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High-energy positrons can be efficiently created through high-energy photons splitting into electron-
positron pairs under the influence of the Coulomb field. Here we show that a new degree of freedom—the
intrinsic orbital angular momentum (OAM)—can be introduced into relativistic positrons when the incident
photons are twisted. We develop the full-twisted scattering theory to describe the transfer of angular
momentum before and after the interaction. It is found that the total angular momentum (TAM) of the
photon is equally distributed between the positron and electron. For each photon TAM value, the generated
leptons gain a higher average OAM number when the photon spin is antiparallel to its TAM. The impact of
photon polarization on the OAM spectrum profile and the scattering probability is more significant at small
photon TAM numbers, owing to the various interaction channels influenced by flipping the photon spin.
Our work provides the theoretical basis to study OAM physics in particle scattering and to obtain copious
relativistic vortex positrons through the Beth-Heitler process.

DOI: 10.1103/PhysRevD.104.076025

I. INTRODUCTION

High-energy positrons are of great significance in modern
particle physics experiments. Their collision with energetic
electrons is essential in generating new particles such as
B mesons/Z bosons [1,2] and monitoring various reaction
processes via Bhabha scattering [3–5]. Further, in astrophys-
ics, positrons are strongly correlated to black hole physics
[6], gamma-ray bursts [7], and pair plasma physics [8,9].
Here interactionsmainly concern the energy/momentum and
the spin properties of the involved positrons. Recently, it was
pointed out that particles can also carry intrinsic orbital
angular momentum (OAM) as they do for optical photons
[10–12], in the presence of vortex states [13–18]. In trans-
mission electron microscopes (TEMs), vortex electrons have
been prepared in the 80–300 keV regime to improve the
resolution and reveal new information about the subjects
[19]. Interactions based on relativistic vortex particles have
also been studied in the framework of quantum

electrodynamics (QED), showing new features in Vavilov-
Cherenkov radiation [20,21] and the possibility of creating
spin-polarized particles from spinless ones [22].
Although high-energy vortex particles bring novel

insights in many interactions, the generation of relativistic
vortex positrons is extremely challenging. First, positrons,
unlike electrons, must be created before introducing any
features to the particle states. Second, manipulation of the
lepton wave packets in TEMs becomes invalid in the
relativistic regime, since the typical wavelengths of high-
energy leptons are too small. Recalling that vortex gamma
photons can be readily obtained from the Compton back-
scattering of Laguerre-Gaussian laser beams off high-
energy electrons [23], we propose a scheme to generate
vortex positrons at MeVenergies by bombarding the vortex
gamma photons onto high-Z material. Relativistic electron-
positron pairs can be created through the Beth-Heitler (BH)
process, which facilitates efficient positron sources. By
introducing a new degree of freedom—OAM—into the
interaction, we obtain the law of vorticity transfer from the
incident gamma photons to the created pairs. This is
achieved with the first full vortex scattering theory of
the BH process, developed in this work.

II. THEORY OF THE VORTEX BH PROCESS

The natural unit system ℏ ¼ c ¼ 1 is applied in all
calculations. We consider the process shown in Fig. 1(a).
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Here, a high-energy vortex photon bombards a high-Z
target. Under the influence of the Coulomb field, photons
may split into electron-positron pairs carrying the initial
OAM information. To capture the vortex nature of the
interaction, we use the Bessel modes to describe all
involved particles [18,23] in the cylindrical momentum
space k0 ¼ ðk0⊥;ϕk0 ; k0zÞ, with OAM defined with respect
to the same common z axis. It is a superposition of
plane wave states with the same energy but different phases
ϕk0 . The twisted photon takes the form Al;λ;μ

k⊥;kzðxÞ ¼R
Ãlðk0⊥ÞAl;μ

k0⊥;kzðxÞk0⊥dk0⊥dϕk0 , where l is the total angular

momentum (TAM) and λ ¼ �1 is the polarization param-
eter. Here, Aλ;μ

k ðxÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3ð2ωÞ

p
ελ;μk e−ik·x is the plane

wave state, and Ãlðk0⊥Þ ¼ 1=ð ffiffiffiffiffiffi
2π

p
ilk0⊥Þδðk0⊥ − k⊥Þeilϕk0 is

the Fourier spectrum, with ελk being the polarization vector
ðελk · k ¼ 0Þ. The twisted photon field can be expressed as

Al;λ;μ
k⊥;kzðxÞ ¼ εl;λ;μk⊥;kzðrÞeikzz−iωt ¼

eikzz−iωt

4π
ffiffiffiffi
ω

p

×

0
BBB@

0

ði=2Þ½ð1 − kz=ωÞΘlþλ
k⊥ ðrÞ þ ð1þ kz=ωÞΘl−λ

k⊥ ðrÞ�
ðλ=2Þ½ð1 − kz=ωÞΘlþλ

k⊥ ðrÞ − ð1þ kz=ωÞΘl−λ
k⊥ ðrÞ�

ðλk⊥=ωÞΘl
k⊥ðrÞ

1
CCCA;

ð1Þ

where ω is the photon energy, Θn
k⊥ðrÞ ¼ Jnðk⊥rÞeinθ is

the transverse function, and JnðrÞ is the Bessel function

of the first kind. The Coulomb field takes the form
ACoul
0 ð⃗xÞ ¼ −Ze=j⃗xj ¼ −4πZe

R
1=ð2πÞ3e−i⃗q·⃗x=j⃗qj2d3q.

We notice that the vortex photon field is not equivalent
to the eigenmodes of the OAM operator L̂z ¼ −i∂=∂θ
defined along the z direction. For weak spin-orbital
coupling, the OAM value can be well represented by the
quantity l − λ.
The twisted electron and positron states can be

constructed from the positive- and negative-frequency
plane wave solutions of the Dirac equation ψþ;s

p ðxÞ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p
e−ip·xð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ M=E
p

ξs;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − M=E

p ðσ · κÞξsÞT
and ψ−;s

p ðxÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p
eip·xð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − M=E
p ðσ · κÞηs;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ M=E
p

ηsÞT, where κ ¼ p=jpj is the unit vector of
the momentum, while ξs and ηs are the two-component
spinors characterizing the electron and positron spins in the
rest frame. The Fourier spectrum is the same as that of
photons. The one for positrons is therefore [18]

ψ−;m;s
p⊥;pzðxÞ ¼ vm;s

p⊥;pzðr; θÞe−ipzzþiEt ¼ e−ipzzþiEtffiffiffi
2

p ð2πÞ

×

2
64
0
B@

ffiffiffiffiffiffiffiffiffiffiffi
1 − M

E

q
pz
jpj σ

3ηsffiffiffiffiffiffiffiffiffiffiffiffi
1þ M

E

q
ηs

1
CAΘm

p⊥ðrÞ

−
ip⊥
jpj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M
E

r �
σ⊥m;p⊥ðr; θÞηs

0

��
ð2Þ

with σ⊥;m
p⊥ ðr; θÞ ¼

�
0 −Θm−1

p⊥ ðrÞ
Θmþ1

p⊥ ðrÞ 0

�
. The wave

function of the twisted electron is similar, with a different
plane wave bispinor, um;s

p⊥;pzðr; θÞ. Here, m stands for the
OAM number and s for the spin number. In principle, the
OAM number is not the eigenvalue of the vortex wave
function. It is, however, a good approximation if the spin-
orbital interaction (SOI) is not significant. This is the case
for the parameters considered here; hence, we takem as the
OAM in the following and discuss the effect of SOI in later
sections. In the perturbation theory, the scattering matrix of
twisted photons splitting into positron-electron pairs is
Sfi ¼ S1 þ S2. The first term is

S1 ¼ −
ie2

2

Z
d4xd4x0

d4q
ð2πÞ4 ψ̄

þ;m1;s1
p1⊥;p1z ðxÞ=Al;λ

k⊥;kzðxÞ

×
ð=qþMÞ
ðq2 −M2Þ e

−iq·ðx−x0Þγ0ψ−;m2;s2
p2⊥;p2z ðx0ÞACoul

0 ðx0Þ: ð3Þ

Here,M is the mass of the electron/positron, and =A ¼ Aμγ
μ.

Substituting the twisted photon state from Eq. (1) and the
Coulomb field and electron-positron states from Eq. (2)
into Eq. (3), we get

FIG. 1. (a) Schematic diagram of the twisted Beth-Heitler
process where a vortex electron-positron pair is created from
vortex photons bombarding high-Z atoms. (b) The probability
distribution of the created positron ofm2 ¼ −4, s2 ¼ −1=2 in the
momentum domain. (c) The probability distribution as a function
of the opening angle at different OAM values for s2 ¼ 1=2 (black
solid line) and s2 ¼ −1=2 (black dashed line). Parameters of the
incident photon are l ¼ 6, λ ¼ 1, ω̃ ¼ 5 MeV.
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S1 ¼
iZe3

4ð2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 −MÞðE2 −MÞ

ωE1E2

s
1

jp1jjp2j
δðω − E1 − E2Þ

× ξs1†Ξl;λ
k⊥;kzðm1; p1⊥; p1z;m2; p2⊥; p2zÞηs2 jEq¼−E2¼E1−ω

qz¼p1z−kz
;

ð4Þ

with

Ξl;λ
k⊥;kz ¼

�
ς11δl;m1−m2

ς12δl;m1−m2þ1

ς21δl;m1−m2−1 ς22δl;m1−m2

�
: ð5Þ

The integer l represents the photon TAM number, whilem1

and m2 are the OAM numbers of electrons and positrons,
respectively. Details of the matrix elements ς11, ς12, ς21,
and ς22 are included in the Appendix. The matrix S2 is
obtained by exchanging the photon and the Coulomb field
in S1, which leads to a different matrix Ξ̃ (see the
Appendix). Each matrix element in Ξ and Ξ̃ determines
the creation probability of pairs with different spin polar-
izations, and the angular momentum (AM)-dependent
Kronecker delta function gives the corresponding selection
rule for the twisted BH process:

l ¼ m1 −m2 þ Δ; ð6Þ

with Δ ¼ 0;�1. The minus sign before m2 in Eq. (6) is
consistent with the definition of positron AM. To calculate
the creation probability, we use the wave packet to des-
cribe the incident photon Aλ;l

μ ðxÞ ¼ R
1=

ffiffiffiffiffiffi
2ω

p
ρðk⊥; kzÞ×

Aλ;l
k⊥;kz;μðxÞdkzdk⊥, where the weighting function taking

Gaussian distributions ρðk⊥;kzÞ ¼Nτ⊥;τz exp½−ðk⊥− k̃⊥Þ2=
τ2⊥− ðkz− k̃zÞ2=τ2z �, with central momenta and energy
k̃⊥; k̃z and ω̃. The wave-packet widths in the transverse
and longitudinal directions are τ⊥ and τz. Under the narrow
wave-packet approximation τ⊥ðzÞ ≪ k̃⊥ðzÞ, we get

jSwave-packetj2 ¼ C × Z2πα3δðω̃ − E1 − E2Þ

×
ðE1 −MÞðE2 −MÞ
ω̃E1E2jp1j2jp2j2

× Tr½ξs1ξs1†ðΞþ Ξ̃Þηs2ηs2†ðΞþ Ξ̃Þ†�; ð7Þ

where

C¼N2
τ⊥;τz
2

exp

�
−
2ω̃2

τ2

� ffiffiffi
π

p
τ

2
ffiffiffi
2

p
Z

dθk0dθksinθk0 sinθk

×

�
1þErf

�
1ffiffiffi
2

p
τ
ðk̃⊥ðsinθk0 þsinθkÞþk̃zðcosθk0 þcosθkÞÞ

��

×exp

�
1

2τ2
ðk̃⊥ðsinθk0 þsinθkÞþk̃zðcosθk0 þcosθkÞÞ2

�
ω̃3

ð8Þ

is a coefficient associated with the wave packet, and θ is the
opening angle of the incident particle in the wave packet,
tanðθÞ≡ k⊥=kz. The pair creation probability is

dP ¼ p1⊥p2⊥jSwave-packetj2dp1⊥dp1zdp2⊥dp2z: ð9Þ

III. RESULTS

In order to calculate the scattering probabilities, we set
the central energy and momenta of the photon wave packet
as ω̃ ¼ 5 MeV, k̃z ¼ 4 MeV, k̃⊥ ¼ 3 MeV; the photon
polarization is λ ¼ 1, and the TAM number is l ¼ 6. We
consider photons interacting with copper atoms ðZ ¼ 29Þ.
By integrating the momentum of the electron in Eq. (9), we
obtain the creation probability of the positron. As is known
in plane wave scattering, the interaction follows energy and
momentum conservation, leading to a thin resonance line in
the momentum space, as represented by the dashed circle in
Fig. 1(b). However, in vortex scattering, the conservation
is for energy alone. The resonance condition is signifi-
cantly relaxed, such that the probability is distributed in a
broad region in Fig. 1(b). Furthermore, it is seen that the
probability peaks along a certain angle. In Fig. 1(c), we
summarize the angular-dependent distribution of positrons
at different OAM values m2. While the highest value varies
with the OAM, all profiles exhibit peaks at similar angles.
The average angular distribution is around θ ≈ 0.68, which
coincides with the azimuthal angle of the incident photon,
tanðθÞ ¼ k⊥=kz ¼ 3=4, θ ¼ 0.64. In other words, the
azimuthal angle at which most positrons are created is
largely conserved in a paraxial collision. One should notice
that in plane wave scattering, the scattering angle is
dependent on the outgoing particle energy.
We also compare the distributions of the final positron

with spin-up and spin-down states in Fig. 1(c). For the
case we considered, the spin-down channel contributes to a
large part of the interaction probability. Thus, the generated
particle is obviously polarized. This is consistent with
the propagation of polarization from polarized photons to
positrons [24–26]. The polarization is, however, not 100%,
indicating spin-orbital coupling during the scattering
process.
A central question about the vortex scattering is how

OAM is distributed among the final particles. In Fig. 2, we
show OAM spectra for the generated pair and their rela-
tionship with the TAM of the initial photon. We integrate
the momentum and sum over the spins of created pairs to
get the total probabilities at different OAM numbers, as
shown in Fig. 2(a) with photon TAM values of l ¼ 5, 10,
15, 20. The electron primarily carries OAM with the same
sign as the photon, while that of the positron is opposite.
This is because the defined direction of positron OAM is
opposite to that of an electron. As the photon TAM
increases, the central OAM shifts towards large values
accordingly. Furthermore, the total creation probability
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declines, and the OAM spectrum width increases at larger
photon TAM values, as illustrated in Fig. 2(b).
Figure 2(c) shows the averaged OAM number of the

created electron and positron after summing over the lepton
spins. It is seen that the electron and positron gain equal
average OAM, which are m̄1 ¼ −m̄2 ¼ 2.302 (2.646),
4.820 (5.165), 7.330 (7.666), and 9.836 (10.160) for λ ¼
1 (−1) with l ¼ 5, 10, 15, and 20, respectively, and the
corresponding equal average SAM values are s̄1 ¼ −s̄2 ¼
0.199 ð−0.147Þ, 0.181 ð−0.166Þ, 0.172 ð−0.164Þ, and
0.166 ð−0.157Þ. In either case, the symmetry among the
electron and positron is preserved: m̄1 þ s̄1 ¼ −m̄2 −
s̄2 ¼ l=2, and the partition of OAM satisfies the average
TAM conservation: m̄1 − m̄2 þ s̄1 − s̄2 ¼ l.
A flip of the photon polarization also changes the

orientation of lepton spins. It is seen in Fig. 2(d) that
the averaged spin number turns over when switching from
λ ¼ 1 to λ ¼ −1, which leads to higher average OAM in
Fig. 2(c) (red line). In fact, the effect of photon spin is also
imprinted in the asymmetric OAM distributions in Fig. 2(a)
at relatively small photon TAM numbers, e.g., l ¼ 5 and
10. This effect becomes less significant when l is large. We
show the total scattering probability as a function of the
photon TAM number in Fig. 2(c) with different photon
spins. It is seen that at each TAM value, the probability is
notably higher for λ ¼ 1. The difference is much more
suppressed when increasing the TAM.
To reveal how photon polarization affects the distribution

of positron and electron OAM, we divide the interaction
into four channels determined by the final spin states of the
leptons and compare their OAM spectra in Fig. 3 with those
of the photon TAM values l ¼ 10 and 20. First of all, for

λ ¼ 1 we find that the ð−1=2;−1=2Þ channel in Figs. 3(b)
and 3(f) is significantly suppressed as compared to the
ð1=2; 1=2Þ channel in Figs. 3(c) and 3(g). The situation is
reversed when switching to the λ ¼ −1 case. The trends
presented here are consistent with the polarized scattering
of plane wave states. The channels shown in Figs. 3(b)
ð−1=2;−1=2Þ and 3(c) ð1=2; 1=2Þ are independently sym-
metrical, exhibiting centers at m2 ¼ −5.5 and m2 ¼ −4.5
ðl ¼ 10; λ ¼ 1Þ. This is related to the δ functions in Eq. (5),
which are responsible for the channels in Figs. 3(b)
δl;m1−m2−1 and 3(c) δl;m1−m2þ1, where there is one unit shift
for both the positron and electron. We see that the
distribution centers do not necessarily correspond to the
spectrum peaks. In fact, the two probability peaks are
located at m2 ¼ −10 and −1 in Fig. 2(b), corresponding to
m1 ¼ 1 and 10 for the electron (not shown here), respec-
tively. Therefore, the combinations of electron-positron
OAM values ð1;−10Þ and ð10;−1Þ dominate the channel.
Adding the other channels leads to the nonmonopole
profiles in Fig. 2(a) at l ¼ 10.
Flipping the photon spin to λ ¼ −1 induces large vari-

ations to the profiles of the channels shown in Figs. 3(a) and
3(d), showing an enormous shift of the peak positrons. The
distributions indicate that ðm1; m2Þ ¼ ð9;−1Þ and ð1;−9Þ
are primary. We sum the two distributions (both have
s1 þ s2 ¼ 0) to produce symmetrical spectra centered at
m2 ¼ −5 for each photon spin state. As a result, the major
difference in terms of average OAM stems from changing
the spectrum center from the channel in Fig. 3(c) (λ ¼ 1) to
that in Fig. 3(b) ðλ ¼ −1Þ. This is why the leptons gain a
slightly larger OAM in the latter case.
For l ¼ 20, the spectra of Figs. 3(f) and 3(g) are much

more smooth and monopole-like. After summing up
the four channels, the OAM distribution shows good
symmetry, as seen in Fig. 2(a). This is because the ratio
between photon spin and TAM is much smaller here. As
mentioned above, a large disparity in the scattering prob-
ability between different photon spins is found in Fig. 2(b).

FIG. 3. Four channels of the OAM spectrum for positrons
when the photon polarization is varied between λ ¼ 1 (blue) and
λ ¼ −1 (red). Here, the photon TAM is (a)–(d) l ¼ 10 and
(e)–(h) l ¼ 20.

FIG. 2. (a) The OAM spectra of generated positrons (gray) and
electrons (red) corresponding to the photon TAM numbers of
5, 10, 15, and 20. (b) The total creation probability and the OAM
spectrum width as a function of the photon TAM. (c),(d) The
average OAM and spin values of the electron-positron pair in the
cases where the photon TAM is (c) parallel to polarization (λ ¼ 1)
and (d) antiparallel to polarization ðλ ¼ −1Þ.
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We notice that at l ¼ 10, the quantity related to the photon
OAM is approximately l − λ ¼ 9 for λ ¼ 1 and l − λ ¼ 11
for λ ¼ −1. To make a comparison at a commensurate
OAM value, one should choose l ¼ 8 for λ ¼ −1 rather
than l ¼ 10. We have the scattering probabilities of P ¼
2.26 × 10−4 with ðl ¼ 10, λ ¼ 1, l − λ ¼ 9Þ and P ¼ 2.4 ×
10−4 with ðl ¼ 8, λ ¼ −1, l − λ ¼ 9Þ. In other words, the
difference with the same l − λ vanishes. This observation
suggests that the photon spin has little effect on the total
probability when keeping l − λ (rather than l) constant.

IV. DISCUSSION

Spin-orbit coupling naturally exists in the quantum
vortex state in the relativistic regime. The average OAM
and spin angular momentum (SAM) of the vortex positron
state after considering the SOI are [18]

hmi ¼ ℏðmþ ΔsÞẑ; hsi ¼ ℏðs − ΔsÞẑ: ð10Þ

Here, Δ ¼ ð1 −M=EÞ sin2 θ denotes the SOI-induced
change. We take the photon TAM l ¼ 5 with different
polarizations to calculate the possibility as a function of the
average OAM and SAM in Fig. 4. As the opening angle θ
increases, both the average OAM hmi and SAM hsi deviate
from the quantized integrals. In general, the peak position
of average SAM is slightly lower than jsj ¼ 1=2 in all
cases, and the one for hmi is also quite close to the OAM
quantum number. These results validate our approxima-
tions in the analysis.

V. CONCLUSIONS

We employed the twisted states of photons and electrons/
positrons to calculate the scattering probabilities of twisted
photons into twisted electron-positron pairs under the
influence of the Coulomb field. We found that the photon
TAM is efficiently transferred to the final leptons. We
discussed the effect of spin-orbit coupling on average OAM
and SAM and noticed that angular momentum is also
transferred from spin to orbit. This work lays the founda-
tion of generating relativistic vortex positron beams for new
physics in a number of twisted scattering processes.
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APPENDIX: DERIVATION OF THE VORTEX BH PROCESS

The scattering matrix of this process is

Mfi ¼ −
e2

2

Z
d4xd4x0

d4q
ð2πÞ4 ū

m1;s1
p1⊥;p1zðxÞe−ip1zzþiE1tγμAl1;λ1

k1⊥;k1z;μðxÞ
ið=qþMÞ
ðq2 −M2Þ e

−iq·ðx−x0Þγ0vm2;s2
p2⊥;p2zðr0; θ0Þe−ip2zz0þiE2t0ACoul

0 ðx0Þ

−
e2

2

Z
d4xd4x0

d4q
ð2πÞ4 ū

m1;s1
p1⊥;p1zðxÞe−ip1zzþiE1tγ0ACoul

0 ðxÞ ið=qþMÞ
ðq2 −M2Þ e

−iq·ðx−x0Þγνvm2;s2
p2⊥;p2zðr0; θ0Þe−ip2zz0þiE2t0Al1;λ1

k1⊥;k1z;νðx0Þ:

ðA1Þ

Calculate the two items separately the first item Eq. (4) becomes:

M1;fi ¼ −
iZe3

4ð2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 −MÞðE2 −MÞ

ωE1E2

s
1

jp1jjp2j
δðω − E1 − E2Þ

× ξs1†ðI1 þ II1 þ III1 þ IV1 þ V1 þ VI1 þ VII1 þ VIII1 þ VIIII1Þηs2 jEq¼−E2¼E1−ω
qz¼p1z−k1z

ðA2Þ

I1–VIIII1 are all 2 × 2matrices through integration, and we find that the items at the corresponding positions have the same
delta function. Taking I1 as an example, the ultimate result is

FIG. 4. Dependence of the scattering probability on the average
OAM and opening angle of positron with (a) l ¼ 5, λ ¼ 1 and
(b) l ¼ 5, λ ¼ −1 when considering the spin-orbital coupling
during interactions. Inner figures show the average OAM and
spin after integrating the opening angle, indicating the deviation
from the quantum numbers m2 ¼ −3 and s2 ¼ �1=2.
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I1¼p1zp2zðEqþMÞ
Z

dq0⊥q0⊥
ðp1zþp2z−k1zÞ2þq02⊥

dq⊥q⊥
ðE2

q−ðp1z−k1zÞ2−q2⊥−M2Þ

×

0
B@

λ1k1⊥
ω1

Sm1

l1
ðk1⊥;p1⊥;q⊥ÞSm2

m2
ðq⊥;p2⊥;q0⊥Þδm2;m1−l1 −i

�
1þλ1k1z

ω1

�
Sm1

l1−1ðk1⊥;p1⊥;q⊥ÞSm2
m2
ðq⊥;p2⊥;q0⊥Þδm2;m1−l1þ1

−i
�
1−λ1k1z

ω1

�
Sm1

l1þ1ðk1⊥;p1⊥;q⊥ÞSm2
m2
ðq⊥;p2⊥;q0⊥Þδm2;m1−l1−1 −λ1k1⊥

ω1
Sm1

l1
ðk1⊥;p1⊥;q⊥ÞSm2

m2
ðq⊥;p2⊥;q0⊥Þδm2;m1−l1

1
CA:

ðA3Þ

Among them, we define the integral of the triple Bessel product:

Smn ðp; k; qÞ ¼
Z

drrJnðprÞJm−nðqrÞJmðkrÞ ¼ ð−1Þm
Z

drrJnðprÞJm−nðqrÞJ−mðkrÞ

¼ ð−1Þmδ
2πAp;q;k

cosðnðπ −∠p;qÞ þmðπ −∠k;qÞÞ ¼
ð−1Þnδ
2πAp;q;k

cosðn∠p;q þm∠k;qÞ

¼ ð−1Þmþnδ

2πAp;q;k
cosðm∠p;k þ ðm − nÞ∠p;qÞ ¼

δ

2πAp;q;k
cosðn∠p;k − ðm − nÞ∠k;qÞ: ðA4Þ

I1–VIIII1 are all similar to I1; eachmatrix element is the product of twoSmn ðp; k; qÞ functions (with differentm andn coefficients)
and is multiplied by the corresponding coefficients that depend on the photon momentum energy and polarization.
M2;fi is calculated in the same way, and finally we can get

Mfi ¼ M1;fi þM2;fi ¼
iZe3

4ð2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 −MÞðE2 −MÞ

ωE1E2

s
1

jp1jjp2j
δðω − E1 − E2Þξs1†ðΞjEq¼−E2¼E1−ω

qz¼p1z−k1z
þ Ξ̃jEq¼E1¼ω−E2

qz¼k1z−p2z
Þηs2 : ðA5Þ
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