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The Chern-Simons magnetohydrodynamics (CSMHD) is introduced using a Maxwell-Chern-Simons
(MCS) Lagrangian including an axionlike field Θ. The MCS equation of motion derived from this
Lagrangian consists of a modified current, including a chiral magnetic (CM) and an anomalous Hall (AH)
current, in addition to the ordinary Ohm current of resistive magnetohydrodynamics (MHD). The former
consists of an axial chemical potential, which is given in terms of the temporal comoving derivative of Θ,
and the latter arises from the spatial gradient of Θ. As it turns out, the existence of the axial chemical
potential is a nonequilibrium effect that plays no role in the linear stability analysis, whereas the AH current
arises as in the first-order linear perturbation of the thermal equilibrium. We analyze the linear stability and
causality of the CSMHD in a resistive and chiral medium. We show that the Alfvén modes propagating
sufficiently close to the direction of the magnetic field are unstable but causal. They are also accompanied
by a genuine nonhydro mode. A stable mode in a particular direction can correspond to an unstable mode
propagating in the exact opposite direction. The AH instability is a manifestation of a breakdown of the
parity. A numerical analysis of the phase velocity confirms these results.
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I. INTRODUCTION

The successes of relativistic hydrodynamics [1,2] in
explaining the experimental data from the heavy-ion colli-
sions [3–5] have led to overgrowing theoretical attention
toward it [6]. In particular, the stability and causality of
dissipative relativistic hydrodynamics [7–9], is crucial in
numerical simulations. The unreasonable effectiveness of
stable and causal formulations of dissipative relativistic
hydrodynamics outside the equilibrium [10], motivated the
discovery of hydrodynamics attractors [11]. Relativistic
hydrodynamics is a universal theory in the sense that the
underlying microscopic nature of the system appears only
through different transport coefficients [12]. The same
remark holds for MHD, which couples the dynamics of a
conducting fluid with the Maxwell equations [13]. For the
fluids in which themagnetic Reynolds number is small [14],
a resistive formulation of relativistic magnetohydrodynamic

(RMHD) is well motivated. Resistive RMHD can also be
formulated on universal grounds [15]. However, a macro-
scopic description of certain phenomena with quantum
nature cannot be incorporated into the ordinary formulation
of relativistic hydrodynamics through a mere modification
of transport coefficients. In particular, anomalous transport
in the chiral matter and macroscopic effects of spin are
so [16–19].
In a chiral fluid the number of left- and right-handed

fermions is locally unequal. In the quark gluon plasma
(QGP), such chiral imbalance is a result of the interplay of
the chiral anomaly and nontrivial gluon configurations
[20,21]. To describe this fluid using the chiral MHD theory,
one introduces new terms into the current [16,22]. The new
terms may at least include a CM vector current and an axial
current. These modifications of the current give rise to new
terms in the entropy current [17]. The second law of
thermodynamics is then employed to find constraints on the
new transport coefficients, including the anomalous ones
[17,19]. The nonrelativistic and relativistic chiral MHD is
vastly investigated in the literature [22–26]. In particular,
the existence of unstable propagating modes has been
studied in [22–24].
In the present work, we take another approach based on

the MCS Lagrangian. The MCS Lagrangian adds a
topological term, including an axionlike field, to the
ordinary Maxwell theory [27]. The axionlike field connects
the electromagnetic (EM) fields to the topological proper-
ties of the matter, and gives rise to the equation of axion
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electrodynamics. Novel phenomena such as the chiral
magnetic effect (CME) [20,21], the Witten effect [28],
and photon’s topological mass naturally arise from the
axion electrodynamics [27,29–31]. One can also extract an
extension of the MHD from MCS theory that includes
anomalous transport without an ad-hoc modification of the
current [26,32,33]. As a result, and in contrast to the chiral
MHD, there is no axial current in this so-called CSMHD. It
has been shown that the second law of thermodynamics in
MCS theory is a consequence of the modification of
thermodynamic relations in the presence of the axionlike
field [32,33]. Following this observation, we derive the
entropy current, and define the equilibrium state of an
electrically neutral fluid. We then perturb the equilibrium to
investigate the stability and causality of CSMHD. Although
in the resistive MHD, the electric conductivity may not be
large enough to suppress the electric field and ensure
neutrality, we assume the electric field and vector chemical
potential vanish in equilibrium. Such a power-counting
scheme is referred to as the weak electric field regime (see
[34,35]). The axial chemical potential, defined by the time
derivative of the axionlike field, is a nonequilibrium effect,
and does not appear in the linear stability treatment.
However, the spatial inhomogeneity of the axionlike field
at a macroscopic level leads to a novel AH effect at the first
order of fluctuations [26,27]. The combination of the AH
and Ohm currents are effectively understood through the
definition of an effective conductivity, which, as it turns
out, does not have a definite sign. We show that its sign and
value depend on the direction that a mode propagates. The
indefiniteness of the effective conductivity sign gives rise to
unstable but causal Alfvén modes originally introduced in
[36], propagating close to the plane transverse to the
magnetic field. We also show that the Alfvén modes are
also manifestly affected by the breakdown of rotational and
parity symmetries. In addition to the modification of
magnetosonic and Alfvén waves, we find two genuine
nonhydro (gapped) modes. In contrast to the Alfvén modes,
the magnetosonic and their accompanying nonhydro mode
are linearly stable for the full range of wave numbers, and
are not affected by the chirality. Unsurprisingly, the
magnetosonic modes are damped by resistivity. Although
the emergence of the unstable mode has been observed in
chiral MHD [22], the source and nature of AH instability
discussed in the present paper are different: Whereas in
chiral MHD, the instability is induced by the axial charge,
in CSMHD, it is a result of the change of topological
charges in neighboring domains. We also do not employ
any approximating constraint on the values of wave
numbers and electrical resistivity.
The organization of this paper is as follows. In Sec. II, we

review the equations of motion in the MCS theory and its
thermodynamics. Then, we fix the hydrostatic configura-
tion. In Sec. III, we implement linear treatment to inves-
tigate the stability and causality of the theory. In Sec. IV, we

present a numerical investigation of the phase velocities
and the imaginary parts of the different modes, The paper is
concluded in Sec. V. We use the natural units in which
ℏ ¼ c ¼ k ¼ 1. The convention of the metric signature is
mostly minus, namely gμν ¼ diagðþ1;−1;−1;−1Þ. A
review of some useful relations is presented in Appendix A.

II. GENERAL REMARKS

A. Review material

In this section, we review the equations of the CSMHD
theory and derive the stationary solution to its EOM in
thermal equilibrium. We refer to this solution as the
hydrostatic configuration of CSMHD. This theory is based
on the MCS Lagrangian density [27]

LMCS ¼ LMaxwell þ LCS; ð2:1Þ

with

LMaxwell≡−
1

4
FμνFμν−AμJμ; and LCS≡−

CA

4
ΘFμν⋆Fμν:

In LCS, ΘðxÞ is the axionlike field, and the field strength
tensor Fμν and its dual ⋆Fμν are given by

Fμν ¼ ∂μAν − ∂νAμ; and ⋆Fμν ¼
1

2
ϵμναβFαβ: ð2:2Þ

The anomaly coefficient CA before the topological term
Fμν⋆Fμν in (2.1) reads

CA ¼ NC

X
f

q2f
e2

2π2
; ð2:3Þ

with
P

f being the summation over the quark flavors with
charge qf and NC the number of colors. The number of the
quark flavors depend on the energy scale of the system
under consideration. In (2.1), Jμ is the ordinary electro-
magnetic (EM) current, and is determined by taking the
functional derivative of LMaxwell with respect to the EM
source Aμ. Taking, however, the variation of the full MCS
action LMCS with respect to Aμ, an additional term propor-
tional to CA appears in the resulting current J μ,

J μ ¼ Jμ þ CA
⋆FμνPν; ð2:4Þ

where Pμ ≡ ∂μΘ. The emergence of J μ is a consequence
of the spacetime dependency of Θ, and gives rise to a
modification of the homogeneous and inhomogeneous
Maxwell equations,

∂μ
⋆Fμν ¼ 0; and ∂μFμν ¼ J ν; ð2:5Þ

as well as the energy-momentum conservation relation,
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∂μT
μν
Fluid ¼ FνλJλ −

CA

4
ðFαβ⋆FαβÞPν: ð2:6Þ

Here, Tμν
Fluid is the fluid energy-momentum tensor (see [26]

for some details on the derivation of (2.6) ). The inhomo-
geneous Maxwell equation leads to ∂μJ μ ¼ 0. Using the
homogeneous Maxwell equation, the Θ dependent part in
J μ trivially vanishes, and we are left with ∂μJμ ¼ 0.
As it is argued in [27], the comoving temporal derivative

of the axionlike field gives rise to the chiral chemical
potential,

μ5 ≡ uμPμ; ð2:7Þ

while, according to [26], its comoving spatial gradient
produces the AH current1

JμAH ¼ CAϵ
μναβEνuαPβ: ð2:8Þ

Decomposing Fμν and its dual tensor appearing in (2.4) in
terms of the electric and magnetic field according to [13]

Fμν ¼ Eμuν − Eνuμ − ϵμναβBαuβ;
⋆Fμν ¼ Bμuν − Bνuμ þ ϵμναβEαuβ; ð2:9Þ

where uμ is the fluid velocity, and using (2.7) the CM
current CAμ5Bμ, and the AH current CAEμνPν emerge
as a part of J μ [26,27]. Here, Eμν is defined as
Eμν ≡ ϵμναβEαuβ.

B. MCS thermodynamics

Before we deduce the hydrostatic configuration, we need
to understand the thermodynamics of the MCS theory. To
this purpose, we follow the variational method utilized in
[37,38]. We start with the effective action of the fluid, the
axionlike field Θ, and the EM fields [39]

S ¼
Z

d4x ½−ϵðs; ne;ΘÞ þ LMCS�: ð2:10Þ

Here, ϵ and s are the energy and entropy densities, and
ne ≡ uμJμ. We assume that the fluid has no other conserved
current but J μ. This is a common assumption at high
temperatures. In our definition of ne, we have replaced J μ

with Jμ since, as previously stated, the divergence of the
Θ-dependent part of the former is trivial. The derivatives of
ϵ with respect to its variables are defined as [32]

�∂ϵ
∂s

�
ne;Θ

≡ T;

� ∂ϵ
∂ne

�
s;Θ

≡ μe;

�∂ϵ
∂Θ

�
ne;s

≡RΘ:

ð2:11Þ

They lead to the first law of thermodynamics,

dϵ ¼ Tdsþ μedne þRΘdΘ: ð2:12Þ

In a thermal equilibrium, T and μe are identical to the
temperature and chemical potential, respectively. We apply
the variational principle to the action under the following
constraints:

uμuμ ¼ 1; ∂μJμ ¼ 0; ∂μSμ ¼ 0: ð2:13Þ

Here, Sμ is the entropy current. The first constraint comes
from the requirement that uμ must be timelike. The second
one is a consequence of (2.5), and the third one of the
conditions of thermal equilibrium. For later convenience,
we decompose Sμ and Jμ parallel and perpendicular
to uμ

Sμ ¼ suμ þ ΔμνSν; and Jμ ¼ neuμ þ ΔμνJν; ð2:14Þ

where Δμν is defined in Appendix A. As in [37,38], we
introduce an effective Lagrangian, with Lagrange multi-
pliers λ, ξ, and w, that enforces the constraints (2.13)

Leff: ¼ −ϵðs; ne;ΘÞ þ LMCS þ λ∂μJμ

þ ξ∂μSμ −
1

2
wðuμuμ − 1Þ: ð2:15Þ

Integrating by part, the effective Lagrangian is rewritten as

Leff: ¼ −ϵðs; ne;ΘÞ −
1

4
FμνFμν −

CA

4
ΘFμν⋆Fμν

− ðneuμ þ ΔμνJνÞðAμ þ ∂μλÞ

− ðsuμ þ ΔμνSνÞ∂μξ −
1

2
wðuμuμ − 1Þ: ð2:16Þ

The variations of the effective Lagrangian with respect to
uμ, Θ, ne, and s give rise to

wuμ ¼ −neðAμ þ ∂μλÞ − s∂μξ; ð2:17Þ

RΘ ¼ −
CA

4
Fμν⋆Fμν; ð2:18Þ

μe ¼ −uμðAμ þ ∂μλÞ; ð2:19Þ

T ¼ −uμ∂μξ: ð2:20Þ

We note that (2.19) is consistent with the results of [40]
with an overall change of sign due to different metric

1See Appendix A for the definition of the comoving temporal
and spatial derivatives.
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signature conventions. Plugging (2.20) and (2.19) into
(2.17), we find

w ¼ Tsþ μene: ð2:21Þ

Assuming at this stage that the fields which are present in
the CS Lagrangian vary slowly in space and time [32], the
full partition function of the theory is given by

Z ¼
Z

Dϕ exp

�Z
β

0

dτ
Z

d3x ðLCS þ L½ϕ�Þ
�

¼ exp

�
−
V
T
LCS

�
Zϕ: ð2:22Þ

Here, ϕ stands generically for all the other fluctuating
fields, and Zϕ is their corresponding partition function. Let
us notice that without the above assumption LCS cannot be
brought out of the spacetime integral appearing in (2.22).
Focusing particularly on the Θ dependent part of the
Lagrangian, the corresponding thermodynamic potential
Ω is thus given by

ΩðT; μe;ΘÞ ¼ −
T
V
lnZ ¼ LCS þ � � � ; ð2:23Þ

gives rise to �∂Ω
∂Θ

�
μe;T

¼ RΘ: ð2:24Þ

Using p ¼ −Ω [41], the definition of LCS from (2.1), and
the constraint relation (2.18), the Gibbs-Duhem relation is
respectively modified as [32,38]

dp ¼ sdT þ nedμe −RΘdΘ: ð2:25Þ

Combining this expression with (2.12), we recognize w in
(2.21) as fluid’s specific enthalpy density, i.e., w ¼ ϵþ p.
According to (2.24), w is independent of Θ, and the
ordinary relation for entropy density is thus not modified,

s ¼ 1

T
ðϵþ p − neμeÞ: ð2:26Þ

C. Hydrostatic equilibrium

We are now in a position to fix the hydrostatic equilib-
rium state [8]. We start from the covariant generalization
of the thermodynamic identity (2.26), which reads
[8,34,35,42,43]

Sμ ¼ pβμ þ Tμν
Fluidβν − αJμ; ð2:27Þ

where α≡ μ=T, and βμ ≡ uμ=T. Taking the divergence of
Sμ and using (2.6) as well as ∂μJμ ¼ 0 from (2.13) gives
rise to

∂μSμ ¼ ∂μpβμ þ p∂μβ
μ þ

�
FνλJλ −

CA

4
ðFαβ⋆FαβÞPν

�
βν

þ Tμν
Fluid∂μβν − Jμ∂μα

¼ ∂μpβμ þ p∂μβ
μ þ 1

2
Tμν
Fluidð∂μβν þ ∂νβμÞ

−
CA

4
ðFαβ⋆FαβÞβλPλ − Jμ

�
Eμ

T
þ ∂μα

�
: ð2:28Þ

In thermal equilibrium, the divergence of Sμ must vanish.
This is obtained if βμ is the symmetry of the hydrostatic
equilibrium state, in the sense that the Lie derivative of
every physical quantity vanishes [44]. Hence, β is a Killing
vector [43]

∂μβν þ ∂νβμ ¼ 0: ð2:29Þ
This immediately eliminates Tμν

Fluidð∂μβν þ ∂νβμÞ, and ∂μβ
μ

in (2.28). Noting that the Lie derivative of a scalar ϕ with
respect to βμ is simply βμ∂μϕ, βλPλ ¼ βλ∂λΘ also vanishes.
This implies, μ5 ¼ ∂0Θ ¼ 0 in LRF of the fluid. For the last
term of (2.28) to vanish it is sufficient that

Eμ ¼ −T∂μα: ð2:30Þ
Although, the β-symmetry leads to the time-independency
of hydrodynamic variables in the LRF of the fluid, their
spatial gradients are not necessarily vanishing [40]. This is
why, we can assume that P0 ¼ ∇Θ in Pμ ¼ ð0;P0Þ does not
vanish in equilibrium. Let us also notice that if there is
no chemical potential other than μ5 present, the electric
four-vector vanishes at equilibrium. Hereafter, we
assume that this is the case. The general solution to the
(2.29) reads [43,45]

βμðxÞ ¼
uμ

T
þ ωμνxν; ð2:31Þ

where ωμν is the thermal vorticity tensor defined as
ωμν ≡ − 1

2
ð∂μβν − ∂νβμÞ. Assuming that in the hydrostatic

configuration the thermal vorticity is zero, the solution
reduces to time-independent temperature and four-velocity.
With the above considerations, for the hydrostatic equilib-
rium in the LRF, we have

ϵ¼ ϵ0; p¼p0; s¼ s0; T¼T0; uμ ¼ð1;0Þ;
Bμ ¼ð0;B0Þ; Eμ ¼ 0; μ5 ¼ 0; ∇Θ¼P0; Θ¼Θ0:

ð2:32Þ

The subscript 0 is used to denote that the quantities are
constants.2 One can check that the configuration of (2.32)

2We note that it is legitimate, and sometimes fruitful [9,46], to
consider the fluctuations from a moving observer’s perspective
for which the fluid four-velocity reads uμ ¼ γð1; vÞ. We come
back to this issue in Sec. III.
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satisfies (2.6). Hereafter, we assume the following form
for Jμ

Jμ ¼ neuμ þ σeEμ; ð2:33Þ

in which σe is the electric conductivity. Contracting the
inhomogeneous MCS equation, i.e., the second equation in
(2.5), with βν, and using (2.32), we find uμJ μ ¼ 0. Using
the definition of J μ from (2.4), with Jμ from (2.33), we
arrive at

ne;0 ¼ CAP0 · B0: ð2:34Þ
The above equation suggests that in CSMHD, the local
charge density can be nonzero in equilibrium. However, a
nonvanishing ne;0 requires a corresponding nonvanishing
chemical potential μe. Since we have already assumed
that such a chemical potential does not exist, we also need
to assume that the local charge density is zero. By this
virtue

ne;0 ¼ 0; and P0 · B0 ¼ 0: ð2:35Þ
We should emphasize that in contrast to [32,38], our setup is
dissipative. Out of equilibrium, the entropy production is
governed by the following relation

T∂μSμ ¼ σeE2: ð2:36Þ

III. COLLECTIVE MODES OF THE CSMHD

In this section, we find the collective mode of the MCS
theory in the LRF of the fluid. To find the collective modes,
we introduce perturbations to the hydrostatic configuration
of (2.32) [7,8]. We then solve the EOM, up to first order in
perturbations

∂μ
⋆δFμν ¼Oðδ2Þ; ∂μδFμν−δJ ν¼Oðδ2Þ;

∂μδT
μν
Fluid−δðFνλJλÞþ

CA

4
δ½ðFαβ⋆FαβÞPν� ¼Oðδ2Þ: ð3:1Þ

We assume perturbations around the hydrostatic configu-
ration of the form

δX̃ ∼ δX expð−iωtþ ik · xÞ; ð3:2Þ

for each hydrodynamic variable X. Plugging the perturbed
variables in (3.1), and keeping terms up to the first order in
perturbations, gives rise to a system of linear equations
as [46]

MδX ¼ 0; ð3:3Þ

where M is the matrix of coefficients and δX the unknown
perturbative variables. For (3.3) to have nontrivial solu-
tions, the determinant ofM must vanish. This gives rise to a
polynomial equation whose solutions of formω ¼ ωðkÞ are

the so-called modes of theory. The modes are called (non)
hydro modes,3 if ωðkÞ is (not) zero for k ¼ 0. Modes are
stable if ImðωðkÞÞ < 0, for all values of k, and they are
causal if [9,46]

lim
k→∞

����ReðωÞk

���� ≤ 1; ð3:4Þ

wherein k≡ ffiffiffiffiffiffiffi
k:k

p
. Equation (3.3) is not analytically

solvable for all modes. To investigate their stability, we
thus use the Routh-Hurwitz stability criterion [47–49].
Employing the MCS equations, it is possible to reduce

the number of δX to4

δX ¼ ðδT; δux; δuy; δuzÞ; ð3:5Þ

and, in particular,

δp ¼ w0

T0

δT; δϵ ¼ w0

v2sT0

δT; δne ¼ 0: ð3:6Þ

Here, vs is the speed of sound, and w0 ¼ ϵ0 þ p0. In (3.6),
the first and second equations arise from (2.12) and (2.25).
The last relation corresponds to the fact that a nonvanishing
μe;0 is required for the charge density fluctuation to be
physically possible. Before we proceed, it is necessary to
understand how the gradient of Θ appears in equilibrium.
To do this, we remind the reader that the scale at which
the axion changes is much larger than the scale of the
fluctuations. We thus consider P0 as a constant in the linear
analysis. The same is also true for the gauge potential A0;μ

in equilibrium; if one assumes that A0;μ has nonvanishing
second-order derivatives, and hence B0 has nonvanishing
gradients, the Alfvén and magnetosonic excitations dis-
appear. By this virtue, we let Θ0 ¼ P0 · x. Further, assum-
ing that B0 ¼ B0ŷ in the LRF, we have

Θ ¼ P0 · xþ δΘ; with P0 ≡ ðPx; 0; PzÞ;
uμ ¼ ð1;−δvÞ; with δv ¼ ðδux; δuy; δuzÞ;
Bμ ¼ B0ðδuy; 0;−1; 0Þ þ ð0;−δBÞ; with

δB≡ ðδBx; δBy; δBzÞ;
Eμ ¼ ð0;−δEÞ; with δE≡ ðδEx; δEy; δEzÞ;
k ¼ kðsin θ cosϕ; cos θ; sin θ sinϕÞ; with

k ¼
ffiffiffiffiffiffiffi
k:k

p
: ð3:7Þ

3(Non)hydro modes are also called (gapped)gapless modes.
4We are eliminating the degrees of freedom here to reduce the

dimension of the final matrix M. Rather than step-by-step
elimination, we could work with a much larger matrix. There
are no differences in the resulting eigenmodes.
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Here, θ is the polar angle with the zenith direction taken
parallel to B0, and ϕ is the azimuthal angle defined in the xz
plane. Plugging (3.7) into the homogeneous MCS equation
[first equation in (2.5)], and keeping terms up to the
first-order, gives rise to

δBx ¼ −
k
ω
ððB0δux − δEzÞ cos θ þ δEy sinϕ sin θÞ;

δBy ¼
k sin θ
ω

ððB0δux − δEzÞ cosϕþ ðδEx þ B0δuzÞ sinϕÞ;

δBz ¼ −
k
ω
ððB0δuz þ δExÞ cos θ − δEy cosϕ sin θÞ: ð3:8Þ

Plugging the above results into (2.4), the total current J μ is
found to be

J 0 ¼
CAk
ω

ððP0 × δEþ ðP0 · δv − iωδΘÞB0Þ · k̂k
þ ðk̂⊥ × P0Þ · δEÞ;

J x ¼ −σeδEx − CAðP0 × δEÞ · x̂;
J y ¼ −σeδEy − CAððP0 × δEÞ · ŷþ ðP0 · δv − iωδΘÞB0Þ;
J z ¼ −σeδEz − CAðP0 × δEÞ · ẑ: ð3:9Þ

Here, k̂⊥ and k̂k are the perpendicular and parallel parts of

the wave number unit vector k̂≡ k=k with respect to B0,

k̂⊥ ≡ ðcosϕ; 0; sinϕÞ sin θ; and k̂k ≡ ð0; 1; 0Þ cos θ:

The inhomogeneous MCS equations [second equation in
(2.5)] for the linear perturbations (3.7) read

∇ ·δEþCAðP0 ·δBþB0 ·∇δΘÞ−B0 ·∇×δv¼ 0; ð3:10Þ

σeδE − ∇ × δBþ δ _Eþ B0 × δ_v

þ CA½P0 × δEþ ðP0 · δvþ δ _ΘÞB0� ¼ 0: ð3:11Þ

As a next step, we plug (3.8) into the above equation and
solve it to reduce the unknown perturbations to the four
given in (3.5), namely δE and δΘ are found in terms of
δux;y;z. The resulting expressions are too cumbersome to be
presented here. Plugging them into the energy-momentum
conservation relation (2.6), leads to an equation of form
(3.3). For this equation to be solvable, the determinant ofM
must vanish. The matrix M is a lengthy one. The explicit
form of M is presented in Appendix B. As previously
mentioned this results in relations for ω in (3.2) in terms of
k. We decompose the determinant into two channels:

detðMÞ ¼ s0w0DNCDC; ð3:12Þ

where the channels read

DNC ¼ B2
0σeð2ω2 − v2sk2Þðω2 − k2Þ

− 2w0ωðiω2 − σeω − ik2Þðω2 − v2sk2Þ
− B2

0v
2
sk2σeðω2 − k2Þ cosð2θÞ; ð3:13Þ

DC ¼ 8 cos θ

�
B2
0σek

2

�
1

4
− sin2θ

�

þ
�
w0ωðiω2 − σeω − ik2Þ − B2

0σe

�
ω2 −

3

4
k2
���

þ 8CAðw0 þ B2
0Þ
�
ω2 −

B2
0

B2
0 þ w0

k2cos2θ

�

× ðk̂⊥ × P0Þ · ŷ: ð3:14Þ

The first channel, i.e., DNC, is independent of the CS term
in the Lagrangian (2.1), and we call it nonchiral. By the
same virtue, we refer to the second one, i.e., DC, as the
chiral channel. In particular, P0 appears only in DC.

A. iMHD limit

Before we proceed, we may benchmark our method with
the known results of iMHD in [36]. To do so, we expand
detðMÞ from (3.12) in powers of σe, and keep the highest
order term. This gives rise to

�
B2
0

B2
0þw0

ðω2−k2Þðω2−v2sk2cos2θÞ

þ w0

B2
0þw0

ω2ðω2−v2sk2Þ
�

×
�

B2
0

B2
0þw0

ðω2−k2cos2θÞþ w0

B2
0þw0

ω2

�
¼ 0: ð3:15Þ

The first two eigenfrequencies are the relativistic Alfvén
modes

ωA;� ¼ �vak cos θ; ð3:16Þ

with the Alfvén speed va, defined by

v2a ≡ B2
0

B2
0 þ w0

: ð3:17Þ

We identify four other eigenfrequencies as the frequencies
of slow (ωsms;�) and fast (ωfms;�) magnetosonic modes

ωsms;�¼�vsk
ffiffiffiffiffiffiffiffiffiffiffiffi
A−B

p
; ωfms;�¼�vsk

ffiffiffiffiffiffiffiffiffiffiffiffi
AþB

p
; ð3:18Þ

with
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A≡ 1

2

�
1 − va2sin2θ þ

v2a
v2s

�
;

B≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 −

�
va cos θ

vs

�
2

s
: ð3:19Þ

In the absence of the magnetic field, all eigenfrequencies
vanish, except those of the fast magnetosonic modes. The
latter reduces to the sound mode in the perfect fluid,

ωA;� ¼ 0; ωsms;� ¼ 0 ωfms;� ¼ �vsk:

Even in the presence of the magnetic field, the Alfvén and
slow magnetosonic modes do not propagate in the plane
perpendicular to the magnetic field, i.e., θ ¼ π=2:

ωA;� ¼ 0; ωsms;� ¼ 0;

ωfms;� ¼ �vsk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2a þ

�
va
vs

�
2

s
:

B. Nonchiral channel

We now analyze the nonchiral channel. This channel is a
polynomial of order five, and according to Abel’s impos-
sibility theorem [50], an exact solution for the correspond-
ing eigenfrequencies cannot be obtained. The nature of
these modes can, however, be revealed using a long-
wavelength expansion

ωsms;� ¼ �vsk
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A − B

p

−
ið1 − v2aÞð1 − v2sðA − BÞÞð1 −Aþ BÞ

4σeB
k2

þOðk3Þ;
ωfms;� ¼ �vsk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B

p

−
ið1 − v2aÞð1 − v2sðAþ BÞÞðA − 1þ BÞ

4σeB
k2

þOðk3Þ;

ωNC;nh ¼ −
iσe

1 − v2a
þ ið1 − v2aÞð1þ v2sð1 − 2AÞÞ

σe
k2

þOðk3Þ: ð3:20Þ

The first two eigenfrequencies belong to the slow and fast
magnetosonic nonchiral (NC) eigenfrequencies modified
by the presence of finite electrical conductivity. As (3.20)
suggests, the resistivity 1=σe damps the magnetosonic
modes. The third NC eigenfrequency is genuine and
contains a nonhydro part. A similar gapped mode appears
also in [35], where the eigenmodes of resistive MHD in the
absence of background magnetic fields are determined (see
the first equation in Sec. 4.4 of [35]).

Due to the positivity of the electrical conductivity, which
is required by the second law of thermodynamics [12], the
nonhydro mode is stable. A thorough examination of its
linear stability using the Routh-Hurwitz criteria is pre-
sented in Appendix C. The analysis proves that the non-
chiral channel is linearly stable.
To check whether this channel is causal, we use the

asymptotic causality condition (3.4). Expanding DNC in
terms of k, and keeping the highest order term gives rise to

DNC ∼ 2ik5vgðv2g − v2sÞðv2g − 1Þw0; ð3:21Þ

where vg is the group velocity, which in k → ∞ is given by
vg ∼ ω=k. Setting (3.21) equal to zero, it turns out that the
asymptotic group velocity does not exceed the speed of
light. This indicates that the nonchiral channel is causal.

C. Chiral channel

In what follows, we investigate the chiral channel. To do
this, let us first emphasize that the eigenfrequencies of this
channel vanish in the direction of the magnetic field, i.e.,
θ ¼ π=2. For simplicity, we define

P0 ¼ Pðcosðϕ − ΔÞ; 0; sinðϕ − ΔÞÞ
⇒ ðk̂⊥ × P0Þ · ŷ ¼ P sinΔ sin θ: ð3:22Þ

Here,Δ is the angle between the vectorP0 and the transverse
wave number vector k̂⊥. Assuming 0 ≤ Δ < 2π, we can
constraint P to be positive. Although this channel is
polynomial of order three, its exact solution is too compli-
cated to be useful. Therefore, similarly to the nonchiral case,
we perform a long-wavelength expansion to obtain

ωA;� ¼�vakcosθ−
ið1−v2aÞð1−v2acos2θÞ
2ðσe−CAPsinΔ tanθÞk

2

�ð1−v2aÞ2ð1−5v2acos2θÞð1−v2acos2θÞ
8va cosθðσe−CAPsinΔ tanθÞ2 k3þOðk4Þ;

ωC;nh¼−
iðσe−CAPsinΔ tanθÞ

1−v2a

−
ið1−v2aÞð1−v2acos2θÞ
ðσe−CAPsinΔ tanθÞ k

2þOðk3Þ: ð3:23Þ

A comparison with (3.20), suggests the definition of an
effective conductivity which mixes the Ohmic and the AH
conductivities,

σeff ≡ σe − CAP sinΔ tan θ: ð3:24Þ

Let us assume 0 ≤ θ < π=2. For 0 ≤ Δ < π, the AH current
is in the opposite direction of the Ohm one. Since tan θ is
unbounded, for any value of P, there exists a critical value
for θ such that for polar angles larger than that σeff becomes
negative. Consequently, the nonhydro mode ωC;nh becomes
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unstable, and the Alfvén modes ωA;�, are amplified. On the
other hand, for π ≤ Δ < 2π, the AH current enhances the
Ohm current. Therefore, the nonhydro mode is stable, and
the Alfvén modes are damped. The same remarks hold for
π=2 < θ ≤ π, with modes in 0 ≤ Δ < π interval being
stable and the ones in π ≤ Δ < 2π being stable. In
summary, a mode propagating in some angle θ might be
stable while its mirrored one in the opposite angle is
unstable. This is a manifestation of parity symmetry
breaking caused by the CP violating Chern-Simons term.
The Routh-Hurwitz analysis in Appendix C confirms these
remarks. A visualization of these results is presented
in Fig. 1.
As in the nonchiral case, we check the causality of the

chiral channel using (3.4). The leading term for the short
wavelength expansion reads

DC ∼ 8ik3vgðv2g − 1Þw0; ð3:25Þ

which implies that the chiral channel is causal. The
causality of the chiral channel has crucial consequences.
First, it implies that the linear stability of the system in
a moving frame is similar to the LRF.5 Second, AH
instability is not fictitious. One may be tempted to write
a relaxation equation for the current to remove the
instability. However, such an approach does not work.
Let us remind that the relaxation time approach is essen-
tially employed to avoid instantaneous propagation of
signals. The CSMHD modes are, however, causal.
Hence a relaxation time approach seems to be useless.
We nevertheless use the following ansatz to check whether
it can cure the instability problem of this mode

τJΔμνDJν þ Jμ ¼ σeEμ: ð3:26Þ

Let us note that since the axionic part of the current is
dissipationless, a relaxation equation can only be written
for the Ohmic part of the current. An explicit computation
of the modes using (3.26) confirms that the AH instability
cannot be removed by this relation.

IV. NUMERICAL RESULTS

In this section, we present numerical results for the
collective modes. First, we depict the phase velocities
vph ≡ Reðω=kÞ for different modes. We then plot the
imaginary part of eigenfrequencies for the nonchiral and
chiral channels. Since our results are independent of the
electrical conductivity, we make certain quantities dimen-
sionless by dividing them by σe

ω⋆ ≡ ω=σe; k⋆ ≡ k=σe; P⋆ ≡ CAP=σe: ð4:1Þ

As it turns out, for any particular choice of parameters,
there exists two critical polar angles θc and π − θc for
which the effective conductivity vanishes

θc ≡ arctan

�
1

P⋆ sinΔ

�
: ð4:2Þ

These angles divide the space into stable and unstable
regions. A schematic picture of this division is presented in
Fig. 2. The chiral channel is unstable inside the green upper

FIG. 1. Depiction of σeff cos θ=σe. The horizontal axes is the
polar angle θ, and the vertical one is CAP sinΔ=σe. As the figure
suggests, for any value of P there exists a range of θ and Δ for
which σeff cos θ < 0 and the chiral channel becomes unstable.

FIG. 2. The schematic view of the unstable regions in space.
The cone is defined as θ ¼ θc, wherein θc is the angle at which
the effective conductivity (3.24) vanishes. The upper quarter is
the interval θc ≤ θ < π=2 (green), while the lower one is 3π=2 <
θ ≤ π − θc (blue). The chiral channel is unstable within these two
quarters and stable outside them.

5This is confirmed by explicit computations, which are not
reproduced in the present work.
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(θc < θ < π=2) and blue lower (3π=2 < θ < π − θc) quar-
ters. The remained symmetries of the space allow us to
choose a particular vertical slice, which is the B-z plane,
and a particular horizontal one, which is the B-P plane. In
the B-z plane, Δ ¼ π=2 ð3π=2Þ for the upper (lower) half.
In the B-P plane Δ ¼ 0 for both halves. We note that the
absolute value of Δ is not significant in our analysis,
because it can be absorbed into P⋆, but the sign of sinΔ
matters. For simplicity, we call the different modes of
(3.23) negative Alfvén (ωA;−), positive Alfvén (ωA;þ), and
chiral nonhydro (ωC;nh) modes.

A. Phase velocities

We use polar plots to depict the phase velocities. To do
so, we need to transform from spherical coordinates to
polar coordinates in B-z and B-P planes. In the B-z, we
define the polar angle as

φ≡ sgnðsinΔÞθ:

Positive (negative)φ corresponds to the upper (lower) half of
the B-z plane. SinceΔ ¼ 0 for the B-P plane, the upper and
lower half-planes are similar. In each figure of Figs. 3–7, the

FIG. 3. The figures represent the phase velocity ReðωÞ=k in the plane of B0-P0. The figures are for different values of k=σe (columns 1,
2, and 3) and va=vs (rows a, b, and c). For all figures, P ¼ σe=ð

ffiffiffi
3

p
CAÞ. The horizontal orange gridline in each figure corresponds to the

direction of B0, while the vertical dashed gray gridline is in the direction of P0. The dash-dotted circle demonstrates the speed of light.
The blue and red curves correspond to slow and fast magnetosonic modes in (3.20), respectively. The green curves are the phase velocity
of the Alfvén modes in (3.23). The Alfvén modes are symmetric.
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absolute value of the phase velocity at any particular value of
φ is equal to the radius of the corresponding curve. The sign
of the velocity is not shown, and the sign of plot ticks are just
indicators of the corresponding quarter. The phase velocities
in the B-P plane are depicted in Fig. 3. The modes behave
similarly to those of the resistiveMHD [51]. For small values
of k⋆, the slowmagnetosonic and Alfvénmodes have similar
phase velocities, and the fast magnetosonic modes are the
fastest ones. This behavior is not surprising because the limit

k ≪ σe is the iMHD limit. As k⋆ increases, theAlfvénmodes
obtain phase velocities closer to the fast magnetosonic ones.
In the nonchiral channel, the phase velocity vanishes for
cos θ ¼ 0, as it can be analytically found from (3.13). On the
other hand, a similar general statement cannot be expressed
for the phase velocity at sin θ ¼ 0. The special case of
k⋆ ¼ 1, for which the phase velocity of slow magnetosonic
modes becomes equal to the speed of sound, is interesting.
The nonhydro mode of the nonchiral channel does not

FIG. 4. The figures represent the phase velocity ReðωÞ=k in the plane perpendicular to P0. For the upper half-plane, Δ ¼ π=2, and in
the lower one Δ ¼ 3π=2. The figures are for different values of k=σe (columns 1, 2, and 3) and va=vs (rows a, b, and c). For all figures
P ¼ σe=ð

ffiffiffi
3

p
CAÞ. The horizontal orange gridline in each figure corresponds to the direction of B0, while the vertical dashed gray gridline

is in the direction perpendicular to both B0 and P0. The dash-dotted circle demonstrates the speed of light. The blue and red curves
correspond to slow and fast magnetosonic modes in (3.20), respectively. The green curves are the phase velocity of the Alfvén modes in
(3.23). Even for small values of va=vs, the Alfvén modes reach the speed of light in a certain direction.
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FIG. 5. The figures represent the phase velocity ReðωÞ=k of the Alfvén modes in the plane perpendicular to P0. For the upper half-
plane, Δ ¼ π=2, and in the lower one Δ ¼ 3π=2. The figures are for different values of k=σe (columns 1, 2, and 3) and P⋆ ¼ CAP=σe
(rows a and b). Each row is divided into i and ii, with i (ii) demonstrating the negative (positive) Alfvén modes of (3.23). va=vs ¼ 0.5 for
all figures. The horizontal orange gridline in each figure corresponds to the direction of B0, while the vertical dashed gray gridline is in
the direction perpendicular to both B0 and P0. The dash-dotted circle demonstrates the speed of light. The positive and negative Alfvén
modes propagate with the speed of light in opposite polar directions. This direction gets closer to the direction of B0 for larger values of
P⋆. The asymmetry decreases for larger values of k=σe.
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propagate, i.e., its phase velocity is always zero. The modes
in theB-P plane are symmetric, and we do not represent any
other figure in this plane.
We represent the phase velocities in the B-z plane with

some details. In Fig. 4, the phase velocities of all modes are
drawn. In the stable polar region, the phase velocities are
similar to those of the B-P plane. However, in the unstable
region, the Alfvén modes behave drastically different. Even
for small values of k⋆, there exists a region for which the
Alfvén modes propagate with the speed of light. We can
understand this behavior by inspecting the first k-dependent
term in Alfvén phase velocity which is found from (3.23),

vph;Alfvén ¼ �va cos θ

� ð1 − v2aÞ2ð1 − 5v2acos2θÞð1 − v2acos2θÞ
8va cos θσ2eff

k2

þOðk3Þ: ð4:3Þ

When σeff becomes very small, the phase velocity
increases. But one should keep in mind that the higher
order terms are absent in (4.3), and the phase velocity does
not actually tend to infinity as this relation suggests. Also,
as (4.3) suggests, this region widens as k⋆ increases. For
sufficiently large k⋆, the Alfvén modes obtain the speed of
light. In contrast to the magnetosonic modes, the Alfvén

ones are asymmetric under the mirror symmetry with
respect to the direction of B: The chiral channel is not
symmetric under transformation of θ → π − θ, while the
nonchiral one is. Increasing va=vs, which for a fixed
temperature corresponds to stronger magnetic fields, has
the same effect as in B-P plane.
In the nonchiral channel, the nonhydro mode has non-

zero phase velocity. The negative and positive Alfvén
modes overlap with each other and the nonhydro one.
Therefore, to better understand the behavior of the chiral
channel, we draw the phase velocities separately. The phase
velocity of the nonhydro mode cannot be understood using
the long-wave expansion (4.3). However, we can rely on
numerical inspection to understand the peculiar behavior of
the chiral channel. We start with the chiral channel’s modes
in the upper half-plane. In the first stable region, namely
0 < θ < θc, only the Alfvén modes propagate. The phase
velocities have opposite signs but equal values. The
velocities of these hydro modes are enhanced by increasing
k⋆ (Fig. 5) and va=vs (Fig. 6). The velocities tend to the
speed of light as we get closer to the critical angle. At the
critical angle, the negative Alfvén mode is replaced by
the nonhydro one. Both modes propagate with the speed of
light. For the nonhydro mode, this only happens exactly at
the critical angle and is not captured in Fig. 7. Then we
enter the upper unstable region, i.e., θc < θ < π=2. In this

FIG. 6. The figures represent the phase velocity ReðωÞ=k of the chiral nonhydro mode in the plane perpendicular to P0. For the upper
half-plane,Δ ¼ π=2, and in the lower oneΔ ¼ 3π=2. The figures are for different values of k=σe (columns 1, 2, and 3) and P⋆ ¼ CAP=σe
(rows a and b). For all figures, va=vs ¼ 0.5. The horizontal orange gridline in each figure corresponds to the direction of B0, while the
vertical dashed gray gridline is in the direction perpendicular to both B0 and P0. The dash-dotted circle demonstrates the speed of light.
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FIG. 7. The figures represent the phase velocity ReðωÞ=k of the Alfvén modes in the plane perpendicular to P0. For the upper half-
plane, Δ ¼ π=2, and in the lower one Δ ¼ 3π=2. The figures are for different values of va=vs (columns 1, 2, and 3) and P⋆ ¼ CAP=σe
(rows a and b). Each row is divided into i and ii, with i (ii) demonstrating the negative (positive) Alfvén modes of (3.23). k=σe ¼ 0.1 for
all figures. The horizontal orange gridline in each figure corresponds to the direction of B0, while the vertical dashed gray gridline is
in the direction perpendicular to both B0 and P0. The dash-dotted circle demonstrates the speed of light. The positive and negative
Alfvén modes propagate with the speed of light in opposite polar directions. This direction gets closer to the direction of B0 for larger
values of P⋆.
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region, there is a subregion for which the modes propagate.
The subregion widens in larger values of k⋆. For small
values of k⋆, the negative Alfvén mode obtain positive
velocities, while the positive Alfvén mode is replaced by
the nonhydro mode, which has a negative velocity. As k⋆ is
increased, the nonhydro mode is suppressed, and the
positive and negative Alfvén modes obtain velocities with
the right signs. The same remarks hold for the second
quarter of the upper half-plane. The modes behave similarly
in the lower half-planes, with negative and positive Alfvén
modes swapped.

B. Imaginary parts

In Figs. 8 and 9 the k⋆ dependence of the imaginary parts
of all modes in both channels are plotted. As it turns out,
they become almost constant after a particular value of k⋆.
In particular, the imaginary parts of the nonchiral channel
modes, presented in Fig. 8, are always negative. This
confirms our proof presented in Appendix C. For the chiral

FIG. 8. The figure represents ImðωÞ=σe vs k=σe for the nonchiral
channel (3.13). As shown in the text, ImðωÞ is always negative and
the nonchiral channel is stable. The fast magnetosonic modes are
suppressed more strongly than the slow ones ImðωÞ becomes
almost constant after a sufficiently large value of k.

FIG. 9. The figure represents ImðωÞ=σe vs k=σe for the chiral channel (3.14): (a.1) represents a value of θ within the upper unstable
region of Fig. 2; (a.2) represents a value of θ within the upper stable region of Fig. 2; (b.1) represents the angle θc at which σeff ¼ 0
within the upper region of Fig. 2; (b.2) represents the angle θc at which σeff ¼ 0 within the lower region of Fig. 2. The mode propagating
in exactly opposite direction are drawn with the same color but dashed lines. The channel is still stable at this critical angle. The ImðωÞ
becomes almost constant after a sufficiently large value of k⋆.
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channel, the imaginary parts become positive in the unstable
regions. Let us also notice that in Fig. 9 the modes in the
exact opposite direction have negative imaginary parts. The
imaginary parts of the modes at the two critical angles are
also depicted in Fig. 9. All imaginary parts vanish in the
direction of the critical angle, while in the exact opposite
direction they have nonvanishing negative values.
Therefore at the critical angle, the chiral channel is still
stable.

V. CONCLUDING REMARKS

In the present work, we performed an analysis of the
linear stability of a resistive CSMHD. We started with the
MCS Lagrangian that produces the CM current through
the comoving temporal derivative of an axionlike field.
After reproducing the results of [32] for the MCS thermo-
dynamics, we identified the global equilibrium state in
CSMHD by applying a standard entropy current analysis.
We showed that the axial chemical potential μ5 vanishes in
global equilibrium, but the spatial gradient of the axion
P ¼ ∇Θ can give rise to a nonzero electrical charge density.
To proceed, we chose the conjugate chemical potential of
the electrical charge density μe to be zero in the equilib-
rium. This choice is equivalent to the power counting
scheme in which the magnetic field is of order Oð1Þ, while
the electric field is of order Oð∂Þ. Hence, in this weak
electric field regime [35], the electric field vanishes in the
thermodynamical equilibrium. As a consequence, the elec-
tric charge density vanishes, and the spatial gradient of the
axionlike field is constrained to be perpendicular to the
magnetic field. With the hydrostatic configuration fixed, we
introduced linear perturbation to find the collective modes.
We found that there exist three extra modes in CSMHD, in
addition to the six ones of iMHD. These nine modes are
divided into two channels: Five in a nonchiral or nonaxionic
channel and four in a chiral or axionic one. The nonchiral
channel consists of slow and fast magnetosonic modes,
which are damped by the nonzero electrical resistivity. This
channel also possesses a nonhydro (gapped) mode. This
gapped mode, which has already been discussed in [35], can
be explained as a result of Ampere’s law

∇ × B ¼ J þ ∂E
∂t

Using an Ohmic form for the current J ¼ σeE, we can
rewrite Ampere’s law as

1

σe

∂E
∂t þ E ¼ ∇ × B

σe
: ð5:1Þ

The above equation is similar to the typical relaxation
equations in Israel-Stewart (IS)-like theories [42], which
look schematically like

τX
∂X
∂t þ X ¼ X0; ð5:2Þ

in which within the relaxation time τX, the hydrodynamic
variable X relaxes to X0. Bulk scalar and shear tensor are
examples of X [46]. Gapped modes with form ω ¼ −i=τX
result from relaxation equations [46], which resembles the
gapped mode in (3.20). It is not surprising that the relaxation
time in the gapped modes of IS-like theories and inverse
conductivity in the gapped modes of resistive MHD are
similar. The inverse conductivity is commonly used in MHD
to determine timescales. The relaxation time of the charge
density in conductors [52] and the timescale required for the
suppression of the electric field [14,53] are two examples.
Using the Routh-Hurwitz criteria and asymptotic causality
condition, we showed that the nonchiral channel is linearly
stable and causal. The chiral channel includes the modified
Alfvén modes and a nonhydro (gapless) mode. The stability
of these modes is controlled by a combination of the Ohm
and AH conductivities, which can be considered as a novel
effective conductivity. In contrast to the Ohm conductivity,
effective conductivity becomes negative for the modes
propagating sufficiently close to the direction of the mag-
netic field. Consequently, the chiral channel is unstable in
this region. However, this channel is causal, and therefore the
instability is physical. We also performed a numerical
inspection of phase velocities and imaginary parts of differ-
ent modes. As our results show, there is a critical angle that
separates stable and unstable regions of the space for the
chiral channel. In the direction of this critical angle, the
Alfvén waves travel with the speed of light without
becoming unstable.
The current work has a theoretical nature, in which we

explored the stability and causality of the modes propa-
gating in a chiral medium. Although the CM current that
arises from the MCS theory has a physical explanation, this
theory is not the only approach to the CME. To the best of
our knowledge, other consequences of the MCS theory are
not well understood in the context of the QGP physics. In
particular, in contrast to the condensed matter physics [54],
we are unaware of a physical explanation for the occurrence
of the AH effect in the QGP.6 It might be interesting
to investigate the possible mechanisms that give rise to the
AH effect in different states of strongly interacting quark
matter.
We close this paper by suggesting two possible direc-

tions that extend this work. In the present work, we have
assumed that the electric chemical potential is zero, which
is equivalent to the assumption of electric field being of
order Oð∂Þ. A possible extension would be to consider the
strong electric field regime, in which the electric field is of
orderOð1Þ and the electric chemical potential is nonzero in

6In [26], we have presented another application of the presence
of the AH current within CSMHD.
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the equilibrium. Another interesting extension is to assume
the equilibrium state to be in a rigid rotation. The work in
both directions is in progress.
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APPENDIX A: NOTATIONS, CONVENTIONS,
AND USEFUL FORMULAS

The energy-momentum tensor of the perfect fluid is
given by [1,2,12]

Tμν
Fluidð0Þ ¼ εuμuν − pΔμν: ðA1Þ

Here, ε is the energy density, p the pressure, and uμ the fluid
four-velocity normalized as uμuμ ¼ 1. These so-called
hydrodynamic variables have unique definitions for the
perfect fluid [12]. Consequently, the LRF is unambiguously
defined by uμ ¼ ð1; 0Þ. In (A1), Δμν ≡ gμν − uμuν projects
vectors and tensors in the direction orthogonal to uμ. The
comoving temporal D and spatial derivatives ∇⊥

μ read

D≡ uμ∂μ; ∇⊥
μ ≡ Δν

μ∂ν: ðA2Þ

As any antisymmetric tensor of rank two, Fμν and ⋆Fμν can
be decomposed with respect to the timelike vector uμ [13]

Fμν ¼ Eμuν − Eνuμ − ϵμναβBαuβ;
⋆Fμν ¼ Bμuν − Bνuμ þ ϵμναβEαuβ; ðA3Þ

where the EM four-vectors are defined as

Eμ ≡ Fμνuν; Bμ ≡ 1

2
ϵμναβFναuβ: ðA4Þ

One should bear in mind that only for the comoving
observer, say in the LRF, the above four-vectors coincide
with the physical electric and magnetic fields, i.e., Eμ ¼
ð0;EÞ and Bμ ¼ ð0;BÞ. By this virtue

E≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−EμEμ

p ¼ jEjLRF; and B≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−BμBμ

p ¼ jBjLRF:
ðA5Þ

We note that while E and B are Lorentz invariants, jEj and
jBj are not.

APPENDIX B: THE EXPLICIT FORM OF
MATRIX M

In this appendix, we present the explicit form of the
matrix M which appears in (3.3). The procedure which
leads to this matrix is explained in the paragraph below
(3.5). In the absence of the aforementioned procedure, M
would be an 11 × 11 matrix. The power of k and ω in each
element of M is at most one if one subtracts the maximum
power in the numerator from the maximum power in the
denominator. It is the determinant of this matrix which
appears in (3.12). The matrix M reads

M ¼

0
BBBBB@

−is0ω=v2s ikw0 cos θ ikw0 sin θ cosϕ ikw0 sin θ sinϕ

−iks0 sin θ cosϕ 0 H=N 4I=N

−iks0 cos θ iw0ω 0 0

−iks0 sin θ sinϕ 0 2J =N K=N

1
CCCCCA; ðB1Þ

wherein H, I , J , K, and N are given by

H≡ CA sin θf16ðB2
0Px sinϕ − w0Pz cosϕÞω4 − 8Px½3ω2 − k2 þ ðω2 − k2Þ cosð2θÞ�k2 sinðϕÞ

× iB2
0Pxσeð4cos2ðθÞ sinð3ϕÞ − 2 sinϕ½5þ 3 cosð2θÞ�Þk2ωþ 16iB2

0ðPx sinϕ − Pz cosϕÞσeω3

þ iB2
0σePzð4 cosð3ϕÞsin2ðθÞ þ 2 cosϕ½7þ sinð2θÞ�Þk2ωþ 16w0ððk2 − iσeωÞPz cosðϕÞ

þ ð−k2 þ ωðiσe þ ωÞÞPx sinðϕÞÞω2g þ 4B2
0σek

2ðiσeωþ ω2 − k2Þ sin θ sinð2θÞ cosð2ϕÞ
− 2 cos θðk2 − ωðωþ iσeÞÞ½B2

0σeð7k2 − 8ω2Þ þ 8iw0ωð−k2 þ ωðωþ iσeÞÞ�
þ 2B2

0k
2σe cosð3θÞ½ωðωþ iσeÞ − k2�; ðB2aÞ

I ≡ iB2
0 sin θ cosϕfCA½k2Pxð−2ik2 þ ðσe þ 6iωÞω − iðk2 þ ð−iσe − 2ωÞωÞ cos θ

− 2σeω cosð2ϕÞsin2ðϕÞÞ þ k2Pzσeωðcos2θ sinð2ϕÞ þ ðcosð2θÞ − 3Þ sinϕ cosϕÞ − 4iPxω
4�

− 4k2σe½σeωþ iω2 − 4ik2� sin θ cos θ sinϕg; ðB2bÞ
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J ≡ B2
0 sin θ sinϕ½8σek2ωðiσe þ ωÞ cosϕ cos θ sin θ þ CAð8ω4Pz þ 8k4Pzcos2ðθÞ

− 2ik2ωð−ðσe þ 6iωÞPz þ ðσe − 2iωÞPz cosð2θÞ þ 2σeðPx sinð2ϕÞ − Pz cosð2ϕÞÞsin2ðθÞÞÞ
− 4σek4 cosϕ sinð2θÞ�; ðB2cÞ

K≡ 16ω3ðiσe þ ωÞðB2
0σe þ ðσe − iωÞw0Þ cos θ þ CA½16B2

0k
4Pz cosϕcos2ðθÞsin2ðθÞ

þ 16ω3ð½iσe þ ω�PzðB2
0 þ w0Þ cosϕ − iPxðB2

0σe þ ðσe − iωÞw0Þ sinϕÞsin2ðθÞ
þ 2k2ωsin2ðθÞðPz cosðϕÞðB2

0ð−5iσe − 12ωÞ − 8ωw0 þ B2
0ð−3iσe − 4ωÞ cosð2θÞÞ

þ Pxð7iB2
0σe þ 8ωw0 þ iB2

0σe cosð2θÞÞ sinðϕÞ þ 2iB2
0σeðPz cosð3ϕÞ

− Px sinð3ϕÞÞsin2ðθÞÞ� þ 4k2ω cos θðB2
0σeð−3iσe − 7ωÞ − 8ðσe − iωÞωw0

− iB2
0σeðσe − iωÞðcosð2θÞ − 2 cosð2ϕÞsin3ðθÞÞÞ

þ 2k4½ð7B2
0σe − 8iωw0Þ cos θ þ B2

0σeðcosð3θÞ − 4 cosð2ϕÞ cos θsin3ðθÞÞ�; ðB2dÞ

N ≡ 16½k2 − ωðωþ iσeÞ�½cos θðk2 − ωðωþ iσeÞÞ − iCAω sin θðPz cosϕ − Px sinϕÞ�: ðB2eÞ

APPENDIX C: ROUTH-HURWITZ
STABILITY ANALYSIS

In this appendix, we apply the Routh-Hurwitz stability
criteria [49] to channels found in Sec. III.

1. Nonchiral channel

For simplicity, we rewrite the nonchiral channel (3.13) as

D0
NC ≡ 1 − v2a

w0

DNC

¼ σev2aðω2 − k2Þð2ω2 − v2sk2Þ
− 2ωð1 − v2aÞðω2 − v2sk2Þðik2 þ ωðσe − iωÞÞ
− v2sk2σev2a cosð2θÞðω2 − k2Þ: ðC1Þ

To apply the Routh-Hurwitz criteria, we perform the
substitution ω → iζ [9]. Consequently, D0

NC is transformed
into a 5th order polynomial in ζ,

D0
NC ¼

X5
i¼0

aiζi:

We employ, at this stage, the Routh-Hurwitz criteria to find
whether the real part of ζ is positive. The Routh table reads

RNC ¼

0
BBBBBBBBB@

a5 a3 a1
a4 a2 a0
b1 b2 0

c1 c2 ¼ a0 0

d1 0 0

e1 ¼ a0 0 0

1
CCCCCCCCCA
: ðC2Þ

The coefficients ai read

a0 ¼ 2v2sk4σev2acos2θ; a1 ¼ 2v2sð1 − v2aÞk4;
a2 ¼ 2k2σe½v2s þ v2að1 − v2ssin2θÞ�;
a3 ¼ 2ð1þ v2sÞð1 − v2aÞk2; a4 ¼ 2σe;

a5 ¼ 2ð1 − v2aÞ:

All of the above coefficients are positive. Therefore,
according to the criteria, all other elements in the first
column of the Routh table (C2) must also be positive to
ensure ReðζÞ > 0. The next two coefficients are

b1 ¼
a3a4 − a2a5

a4
¼ 2k2ð1 − v2aÞð1 − v2a þ v2av2ssin2θÞ;

b2 ¼
a4a1 − a0a5

a4
¼ 2k4v2sð1 − v2aÞð1 − v2acos2θÞ:

The positivity of the above coefficients is obvious. We now
turn to c1,

c1 ¼
a2b1 − a4b2

b1

¼ 2k2σe
1 − v2a þ v2sv2asin2θ

½ð1 − v2aÞð1 − 2v2ssin2θÞ

þ v4ssin2θð1 − v2asin2θÞ�: ðC3Þ

The positivity of the terms outside the brackets is apparent.
The expression inside the bracket can be assumed as a
second-order polynomial in vs2, whose discriminant is
negative

Δ ¼ −ð1 − v2aÞsin2ð2θÞ < 0:

Since ð1 − va2Þ > 0, c1 is also positive. By the same virtue,
d1 is positive
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d1¼
b2c1−b1c2

c1
¼b2c1−b1a0

c1
¼2v2sð1−v2sÞ2ð1−v2aÞ2k4sin2ðθÞ½ð1−v2aÞð1−2v2ssin2θÞ
þv4ssin2θð1−v2asin2θÞ�−1>0: ðC4Þ

We conclude that all elements of the first column of the
Routh table (C2) have the same sign. The nonchiral channel
is thus stable.

2. Chiral channel

As for the nonchiral case, we rewrite the chiral channel as

D0
C ¼ 1 − v2a

8w0

¼ −σeff cos θðω2 − k2v2acos2θÞ
þ iω cos θð1 − v2aÞðω2 − k2Þ: ðC5Þ

Performing substitution ω → iζ gives rise to a third order
polynomial in ζ

D0
C ¼

X3
i¼0

ac;iζi;

The coefficients read

ac;0 ¼ k2v2aσeffcos3θ; ac;1 ¼ k2ð1 − v2aÞ cos θ;
ac;2 ¼ σeff cos θ; ac;3 ¼ ð1 − v2aÞ cos θ: ðC6Þ

We do not need to reproduce the whole Routh table to
realize that the chiral channel is unstable for regions of θ.
For the coefficients to have the same sign, it is required that

σeff cos θ > 0:

As stated in Sec. III, such a condition cannot be satisfied for
all values of θ. This is visualized in Fig. 1. We conclude
that the modes of the chiral channel are always unstable
within a region around the direction transverse to the
magnetic field.
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