λ

32ω2
: ð2:16bÞ

One can take the limit a → 0 in the flow equations
provided the potential is rescaled to

VkðxÞ ¼
ffiffiffi
a

p
V̂kðx̂Þ; ð2:17aÞ

x ¼ a−1=4x̂: ð2:17bÞ

Expanding around a ¼ 0 the flow equation becomes

∂kV̂k ¼
1

2

�
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ V̂k
00p − 1

�
: ð2:18Þ

This is the flow equation of the potential for a constant
regulator. Projecting the latter on a polynomial truncation
of the potential as in Eq. (2.4), we deduce the beta functions

∂kEk ¼
1

2

 
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ω2
k

q − 1

!
; ð2:19aÞ

∂kω
2
k ¼ −

1

4

k

ðk2 þ ω2
kÞ3=2

λk; ð2:19bÞ

∂kλk ¼
9

8

k

ðk2 þ ω2
kÞ5=2

λ2k: ð2:19cÞ

Solving these equations one reobtains (2.16).

III. THE ISING UNIVERSALITY CLASS

In this section we shall consider the theory of a single,
Z2-invariant scalar field ϕ in the LPA

Γk ¼
Z

ddx

�
1

2
ð∂ϕÞ2 þ VkðϕÞ

�
: ð3:1Þ

While the FRG equation allows us to treat the potential as a
whole, it will be instructive to further expand

VkðϕÞ ¼
X∞
n¼0

λ2n
ð2nÞ!ϕ

2n: ð3:2Þ

The term n ¼ 0 is the vacuum energy and can usually be
ignored, but we shall need it later in our discussion. Then,
from the FRG equation we can derive infinitely many beta
functions β2n ¼ k ∂λ2n∂k . For arbitrary regulator, and in any
dimension, for the first few couplings this leads to

β0 ¼
1

2ð4πÞd=2 Qd=2

� ∂tRk

Pk þ λ2

�
; ð3:3aÞ

β2 ¼ −
1

2ð4πÞd=2 λ4Qd=2

� ∂tRk

ðPk þ λ2Þ2
�
; ð3:3bÞ

β4 ¼
1

2ð4πÞd=2
�
6λ24Qd=2

� ∂tRk

ðPk þ λ2Þ3
�

−λ6Qd=2

� ∂tRk

ðPk þ λ2Þ2
��

; ð3:3cÞ

β6 ¼
1

2ð4πÞd=2
�
−90λ34Qd=2

� ∂tRk

ðPk þ λ2Þ4
�

þ 30λ4λ6Qd=2

� ∂tRk

ðPk þ λ2Þ3
�

−λ8Qd=2

� ∂tRk

ðPk þ λ2Þ2
��

; ð3:3dÞ

where

Qn½W� ¼ 1

ΓðnÞ
Z

∞

0

dz zn−1WðzÞ ð3:4Þ

are momentum integrals (z ¼ q2). These integrals can be
evaluated in closed forms by using the optimized regulator
(1.4). The Q functionals are then given by hypergeometric
functions

LIMIT OF VANISHING REGULATOR IN THE FUNCTIONAL … PHYS. REV. D 104, 076026 (2021)

076026-5



Qn

� ∂tR
ðPþm2Þl

�
¼ 2ak2ðnþ1−lÞ

Γðnþ 1Þðaþ m̃2Þl

× 2F1

�
l; n; 1þ n;

a − 1

aþ m̃2

�
: ð3:5Þ

These are plotted in Fig. 3 for d ¼ 3 and d ¼ 4.
In particular, in the massless case and in the limit of a

vanishing regulator we obtain

lim
a→0

Qn

�∂tR
Pl

�
¼
8<
:

0 for l < nþ 1;

1 for l ¼ nþ 1;

∞ for l > nþ 1:

ð3:6Þ

Clearly, the beta functions will not be finite.5 For this
reason an additional regularizing device is needed to make
sense of vanishing regulators. In Ref. [14] we have
discussed a family of regulators depending on an additional
parameter ϵ that, in the limit a → 0 and ϵ → 0 (in this
order) reproduces the results of dimensional regularization.
In the a − ϵ plane the limit had to be taken along a curve of

the general form shown in Fig. 1. In this paper we shall
instead try to take the limits in the inverse order. In fact, we
shall not even talk about the parameter ϵ and try to take the
limit a → 0 along the path ϵ ¼ 0 (red dashed curve)
in Fig. 1.
Returning to the beta functions (3.3), we note that if we

set λ2 ¼ 0, the beta functions of the relevant couplings go to
zero, those of the marginal couplings are independent of a,
and those of the irrelevant couplings diverge in the limit of a
vanishing regulator. Given this rather singular behavior,
one may fear that all physical information gets lost in this
limit. Actually, this is not so, as we intend to show in d ¼ 3,
where the system is known to have a nontrivial fixed point.

A. The Wilson-Fisher fixed point: Relevant couplings

In order to make our point it will be enough, as a first
step, to consider a truncation that contains only the relevant
couplings (we are now in d ¼ 3):

Vk ¼
λ2
2
ϕ2 þ λ4

24
ϕ4: ð3:7Þ

Defining the dimensionless variables
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1.5
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FIG. 3. The functionals (3.5) with n ¼ 3=2 (d ¼ 3, left) and n ¼ 2 (d ¼ 4, right), with m̃ ¼ 0 (top line) and m̃ ¼ 0.25 (bottom line). In
each figure l ¼ 1, 2, 3, 4, from bottom to top.

5Note that these are infrared divergences: in the massive case
all Q functionals go to zero for a → 0.
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λ̃2n ¼ k−dþnðd−2Þλ2n; ð3:8Þ

the beta functions are

β̃2 ¼ −2λ̃2 −
aλ̃4

6π2ðaþ λ̃2Þ2 2F1

�
2;
3

2
;
5

2
;
a − 1

aþ λ̃2

�
; ð3:9aÞ

β̃4 ¼ −λ̃4 þ
aλ̃24

π2ðaþ λ̃2Þ3 2F1

�
3;
3

2
;
5

2
;
a − 1

aþ λ̃2

�
: ð3:9bÞ

Expanding in λ̃2

β̃2 ¼ −2λ̃2 −
aλ̃4

4π2ð1 − aÞ
��arctan� ffiffiffiffiffiffi1−a

p ffiffi
a

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − aÞap − 1

�

þ
�
2a − 1

2a
−
arctan

� ffiffiffiffiffiffi
1−a

p ffiffi
a

p
�

2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − aÞp �

λ̃2

�
; ð3:10aÞ

β̃4 ¼ −λ̃4 þ
λ̃24

π2a2 2F1

�
3

2
; 3;

5

2
;
a − 1

a

�
: ð3:10bÞ

The WF fixed point is now located at

λ̃�2 ¼
2a3
�
1 −

arctanð
ffiffiffiffiffi
1−a

p ffiffi
a

p Þffiffiffiffiffiffiffiffiffiffiffi
ð1−aÞa

p
�

a2
�
2a − 1 −

arctanð
ffiffiffiffiffi
1−a

p ffiffi
a

p Þffiffiffiffiffiffiffiffiffiffiffi
ð1−aÞa

p
�
þ 16ð1 − aÞ2F1ð32 ; 3; 52 ; a−1a Þ

;

ð3:11aÞ

λ̃�4 ¼
π2a2

2F1ð32 ; 3; 52 ; a−1a Þ : ð3:11bÞ

If we expand the critical couplings around a ¼ 0,

λ̃�2�
a→0

−
2a
5
þ oða3=2Þ; ð3:12aÞ

λ̃�4�
a→0

16π
ffiffiffi
a

p
3

þ oða3=2Þ: ð3:12bÞ

Thus the WF fixed point merges with the Gaussian fixed
point. Note that since λ̃2 ¼ m̃2 is linear in a for a → 0 at the
WF fixed point, the Q functional (3.5) does not go to zero,
and this entails that the quantum/statistical contribution to
the critical exponents will be nontrivial for a → 0.
Indeed, the position of the fixed point is not physically

significant. If we consider the stability matrix at the
nontrivial fixed point

M ¼
�∂β̃i
∂λ̃j
�

�

¼

0
BB@− 5

3

4a
2
F1ð32;3;52;a−1a Þ

�
1−

tan−1ð
ffiffiffiffiffi
1−a

p ffiffi
a

p Þffiffiffiffiffiffiffiffi
ð1−aÞa

p
�

π2a2
�
2a−

tan−1ð
ffiffiffiffiffi
1−a

p ffiffi
a

p Þffiffiffiffiffiffiffiffi
ð1−aÞa

p −1
�
þ16ð1−aÞ

2
F1ð32;3;52;a−1a Þ

0 1

1
CCA;

ð3:13Þ

we see that the component (1,2) ofM goes to zero for a → 0
and so the stability matrix becomes diagonal. The eigenval-
ues ofM, that is, minus the critical exponents θi, are actually
independent of a, in particular, ν ¼ ðθ1Þ−1 ¼ 0.6. We see
that even though the WF fixed point collapses toward the
Gaussian one, it keeps its distinct character in the limita → 0
and a different critical exponent ν. In fact, the numerical value
is not very bad, considering the drastic approximation.

B. The Wilson-Fisher fixed point in the LPA

Let us now treat the potential as a whole [25]. Inserting
(3.1) in the FRGE we obtain the “beta functional”

∂tVk ¼
1

2ð4πÞd=2 Qd=2

� ∂tRk

Pk þ V 00
k

�
: ð3:14Þ

Using the regulator (1.4), setting d ¼ 3, and rescaling

ϕ ¼ k1=2

π
ffiffiffi
6

p ϕ̃; ð3:15aÞ

VkðϕÞ ¼
k3

6π2
vðϕ̃Þ; ð3:15bÞ

the beta function of the dimensionless potential v becomes

∂tv¼−3vþ 1

2
ϕ̃v0 þ a

aþ v00 2
F1

�
1;
3

2
;
5

2
;
a− 1

aþ v00

�
: ð3:16Þ

We look for even scaling solutions shooting from the origin
with initial conditions v00ð0Þ and v0ð0Þ ¼ 0. There are only
two values of v00ð0Þ that can be identified as fixed-point
solutions: v00ð0Þ ¼ 0, which corresponds to the Gaussian
fixed point, and some negative value, which corresponds to
the WF fixed point. As in the preceding section, for
decreasing values of a, the WF fixed point moves toward
theGaussian one.We see that also in the functional treatment,
the WF fixed point collapses into the Gaussian one.
This is confirmed by shooting from infinity. The poten-

tial for the WF solution has the following asymptotic
behavior for large field
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v ¼ Aϕ̃6 þ a

�
1

150Aϕ̃4
−

2aþ 3

31500A2ϕ̃8

þ 8a2 þ 12aþ 15

8505000A3ϕ̃12
−

a

67500A3ϕ̃14
þOðA−4ϕ̃−16Þ

�
:

ð3:17Þ

The free parameter A can be fixed as a function of a by
requiring Z2 symmetry at the origin of field space [26]. We
find that in the limit a → 0, A tends to A ≈ 0.0015.6

The scaling exponents θi are obtained by linearizing the
flow equation around the fixed point and calculating the
spectrum of eigenperturbations. The analysis has to be done
numerically. For the Gaussian fixed point the spectrum is
independent of a. Figure 4 gives ν of the WF fixed point as
a function of a for 10−5 < a < 105. As expected, the best
value is obtained for a ≈ 1, while in the limit of vanishing
regulator ν appears to approach ν ¼ 1. Besides the corre-
lation-length exponent ν ¼ ðθ1Þ−1, we also find positive
eigenvalues, as reported in Table I.
For vanishing a all the scaling exponents are odd

integers. This coincides with the spectrum of the OðNÞ
model in the limit of largeN, which is known, and we have,
indeed, checked to be independent of a [28,29].

C. Vanishing regulators and constant regulators

At this point it is relevant to recall that the critical
exponent ν ¼ 1 is known to result also from the LPA
equations for a constant regulator (2.11) [16]. Together
with the findings of Sec. II, this observation points at a
more general result, which we detail in this section.

So far we have first solved the fixed point equations for
generic a and then sent a → 0. On the other hand, we are
now going to argue that when the vanishing regulator limit
is taken on the LPA beta functions, i.e., before integrating
the flow, it results, in general noneven d, in the flow
equations of the constant regulator.
The first way of reaching this conclusion is based on a

redefinition of the RG scale k, which we have already
introduced in Sec. II. Suppose that in addition to the
parameter a we also introduce a parameter b rescaling the
cutoff k,

RkðzÞ ¼ aðbk2 − zÞθðbk2 − zÞ: ð3:18Þ

This rescaling can be motivated as follows. First of all, it
should not change the scaling solutions. Furthermore, as
discussed in Sec. II A, we can define an “effective” cutoff
scale keff as the momentum scale where the cutoff term Rk
becomes comparable to the kinetic term. If we decrease a,
the effective cutoff scale also decreases. It was suggested in
Ref. [16] that the decrease of a should be compensated by
choosing b so that at some conventional scale z0 < k2, the
regulator is normalized: Rkðz0Þ ¼ k2. This fixes b ¼ 1

a þ z0
k2,

leading to the regulator

RkðzÞ ¼ ðk2 − aðz − z0ÞÞθðk2 − aðz − z0ÞÞ: ð3:19Þ

Now we see that in the limit a → 0, the regulator becomes a
constant as in Eq. (2.11). The latter leads to the dimension-
less flow equation

∂tv ¼ −dvþ
�
d
2
− 1

�
ϕ̃v0 þ πð1þ v00Þd2−1

ð4πÞd=2Γðd
2
Þ sinðdπ

2
Þ : ð3:20Þ

In d ¼ 3 and after the rescaling v → v=ð4πÞ and ϕ̃ →
ϕ̃=

ffiffiffiffiffiffi
4π

p
this takes the simple form

∂tv ¼ −3vþ 1

2
ϕ̃v0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v00

p
: ð3:21Þ

This argument can actually easily be generalized to
arbitrary shape functions r1, as defined in Eq. (1.3). We first
include the parameter b in the regulator, to account for the
possibility to rescale k,

CFT value

constant regulator

sharp regulator

10 5 0.001 0.100 10 1000 105
a

v

0.6

0.7

0.8

0.9

1.0

FIG. 4. The dots represent the values of the critical exponent ν
as a function of a. For comparison we have drawn the values of ν
for the sharp regulator and the constant (mass) regulator, as well
as the conformal-bootstrap value [27]. This figure extends Fig. 12
in Ref. [16] to low values of a.

TABLE I. The first few critical exponents at the Wilson-Fisher
fixed point computed in the local potential approximation for the
regulator (1.4). We report the most common choice a ¼ 1 and the
limiting case of the vanishing regulator.

θ1 θ2 θ3 θ4 θ5

a ¼ 1 1.539 −0.656 −3.180 −5.912 −8.796
a ¼ 0 1 −1 −3 −5 −7

6The asymptotic parameter is A ¼ 0.001 for a ¼ 1, and it
increases monotonically for a → 0.
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RkðzÞ ¼ bk2ar1ðy=bÞ: ð3:22Þ

Then we choose b ¼ 1=a such that the regulator becomes

RkðzÞ ¼ k2r1ðayÞ: ð3:23Þ

Then the a → 0 limit of Eq. (3.22) results in the constant
regulator.7

An alternative way of arguing that the a → 0 limit
reduces the LPA flow equation for the regulator (1.4) to
the constant regulator case (3.20) is by performing an
a-dependent rescaling as in Sec. II. Namely, by redefining

ϕ̃ ¼ aðd−2Þ=4ϕ̂; ð3:24aÞ

vðϕ̃Þ ¼ ad=2v̂ðϕ̂Þ þ a
1

ðd − 2Þð4πÞd=2Γð1þ d=2Þ ; ð3:24bÞ

in the flow equations for the regulator (1.4) and then taking
the a → 0 limit at fixed ϕ̂ and v̂, we again find Eq. (3.20).
For instance, in d ¼ 3 this rescaling entails that the
prefactor a in (3.16) goes away.
Both kind of arguments, however, are applicable only for

nonexceptional d. In particular, in some cases removing the
momentum dependence of the regulator by sending a → 0,
as in Eq. (3.19) and Eq. (3.23), is not possible, because the
a → 0 limit and the momentum integral cannot be
exchanged. This happens whenever the integral corre-
sponding to the constant regulator is divergent. In fact,
the momentum integral leading to Eq. (3.20) is convergent
only for d < 2.8

If in the scalar LPA we adopt the constant regulator in
d ≥ 2, using analytic continuation as a tool for the
definition of the momentum integral, the result has a
meromorphic structure with poles for even values of d.
On the other hand, if we try to directly take the limit a → 0
with the regulator (1.4) and expand the Q functionals (3.5),
with n ¼ d=2, d even, and m̃ ¼ 0, in a around a ¼ 0, there
appear terms with log a. As a consequence, we expect that

the vanishing regulator limit of the LPA flow equation will
enjoy special properties in even dimensions. As a matter of
fact, if analytic continuation is not adopted in the definition
of the loop integrals, the arguments we just outlined point
to the conclusion that the vanishing regulator limit does not
need to reproduce the constant regulator case in the whole
range d ≥ 4.

D. Beta functions in two and four dimensions

As we argued at the end of the previous section, in the
case of even dimensions the limit of vanishing regulators
has a more intricate structure. Therefore, in this section we
analyze these special cases in more detail.
We start with d ¼ 2, where the flow equation of the LPA

reads

∂tv ¼ −2vþ a
4πð1 − aÞ log

�
1þ v00

aþ v00

�
: ð3:25Þ

Defining

vðϕ̃Þ ¼ av̂ðϕ̃Þ ð3:26Þ

and simplifying a factor a from the flow equation, in the
a → 0 limit we are left with

∂tv̂ ¼ −2v̂ −
1

4π
log a −

1

4π
log ð1þ v̂00Þ: ð3:27Þ

The potential must be shifted by a factor that contains log a,
i.e., v̂ → v̂ − 1

8π loga, in order to eliminate this divergent
term for the limit a → 0. We observe that the coefficient of
the log a term matches exactly the coefficient of the 1=ϵ
pole of the expansion of (3.20) for d ¼ 2þ ϵ.9 The finite
logarithmic contribution coincides with the one in
Eq. (3.20). Therefore, up to a field-independent shift of
the potential, in d ¼ 2 the vanishing regulator limit agrees
with the constant regulator.
We then turn to the LPA in d ¼ 4. We first truncate the

potential to a polynomial expansion around vanishing
fields as in Eq. (3.2). For continuity with the previous
sections, we also turn to the dimensionless couplings
defined in Eq. (3.8). By considering the leading contribu-
tions to the beta functions β̃2n for vanishing a, we construct
an ansatz based on the following scaling:

λ̂2 ¼ a−1λ̃2; ð3:28aÞ

λ̂4 ¼ logðaÞλ̃4; ð3:28bÞ

7By comparing this with the original regulator in Eq. (1.3) we
see that we have effectively cast the regulator as a function of
k2eff ¼ ak2, rather than of k itself, and then considered keff as a
independent.

8However, the UV divergence in 2 ≤ d < 4 affects only the
field-independent part of the effective potential, and in these cases
it could be removed by implementing the standard subtraction as
in Sec. II [see, e.g., Eq. (2.18)]. Notice that this subtraction would
introduce an IR divergence in d ¼ 2. For some values of d the
limit a → 0 cannot be taken at the level of the integrands. In these
cases we first of all have to compute the integrals, and this
requires one to specify the shape function r1. This is the main
reason why in the present paper we focus on the special regulator
choice of Eq. (1.4). More general results holding for arbitrary
shape functions can be deduced once the field-theory model, the
number of Euclidean dimensions d, and the truncation of the
EAA is specified.

9This correspondence between log a singularities of the flow
equations for the regulator (1.4) and 1=ϵ poles of (3.20) holds also
in higher even dimensions.
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λ̂2n ¼ an−2ðlog aÞnλ̃2n; n > 2: ð3:28cÞ

Assuming the λ̂2n couplings can be kept fixed in the
a → 0 limit results in the following set of beta functions:

∂tλ̂2 ¼ −2λ̂2 þ
λ̂4

16π2

�
1þ 1þ log ð1þ λ̂2Þ

log a

�
; ð3:29aÞ

∂tλ̂4 ¼
1

log a

�
3

16π2
λ̂24

1þ λ̂2
þ 1

16π2
λ̂6

�
; ð3:29bÞ

∂tλ̂6 ¼ 2λ̂6 −
15

16π2
λ̂34

ð1þ λ̂2Þ2
þ 1

16π2
λ̂8

þ λ̂8
16π2

1þ log ð1þ λ̂2Þ
log a

þ 15

16π2
λ̂4λ̂6

ð1þ λ̂2Þ log a
;

ð3:29cÞ

and similar results for higher couplings. Notice that terms
of order ðlogaÞ−1 could be neglected as subleading in all
beta functions apart from the second one, where such a term
is, in fact, the leading one.
In order to include the beta functions of all couplings in a

functional treatment, we turn to the task of including the
definitions (3.28) in a rescaling of the effective potential. It
is impossible to achieve this goal by a two-parameters
rescaling of the kind studied in the previous sections.
However, Eq. (3.28c) trivially lends itself to a functional
rescaling. Hence, we can treat the first two couplings on a
special footing and embed the remaining ones in a func-
tional which is related to higher derivatives of vðϕÞ.
First, to simplify notations, it is convenient to define

ρ̃ ¼ ϕ̃2=2; ð3:30Þ

uðρ̃Þ ¼ vðϕ̃Þ: ð3:31Þ

Next, we define

fðρ̃Þ ¼ u0ðρ̃Þ − λ̃2 −
λ̃4
3
ρ̃: ð3:32Þ

So by construction fð0Þ ¼ f0ð0Þ ¼ 0, while fðnÞð0Þ ∝
λ2ðnþ1Þ. The functional flow equation for f can be obtained
from the functional equation for u0 by

∂tfðρ̃Þ ¼ ∂tu0ðρ̃Þ − β̃2 −
β̃4
3
ρ̃; ð3:33Þ

and then replacing u0k through the definition (3.32). The
identities ∂tfkð0Þ ¼ ∂tf0kð0Þ ¼ 0 also follow from this
definition. By the rescaling

fðρ̃Þ ¼ a
log a

f̂ðρ̂Þ; ð3:34Þ

ρ̃ ¼ a logaρ̂; ð3:35Þ

together with the previous definitions of λ̂2 and λ̂4, we
recover the full tower of relations (3.28). By inserting the
previous definitions in the flow equation for u0ðρÞ one can
deduce the following functional flow equation:

∂tf̂ðρ̂Þ ¼ −2f̂ðρ̂Þ þ 2ρ̂f̂0ðρ̂Þ

þ 3

16π2
f̂0ðρ̂Þ þ 1

8π2
ρ̂f̂00ðρ̂Þ þ 5

16π2
ρ̂f̂00ð0Þ

−
1

16π2
ρ̂λ̂24

1þ λ̂2
−

1

16π2
λ̂4 log ð1þ λ̂2Þ

þ 1

16π2
λ̂4 log ð1þ λ̂2 þ λ̂4ρ̂Þ: ð3:36Þ

This functional flow generates the leading terms in
Eq. (3.29c), and similar beta functions for the higher-order
couplings, upon truncating it to a polynomial ansatz regular
at the origin. However, we stress again that Eq. (3.36) does
not include Eqs. (3.29) and (3.29b), which therefore have to
be supplemented to exhaust the LPA flow equations.
These flow equations are different from those of a

constant regulator. Indeed, the latter are formally UV
divergent. More specifically, in β̃2n the contribution linear
in λ̃2nþ2 corresponds to a momentum integral with dimen-
sion two, which is not regularized by the constant regulator
(2.11). Similar discrepancies arise in d ¼ 6; 8;…. The flow
equation for the constant regulator in d ¼ 4 − ϵ reads

∂tv ¼ −4vþ 2ρ̃v0

þ ð2ρ̃v00 þ v0 þ 1Þ½log ð2ρ̃v00 þ v0 þ 1Þ − 1�
16π2

þ ð2ρ̃v00 þ v0 þ 1Þ
16π2

�
γ − logð4πÞ − 2

ϵ

�
: ð3:37Þ

The third line in this equation arises from the expansion of
the sine in the denominator of Eq. (3.20). It provides
contributions to the λ̃2nþ2 term inside β̃2n. Such terms
would be absent in the MS scheme. These 1=ϵ contribu-
tions that are divergent in d ¼ 4 are a typical product of the
analytic continuation adopted in the definition of the
integral. Similar contributions that diverge in d ¼ 4 are
expected also if any other alternative definition is chosen.
For instance, if a sharp UV cutoff Λ is introduced, the third
line of Eq. (3.37) would be replaced by a different
expression that is ill-defined in the Λ → ∞ limit.
If we perform an ad hoc subtraction of the third line, the

flow equation (3.37) leads to the following beta functions:
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β̃2 ¼ −2λ̃2 þ
λ̃4 log ðλ̃2 þ 1Þ

16π2
; ð3:38aÞ

β̃4 ¼
3λ̃24

16π2ðλ̃2 þ 1Þ þ
λ̃6 log ðλ̃2 þ 1Þ

16π2
; ð3:38bÞ

β̃6 ¼ 2λ̃6 −
15λ̃34

16π2ðλ̃2 þ 1Þ2 þ
λ̃8 log ðλ̃2 þ 1Þ

16π2

þ 15λ̃6λ̃4
16π2ðλ̃2 þ 1Þ : ð3:38cÞ

A comparison with Eq. (3.29) immediately reveals
several differences. Apart from the scaling (classical) terms,
the first two quantum/statistical terms are equal, up to the
fact that the λ2 dependence of the λ2nþ2 term has been
washed away in Eq. (3.29) by the a → 0 limit, and up to the
crucial loga dependence of Eq. (3.29b). However, all the
additional quantum/statistical terms in Eq. (3.38) are absent
in Eq. (3.29).
The peculiar simplicity that Eqs. (3.29) attain in the a → 0

limit, together with the 1= loga dependence of Eq. (3.29b),
raises the question as to whether these beta functions retain
enough physical information for being practically useful. As
a first step toward addressing this question, we limit
ourselves to a simple observation. Namely, as long as the
subleading logarithmic a dependence is retained in
Eq. (3.29), the ϕ4-theory beta function and other universal
physics is still present. For instance, we can study the WF
fixed point in d ¼ 4 − ϵ. In order to employ Eq. (3.29) in this
study, we need to prescribe that the ϵ → 0 limit be taken
before the a → 0 one. This means in practice that the
vanishing regulator limit is taken on the d ¼ 4 FRG
equations. Had we sent a → 0 in d < 4, we would have
found different equations for λ̂2n and precisely the constant
regulator ones, as already mentioned in Sec. III C.
Within the simplest truncation corresponding to retain-

ing only λ̃2 and λ̃4, where we add the classical scaling term
−ϵλ4 to β̂4 to account for the shift of dimensionality, the
WF fixed point to first order in ϵ is located at

λ̂2 ¼
1

6
ϵð1þ log aÞ; ð3:39Þ

λ̂4 ¼
16

3
π2ϵ log a: ð3:40Þ

These fixed-point couplings have to be interpreted as small,
even if they seemingly blow up for a → 0, because the limit
ϵ → 0 has to be taken first. Notice that keeping the
subleading order-ðlogaÞ−1 contribution to β̂4 is essential
for revealing the fixed point. By computing the

corresponding critical exponents, we find the universal
one-loop result

θ1 ¼ 2 −
ϵ

3
; θ2 ¼ −ϵ: ð3:41Þ

IV. OðN + 1Þ SYMMETRY IN
NONLINEAR MODELS

As a first example of a symmetry that is broken by the
regulator, we shall consider here the two-dimensional
OðN þ 1Þ nonlinear sigma model in a particular coordinate
system. We start from the order-∂2 expansion of Γk for a
OðNÞ-invariant multiplet of scalars,

Γk½ϕ� ¼
Z

d2x
�
UkðρÞ þ

1

2
ZkðρÞ∂μϕa∂μϕa

þ 1

4
YkðρÞ∂μρ∂μρ

�
; ð4:1Þ

where the N fields ϕa are in the fundamental representation
of OðNÞ and ρ ¼ ϕaϕa=2 is the corresponding local
invariant. We further define the radial wave function
renormalization

Z̃kðρÞ ¼ ZkðρÞ þ ρYkðρÞ; ð4:2Þ

The beta functions for Zk, Z̃k, and Uk are given in
Appendix A.
If we make the assumptions

ZkðρÞ ¼
Zk

g2k
; ð4:3aÞ

Z̃kðρÞ ¼
1

g2k

�
1

Zk
− 2ρ

�
−1
; ð4:3bÞ

Uk ¼ 0; ð4:3cÞ

the EAA becomes

Γk½ϕ� ¼
Z

ddx
Zk

2g2k

�
δab þ

ϕaϕb
1
Zk
− 2ρ

�
∂μϕ

a∂μϕb: ð4:4Þ

The tensor in parentheses is the metric of the N-dimen-
sional sphere of radius Z−1=2

k , written in a coordinate system
that consists of projecting a point of the sphere orthogo-
nally on the equatorial plane. In this way the northern
hemisphere is mapped to the domain ϕaϕa < 1=Zk. The
symmetry group is extended to OðN þ 1Þ.
A standard cutoff

ΔSkðϕÞ ¼
Zk

2g2k

Z
d2xϕaRkð−∂2Þϕa
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breaks OðN þ 1Þ invariance, while preserving OðNÞ.
Therefore, if we start at some scale k with an EAA of
the form (4.4), the flow will immediately generate
OðN þ 1Þ-violating terms, and thus it will take place in
the larger theory space parametrized by (4.1).
This can be seen already by projecting the flow gen-

erated by the ansatz (4.4) on the local potential, i.e., by
considering Eq. (A2). For nonvanishing a and for field-
dependent wave function renormalizations, the choice
Uk ¼ 0 is not preserved by the RG flow. However, in
the a → 0 limit it, indeed, becomes a consistent ansatz, as
in ∂tUk the RHS behaves as a loga when a → 0.
Let us then inspect the flow of the wave function

renormalizations. Inserting the previous ansatz in the flow
equation (A3) for Z̃kðρÞ,10 in the limit a → 0 we obtain

−
2Zk∂tgk

g3kð1 − 2ZkρÞ
−

Zkηk
g2kð1 − 2ZkρÞ2

¼ Zk

4π

ð2∂tgk þ ðηk − 2ÞgkÞð2ðN − 1ÞZkρþ 1Þ
gkð1 − 2ZkρÞ2

: ð4:5Þ

As the functional ρ dependence on each side of the equation
is comparable, this equation can be algebraically solved for
∂tgk and ηk, resulting in

∂tgk ¼ −
ðN − 1Þg3k
4π þ g2k

; ð4:6aÞ

ηk ¼ −∂t logZk ¼
2Ng2k
4π þ g2k

: ð4:6bÞ

These are the correct one-loop beta functions, augmented
by RG resummations due to the dependence of the regulator
on Zk and gk. The same result can be derived by considering
the flow equation for ZkðρÞ. Thus, within the present
truncation the nonlinearly realized OðN þ 1Þ=OðNÞ sym-
metry is preserved by taking the limit a → 0. Essentially the
same flow equations have been obtained in Ref. [14] with a
pseudoregulator reproducing the MS scheme.11

The assumption Uk ¼ 0, although justified by the
observation that only a trivial potential is compatible with
the nonlinearly realized symmetry, can easily be relaxed as
long as this explicit symmetry-breaking term is treated as
an external source. The simplest of such terms is a linear
coupling to theOðN þ 1Þ=OðNÞ variation of ϕa, i.e., ϕNþ1,

Uk ¼ −H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Zk
− 2ρ

s
: ð4:7Þ

This ansatz, comprehending an arbitrary source H, was
observed to be compatible with the flow equation in the case
of an MS pseudoregulator [14]. This linear term can also be
used to construct an exact FRG equation that manifestly
preserves the full OðN þ 1Þ symmetry for every regulator
functionRk (see Appendix B). For the present standard FRG
implementation and regularization scheme, the ansatz (4.7) is
not compatible with the flow equation of the potential,
neither for a ≠ 0 nor in the a → 0 limit. Only by assuming
thatH is a function of a vanishing faster than a itself, closure
of the Oð∂2Þ RG flow on the ansatz (4.4) is recovered. To
understand this phenomenon it is necessary to study how the
modified master equation for the OðN þ 1Þ=OðNÞ sym-
metry behaves in the a → 0 limit, which is the topic of
Appendix B. There we show how the construction of a
nonvanishingpotential term for thenonlinear sigmamodel is,
indeed, a complicated problem that requires the simultaneous
solution of both the flow equation and the modified master
equation. As explained in Appendix B, in solving this
problem the a → 0 limit is of limited use.

V. BACKGROUND FIELD ISSUES

When one splits the field into a classical background and
a quantum/statistical fluctuation

ϕ ¼ ϕB þ φ; ð5:1Þ

the action, being a function of ϕ, is invariant under the shift
symmetry

ϕB ↦ ϕB þ ϵ; ð5:2aÞ

φ ↦ φ − ϵ: ð5:2bÞ

This can be expressed by the identity

δS
δϕB

−
δS
δφ

¼ 0: ð5:3Þ

On the other hand, the regulator depends only on the
background field and is therefore not invariant under the
split symmetry. In particular in gauge theories, in order to
preserve background gauge invariance, the cutoff is usually
written as a function of the background covariant deriva-
tive: Rkð−D̄2Þ. This effect can be mimicked in the scalar
case by artificially introducing a dependence of Rk on ϕB.
For example, Morris and collaborators considered regu-
lators of the general form [26]

RkðzÞ ¼ ðk2 − k2hðϕ̃BÞ − zÞθðk2 − k2hðϕ̃BÞ − zÞ: ð5:4Þ

The EA then becomes a functional Γk½φ;ϕB�; i.e., it has a
separate dependence on these two arguments. The breaking
of the shift symmetry results in a modified Ward identity

10Note that now Zkðρ ¼ 0Þ ¼ Zk=g2k, so inside the formulas
for the Q functionals we must send Zk → Zk=g2k and ηk →
ηk þ 2∂tgk=gk.11The present result is obtained by setting σ ¼ 1 in the beta
functions of Ref. [14].
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δΓk

δϕB
−
δΓk

δφ
¼ 1

2
Tr

��
δ2Γk

δφδφ
þ Rk

�−1 δRk

δϕB

�
: ð5:5Þ

It has been shown that such a background dependence in
the regulator can either destroy physical fixed points or
create artificial ones [26]. On the other hand, when the FRG
equation (1.2) is solved together with the Ward identity
(5.5), the correct physical picture can be reconstructed.
While this can be achieved in the scalar case [26], it is much
harder in the case of gauge theories, and in particular for
gravity [30]. It is therefore desirable to find other ways
around this obstacle. The form of Eq. (5.5) suggests that in
the limit of a vanishing regulator the shift symmetry is
restored. One would therefore expect that in this limit the
aforementioned pathologies should also disappear. In this
section we will see how this actually happens in the scalar
theory.
We begin by briefly reviewing some results of Ref. [26].

We consider the same system as in Sec. III B, in d ¼ 3, but
we use the regulator (5.4). In a single-field approximation
one identifies ϕB ¼ φ. The corresponding flow equation
for the potential reads

∂tv ¼ −3vþ 1

2
φ̃v0

þ ð1 − hÞ3=2
1 − hþ v00

�
1 − h −

1

2
∂thþ 1

4
φ̃h0
�
θð1 − hÞ:

ð5:6Þ

Two special cases for h have been considered. The first case
is h ¼ αφ̃2. In this case, for α < 0 the Heaviside theta on
the RHS of Eq. (5.6) is equal to one. Solving the fixed point
equation, one finds that the Gaussian fixed point becomes
interacting and an increasing number of fake fixed points
appear, as α becomes more negative. For example, Table II

presents the nontrivial fixed points and the associated
relevant critical exponents for two negative values of α.
In both cases FP2 is the deformed Gaussian fixed point. For
α > 0 because of the Heaviside theta function on the RHS
of Eq. (5.6), v ¼ Aφ̃6 for φ̃ > 1=

ffiffiffi
α

p
. The Gaussian fixed

point is always absent, and for α > 0.08 also the WF fixed
point disappears.
The second case is h ¼ αv00. The Gaussian12 and the WF

fixed points always exist, but when α is increased, new
fixed points appear near the Gaussian one13 and move away
from it as α becomes bigger: for example, for α ¼ 1 there is
a spurious fixed point and for α ¼ 2 there are three of them.
In Ref. [26] the authors solve the anomalous Ward

identity for shift symmetry and show how to recover the
physical results. Instead, we shall discuss here the effect of
taking the limit of a vanishing regulator. To this end, we
first introduce the parameter a in (5.4),

RkðzÞ ¼ aðk2 − k2hðϕ̃BÞ − zÞθðk2 − k2hðϕ̃BÞ − zÞ: ð5:7Þ

Within a single-field LPA truncation this leads to the flow
equation

∂tv ¼ −3vþ 1

2
φ̃v0 þ θð1 − hÞ að1 − hÞ3=2

að1 − hÞ þ v00

×

�
1 − h −

1

2
∂thþ 1

4
φ̃h0
�

× 2F1

�
1;
3

2
;
5

2
;
ða − 1Þð1 − hÞ
að1 − hÞ þ v00

�
: ð5:8Þ

Again, we discuss separately the two choices for the
function h.
a. First case: h ¼ αφ̃2.—Following Ref. [26] we start

with a quadratically field-dependent regulator. However,
we slightly depart from that reference in that we find it
more convenient to portray the landscape of fixed points by
a different numerical method, a shooting from the origin.
This consists in constructing numerical solutions for each
possible value of the boundary condition v00ð0Þ. The
generic solutions, however, terminate at a finite value φ̃S
of the field, which corresponds to a movable singularity of
the fixed-point equation. In this process one obtains a plot
of φ̃S as a function of v00ð0Þ (also known as the spike plot).
Sharp maxima in the latter variable are in one-to-one
correspondence with global fixed points. The result is
presented in Fig. 5. We can see that by decreasing a the
spurious fixed points disappear and the physical fixed
points converge to the origin. This is the same phenomenon
that we observed in Secs. III A and III B.

TABLE II. The nontrivial fixed-point solutions of Eq. (5.6)
with h ¼ αϕ̃2 and the corresponding relevant critical exponents
for α ¼ −1=2 (upper panel) and α ¼ −2 (lower panel). The
entries that are left blank correspond to irrelevant deformations.
FP1 is the Wilson-Fisher fixed point, while FP2 is a “deformed
Gaussian” fixed point as it possesses two relevant directions.

FP θ1 θ2

1 1.17 � � �
2 2.11 0.82

α ¼ −1=2

FP θ1 θ2 θ3 θ4

1 0.89 � � � � � � � � �
2 2.35 0.76 � � � � � �
3 2.02 1.43 0.60 � � �
4 2.10 1.69 1.08 0.39

α ¼ −2

12Note that the Gaussian fixed point corresponds to the
point ðvð0Þ; v0ð0ÞÞ ¼ ð1=3; 0Þ.

13In particular for α ≥ 0.85 a first additional fixed point
appears.
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At these fixed points, we compute the spectrum of critical exponents with the same method used in Ref. [26], namely by
shooting from infinity, as we did in Sec. III B. This means that we first construct an asymptotic expansion of the fixed-point
potential as well as of the eigenfunction of the linearized flow around the fixed point. Forα < 0 theHeaviside theta on the RHS
of Eq. (5.8) is equal to one, and the potential has the following behavior at infinity:

v ¼ Aφ̃6 þ ajαj5=2
150A

jφ̃j þ ajαj3=2ð525A − ð3þ 2aÞα2Þ
31500A2jφ̃j

þ a
ffiffiffiffiffiffi
−α

p ð212625A2 − α2ð3780aAþ 5670AÞ þ ð16a2 þ 24aþ 30Þα4Þ
17010000A3jφ̃j3 þOðjφ̃j−5Þ: ð5:9Þ

Shooting onA and on a corresponding asymptotic parameter
for the perturbation, and by demanding Z2 parity at the
origin, we determine the location of the fixed point as well as
the quantized values of the critical exponents. In the a → 0
limit the latter become independent of α and agree with the
spectrum discussed in Sec. III B.
For α > 0, because of the Heaviside theta one the RHS of

Eq. (5.8) v ¼ Aφ̃6 for φ̃ > 1=
ffiffiffi
α

p
. Therefore for φ̃ < 1=

ffiffiffi
α

p
the potential as a function of δ ¼ ð 1ffiffi

α
p − φ̃Þ1=2 has the

following asymptotic behavior:

v ¼ A
α3

−
6A

α5=2
δ2 þ 15A

α2
δ4 þ 2

ffiffiffi
2

p
aα13=4

75A
δ5

−
135000A4 þ a2α10

6750α3=2A3
δ6 þ oðδ7Þ: ð5:10Þ

Shooting from infinity and decreasing a we recover the
Gaussian and the WF fixed points. In particular, for α ¼
1=25 the Gaussian fixed point reappears for a≲ 10−2,

while for α ¼ 1=9 theWF fixed point reappears for a≲ 0.35
and the Gaussian one for a≲ 4 × 10−3. Also in this case the
critical exponents of the Gaussian and WF fixed points
approach the values found for vanishing a in Sec. III B.
b. Second case: h ¼ αv00.—We then move on to consider

a regulator that depends on the second derivative of the
effective potential, through a constant α > 0. In this
particular case shooting from the origin is not convenient
for technical reasons; therefore we shoot from large field
values.
This time v ¼ Aφ̃6 for φ̃ > φ̃c ≡ ð30AαÞ−1=4 provided

v00 > 1=
ffiffiffi
α

p
. Below φ̃c the potential can be expanded in

δ ¼ φ̃c − φ̃ as follows:

v ¼ A

ð30AαÞ3=2 −
6A

ð30AαÞ5=4 δþ
1

2α2
δ2 þ FðδÞ; ð5:11Þ

F¼δ16=5
�
−
25

ffiffiffi
5

p
A1=10α−17=10

88
ffiffiffi
2

p
33=10a2=5

þ12553=4A−1=20α−53=20

5984
ffiffiffi
4

p
2317=20a4=5

δ1=5

−
71875A−1=5α−18=5

24644505632=5a6=5
δ2=5þoðδ3=5Þ

�
: ð5:12Þ

Shooting onA and searching for values that correspond to
a vanishingv0ð0Þ one can reveal several spurious fixed points
at nonvanishing α and a. More and more of them are
generated from the Gaussian fixed point for bigger and
bigger values of α. We find that decreasing a at fixed α > 0
reduces thenumber of spurious fixedpoints, and in thea → 0
limit all of them disappear while the Gaussian and the WF
fixed points merge.We verify that also in this case the critical
exponents tend to the values obtained in Sec. III B for a → 0.

A. Ward identity for the shift symmetry

Going beyond a single-field approximation, i.e., keeping
both φ and ϕB as distinct, the LPA truncation becomes14

0 1 2 3 4
v (0)

10

20
s

FIG. 5. Spike plots with h ¼ −2φ̃2 and with different values of
a: a ¼ 0.5 (blue curve), a ¼ 0.4 (purple curve), a ¼ 0.16 (red
curve), and a ¼ 0.07 (orange curve). For each curve, the right-
most spike is the deformed Gaussian fixed point, and the leftmost
one is the Wilson-Fisher fixed point. Decreasing a further, both
these fixed points move toward the origin. In the red and in the
orange curves one and two of the fake fixed points have
disappeared correspondingly.

14The mixing term ∂μϕB∂μϕ is ruled out by the Z2 × Z2

symmetry on the arguments of the EAA.
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Γk½φ;ϕB� ¼
Z

ddx

�
1

2
ð∂μφÞ2 þ

1

2
ð∂μϕBÞ2þVkðφ;ϕBÞ

�
: ð5:13Þ

Using the regulator (5.7) the modified Ward identity (5.5) and the flow equation become

∂φ̃v − ∂ϕ̃B
v ¼ cd

h0

2

að1 − hÞd=2
að1 − hÞ þ ∂2

φ̃v
2F1

�
1;
d
2
;
d
2
þ 1;−

ð1 − aÞð1 − hÞÞ
að1 − hÞ þ ∂2

φ̃v

�
; ð5:14Þ

∂tvþ dv −
ðd − 2Þ

2
ðφ̃∂φ̃vþ ϕ̃B∂ϕ̃B

vÞ

¼ cd
að1 − hÞd=2

að1 − hÞ þ ∂2
φ̃v

�
1 − h −

1

2
∂thþ 1

4
ðd − 2Þφ̃h0

�
2F1

�
1;
d
2
;
d
2
þ 1;−

ð1 − aÞð1 − hÞÞ
að1 − hÞ þ ∂2

φ̃v

�
; ð5:15Þ

where cd ¼ ðð4πÞd=2Γðd
2
þ 1ÞÞ−1. We rescale all the quantities in the following way:

φ̃ ¼ aðd−2Þ=4φ̂; ð5:16Þ
ϕ̃B ¼ aðd−2Þ=4ϕ̂B; ð5:17Þ

vðφ̃Þ ¼ ad=2v̂ðφ̂Þ þ a
1

ð4πÞd=2ðd − 2ÞΓðd
2
þ 1Þ ; ð5:18Þ

h ¼ aγĥ: ð5:19Þ
This set of definitions agrees with the one in Eq. (III.24).
Here γ depends on the choice of h: for example, γ ¼ 1 for
both h ¼ αϕ̃2

B and h ¼ αv00. For the sake of generality we
shall keep γ free for the time being. Expanding for small a
and assuming 2 < d < 4, the Ward identity and the flow
equation become

∂φ̂v̂ − ∂ϕ̂B
v̂ ¼ aγþ1−d=2

dð4πÞd=2Γðd
2
Þ ĥ

0 þ � � � ; ð5:20Þ

∂tv̂þ dv̂ −
ðd − 2Þ

2
ðφ̂∂φ̂v̂þ ϕ̂B∂ϕ̂B

v̂Þ

¼ −
aγþ1−d=2

dð4πÞd=2Γðd
2
Þ
�
∂tĥþ dĥ −

ðd − 2Þ
2

ϕ̂Bĥ
0
�

þ Γðd
2
− 1Þ

ð4πÞd=2 ð1þ ∂2
φ̂v̂Þd=2−1 þ � � � ; ð5:21Þ

where the dots denote quantities that go to zero for a → 0.
From the modified Ward identity we see that to have a

well-defined vanishing regulator limit we must demand
γ ≥ d

2
− 1. If γ > d

2
− 1, ∂φ̂v̂ ¼ ∂ϕ̂B

v̂: this implies that

v̂ðφ̂; ϕ̂BÞ ¼ v̂ðφ̂þ ϕ̂BÞ and so we recover the shift sym-
metry and the flow equation without background. If
γ ¼ d

2
− 1, the modified Ward identity gives

v̂ðφ̂; ϕ̂BÞ ¼ v̂sðφ̂þ ϕ̂BÞ −
1

dð4πÞd=2Γðd
2
Þ ĥðϕ̂BÞ: ð5:22Þ

Inserting this result into the flow equation, we recover again
the equation without background.

VI. DISCUSSION

We have discussed the effect of an overall suppression of
the regulator with a constant factor a, and in particular, the
limit a → 0, that we called the limit of a vanishing
regulator. Let us summarize the main results.
As is clearly seen already in the case of the quantum

mechanical oscillator, decreasing a has the effect of accel-
erating the flow, in the sense that already a small decrease of k
leads very fast to the effective action. Thereafter things
remain nearly constant with k. However, the quantum-
mechanical study shows that in general different results
are obtained depending on whether the a → 0 limit is
performed on the solutions of the flow equations, or on
the beta functions themselves (see Fig. 2). While the former
way of taking the limit is rather straightforward, obtaining
meaningful results from the latter process requires a suitable
a-dependent rescaling of the couplings.
In the case of the Wilson-Fisher fixed point, we have first

studied the first form of the vanishing regulator limit by
analyzing the a dependence of the fixed-point solution.
Decreasing a has the effect of shifting the fixed points
toward the Gaussian one, but the scaling exponents remain
distinct even in the limit a → 0. Here we have limited our
analysis to the leading order of the derivative expansion.
In a polynomial approximation of the potential, the values

of the scaling exponents become progressively worse as one
increases the order of the polynomial. This is in agreement
with the statement in Ref. [16] that the radius of convergence
of the Taylor expansion of V is proportional to a. We have
avoided this problem by also considering the functional
treatment (LPA), but in this case one gets the exponent ν ¼ 1,
which is worse than for any polynomial and coincides with
the upper boundary conjectured in [16].
We have then analyzed the second form of the vanishing

regulator limit, taking it on the LPA beta functional of
scalar field theory, finding agreement with the first kind of
limit as far as the critical exponents are concerned, although
the locations of the fixed point differ. Even though some
naive arguments suggest that the limit of a vanishing
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regulator might generally reproduce the results of a con-
stant (momentum independent) masslike regulator, we have
observed that in the LPA this is the case only when the
constant regulator momentum integrals are convergent. As
we adopted analytic continuation in the definition of the
integrals, this excludes even integer values of d ≥ 4 (the
d ¼ 2 case can, indeed, be reduced to the constant regulator
case by a field-independent shift in the potential). As a
consequence, the vanishing regulator limit remains differ-
ent from the constant regulator in d ¼ 4. We expect this
conclusion to hold also in higher even dimensions, if
analytic continuation is used, or in the whole range
d ≥ 4 without analytic continuation. It remains to be seen
whether these conclusions are robust against enlargements
of the truncation. For instance, at the second order of the
derivative expansion, there might be a nontrivial interplay
between the momentum derivatives of the regulator and the
a → 0 limit, resulting in further differences between the
constant and the vanishing regulators.
For all these reasons, it will be quite interesting to

systematically study the next order of the derivative expan-
sion, including a field-dependent wave function renormal-
ization ZðϕÞ. In this paper, this level of approximation has
been analyzed only for the two-dimensional nonlinear sigma
model, as in this case it is the first nontrivial order of the
derivative expansion. It is also known that in the case of
quantum critical points the convergence of this expansion
requires an increasingly accurate tuning of a. For the three-
dimensionalWilson-Fisher fixed point, this tuning process is
expected to converge to optimal values within the range
0.5 < a < 1 [19]. Hence, it appears very unlikely that at the
special point a → 0 the derivative expansion might be
convergent.
We should mention, however, that the amplitude a is

only one of an infinite series of free parameters within the
regulator Rk. In this work we have not allowed for such
residual freedom, having fixed the regulator to a piecewise
linear form. This choice has been justified as follows. In
some circumstances, depending on the theory (or approxi-
mation) under study, as well as on the number of Euclidean
dimensions d, the argument of the momentum integral
might be nonintegrable in the a → 0 limit. Nonetheless the
integral might allow for a finite a → 0 limit; i.e., the limit
and the integral cannot be exchanged. Whenever this
happens, one must first clearly define the momentum
integrals by choosing a specific shape function and when
applicable a unique analytic continuation, and then inves-
tigate the possible behavior of these integrals in the
parametric a → 0 limit. In all other cases, namely when
the a → 0 limit can be brought inside the momentum
integrals, one can easily generalize the discussion to
arbitrary shape functions r1, as done in Sec. III C. Still,
optimization criteria over the remaining parameters might
be essential to obtain accurate results in the vanishing
regulator limit. It might also be possible to take advantage
of these additional parameters, with their associated free

limiting behavior, to construct alternative flow equations
resulting from the vanishing regulator limit. For instance, in
the so-called LPA0 truncation, this kind of additional
freedom allowed us to construct a one-parameter family
of MS -like schemes within the FRG [14].
Indeed, as we explained in Sec. I the limit of a vanishing

regulator shares several features with the more specific case
of the MS-like pseudoregulators discussed in Ref. [14]. In
that reference, and in particular in Sec. VI, we observed that
the best way of capturing the effect of quantum/statistical
fluctuations beyond one loop is not adopting the derivative
expansion, but rather accounting for the momentum
dependence of vertices as in a vertex expansion.
Because of their similarities, it is reasonable to expect that
this behavior of MS-like pseudoregulators against the
choice of truncation scheme might be shared by the larger
class of vanishing regulators.
In spite of the poor results of thea → 0 limit of theLPA for

the benchmark case of the Wilson-Fisher fixed point, we
think that this limit may be useful in simple approximations,
in problemswhere a symmetry is broken by the regulator. As
a first example we have discussed the OðN þ 1Þ-nonlinear
sigmamodel, in a formulation where the regulator breaks the
global symmetry toOðNÞ. In this casewe have shown that in
the limit of a vanishing regulator the beta functions converge
to those of the OðN þ 1Þ-symmetric theory.
We have then considered the shift symmetry arising in

the background field treatment of a scalar theory. When this
symmetry is broken by the regulator, this can either
generate unphysical fixed points or, what is worse, destroy
a physical fixed point. We have verified that the Ward
identities of the shift symmetry are restored in the limit of a
vanishing regulator, and that all the unphysical features of
the flow disappear when a becomes sufficiently small.
It is important to stress the difference between this logic

and the following one that is sometimes found in the FRG
literature: the RG flow equations are solved first (and
independently of theWard identities) for a parametric family
of regulators; then the latter parameters are tuned such that
the violation of some finite-dimensional subset of the Ward
identities is minimized. This procedure, when applied to the
parameter a of Eq. (1.3), typically results in some non-
vanishing value which is close to the value maximizing the
rate of convergence of the chosen truncation scheme (a ∼ 1).
This approach has been studied, for instance, in the case of
conformal symmetry [31]. In this reference the Ward
identities for special conformal transformation, in either
their quantum or their classical form (i.e., regulator depen-
dent or independent, respectively), are not solved as func-
tional constraints.15

15The truncated modified Ward identity is cast in the form
fðϕ̃Þ ¼ 0 for a certain function f. This equation is not fulfilled for
any value of a. However, it is possible to tune a such that the
function f is minimized in an almost ϕ̃-independent sense.
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By contrast, in the studies we presented in Secs. IVand V,
the ansätze for the EAA included exact solutions of the
classical Ward identities for OðN þ 1Þ and shift symmetry,
respectively, which are easy to solve independently from the
RG equations. It is thus not surprising that the symmetry
breaking induced by the RG flow is minimized for a → 0. In
fact, one might expect that the quantum Ward identities
reduce to their classical counterparts when a → 0. Thus,
because of the different strategy followed in the choice of the
initial ansatz for the EAA, the authors of Ref. [31] could only
minimize the unavoidable symmetry breaking, whereas in
this work we could tune it to zero by taking the limit of
vanishing regulators.
It is interesting that a study similar to the one of Ref. [31]

was performed in Ref. [32], where the symmetry expected
to emerge at the RG fixed point is supersymmetry rather
than conformal symmetry. In this latter work the ansatz for
the EAA does indeed include an exact solution of the
classical supersymmetric Ward identity. The minimization
of the breaking of supersymmetry at the fixed point by
means of the optimization of the regulator was also studied,
but unfortunately the limit of a vanishing regulator was not
within the parametric space considered in this reference. In
fact, we expect the application of the vanishing regulator
limit to supersymmetric models to be interesting and
useful.

The main motivation of this work was the hope that
vanishing regulators, or perhaps just “sufficiently small
regulators,” may be useful also in the application of the
FRG to gauge theories and gravity, where the background
field method is almost always adopted. Our results suggest
that this may be possible, but that the usefulness of this idea
may be restricted to the simplest truncations.
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APPENDIX A: FLOW EQUATIONS AT THE
ORDER Oð∂2Þ OF THE DERIVATIVE

EXPANSION

We introduce the following notations:

G0 ¼ ðZkðρÞq2 þ Rkðq2Þ þU0
kðρÞÞ−1; ðA1aÞ

G1 ¼ ðZ̃kðρÞq2 þ Rkðq2Þ þU0
kðρÞ þ 2ρU00

kðρÞÞ−1; ðA1bÞ
for the Goldstone bosons and radial-mode propagators. The
flow equations for Uk and Z̃k, which is defined in Eq. (4.2),
are

∂tUk ¼
ðQd

2
½G1∂tRk� þ ðN − 1ÞQd

2
½G0∂tRk�Þ

2ð4πÞd=2 ; ðA2Þ

∂tZ̃k ¼ −
ðZ̃k

0 þ 2ρZ̃k
00Þ

2ð4πÞd=2 Qd
2
½G2

1∂tRk� − ðN − 1Þ ðZ
0
k þ ρY 0

kÞ
2ð4πÞd=2 Qd

2
½G2

0∂tRk�

þ 2ρðZ̃k
0Þ2

ð4πÞd=2
�
2dþ 1

2
Qd

2
þ1½G3

1∂tRk� þ
ðdþ 2Þðdþ 4Þ

4
ðQd

2
þ2½G2

1G
0
1∂tRk� þQd

2
þ3½G2

1G
00
1∂tRk�Þ

�

þ 2ρð3U00
k þ 2ρU000

k Þ2
ð4πÞd=2 ðQd

2
½G2

1G
0
1∂tRk� þQd

2
þ1½G2

1G
00
1∂tRk�Þ

þ 2ρZ̃k
0ð3U00

k þ 2ρU000
k Þ

ð4πÞd=2 ½ðdþ 2ÞðQd
2
þ1½G2

1G
0
1∂tRk� þQd

2
þ2½G2

1G
00
1∂tRk�Þ þ 2Qd

2
½G3

1∂tRk��

þ ðN − 1Þ ρYk

ð4πÞd=2 ð2U
00
kQd

2
½G3

0∂tRk� þ dZ0
kQd

2
þ1½G3

0∂tRk�Þ

þ ðN − 1Þ 2ρðZ
0
kÞ2

ð4πÞd=2
�ðdþ 2Þðdþ 4Þ

4
ðQd

2
þ2½G2

0G
0
0∂tRk� þQd

2
þ3½G2

0G
00
0∂tRk�Þ þ

1

2
Qd

2
þ1½G3

0∂tRk�
�

þ ðN − 1Þ 2ρðU
00
kÞ2

ð4πÞd=2 ðQd
2
½G2

0G
0
0∂tRk� þQd

2
þ1½G2

0G
00
0∂tRk�Þ

þ ðN − 1Þ 2ρZ
0
kU

00
k

ð4πÞd=2 ðdþ 2ÞðQd
2
þ1½G2

0G
0
0∂tRk� þQd

2
þ2½G2

0G
00
0∂tRk�Þ: ðA3Þ

Using the regulator Rk ¼ aZkðk2 − zÞθðk2 − zÞ16 we have

16We defined Zk ¼ Zkðρ ¼ 0Þ.
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Qn½Gl∂tRk� ¼
1

ΓðnÞ ðð2 − ηkÞk2qn;lða;ω; ζÞ þ ηkqnþ1;lða;ω; ζÞÞ; ðA4Þ

Qn½GlG0∂tRk� ¼ −
ðζ − aZkÞ

ΓðnÞ ðð2 − ηkÞk2qn;lþ2ða;ω; ζÞ þ ηkqnþ1;lþ2ða;ω; ζÞÞ; ðA5Þ

Qn½GlG00∂tRk� ¼
2ðζ − aZkÞ2

ΓðnÞ ðð2 − ηkÞk2qn;lþ3ða;ω; ζÞ þ ηkqnþ1;lþ3ða;ω; ζÞÞ −
a2Z2

kk
2ðn−l−2Þ

ΓðnÞðζ þ ω=k2Þlþ2
; ðA6Þ

where

G ¼ ðζzþ Rk þ ωÞ−1;

qn;lða;ω; ζÞ ¼
1

n
aZkk2ðn−lÞ

ðaZk þ ω=k2Þl ðA7Þ

× 2F1

�
l; n; nþ 1;

aZk − ζ

aZk þ ω=k2

�
; ðA8Þ

andG can beG0 orG1 depending on the choice of ζ andω, in
particular,

G ¼ G0 if



ω ¼ U0

kðρÞ;
ζ ¼ ZkðρÞ;

ðA9Þ

G ¼ G1 if



ω ¼ U0

kðρÞ þ 2ρU00
kðρÞ;

ζ ¼ Z̃kðρÞ:
ðA10Þ

For the constant regulator (2.11) one finds

Qn½Gl∂tRk� ¼ k2ðn−lþ1ÞZkð2 − ηkÞ
Γðl − nÞ
ΓðnÞΓðlÞ

× ζ−nðZk þ ω=k2Þn−l; ðA11Þ

Qn½GlG0∂tRk� ¼ −ζQn½Glþ2∂tRk�; ðA12Þ

Qn½GlG00∂tRk� ¼ 2ζ2Qn½Glþ3∂tRk�: ðA13Þ

APPENDIX B: MASTER EQUATION FOR THE
NONLINEAR OðN + 1Þ MODEL

In Sec. IV the use of a vanishing regulator for the two-
dimensional nonlinear OðN þ 1Þ model has been dis-
cussed. We have observed that a nonvanishing potential
term of the form (4.7) is not preserved by the flow equation
in the a → 0 limit. In this section we provide more details
about the constraints on a general local potential Ukðρ; HÞ.
Here we show how the noncompatibility of the ansatz (4.7)
with the flow equation is encoded in the modified master
equation for the OðN þ 1Þ=OðNÞ symmetry.

Our starting point is, indeed, the following modified
master equation:

δΓk

δϕa

δΓk

δH
þHϕa ¼ Tr



RkðΓð2Þ

k þ RkÞ−1ab
δ2Γk

δHδϕb

�
: ðB1Þ

This identity, which differs from the standard master
equation for a nonvanishing RHS, can be derived, for
instance, from a functional integral representation of Γk, in
the presence of a linear source term of the form (4.7) in the
bare action, by performing a change of the integration
variable corresponding to a OðN þ 1Þ=OðNÞ infinitesimal
transformation. It is straightforward to prove that this
functional identity is compatible with the exact RG flow
equation [33], meaning that it defines an RG-invariant
hypersurface in theory space. However, truncations of the
theory space often spoil this property, such that the
truncated master equation becomes an additional require-
ment on the RG flow, to be enforced at every k.
Whenever the regularization preserves the (unmodified)

nonlinear OðN þ 1Þ=OðNÞ symmetry, the one-loop regu-
lator-dependent term on the RHS of Eq. (B1) vanishes
identically. The modified master equation then reduces to
the standard master equation, which is a tree-level identity.
In this case the equation is straightforward to solve,
independently from and prior to the analysis of the RG
flow equation. For an introduction to the role played by this
identity in the construction of a renormalized perturbation
theory in two dimensions see, for instance, Ref. [34].
Before analyzing in details the shape that this constraint takes
for vanishing a, one can already apply its form of Eq. (B1) to
the truncation we assumed in Sec. IV. There we took U ¼ 0
and H ¼ 0. This combination trivially fulfills the modified
master equation. It should, however, be noted that Eq. (B1)
represents the constraint of nonlinear OðN þ 1Þ=OðNÞ
symmetry only in the theory space of generic functionals
of ϕa and H. If a nonvanishingH is never introduced in the
effective action, i.e., on the subspace where H ¼ 0, there
nevertheless is a functional constraint encoding the nonlinear
OðN þ 1Þ=OðNÞ symmetry, and it can be obtained from
Eq. (B1) by replacing derivatives involving H with the
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expectationvalues of the correspondingcomposite operators.
The analysis of this kind of modified master equation is
therefore highly nontrivial and will not be addressed in
this work.
We then address the constraints that Eq. (B1) imposes on

a truncation similar to the one in Eq. (4.4), but with an
arbitrary nonvanishing Ukðρ; HÞ.17 For this truncation
Eq. (B1) becomes

∂ρUk∂HUk þH

¼ ∂ρ∂HUk
1

4π

Z
∞

0

dz
RkðzÞ

Z̃kzþ RkðzÞ þ ∂ρUk þ 2ρ∂2
ρUk

:

ðB2Þ

For the Litim regulator the loop integral is readily evaluated
leading to

4π
∂ρUk∂HUk þH

∂ρ∂HUk

¼ −
ak2

a − g2k
Zk
Z̃k

−
a

ða − g2k
Zk
Z̃kÞ2

g2k
Zk

ðZ̃kk2 þ ∂ρUk þ 2ρ∂2
ρUkÞ

× log

�
Z̃kk2 þ ∂ρUk þ 2ρ∂2

ρUk

a Zk
g2k
k2 þ ∂ρUk þ 2ρ∂2

ρUk

�
: ðB3Þ

The loop contribution to the modified master equation is a
nonlinear function of derivatives of Uk up to second order.
Therefore solving this equation forUk is a difficult task. Even
more so, as this solutionmust be required to also obey theRG
flow equation. As the LPAprojection breaks compatibility of
the modified master equation with the RG flow equation, the
latter is an independent nonlinear second order partial
differential equation for Uk. This illustrates the difficulty
of dealing with modified Ward identities in the FRG
framework. For a discussion of these issues in the context
of gauge theories, see, for instance, [35,36].
Can the limit a → 0 be of any help in solving this

complex problem? In addressing this question we need to
specify the behavior of the functions Uk and Z̃k for a → 0.
For definiteness, we assume the scaling

∂ρU ∼ a; Z̃k ∼ a0; ϕ ∼ a0: ðB4Þ

Considering then Eq. (B3), it is natural to assume

H ∼ a; ðB5Þ

which allows the linear source term to be interpreted as
being part of the potential. However, inspection of the RHS
of Eq. (B3) reveals that the leading behavior of the one-loop
contribution is, in fact, a log a. As a consequence we
provide an ansatz encoded in the following definitions:

H ¼ aĤ; ðB6Þ

Ukðρ; HÞ ¼ aÛkðρ; ĤÞ − a logaF0ðρÞ
− a logð− log aÞF1ðρÞ: ðB7Þ

Notice that we choose an ansatz with F0 and F1 indepen-
dent of H. This might lead us to a particular solution of the
modified master equation. The modified master equation
then can be projected on three distinct equations, each
showing a different small a asymptotic behavior. The
Oða logðaÞÞ, Oða logð− log aÞÞ, and OðaÞ terms in this
equation, respectively, lead to

F0
0ðρÞÛð0;1Þðρ; HÞ ¼ −

Zkk2

4πg2k

Ûð1;1Þðρ; HÞ
Z̃kðρÞ

; ðB8Þ

F0
1ðρÞÛð0;1Þðρ; HÞ ¼ −

Zkk2

4πg2k

Ûð1;1Þðρ; HÞ
Z̃kðρÞ

; ðB9Þ

H þ Ûð0;1Þðρ; HÞÛð1;0Þðρ; HÞ

¼ −
Zkk2

4πg2k

Ûð1;1Þðρ; HÞ
Z̃kðρÞ

�
log

�
Z̃kk2

F0
0ðρÞ þ 2ρF00

0ðρÞ
�
− 1

�
:

ðB10Þ
It is evident how the a → 0 limit does not relieve the
nonlinearity of the modified master equation. While the first
two equations can be straightforwardly solved forF0 andF1,
once Uðρ; HÞ is known, the third equation is highly non-
trivial. In fact, Eq. (B8) can be replaced inside Eq. (B10) to
obtain a second order nonlinear partial differential equation
for Û.While the construction of themost general solution is a
very complex task, whichwe expect in general to be possible
only by numerical methods, a particular solution can be
found by assuming the ansatz

Ûðρ; HÞ ¼ �Ĥ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Zk
− 2ρ

s
þF2ðρÞ: ðB11Þ

This leads to a first order ordinary differential equation for
F2, which can easily be solved. The determination of the
corresponding F0 and F1 results in the following particular
solution:

F0;1ðρÞ ¼ c0;1 þ
Zkk2ρ
4π

; ðB12Þ
17This general ansatz can be made compatible with the

assumed linear H dependence of the bare action, by requiring
the linearity of the potential at the UV cutoff scale k ¼ Λ.
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F2ðρÞ ¼ c2 −
Zkk2ρ
4π

log

�
g2

4π

�

þ k2

8π
ð1 − 2ZkρÞ logð1 − 2ZkρÞ; ðB13Þ

where c0;1;2 are integration constants that can depend on k.
Having an analytic formula for a particular solution of the
master equation is, of course, a nice result, which is possible
only thanks to the simplifications brought by the a → 0 limit.
However, in itself this result is of limited use, for two main
reasons. First, in general there is no reason to expect that this

anstaz be closed under the RG flow. Given the compatibility
of the flow equation with the master equation, any particular
solution is free to flow into themost general solutionduring an
infinitesimal RG step. Second, in the LPA case even this
compatibility is lost. As a consequence, the solution of
Eqs. (B7), (B12), and (B13) will flow into a potential that
does not fulfill the modified master equation. Therefore, this
solution would be useful only if accompanied by a prescrip-
tion for projecting the latter potential back onto a functional of
the same form as the particular solution itself. We do not
explore possible prescriptions for this projection in this work.
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