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The holographic principle implies that quantum field theory (QFT) overcounts the number of
independent degrees of freedom in quantum gravity. An argument due to Cohen, Kaplan, and Nelson
(CKN) suggests that the number of degrees of freedom well described by QFT is even smaller than required
by holographic bounds, and CKN interpreted this result as indicative of a correlation between the UV and
IR cutoffs on QFT. Here, we consider an alternative interpretation in which the QFT degrees of freedom are
depleted as a function of scale. We use a simple recipe to estimate the impact of depleted densities of states
on precision observables, including the Lamb shift and lepton g − 2. Although these observables are not
sensitive to the level of depletion motivated by gravitational considerations, the phenomenological
exercises also provide an interesting test of quantum field theory that is independent of underlying quantum
gravity assumptions. A depleted density of states can also render the QFT vacuum energy UV insensitive,
reconciling the success of QFT in describing ordinary particle physics processes and its apparent failure in
predicting the cosmological constant.
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I. INTRODUCTION

We do not know how realistic quantum field theories
emerge as a low-energy approximation to a complete theory
of quantum gravity with a positive cosmological constant
(cc). However, it is likely that quantum field theory (QFT)
contains too many degrees of freedom, even with an ultra-
violet cutoff Λ well below the Planck scale. In QFT, the
maximum entropy localized in a box of size L scales
extensively as S ∼ ðΛLÞ3, while the holographic principle
limits the number of degrees of freedom in quantum gravity
to S ∼M2

pL2. Furthermore, this overabundance of QFT
states does not mean that most of the states in quantum
gravity have to behave like bulk QFT states. A hot box
containing QFT degrees of freedom collapses to a black
hole when T4L3=M2

p ∼ L, corresponding to an entropy
S ∼ ðMpLÞ3=2 ≪ M2

pL2. It could well be that the number
of degrees of freedom in the correct quantum theory of
gravity that are well described by bulk quantum field theory
is only of order L3=2 [1,2].
Let us first recall some old ideas for how bulk particles

might realize holographic bounds on degrees of freedom

[3–6]. In Ref. [6], particles are modeled as a collection of
indivisible partons in light front quantization. The number
of partons one should ascribe to a particle grows with the
laboratory frame energy ϵ and the resolution with which
its momentum can be measured: Nparton ∼ ϵL, where we
describe the momentum resolution as an infrared length
scale, Δp ¼ 1=L. Once the number of partons exceeds
some inverse coupling of the microscopic quantum gravity
theory, for example the string coupling g2s , the size of the
particle R begins to grow rapidly with each additional
parton. It scales as MpR ∼ ðϵLÞ1=ðd−1Þ in d spatial dimen-

sions, so that MpR ∼
ffiffiffiffiffiffi
ϵL

p
in d ¼ 3.

When the particle size is so large that it can no longer be
localized on length scales of order the inverse energy, it
ceases to be pointlike and cannot be regarded as an
excitation of one independent degree of freedom.
However, in the parton model, this limit depends on the
momentum resolution. We could interpret the saturation of
R ¼ 1=ϵ as supplying a bound on the typical momentum
spacing between individual particle degrees of freedom
around ϵ,

1=Lmin ¼ ϵ3=M2
p: ð1Þ

The spacing grows with energy, rapidly depleting the
single-particle density of states (DOS) gðϵÞ. In a box of
fixed size L, there is an energy scale ϵ̂ ¼ ðM2

p=LÞ1=3 at
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which the momentum resolution transitions from 1=L to
1=Lmin. Here, the relativistic DOS transitions from ordinary
QFT scaling g ∼ L3ϵ2 to g ∼ L3

minϵ
2. Most of the degrees of

freedom live around ϵ̂, and the maximum entropy is of
order ðLϵ̂Þ3 ∼ ðLMpÞ2, satisfying the holographic bound.
Alternatively, the same result is obtained by counting states
according to the scaling g ∼ ∂ϵðL3=R3Þ for R > 1=ϵ.
We see that the partonic model realizes the holographic

principle by a scale-dependent depletion of the independent
degrees of freedom, relative to the density of states of an
ordinary bulk field theory in a fixed volume.
However, as alluded to above, there is an argument due

to Cohen, Kaplan, and Nelson (CKN) that the number of
degrees of freedom that can be well described by bulk QFT
might be even smaller than what is implied by holography
[1]. CKN interpreted the entropy scaling S ∼ ðMpLÞ3=2 as
implying a correlation between the UV and IR cutoffs Λ
and L on QFT: requiring ðΛLÞ3 ≲ ðMpLÞ3=2, one arrives at
the bound

L≲Mp=Λ2: ð2Þ

For a weak-scale UV cutoff, L is the order of 1 cm when the
bound is saturated. What this IR scale means, however, is
unclear. In Ref. [1], it was interpreted as an IR momentum
cutoff on Feynman graphs for a given UV cutoff, and
recently, there has been renewed interest in this interpre-
tation of the bound and its possible implications for
precision measurements [7–9]. In fact, this interpretation
suggests that the effects of quantum gravity on precision
observables are so large that they may be detectable
following plausible experimental improvements [1,7–9].
In this paper, we consider a different interpretation,

introduced in Ref. [10], where 1=L is taken to be a bound
on a characteristic momentum spacing between indepen-
dent degrees of freedom that can be well described by bulk
quantum field theory. In other words, L controls a depletion
of the single-particle density of states of ordinary QFT, and
the depletion may be stronger than what is required by
holography alone.
An insightful observation made in Refs. [1,11] was

phrased in Ref. [1] as follows: “There is in fact no evidence
that fields at present experimental energies can fluctuate
independently over a region as large as our horizon.” Over
how large a region can localized excitations of a typical
energy fluctuate independently? This is both an empirical
question and a question of principle. In order to localize an
excitation of energy approximately ϵ in, say, a minimal
region of size 1=ϵ, inside of a much larger region
approximately L, there must be many independent modes
around ϵ with momentum spacing Δp ∼ 1=L. Since no real
experiment is sensitive to arbitrarily small differences in
momenta or energy, however, there are only empirical
lower bounds on the QFT single-particle density of states.
As a matter of principle, we interpret the bound (2) as a

fundamental upper limit on the DOS. The bound (2)
suggests that the relativistic DOS is depleted above some
energy scale, behaving as

g ∼
�
L3ϵ2 ϵ2 ≪ Mp=L

M3
p=ϵ4 ϵ2 ≫ Mp=L

: ð3Þ

We can parametrize the scale-dependent depletion in terms
of an effective box size at different energy scales,
LeffðϵÞ ¼ minðL;Mp=ϵ2Þ. This interpretation is similar
to the holographic partonic picture described above, but
with different scalings, such that Leff of Eq. (3) is smaller
than the holographic Lmin of Eq. (1).
In this work, we will consider first the empirical

question: how well has the single-particle density of states
been tested at various energy scales? This assessment is
independent of any more fundamental motivations about
quantum gravity and represents an interesting, somewhat
unconventional axis along which quantum field theory can
be tested. Simple estimates can be made based on the
sensitivity of detectors, while less trivial estimates arise
from precision measurements of observables that involve
sums over intermediate states at characteristic energies ϵ. In
the latter category, we consider atomic spectra and leptonic
g − 2, using finite-volume techniques to impose a discre-
tization of the state space. In this way, we can associate an
empirical lower bound on the IR scale LeffðϵÞ from these
measurements. We compare the empirical bounds on Leff to
(3), finding that current precision falls well short of the
modifications suggested by these gravitational arguments.
Thus, this is an interpretation of the CKN bound that does
minimal violence to the predictions of ordinary QFT.
We then reexamine the CKN “hot box” thought experi-

ments using the depleted DOS in Eq. (3) and generalize it to
other power laws. We note that there are some nonthermal,
high-occupancy states which would collapse to a black hole
in a gravitational theory and which are not removed either
by depleting the single-particle DOS or by placing corre-
lated cutoffs on Feynman integrals. Some states must be
excised by other effects.
We emphasize that we do not have any concrete proposal

for how a fundamental depletion of QFT modes should be
implemented nor do we know how Lorentz invariance and
locality should emerge. In Matrix Theory, a theory which
realizes the holographic principle yet gives rise to a
supergravity theory at long distances, Lorentz invariance
and locality of scattering amplitudes are thought to result
from delicate cancellations and depend intricately on the
Bogomol’nyi-Prasad-Sommerfield nature of the partons
[12]. We will at least not assume any modification to the
relativistic dispersion relations, which provide the most
sensitive experimental probes of Lorentz invariance, and
our results for g − 2 and the Lamb shift differ from the
predictions of ordinary relativistic QFT by Oð1=M2

pÞ.
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These exercises have curious implications for the cos-
mological constant problem. The QFT contribution to the
total vacuum energy can be written as

Δρ ∼ V−1
Z

g̃ðϵÞϵdϵ; ð4Þ

which is quartically divergent for the usual DOS. This
expression depends on the graded DOS g̃ ¼ ð−1ÞFg where
F ¼ 0 (1) for bosons (fermions). Exact supersymmetry
solves the cosmological constant problem within quantum
field theory alone because it depletes the graded DOS
completely, leaving unaffected the ordinary DOS for
different species. A few other distinct and fascinating
examples in quantum field theory also yield cancellations
in the graded DOS [13,14]. We are instead considering the
possibility that the DOS is depleted for each species
separately and that this depletion is intrinsically gravi-
tational—it disappears in the Mp → ∞ limit. With the
depletion (3), for example, the fine-tuning problem is
removed. Moreover, we will conclude that the bounds
on the DOS obtained from precision particle physics
measurements are far from definitively establishing that
the cc problem is a problem, without invoking a substantial
extrapolation.

II. EMPIRICAL PROBES OF THE QFT DENSITY
OF STATES

The density of states enters into the sum over intermediate
states in precision processes. For such processes, we can
estimate the sensitivity to the DOS using finite-volume
techniques. Placing a theory in a periodic box of volume
L3, the DOS of a massless particle is depleted in a scale-
independent way from the continuum to g ∼ ϵ2L3. Standard
techniques can be used to compute the L-dependent effects
on the process, typically considered as a power series in 1=L
for large boxes. Since we are interested in the sensitivity of
observables to the DOS at different scales, we proceed as
follows. Given an observable O computed in perturbation
theory, we isolate in some manner the perturbative correc-
tions to O from intermediate states where the individual
particles all have some characteristic energy ϵ�. Call these
contributions Oϵ� . Placing the theory in a box of size L, we
then compute the 1=L corrections to Oϵ� , denoted OL

ϵ� .
ComparingOL

ϵ� to the experimental precision with which O
is known, we can place a lower bound on the box size,

L > LO. We identify this bound as the current experimental
limit on the depleted density of states at ϵ�, parametrized by
the effective length scale Leff :

Leffðϵ�Þ > LO: ð5Þ
In other words, the impact of the depletion can be

approximated as a finite-volume effect in a box of size
Leffðϵ�Þ. Corrections to this estimate dependonΔϵ=ϵ�, where
Δϵ is the range of energies allowed to contribute to Oϵ� .
Such estimates can be performed entirely numerically.

However, we will find it convenient to take a slightly
different approach. Wewill compute the entire L-dependent
effects on observables O analytically as a series in 1=L,
then inspect the terms to see which intermediate energy
scales contribute dominantly to each power of 1=L.
What these methods lack in sophistication, we hope they

make up for in generality; since at best we obtain only
conservative, order-of-magnitude bounds on Leff , they
might have some resilience against whatever detailed form
the actual depletion takes.
We begin by computing the modification to the Coulomb

potential and infer bounds on Leffðϵ⋆ ¼ αmeÞ from atomic
physics. We then consider state depletion effects on
Leffðϵ⋆ ¼ meÞ from g − 2, since that precisely known
quantity has been of particular interest in the CKN-related
literature [1,7–10]. Finally, we briefly consider bounds at
higher energies based on the measured resolution of
detectors.

A. Coulomb forces and bound state energies

The depletion of single-particle states can affect the
electromagnetic force in atomic physics. In standard QFT,
the Coulomb potential is

VðrÞ ¼ −
Z

d3q
ð2πÞ3

e2

q2
eiq·r ¼ −

e2

2π2r

Z
∞

0

dq̃
sin q̃
q̃

: ð6Þ

In old-fashioned perturbation theory, the integral over q
corresponds to a sum over on-shell intermediate states with
momentum q and energyE ¼ jqj. We leave the final integral
over q̃ ¼ qr unevaluated in Eq. (6) to highlight the fact that
the largest contribution comes from modes with qr≲ 1.
As described above, we model a depletion of the DOS

by putting the system in a box of size L. Following
Refs. [15,16], we rewrite the integrand in Eq. (6) in
Schwinger parametrization and discretize Cartesian
momenta qi → ð2πniÞ=L:

VðrÞ ¼ −e2
Z

∞

0

dρ
1

L3

Y3
i¼1

� Xþ∞

ni¼−∞
exp

�
−ρ

�
2πni
L

�
2

þ i

�
2πni
L

�
ri

��

¼ −
e2

L3

Z
∞

0

dρ
Y3
i¼1

θ3

�
−
πri
L

; e−4π
2ρ=L2

�
; ð7Þ
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where

θ3ðz; τÞ ¼
Xþ∞

n¼−∞
expðiπn2τ þ i2πnzÞ ð8Þ

is the elliptic theta function. The integral in Eq. (7) is infrared
divergent, which can be seen by expanding the integrand at
4π2ρ=L2 ≫ 1:

Y3
i¼1

θ3

�
−
πri
L

; e−4π
2ρ=L2

�

≈ 1þ 2

�
cos

2πx
L

þ cos
2πy
L

þ cos
2πz
L

�
e−4π

2ρ=L2

: ð9Þ

The constant term can be traced back to the zero modes
in the first line of Eq. (7). This divergence is spurious and
absent in the continuum where the integrand d3q=q2 is finite
as q → 0. It can be removed by subtracting the zero mode
contribution [15],

VRðrÞ ¼ −e2
Z

∞

0

dρ
1

L3

�Y3
i¼1

θ3

�
−
πri
L

; e−4π
2ρ=L2

�
− 1

�

ð10Þ

≈ −
e2

4πr

�
1 − 2.84

r
L
þ 2.09

r3

L3
þ…

�
; ð11Þ

where in the last line we chose r ¼ rẑ and expanded in r=L.1

Even terms are absent in parentheses because θ3 is an even
function of its first argument, and the numerical result in the
final line is obtained by fitting a polynomial to VRðrÞ=ð−e2=
4πrÞ. These coefficients can also be computed semianalyti-
cally by splitting the ρ integration into a region with ρL2 ≪ 1
(where one can perform a small ρ expansion but not an r=L
expansion) and another where one can expand in r=L; this
calculation is presented inAppendixA.We have checked that
these two approaches agree. For our purposes, all that is
important is the powers of r=L. The r → 0 limit of Eq. (11)
also matches the results of Ref. [15].
The leading correction to the potential in Eq. (11) is

independent of r and thus does not contribute to energy
level splittings. Therefore, from the absence of an ðr=LÞ2
term in (11), naively we might conclude that the impact
of a depleted density of states on energy levels starts at
Oððr=LÞ3Þ. However, our calculation involved a sum
over all momenta, and it is not immediately clear whether
these corrections are produced primarily by small momenta,

q ≪ 1=r [i.e., n ≪ L=ð2πrÞ modes] or momenta q ∼ 1=r
[i.e., n ∼ L=ð2πrÞ modes]. As discussed in Sec. II, we are
really interested in scale-dependent depletions, so we want
to isolate the contributions of particular energy regimes to
the L-dependence. We elect to focus on the highest energy
scales that contribute significantly to the observable—in the
present case, the scales q ∼ 1=r. Of course, higher energy
states still contribute to the observables, and this is why
precise atomic measurements can test weak-scale physics.
Their effect on L-dependent corrections, however, is sup-
pressed compared to q ∼ 1=r states, generally leading to
weaker constraints on the Leff (albeit at a different energy).
We will demonstrate this point more explicitly in the
following section.
We isolate the contribution of q ∼ 1=r momenta by

considering the difference between the continuum and
discrete calculation in different cells in n ¼ Lq=ð2πÞ
space. We partition the continuum integration region in
Eq. (6) into unit cubes corresponding to the terms in the
discrete sum, such that the differences can be computed cell
by cell. Since the integrand is even and the entire
integration region is symmetric, we add the contributions
from all eight cells that are related to each other by parity
operations; the set of these eight cells is denoted by PN. For
example, for the cell with the lowest vertex at N, we find

4π2LΔN¼
X
M∈PN

�Z
M
d3n

cosð2πnzr=LÞ
n2

−
cosð2πMzr=LÞ

M2

�
;

ð12Þ

where the integration in the first term is over the cell.
Details of this calculation are given in Appendix B.
For jNj ≫ 1, the integrand is slowly varying over the

unit cube, so the integral can be performed by doing a
Taylor expansion around N. In the regime of interest
Ni ∼ L=ð2πrÞ ≫ 1, the result simplifies to

4π2LΔN ≈
4ð11N2 þ 9Þc

3N6

þ ð2πr=LÞð4N2ðNz − 5Þ − 6ð4Nz þ 5ÞÞs
3N6

þ ð2πr=LÞ2ð2N2ðN2 þ NzÞ − 3ð4Nz þ 5ÞÞc
3N6

þOðð2πr=LÞ3Þ; ð13Þ

where s and c are the sine and cosine of 2πNzr=L and we
presented only the first three terms in the r=L expansion for
brevity. There are OðN3Þ such contributions, so the total
finite-volume correction from Ni ∼ L=ð2πrÞ scales as

ΔN × N3 ∼
�

1

4π2

��
r
L2

þ r2

L3
þ r3

L4
þ…

�
: ð14Þ

1Note that, because the n lattice is not rotationally invariant,
this choice of r is not fully generic. Since we do not know how the
real depletion of states should be realized, we neglect angular
dependence and merely use the finite-volume technique to extract
the jrj=L scaling of the finite-L corrections.
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Here, we have dropped numerical coefficients and taken the
trigonometric functions to be Oð1Þ. Equation (14) is a
somewhat surprising result because the term of order 1=L2

is absent in the full result in Eq. (11).2 We have numerically
confirmed this by computing the differences between
continuum and discrete contributions to the potential from
momenta of order 1=r. We conclude that the 1=L2

corrections cancel if the depletion of states (effective
box size) is energy-independent. If the depletion is instead
energy-dependent, this cancellation might be spoiled. Since
we do not know the precise functional form of the
depletion, it is possible that the leading (additive)
r-dependent corrections to the Coulomb potential scale
as either r=L2 or r2=L3. Below, we will consider both
possibilities in estimating the sensitivity of atomic level
splittings to the depletion scale.

1. Finite-volume effects in hydrogen

From the above, we are led to consider corrections to the
Coulomb potential of the form

ΔVðrÞ ∼ e2

L

�
r
L

�
p
; ð15Þ

where p may be 1 or 2. The hydrogen wave functions are

ψnlm ¼ cnl
a3=2

�
2r
na

�
l
L2lþ1
n−l−1

�
2r
na

�
e−r=ðnaÞYm

l ðθ;ϕÞ; ð16Þ

where a ¼ 1=ðαmeÞ, Lq
pðxÞ is an associated Laguerre

polynomial and cnl is a normalization constant. The shifts
to specific energy levels δEnl can be estimated as

δEnl ¼hnlmjΔVjnlmi

¼ c2nl

�
n
2

�
3
Z

∞

0

duu2þ2lΔVðanu=2Þ½L2lþ1
n−l−1ðuÞ�2e−u:

ð17Þ

One of the most precisely measured splittings measured is
the Lamb shift ΔE ¼ Eð2S1=2Þ − Eð2P1=2Þ. The experi-
mental value is [17]

ΔE ¼ 1057845ð9Þ kHz; ð18Þ

in agreement with theoretical predictions (these depend
on the proton radius, so the two inconsistent values give
somewhat different predictions [18]). While there are
slightly more precise experimental extractions of ΔE than
Ref. [17], they rely on combinations multiple energy
levels, complicating comparison with theory. For a direct

measurement of ΔE like [17], the magnitude of the finite-L
correction is simply

δðΔEÞ ¼ jδE20 − δE21j ∼
e2

L

�
a
L

�
p
: ð19Þ

Demanding that this shift is less than the experimental
uncertainty gives a lower bound on L:

LeffðkeVÞ≳
�
10−3 m p ¼ 1

10−6 m p ¼ 2;
ð20Þ

where the characteristic energy is ϵ� ∼ αme ∼ keV. For
comparison, the effective box size implied by the CKN
DOS at this energy scale is

LCKNðkeVÞ ∼ 1014 m: ð21Þ

B. Anomalous magnetic moment of leptons

The electron anomalous magnetic moment is one of the
most precisely measured quantities in particle physics.
Previous works have computed the corrections to lepton
g − 2 in a finite volume [8,10,15,19]. Since we are
interested in energy-dependent effective volumes LeffðϵÞ,
as above, we will need to modify these computations to
isolate just the finite-volume terms that arise from a
particular energy scale of the individual particles in the
intermediate state. As before, we elect to focus on the
energy scale which contributes the most to the observable,
which for g − 2 is ∼me. Unlike the leading-order Coulomb
problem considered in the previous section, the intermedi-
ate states contributing to g − 2 are multiparticle. This
choice of energy scale has the additional advantage that
all the intermediate state particles are (semi)relativistic and
have energies of similar order. The incredible precision of
g − 2 measurements also means that the observable is
sensitive to subdominant higher-energy intermediate states
with the same property. We will argue at the end of this
section that isolating these states instead leads to weaker
constraints on Leff (albeit at a different energy scale).
The ordinary one-loop infinite-volume contribution to

g − 2 is [20]

a ¼ α

2π
: ð22Þ

We can rewrite the usual covariant Feynman integral in two
useful ways. First is as a 3-momentum integral,

a ¼ 6πα

Z
d3k
ð2πÞ3

2kðk −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

e

p
Þ þm2

e

3k2m2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

e

p : ð23Þ

Here, k is the 3-momentum of an internal electron. (All
results in this section can be repeated for the muon with the
replacement me → mμ.) The external electrons are at rest,

2Note that the r-independent Casimir term in Eq. (11) is absent
from Eq. (14) because it is generated entirely by very low
momenta, q ∼ 1=L, i.e., jnj ∼ 1.
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and the external photon momentum is taken to zero.
The integrand is dominated by jkj≲me. In old-fashioned
perturbation theory, where the intermediate states are on
shell, the intermediate photon energy is of order jkj, and the
electron energies are of order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

e

p
. Therefore, when

jkj ∼me, all of the intermediate state particles have energies
of order me. Thus, we can estimate a lower bound on the
DOS at energies of order me, gðmeÞ, by isolating the
contribution to g − 2 from jkj ∼me and computing
the effects of finite volume on it.
The second useful representation of the one-loop g − 2 is

the Schwinger parametrization,

a ¼ 2
ffiffiffi
π

p
α

m2
e

Z
∞

0

dρffiffiffi
ρ

p
Z

d3k
ð2πÞ3 fðρÞe

−ρk2

¼ α

4πm2
e

Z
∞

0

dρ
ρ2

fðρÞ: ð24Þ

Here, we have defined for convenience

fðρÞ≡ 4m4
eρ

2

Z
1

0

dzzð1 − zÞ2e−ρm2
eð1−zÞ2

¼ −2þme
ffiffiffiffiffiffi
πρ

p
Erfðme

ffiffiffi
ρ

p Þ þ 2e−m
2
eρ: ð25Þ

Now, we compute the sensitivity of a to the density of
states gðϵÞ by placing the process in a finite box of size L3.
We discretize the momenta, k → 2πn=L, and perform the
sum over the n lattice. In the Schwinger parametrization the
result can be expressed in terms of theta functions,

X∞
n¼−∞

e−ρð2πn=LÞ2 ¼ θ3ðe−4π2ρ=L2Þ ¼ L
2

ffiffiffiffiffiffi
πρ

p θ3ðe−L2=4ρÞ;

ð26Þ

where the two expressions are related by Poisson summa-
tion and θ3ðτÞ ¼ θ3ð0; τÞ in the definition of Eq. (8). In a
finite box, the zero mode does not contribute to Feynman
sums and must be omitted to avoid a spurious infrared
divergence in the integral over ρ. Including this subtraction,
we have

aL ≡ 2
ffiffiffi
π

p
α

m2
e

Z
∞

0

dρffiffiffi
ρ

p fðρÞL−3
	
θ3
	
e−

4π2ρ

L2



3
− 1




¼ α

4πm2
e

Z
∞

0

dρ
ρ2

fðρÞ
�
θ3ðe−

L2
4ρÞ3 − 8π

3
2ρ

3
2

L3

�
: ð27Þ

We can obtain an approximation to Eq. (27) as a series in
1=ðmeLÞ ≪ 1. Details are given in Appendix A; here, we
give only the result:

aL≈
α

2π
ð1−8.91ðmeLÞ−1þ35.65ðmeLÞ−2−59.21ðmeLÞ−3Þ:

ð28Þ

The leading correction, −8.91ðmeLÞ−1, is similar in mag-
nitude to the result obtained by Hasenfratz and Leutwyler
[15] for the first corrections to the two-point function; the
integrand in that case is equivalent to ours in the large-ρ
limit of fðρÞ.3
The finite L effects on the entire mode sum are of order

L−1. However, our interest is in the contribution to the finite
L effects from modes around k ∼me. In fact, it is easy to
see that the 1=L contribution in Eq. (28) comes entirely
from the very low-momentum part of the mode sum, where
k ∼ 1=L. Finite L effects are equivalent to the error
introduced by performing a Riemann sum k → 2πn=L
instead of an integral over k. The error contribution from
the momentum bin atN (summed over all eight bins related
by parity) is

ΔN ¼ 6πα

L3

X
M∈PN

�Z
M
d3ng

�
2πn
meL

�
− g

�
2πM
meL

��
; ð29Þ

where gðk=meÞ is the dimensionless form of the integrand in
Eq. (23). Repeating the Riemann error analysis of Sec. II A
yields a total error estimate from the OðN3Þ cells with
N ∼ Lme=ð2πÞ ≫ 1 (corresponding to k ∼meÞ

ΔN × N3 ∼
6πα

ðmeLÞ2
: ð30Þ

We conclude that the 1=L term in Eq. (28) arises from low-
energy modes, rather than typical modes of k ∼me. On the
other hand, generic contributions from k ∼me are expected
to be Oð1=L2Þ by the Riemann sum argument above. As
before, the summation of all eight cells related by parity is
key in obtaining the contribution of k ∼me modes. These
conclusions are readily verified numerically, performing
sums over low and high momentum modes and comparing
to integration over the same k-volumes. Thus, wewill use the
term of order 1=L2 in Eq. (28) to estimate the effect on g − 2
of depleting the density of states near k ∼me. This is in
contrast to Ref. [10], which used 1=L scaling; aswe have just
argued, however, such corrections are associated with low
energies rather than k ∼me.
We are now in a position to convert these corrections into

limits on the single-particle DOS at ϵ ∼me, parametrized
by an effective box size LeffðmeÞ, and we can do the same
for the muon. For our purposes, we will neglect existing

3fðρÞ ∼ −2þ
ffiffiffiffiffiffiffiffiffiffiffi
πρm2

e

p
at large ρ, up to exponentially small

corrections. The appearance of
ffiffiffiffiffiffi
m2

e

p
in this asymptotic expan-

sion is responsible for the odd powers of me appearing in
Eq. (28), despite the fact that the integrand in Eq. (27) is an
even function of me.

NIKITA BLINOV and PATRICK DRAPER PHYS. REV. D 104, 076024 (2021)

076024-6



discrepancies between experiment and theory. ae has been
measured to about 1 ppb and aμ to about 0.3 ppm. Using
the 1=L2 scaling for the corrections, we find

LeffðmeÞ≳ 105m−1
e ≃ 10 nm

LeffðmμÞ≳ 104m−1
μ ≃ 100 fm: ð31Þ

Note that we would obtain a much stronger bound if we
discretized the state space by 1=L at all scales; in this case,
a is corrected at Oð1=LÞ. This is the standard scaling for
finite-volume corrections to g − 2 in a fixed box [10,21]
and was used in both Ref. [10] and a more recent analysis
of the standard correlated UV-IR cutoff interpretation of
CKN [8]. We are purposefully not using this scaling: as we
have seen, most of the effects from a real finite box come
from the lowest momenta of intermediate states, where the
intermediate photon is much softer than me.
The effective sizes implied by CKN scaling are

LCKNðmeÞ ≃ 1021m−1
e ≃ 105 km

LCKNðmμÞ ≃ 1019m−1
μ ≃ 20 km: ð32Þ

Clearly, we are in no danger of testing these densities.
In the discussion above, we focused on intermediate

states with energyme which generate the main contribution
to g − 2 and yield a constraint on LðmeÞ. We could instead
choose to focus on a higher energy scale P ≫ me. One can
still use Eq. (29) to estimate the effect of depletion of these
states:

ΔN × N3 ∼ a
ðme=PÞ2
ðPLÞ2 : ð33Þ

Compared to Eq. (30), these corrections are suppressed by
ðme=PÞ4 ≪ 1. For example, for P ∼ 100 GeV, we find
much weaker constraints on LeffðPÞ for electron and muon
g − 2, respectively:

Leffð100 GeVÞ≳ 10−4 fm

Leffð100 GeVÞ≳ 10−3 fm: ð34Þ

If L is modeled as a power law in 1=P with power less than
or equal to 2, then the strongest constraints on the
normalization come from energies around the lepton mass,
except in the case where the power is 2 and equally strong
constraints are obtained from higher energy scales as well.

C. Higher energy probes

The finite-volume technique used above for the Lamb
shift and g − 2 could be applied to other precision proc-
esses. However, at much higher energies, observables are
both predicted and measured with much lower precision.
Instead, we make some simpler qualitative estimates.

Many detectors in high-energy physics have energy
resolutions of order 0.1%–10%. For example, the electro-
magnetic calorimeter at CMS is able to measure electron
momenta to order 1% over a range 100 GeV—1 TeV [22].
Astrophysical observatories have access to even higher
energies. For example, IceCube observes PeV neutrinos
with an energy resolution of approximately 20% [23],
while the Pierre Auger Observatory measures approxi-
mately 100 EeV cosmic rays with a 7% resolution [24].
This implies an empirical bound on the effective length,
Leffð100 GeVÞ≳ 1 fm, Leffð106 GeVÞ ≳ 10−5 fm, and
Leffð1011 GeVÞ≳ 10−10 fm. These length scales are fac-
tors of 1013, 109, and 105 smaller than implied by the CKN-
inspired depletion of DOS in Eq. (3).

III. HOT BOXES AND DEPLETED DOS

Now, we return to the CKN bound, examining the
relation between hot box thought experiments and the
depleted DOS of Eq. (3) in more detail. We begin by
generalizing Eq. (3) to a family of modified single-particle
relativistic DOS,

gðϵÞ ¼ ϵ2LeffðϵÞ3; LeffðϵÞ ¼ min ðL;M−1
p ðMp=ϵÞnÞ

ð35Þ

for some n > 1. We ignore any Oð1Þ numbers. It is also
convenient to introduce the transition scale

ϵ̂≡Mp=ðMpLÞ1=n: ð36Þ

We take n > 1 so that the transition energy satisfies ϵ̂ ≫
1=L for all systems larger than the Planck length. For
single-particle energies ϵ < ϵ̂, the density of states is
depleted by ordinary finite-volume effects related to the
physical size of the system under consideration. For ϵ > ϵ̂,
it is depleted more strongly. We could further generalize the
factors of Mp in Eq. (35) to some lower scale associated
with quantum gravity, if such a scale exists, but for
simplicity, we will keep it as Mp.
Thus, we have a one-parameter family of models labeled

by the depletion rate parameter n. For large n, the depletion
rate as a function of energy is rapid, but the transition scale
is also high. For small n, the depletion rate with energy is
slow, but the transition scale is low. Primarily, we will be
interested in n ∼ 1–2, as we will see below.
Note that, since in any experimental system LMp ≫ 1,

the transition between standard and depleted density occurs
at scales far below Mp. We will also assume a cutoff on
QFT at E ∼Mp.
Now, we estimate the effects of the DOS depletion on hot

box gravitational backreaction, and the radiative correction
to the cosmological constant, as a function of the depletion
rate parameter n in Eq. (35).
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A. Hot boxes

The energy and entropy of a thermal state of free
particles are

E ¼
Z

dϵϵgðϵÞf�ðβϵÞ

S ¼
Z

dϵgðϵÞ½βϵf�ðβϵÞ � log ð1� e−βϵÞ�

¼ −
Z

dϵgðϵÞ½f� ln f� � ð1 ∓ f�Þ ln ð1 ∓ f�Þ�; ð37Þ

where f� is the Fermi-Dirac (+) or Bose-Einstein (−)
distribution function and β ¼ 1=T. We will estimate the
energy and the entropy for the depleted density of states
in Eq. (35).
First we consider the Fermi-Dirac case. For high but sub-

Planckian temperatures Mp ≫ T ≫ ϵ̂, the energy scales as

E ¼
Z

ϵ̂
dϵ

ϵ3L3

eβϵ þ 1
þ
Z
ϵ̂
dϵ

ðMp=ϵÞ3n−3
eβϵ þ 1

∼Mp

8>><
>>:

ðT=MpÞ4−3n 1 < n < 4=3

ln ½ðLTÞ=ðLMpÞ1=4� n ¼ 4=3

ðLMpÞ3−4=n n > 4=3;

ð38Þ

where we drop Oð1Þ factors and take n > 1 for reasons
described above. For n > 4=3, the energy is dominated by
contributions from modes near ϵ̂. As in CKN, we can
compare the Schwarzschild scale E=M2

p to the system size
L. The bound L > E=M2

p is satisfied for n < 2 and
saturated for n ¼ 2. For the entropy, the scaling behavior is

S ∼ ðLMpÞ3−3=n: ð39Þ

In the Bose-Einstein case, at high Mp ≫ T ≫ ϵ̂, the
energy behaves as

E ¼
Z

ϵ̂
dϵ

ϵ3L3

eβϵ − 1
þ
Z
ϵ̂
dϵ

ðMp=ϵÞ3n−3
eβϵ − 1

∼ TðLMpÞ3−3=n:

ð40Þ
again droppingOð1Þ factors. This scaling applies for n > 1
and is different from the Fermi-Dirac case due to large
occupation numbers in low-energy modes. Comparing the
Schwarzschild scale E=M2

p to the system size L, we find
that black holes are not formed for any T < Mp if n ≤ 3=2.
For n > 3=2, however, there is still a bound on the
temperatures,

T <
Mp

ðLMpÞ2−3=n
: ð41Þ

In fact, for n ¼ 2, the bound on T obtained in this manner is
approximately the same as in the original CKN bound. So,
in this case, the depletion of the density of states does not
automatically eliminate black holes at high temperatures in
finite-size bosonic systems.
On the other hand, no depleted single-particle DOS nor

correlated UV-IR cutoff on Feynman integrals can remove
black holes formed by nonthermal states of soft bosonic
modes with enormous occupation numbers. Some states
must be removed in a way that depends on the occupancy.
Instead, however, we can ask whether the entropy is
reduced in a way consistent with the CKN bound. The
entropy is

S ∼ ðLMpÞ3−3=n logðβϵ̂Þ: ð42Þ

Up to the logarithm, it saturates the L3=2 scaling for n ¼ 2.
From these thought experiments, we conclude that the

range 1 < n ≤ 2 is of interest, with possibly special roles
played by n ¼ 2 and n ¼ 3=2. n ¼ 2, the model used for
comparison in Sec. II, is the more conservative of the two; it
corresponds a faster rate of depletion, but it turns on at
higher energies, corresponding to a lesser overall depletion
at any given scale.

B. Cosmological constant

Finally, let us consider the impact of a depleted DOS on
the cosmological constant. In the power-law models above,
the QFT vacuum energy contribution to the cc is finite if
n > 4=3 and scales as

δρ ∼H3

Z
dϵϵgðϵÞ ∼ ϵ̂4; ð43Þ

where H is the Hubble scale. Unlike the local observables
considered in Sec. II, the cc does not have a preferred
energy scale ϵ�; rather, δρ is dominated by the most
numerous modes around ϵ̂.
The relative size of the correction in Eq. (43) is

δρ

ρ
∼
�

ρ

M4
p

�
2=n−1

: ð44Þ

We see that for n ≤ 2, the cc appears to be technically
natural, i.e., the quantum correction is at most of the size of
the cc itself. While n > 2 still gives rise to a finite δρ, the
correction exceeds the observed cc because the transition
scale ϵ̂ becomes too large. For n ¼ 2, ϵ̂ ∼meV. We
emphasize that we do not interpret this as a transition
energy beyond which QFT breaks down in all experiments.
Rather, ϵ > ϵ̂ merely marks the energy scale at which the
characteristic momentum spacing between independent
field modes exceeds H ∼ 10−33 eV. Systems much smaller
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than the horizon size (i.e., laboratory experiments) are
sensitive to a different DOS (i.e., different L and ϵ̂) and
therefore cannot constrain fluctuations over approximately
1=H, as emphasized by CKN [1]. This point of view is in
contrast with the idea that laboratory experiments which
measure the gravitation of vacuum fluctuations can be used
to justify the standard (UV-sensitive) QFT estimate of the
vacuum energy [25]. In fact, the (g − 2) calculation in
Sec. II B shows that even some of the most precise probes
of vacuum fluctuations are not sensitive to the depletion of
the DOS needed to address the cc fine-tuning problem.

IV. CONCLUSION

Quantum field theory provides an accurate description of
local observables over an enormous range of energy scales,
including high-energy collider processes and precision
measurements in atomic physics. However, a naive appli-
cation of QFT to extensive systems runs into conceptual
problems, including the violation of entropy bounds or
strong gravitational backreaction even for rather mundane
energy densities and volumes. For example, a 10 m room
filled with T ∼ 10 GeV plasma is within its own
Schwarzschild radius, implying that nongravitational
QFT must break down. Based on these thought experi-
ments, CKN proposed a correlation between the UVand the
IR cutoffs on QFT [1]. We have explored an alternative
interpretation proposed in Ref. [10], in which the indepen-
dent degrees of freedom are depleted in an energy scale-
dependent way. An analogous depletion has been suggested
in partonic models of holography [6]. We studied a simple
phenomenological implementation of a state depletion,
motivated by the “hot box” thought experiments of CKN.
For local observables, the DOS depletion can be viewed

as a finite-volume effect, where the volume depends on the
characteristic energy scale of the observable. We have
applied this reasoning to estimate the corrections to two
sensitive probes of QFT, lepton g − 2 and the hydrogen
Lamb shift, finding that, despite their incredible precision,
these measurements are far from being sensitive to the
depletions motivated by quantum gravity. Tests of the DOS

are, however, a novel axis for testing QFT. It would be
interesting explore other observations that probe the DOS
at different energy scales, such as high-energy cosmic-ray
scattering.
An interesting application of these DOS models is the

calculation of the QFT vacuum energy contribution to the
cosmological constant, which becomes UV insensitive if
the depletion is rapid enough. For a DOS that saturates the
CKN bound, we find that the cc is technically natural.
The most important questions, unaddressed here, are

how Lorentz invariance emerges and whether the QFT
entropy scaling SQFT ∼ ðMpLÞ3=2 can be motivated by
microscopic models analogous to the partonic models of
holography. The Holographic Space Time models of Banks
and Fischler [26–28], for example, have been argued to
realize just such a scaling [29].
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APPENDIX A: ANALYTIC RESULTS FOR
FINITE-VOLUME CORRECTIONS

In this Appendix, we give details of the calculation of the
1=L series for the Coulomb problem and lepton magnetic
moments, Eqs. (11) and (28), respectively.

1. Coulomb potential

We begin by splitting the ρ integration in the first line of
Eq. (11) into intervals ½0; ρ̂� and ðρ̂;∞Þ, where ρ̂ is chosen
such that 4π2ρ̂=L2 ≪ 1. In the first interval, we can expand
the integrand in 4π2ρ=L2 ≪ 1, perform the integration, and
then expand the result in r=L:

I1 ¼ −e2
Z

ρ̂

0

dρ
1

L3

�
θ3ð0; e−4π2ρ=L2Þθ3ð0; e−4π2ρ=L2Þθ3

�
−
r
L
; e−4π

2ρ=L2

�
− 1

�
ðA1Þ

≈ −
e2

4πr

�
1 −

r
L
ð4πρ̂=L2 þ L=

ffiffiffiffiffiffi
πρ̂

p
Þ þ r3

12
ffiffiffi
π

p
ρ̂3=2

�
: ðA2Þ

The final expansion in r=L is valid if r=L ≪
ffiffiffiffiffiffiffiffiffiffi
ρ̂=L2

p
. In the second interval, ðρ̂;∞Þ, the integrand can be expanded in r=L

because the function is analytic once the singularity at ρ ¼ 0 is excluded. The result is

I2 ¼ −e2
Z

∞

ρ̂
dρ

1

L3

�
θ3ð0; e−4π2ρ=L2Þθ3ð0; e−4π2ρ=L2Þθ3

�
−
r
L
; e−4π

2ρ=L2

�
− 1

�
ðA3Þ
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≈ −
e2

4πr

X
k¼0

c2kþ1ðr=LÞ2kþ1; ðA4Þ

where the first two coefficients are given by

c1 ¼
Z

∞

ρ̂
dρ½θ3ð0; e−4π2ρ=L2Þ3 − 1� ðA5aÞ

c3 ¼
Z

∞

ρ̂
dρ

π2

2
θ3ð0; e−4π2ρ=L2Þ2θ03ð0; e−4π

2ρ=L2Þ: ðA5bÞ

While I1 and I2 individually depend on the unphysical
parameter ρ̂, their sum does not, which we checked for a
large range of ρ̂=L2. The resulting r=L expansion of VR ¼
I1 þ I2 agrees with the one given in Eq. (11) obtained by a
fully numerical method.

2. Anomalous magnetic moment

In this Appendix, we derive the 1=L expansion for the
finite-volume corrections to g − 2 given in Eq. (28). To
simplify notation, we define

y≡meL: ðA6Þ

Let t ¼ L2

4πρ. In terms of t, we have

aL ¼ α

y2

Z
∞

0

dtt−3=2f

�
L2

4πt

�
ðθ3ðe−π=tÞ3 − 1Þ: ðA7Þ

Now, we split the integration into two regimes: 0 ≤ t ≤ y,
and y < t < ∞. In these regimes, different parts of the
integrands can be replaced by asymptotic expansions, up to
terms exponentially small in y:

aL ¼ α

2π
ðI1 þ I2Þ

I1 ≈ 2π

Z
y

0

dt

�
−

2

y2t
3
2

þ 1

2yt2

�
ðθ3ðe−π=tÞ3 − 1Þ

I2 ≈ 2π

Z
∞

y
dt

�
−

2

y2t
3
2

þ 2

y2t
3
2

e−
y2

4πt þ 1

2yt2
Erf

�
y

2
ffiffiffiffiffi
πt

p
��

ðt3=2 − 1Þ: ðA8Þ

First, consider I1. We can further split the integration range into 0 ≤ t ≤ t̂ and t̂ < t < y, for some 1 ≪ t̂ ≪ y. t̂ is arbitrary
as long as it falls in this range. Then, we can write

I1 ¼
c1ðt̂Þ
y

þ c2ðt̂Þ
y2

þ 2π

Z
y

t̂
dt

�
−

2

y2t
3
2

þ 1

2yt2

�
ðt32 − 1Þ

c1 ¼ 2π

Z
t̂

0

dt

�
1

2t2

�
ðθ3ðe−π=tÞ3 − 1Þ

c2 ¼ 2π

Z
t̂

0

dt

�
−
2

t
3
2

�
ðθ3ðe−π=tÞ3 − 1Þ; ðA9Þ

where c1 and c2 can be evaluated numerically for some arbitrary choice of t̂, and the remaining integral can be evaluated
analytically. We find

I1 ¼ 2πðy−1=2 − 3.42y−1 þ 6.17y−2 − 4y−5=2Þ: ðA10Þ

I2 can be treated similarly. It is convenient to redefine t̃ ¼ t=y2 so that

I2 ¼ 2π

Z
∞

1=y
dt̃

�
−2þ 2e−

1
4πt̃ þ 1

2
ffiffĩ
t

p Erf

�
1

2
ffiffiffiffiffi
πt̃

p
���

1 −
1

t̃3=2y3

�
ðA11Þ

and further split the integration range into 1=y ≤ t̃ ≤ ˆ̃t and ˆ̃t < t̃ < ∞, for some 1=y ≪ ˆ̃t ≪ 1. As before, ˆ̃t is arbitrary as
long as it falls in this range. Then,
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I2 ¼ c0ðˆ̃tÞ þ
c3ðˆ̃tÞ
y3

þ 2π

Z ˆ̃t

1=y
dt̃

�
−2þ 1

2
ffiffĩ
t

p
��

1 −
1

t̃3=2y3

�

c0 ¼ 2π

Z
∞

ˆ̃t
dt̃

�
−2þ 2e−

1
4πt̃ þ 1

2
ffiffĩ
t

p Erf

�
1

2
ffiffiffiffiffi
πt̃

p
��

c3 ¼ 2π

Z
∞

ˆ̃t
dt̃

�
−2þ 2e−

1
4πt̃ þ 1

2
ffiffĩ
t

p Erf

�
1

2
ffiffiffiffiffi
πt̃

p
���

−
1

t̃3=2

�
; ðA12Þ

where, as before, c0 and c3 can be evaluated numerically for some arbitrary choice of ˆ̃t, and the integral can be evaluated
analytically. We find

I2 ¼ 2π

�
0.159 − y−1=2 þ 2y−1 þ 1

2
y−2 þ 4y−5=2 − 9.42y−3

�
: ðA13Þ

All the fractional powers of y cancel between I1 and I2. In total, and restoring y → meL,

aL ≈
α

2π
ð1 − 8.91ðmeLÞ−1 þ 35.65ðmeLÞ−2 − 59.21ðmeLÞ−3Þ: ðA14Þ

APPENDIX B: FINITE-VOLUME EFFECTS FROM
RIEMANN SUM ERROR

In this Appendix, we derive the scaling of finite-box
corrections to the Coulomb potential as a function of the
exchanged photon’s energy scale by directly computing the
difference between continuum and discretized versions in
each momentum cell.
We define the complete continuum potential integral as

fðrÞ ¼ 1

4π2L

Z
d3n

cosð2πnzr=LÞ
n2

; ðB1Þ

where we changed variables to the dimensionless momen-
tum n ¼ qL=ð2πÞ; we have not made use of the three parity
symmetries yet, so each integral is over ð−∞;þ∞Þ. The
corresponding discrete sum is

f̂ðrÞ ¼ 1

4π2L

X0

N

cosð2πNzr=LÞ
N2

; ðB2Þ

where we used capital Ni to distinguish the summation
indices from the integration variables ni; the prime denotes
omission of N ¼ 0. We define the difference

Δ ¼ fðrÞ − f̂ðrÞ: ðB3Þ

This is most easily computed if we divide up the d3n
integration region in Eq. (B1) into unit cubes corresponding
to each term in the sum Eq. (B2):

fðrÞ ¼ 1

4π2L

X
N

Z
N
d3n

cosð2πnzr=LÞ
n2

; ðB4Þ

where each cube has its lowest vertex at N.
There are eight boxes/integration regions that have 0 at a

vertex of their boundary, so we treat these separately; these
eight cubes have starting vertices at

ð−1;−1;−1Þ; ð−1;−1; 0Þ; ð−1; 0;−1Þ; ð0;−1;−1Þ
ð0; 0; 0Þ; ð0; 0;−1Þ; ð0;−1; 0Þ; ð−1; 0; 0Þ: ðB5Þ

Since in this eight box region nz ≤ 1 and we are interested
in r=L ≪ 1, we can expand the cosine in the integrand and
add up the numerically evaluated contributions of all eight
boxes, yielding

4π2LΔjNj≤1 ≈ 10.5 −
5

2

�
2πr
L

�
2

; ðB6Þ

where 10.5 and 5=2 result from doing d3n integrals
numerically. The same argument holds for other regions
with jNj ∼ 1—they contribute at Oð1=LÞ and Oðr2=L3Þ to
Δ, since there are Oð1Þ such terms.
For jNj ≫ 1, the integrands in each term in Δ are slowly

varying, so we can perform a Taylor expansion in each
box, N:

cosð2πnzr=LÞ
n2

−
cosð2πNzr=LÞ

N2

≈∇igðn−NÞi þ
1

2
∇i∇jgðn−NÞjðn−NÞj þ… ðB7Þ
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where g is a shorthand for cosð2πnzr=LÞ=n2; the derivatives can be evaluated, while the d3n give

Z
nxþ1

nx

Z
nyþ1

ny

Z
nyþ1

ny

d3nðn −NÞ ¼ 1

2
ð1; 1; 1Þ ðB8Þ

Z
nxþ1

nx

Z
nyþ1

ny

Z
nyþ1

ny

d3nðn −NÞ ⊗ ðn −NÞ ¼

0
B@

1=3 1=4 1=4

1=4 1=3 1=4

1=4 1=4 1=3

1
CA: ðB9Þ

We must add all regions related by parity to exhibit the symmetries of the whole integration region and integrand. There are
three parity transformations that can be used individually, or combined, such that a single region is related to seven others by
these transformations; parity in the ith direction maps−Ni − 1 → þNi. Therefore, if we start with a box with its lowest vertex
at ðNx; Ny; NzÞ, we relate it to seven others by these parity operations. We denote thewhole set of boxes generated in this way
by PN:

PN ¼ fð−Nx − 1;−Ny − 1;−Nz − 1Þ; ðNx;−Ny − 1;−Nz − 1Þ;
ðNx; Ny;−Nz − 1Þ; ðNx;Ny; NzÞ;
ð−Nx − 1; Ny;−Nz − 1Þ; ð−Nx − 1; Ny; NzÞ
ð−Nx − 1;−Ny − 1; NzÞ; ðNx;−Ny − 1; NzÞg:

For example, takingN ¼ 0 gives the set of eight boxes surrounding the origin in Eq. (B5). Adding up the contributions of all
these boxes for N ≫ 1 and Nz ≫ 1 yields an error of

4π2LΔN≫1;Nz≫1 ≈
12

N4
cosNzϵþ

4ð2 − N2ϵ2Þ
3N4

cosNzϵþ
16Nzϵ

3N4
sinNzϵ; ðB10Þ

where ϵ ¼ 2πr=L and the first (second and third) term arises from the first (second) term in theTaylor expansion in Eq. (B7). In
the regime N ∼ Nz ≫ 1, there are OðN3Þ boxes that contribute [approximately 4πN2dN with dN ∼OðNÞ]; the total
contribution to the Riemann sum error is therefore of order N3 times Eq. (B10). For Ni ∼ L=r ∼ 1=ϵ, the trigonometric
functions are Oð1Þ, and we obtain the schematic scaling of 1=L corrections given in Eq. (14).
An analogous calculation can be performed for the g − 2 integral in Eq. (23). The result is given in Eq. (30).
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