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We estimate the thermoelectric response, namely, the Seebeck and Nernst coefficients of a hot and
deconfined plasma of quarks and gluons, created post ultrarelativistic heavy ion collisions in the presence
of a weak, homogeneous background magnetic field. We employ the kinetic theory framework, wherein we
use the relativistic Boltzmann transport equation in the relaxation time approximation. In-medium
interactions are taken into account via the quasiparticle masses of the partons extracted from one loop
perturbative thermal QCD. We calculate the individual and total Seebeck coefficients in 2 different
approaches (1-D and 2-D formulations). In the 1-D analysis, we find that a larger current quark mass has an
amplifying effect on the individual Seebeck coefficient in the presence of a weak magnetic field. The
temperature sensitivities of the individual Seebeck coefficients increase with increase in the current mass of
the quark species in the case of a weak magnetic field whereas the same records a decreasing trend in the
presence of a strong magnetic field. The variation of individual and total Seebeck coefficients with
temperature, chemical potential and background magnetic field are found to follow similar trends in both
the approaches, viz. decrease in magnitude with increasing temperature and increase in magnitude with
increase in chemical potential and magnetic field. We also calculate the individual and total Nernst
coefficients (in 2-D formulation) which are found to decrease with both temperature and chemical potential
and increase with the magnetic field. Further, we find that the sign of the Nernst coefficient is independent
of the electric charge of the charge carrier of the medium.
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I. INTRODUCTION

The quark-gluon plasma (QGP) is a strongly interacting
state of matter consisting of deconfined quarks and gluons
that exists under conditions of extremely high temperatures
and/or chemical potential. As such, study of the properties of
QGP could shed light on the evolution of the early Universe
and the structure of dense stars. At low temperatures (T) and
baryon chemical potentials (μB), QCD matter consists of
colorless hadrons. At μB ∼ 0, with nonzero finite quark
masses, lattice QCD results indicate that the transition from
hadronic to quark degrees of freedom is actually a rapid
analytic crossover rather than a true phase transition [1–4]. At
finite μB, however, lattice QCD is plagued by the sign
problem and, hence, cannot be relied upon [5,6]. Compelling
experimental signatures exist of the creation of QGPmatter in
Ultrarelativistic Heavy Ion collisions (URHICs) at experi-
mental facilities such as the Brookhaven National Laboratory
Relativistic Heavy Ion Collider (RHIC) [7–9] and Large
Hadron Collider (LHC) [10,11], after which the created
matter expands and cools, and undergoes a transition to a gas
of interacting hadrons. The nature of the bulk evolution of
QGP matter has been under intense investigation in the past

two decades, and a successful description of the same has
been obtained via relativistic hydrodynamics, which repro-
duced correctly the collective flow of the created matter
observed in experiments [12–15]. Using the framework of
AdS=CFT correspondence, Kovtun, Son and Starinets con-
jectured an extremely small, universal lower bound for the
ratio of shear viscosity to entropy density (η=s) of 1=4π (in
units with ℏ ¼ c ¼ kB ¼ 1) [16], which makes QGP one of
the most perfect fluids known. Hydrodynamic description of
QGP evolution post heavy-ion collisions requires specifying
several transport coefficients, which can be thought of as
determining the medium’s response to various perturbations.
Bulk viscosity (ζ) is expected to attain a maximum value near
the QGP-Hadron gas phase boundary as per several lattice
QCD simulations [17–19], which, in turn, affect the particle
spectrum and flow coefficients [20,21]. The effect of thermal
conductivity on the medium has also been studied, specifi-
cally in relation to the determination of the critical point in the
QCD phase diagram [22].
We study the thermoelectric response of the medium

which is quantified by two transport coefficients, viz. the
Seebeck coefficient and Nernst coefficient. The deconfined
hot QCD medium created post heavy ion collisions can
possess a significant temperature gradient between the
central and peripheral regions of the collisions. Such a
temperature gradient can lead to a finite gradient of charge
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carriers, resulting in an electric field—a phenomenon known
as the Seebeck effect. In the presence of a temperature
gradient in a conducting medium, the more energetic charge
carriers in the region of higher temperature diffuse to the
region of lower temperature, leading to the generation of an
electric field. The diffusion (or equivalently, the electric
current) stops when the created electric field becomes strong
enough to prevent further flow of charges. The magnitude of
electric field thus generated per unit temperature gradient in
the medium is termed as the Seebeck coefficient and is
evaluated in the limit of zero electric current [23,24]. The
Seebeck coefficient is a dimensionless scalar that quantifies
the efficiency of conversion of a temperature gradient into
electric field by a conducting medium. It is common practice
to take the sign of the Seebeck coefficient to be positive if the
direction of flow of the thermoelectric current is from the
hotter end to the colder end. Thus, the sign of the Seebeck
coefficient can be used to determine the sign of majority
charge carriers in condensed matter systems, as it is positive
for positive charge carriers and negative for negative charge
carriers. The key parameter that gives rise to an induced
current in a medium consisting of mobile positive and
negative charge carriers, apart from a temperature gradient,
is a finite chemical potential (μ). This is because positive and
negative charge carriers diffuse in the same direction under
the influence of a temperature gradient and as such, zero
chemical potential (i.e., equal number of particles and
antiparticles) in such a medium would thus lead to equal
and opposite electrical currents, and, hence, zero net current
and no Seebeck effect. Upcoming experimental programs
such as the Facility for Antiproton and Ion Research (FAIR)
in Germany and the Nuclotron-based Ion Collider fAcility
(NICA) in Russia, where low-energy heavy ion collisions are
expected to create a baryon-rich plasma, could be the perfect
environment for the aforementioned thermoelectric phe-
nomenon to manifest. Seebeck effect has been studied
extensively in condensed matter systems such as super-
conductors [25–29], high-temperature cuprates [30], organic
metals [31], etc. In the context of heavy-ion collisions, the
thermoelectric response in a hadron gas has been inves-
tigated previously using the Hadron Resonance Gas (HRG)
model [32,33]. Seebeck effect in a hot partonic medium has
been evaluated by us in the absence and presence of a strong
magnetic field within the relaxation time approximation of
the relativistic Boltzmann transport equation [34].
In the presence of a magnetic field, there will exist a

Lorentz force on the moving charges, causing them to drift
perpendicular to their original direction of motion. This
transverse thermocurrent in response to a temperature gra-
dient is called the Nernst effect. Like the Seebeck coefficient,
the Nernst coefficient is also calculated at the condition of
zero electric current, that is, under equilibrium conditions.
The Nernst coefficient can be defined as the electric field
induced in the x̂ (ŷ) direction per unit temperature gradient in
the ŷ (x̂) direction. In the context of heavy ion collisions,

Nernst effect has been investigated in a few studies
[33,35,36]. A comparison of the approach and results of
our work with that of the other studies is also carried out in
Sec. IV B.
Large magnetic fields are created perpendicular to the

plane of reaction, when two charged ions collide ultra-
relativistically with a finite impact parameter [37]. These
fields, which depend on the center of mass energy of the
collision, can be as large as eB ∼ 10−1m2

πð≃1017 GaussÞ for
super proton synchrotron energies, eB ∼m2

π for RHIC
energies and eB ∼ 15m2

π for LHC energies [38]. Naive
estimates predicted the decay of such a magnetic field to
be very fast (∼0.2 fm for RHIC energies). However, it was
later pointed out [39,40] that the finite electrical conductivity
of the QGPmedium [41–48] sustains the magnetic field for a
much longer period of time, long enough to contribute
significantly towards the evolution of the medium [49–51].
An external magnetic field in a chiral QGP medium can give
rise to separation of charges, thereby breaking the CP
symmetry of QCD. This is called the chiral magnetic effect
[52–54]. Several other phenomena such as magnetic cataly-
sis [55], chiral magnetic wave [56], etc., also occur due to the
presence of a background magnetic field.
The issue of the decay of the initially created magnetic

field in ultrarelativistic nucleus-nucleus collisions is not a
closed chapter. Several models describing the evolution of the
strongly interacting quark-gluon plasma consider an infinite
electric conductivity of the medium [57,58], which is not
expected to be practically tenable. A finite, small electric
conductivity of the QGP medium would cause only a small
fraction of the initial magnetic field to survive by the time
thermal equilibrium is achieved via interactions. This has
motivated the study of several transport coefficients and other
properties of the hot QCD medium in the presence of a weak
magnetic field. Transport coefficients such as electric and
Hall conductivities [59–62], shear viscosity [63] have been
calculated in weak magnetic field. Thermoelectric effects in
the partonic medium have been studied using the effective
fugacity quasiparticle model in a weak magnetic field. [35].
Effect of weak magnetic field on the neutral pion mass [64],
quark-pion effective couplings [65], quark condensate [66],
etc. have also been investigated. Further, dissociation of
heavy quarkonia in the presence of weak magnetic field has
also been studied recently [67]. Thermal transport in QCD
medium has also been studied in the presence of a weak
magnetic field. Thermal conductivity is related to the
efficiency of heat flow or the energy dissipation in a medium.
For a hadron gas medium, thermal conductivity has been
studied using the hadron gas model in the relaxation time
approximation in [68]. Thermal dissipation in a deconfined
medium of quarks and gluons and its interplay with charge
transport processes have been investigated in [69].
In this work, we have investigated the Seebeck effect and

Nernst effect in a QGP medium in the presence of a weak
magnetic field wherein the medium interactions are encoded
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in the quasiparticle masses of the partons derived from one
loop perturbative thermal QCD. Since temperature is the
largest scale in the case of a weak background magnetic
field, the quasiparticle masses have been taken to be the
thermal (B ¼ 0) masses with magnetic field dependence
appearing implicitly via the coupling constant. We make use
of kinetic theory via the relativistic Boltzmann transport
equation within the framework of relaxation time approxi-
mation for our study, using the electromagnetic Lorentz
force field as the external force term in the L.H.S. of the
Boltzmann equation. It may be noted that the thermalization
of the matter created post heavy ion collisions is governed by
QCD and as such, gluons play a dominant role in the
thermalization process since the initial density of gluons is
significantly larger than that of quarks or antiquarks.
Magnetic field does not affect the gluons on account of
their electrical neutrality and hence it is a reasonable
assumption to consider the effect of magnetic field to be
subdominant. Consequently, it can be argued that the
distribution function of the particles in the medium never
deviates significantly from equilibrium, which makes the
relaxation time approximation of the Boltzmann transport
equation a suitable approach to calculate the Seebeck and
Nernst coefficients (as well as other transport coefficients).
Thus, in the present work, we assume that the phase space
and dispersion relation of the particles are not affected by
magnetic field via Landau quantization [59–61]. The mag-
netic field is taken to be homogeneous and time independent.
The baryon chemical potential is also considered to be
homogeneous.
For our work, we have adopted two different method-

ologies to calculate the thermoelectric coefficients. In the
first method, we have calculated only the Seebeck coef-
ficient, considering the temperature gradient and the induced
electric field to exist in the x̂ direction only. This is made
possible since the Seebeck effect is a longitudinal effect and
has been done previously in multiple works [32,34]. This has
been done in order to compare the results obtained here with
that of the case of strong magnetic field, already evaluated by
us in an earlier work. This, thus, is the 1-dimensional
evaluation of the Seebeck coefficient. Nernst effect, however,
like the Hall effect, can be thought to be a transverse
phenomenon since it relates the thermocurrent and temper-
ature gradient in mutually transverse directions. This neces-
sitates a complete 2-dimensional formulation of the problem,
which at the end yields both Seebeck and Nernst coefficients
simultaneously. In each approach, we have calculated first
the coefficients for hypothetical media consisting of only one
type of quarks, or the individual Seebeck/Nernst coefficients.
Thereafter, we have calculated the coefficients for the
composite medium consisting of different quark species
and analyzed their dependence on temperature, chemical
potential and magnetic field.
The paper is organized as follows: In Sec. II, we discuss

the relativistic Boltzmann transport equation (RBTE) in

the relaxation-time approximation and set the framework
for deriving the Seebeck and Nernst coefficients of the
medium considering the background magnetic field to be
weak. In Sec. II A, we carry out the 1-dimensional
analysis of the Seebeck coefficient and calculate both
individual and total Seebeck coefficients in that frame-
work. In Sec. II B, we evaluate both Seebeck and Nernst
coefficients using a 2-dimensional approach. In Sec. III,
we incorporate interactions in the partonic medium via the
quasiparticle model by taking into account the medium
generated masses of quarks and gluons in the medium,
arrived at by perturbative thermal QCD. In Sec. IVA, the
results of the 1-D analysis are discussed and comparisons
with the strong magnetic field case are drawn. In Sec. IV B,
the results of the 2-D analysis are discussed. We finally
conclude in Sec. V.

II. SEEBECK AND NERNST COEFFICIENTS
FROM THE RELAXATION TIME

APPROXIMATION OF THE BOLTZMANN
EQUATION

In this section, we develop a general framework to study
the thermoelectric response of a quark gluon plasma
medium quantified by the Seebeck and Nernst coefficients,
in the presence of a weak, homogeneous background
magnetic field using the Boltzmann transport equation in
the relaxation time approximation.
Each parton in the plasma is associated with a one-

particle distribution function, fðx; pÞ≡ fðr⃗; p⃗; tÞ which is
a Lorentz invariant density in phase space, so that
fðr⃗; p⃗; tÞd3rd3p gives the number of partons in the spatial
volume element d3r about r⃗ and with momenta in a range
d3p about p⃗. The evolution of this distribution function
towards equilibrium via collisions is described by the
Boltzmann transport equation

df
dt

¼ ∂f
∂t þ

p⃗
m
·∇f þ F⃗ ·

∂f
∂p⃗

¼
�∂f
∂t

�
coll

; ð1Þ

where F⃗ is the force field acting on the particles in the
medium. If the collision term is zero then the particles do
not collide, and individual collisions get replaced by
long-range aggregated (Coulomb) interactions, and the
equation is then referred to as the collisionless Boltzmann
equation or Vlasov equation. Particles arrive at and leave
from the phase space volume element under consider-
ation, as a result of collisions. With both these processes

is associated the matrix element Mpp0 such that
Mp⃗p⃗0dtdp

0

ð2πÞ3 is

the probability that a parton with momentum p⃗ is
scattered into an infinitesimal volume element dp0 about
p0 in the time-interval dt. The probability per unit time
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that a parton with momentum p⃗ suffers some collision is

obtained by summing over final state momenta p⃗0:

1

τðp⃗Þ ¼
Z

dp⃗0

ð2πÞ3Mp⃗p⃗0 ½1 − fðp⃗0Þ�; ð2Þ

The factor ð1 − fðp⃗0ÞÞ denotes the reduction in available
final states of quarks imposed by the exclusion principle.
Therefore, the total number of quarks with momenta
in the neighborhood of p⃗ that suffer collision in time
dt, thereby moving out of the concerned phase space
volume element, is

dt
τðp⃗Þ fðp⃗Þ

dp⃗
ð2πÞ3 : ð3Þ

By defining appropriately the factor dfðp⃗Þ
dt jout, the above

quantity can be reexpressed as

−
dfðp⃗Þ
dt

����
out

dp⃗
ð2πÞ3 dt: ð4Þ

Equating with Eq. (3) yields:

dfðp⃗Þ
dt

����
out

¼ −
fðp⃗Þ
τðp⃗Þ

¼ −fðp⃗Þ
Z

dp⃗0

ð2πÞ3Mp⃗p⃗0 ½1 − fðp⃗0Þ�: ð5Þ

Similarly, the total number of quarks that enter the phase
space volume element (acquire momenta in the range dp
about p⃗) as a result of collisions in time interval dt is
given by:

dfðp⃗Þ
dt

����
in
¼ ½1 − fðp⃗Þ�

Z
dp⃗0

ð2πÞ3Mp⃗0 p⃗½fðp0Þ�: ð6Þ

Finally, the collision integral yields a general form:

�
dfðp⃗Þ
dt

�
coll

¼ dfðp⃗Þ
dt

����
in
þ dfðp⃗Þ

dt

����
out

¼ −
Z

dp0

ð2πÞ3 fMp⃗p⃗0fðp⃗Þ½1 − fðp⃗0Þ�

−M
p⃗0 p⃗fðp⃗0Þ½1 − fðp⃗Þ�g; ð7Þ

which makes the Boltzmann equation (1) a nonlinear
integro-differential equation and is therefore difficult to
solve in this generic form. To make the Boltzmann
equation tractable, we resort to what is called the
relaxation-time approximation (RTA). The RTA helps
to linearize the Boltzmann equation by virtue of a set of
assumptions:

(i) The distribution of partons emerging from collisions
at any time does not depend on the structure of the
nonequilibrium distribution function fðr⃗; p⃗; tÞ just
prior to collisions.

(ii) If the partons in a region about r⃗ have the equilib-
rium distribution appropriate to a local temperature
Tðr⃗Þ,

fðp⃗Þ ¼ f0ðp⃗Þ ¼
1

expðϵ−μTðr⃗ÞÞ � 1
;

then, collisions will not alter the form of the
distribution function. Consequently, the probability
per unit time for a collision 1=τðpÞ, becomes a
specified function of p⃗ without any dependence on
fðr⃗; p⃗; tÞ, unlike Eq. (2). Thus, the out-term in the
collision integral gets simplified as

dfðp⃗Þ
dt

����
out

¼ −
fðp⃗Þ
τðp⃗Þ : ð8Þ

The in-term that signifies the number of partons
entering the concerned phase space volume element
as a result of collisions, now involve the equilibrium
distribution function and is given by:

dfðp⃗Þ
dt

����
in
¼ f0ðp⃗Þ

τðp⃗Þ : ð9Þ

Thus, the collision integral (and hence the transport
equation) is linearized via RTA in the form

C½f� ¼ −
ðfðp⃗Þ − f0ðp⃗ÞÞ

τðp⃗Þ ;

¼ −
δf
τðp⃗Þ : ð10Þ

A slight deviation of the system from equilibrium is
taken into account by allowing for a relatively small
δf in Eq. (10), compared to the local equilibrium
distribution function f0, i.e., f ¼ f0 þ δf, with
δf ≪ f0. τðpÞ is the relaxation time of the medium.
Since a deconfined medium of quarks and gluons is
a relativistic system, it makes sense to work with the
relativistic Boltzmann transport equation which
reads for the i-th parton:

pμ∂fiðx;pÞ
∂xμ þqiFμνpν

∂fiðx;pÞ
∂pρ ¼C½fiðx;pÞ�; ð11Þ

where, fiðx; pÞ and qi are the distribution function
and electric charge, respectively, of the ith quark
flavor, Fμν is the electromagnetic field strength
tensor and C½fiðx; pÞ� is the collision term already
discussed earlier. To study the Seebeck effect, we
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need consider only the quarks, as gluons do not
contribute to the electric current. Thus, the equilib-
rium one-particle distribution function for a plasma
moving with a macroscopic four-velocity uν is the
Fermi-Dirac distribution given by:

f0i ðr⃗; p⃗Þ≡ f0i ¼
1

expðuνpν−μi
T Þ − 1

; ð12Þ

where μ refers to the quark chemical potential. In the
local rest frame of the plasma, uν ¼ ð1; 0; 0; 0Þ and
the distribution function reduces to:

f0i ¼
1

expðϵi−μiT Þ − 1
; ð13Þ

with ϵðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
and βðr⃗Þ ¼ 1=Tðr⃗Þ. The

collision term under RTA is simplified to

C½fiðx; pÞ� ≃ −
pμuμ
τi

δfi: ð14Þ

Equation (11) can then be written as

pμ ∂fiðx; pÞ
∂xμ þ F0μ ∂fiðx; pÞ

∂pμ ¼ −
pμuμ
τi

δfi: ð15Þ

Here, F0μ ¼ ðp0v⃗:F⃗; p0F⃗Þ is a 4-vector that can
be thought of as the relativistic counterpart of
the classical electromagnetic force with F⃗ ¼
qðE⃗þ v⃗ × B⃗Þ being the background classical
electromagnetic force field. By using F0i ¼ −Ei

and 2Fij ¼ ϵijkBk, we can show:

F0μ ¼ qFμνpν; ð16Þ

where, ϵijk is the completely antisymmetric Levi-
Civita tensor. Writing RBTE in 3-notation, we
have (dropping the particle label i):

�
p0

∂
∂x0 þ pj ∂

∂xj þ F0
∂

∂p0
þ Fj ∂

∂pj

�
f

¼ −
p0

τ
ðf − f0Þ; ð17Þ

i.e.,

∂f
∂tþ v⃗:

∂f
∂r⃗þ

F⃗:p⃗
p0

∂f
∂p0

þ F⃗:
∂f
∂p⃗¼−

ðf−f0Þ
τ

: ð18Þ

Under steady state assumption, ∂f
∂t ¼ 0. Thus,

we get:

�
v⃗:

∂
∂r⃗þ

F⃗:p⃗
p0

∂
∂p0

þ F⃗:
∂
∂p⃗

�
f¼−

ðf−f0Þ
τ

: ð19Þ

Considering p0 to be an independent variable, we
make use of the chain rule

∂
∂p⃗ →

∂p0

∂p⃗
∂

∂p0
þ ∂
∂p⃗ ¼ p⃗

p0

∂
∂p0

þ ∂
∂p⃗ : ð20Þ

Thus, Eq. (19) becomes

v⃗:
∂f
∂r⃗ þ F⃗:

∂f
∂p⃗ ¼ −

ðf − f0Þ
τ

; ð21Þ

with F⃗ ¼ qðE⃗þ v⃗ × B⃗Þ.
In what follows, we evaluate the Seebeck coefficient in a

weak magnetic field, first in a one-dimensional formulation
and carry out a comparison with the Seebeck coefficient in
the presence of a strong magnetic field, evaluated in our
previous work. A one-dimensional treatment is possible
since the Seebeck effect is a longitudinal effect [32].
Thereafter, we carry out a two-dimensional evaluation of
the thermoelectric response in a weak magnetic field which
yields simultaneously the Seebeck and Nernst coefficients.

A. One-dimensional formulation: Seebeck coefficient

Let us consider E⃗ ¼ Ex̂, B⃗ ¼ Bẑ. Then, Eq. (21)
becomes:

f − qBτ

�
vx

∂f
∂py

− vy
∂f
∂px

�

¼ f0 − qEτ
∂f0
∂px

− τv⃗:
∂f
∂r⃗ : ð22Þ

To solve Eq. (22), we employ the following Ansatz [59]:

f ¼ f0 − τqE
∂f0
∂px

− χ⃗:
∂f0
∂p⃗ ; ð23Þ

f0 being the equilibrium distribution function defined
in Eq. (13).
Thus, Eq. (22) becomes:

−χ⃗:
∂f0
∂p⃗ − qBτ

�
vx

∂f
∂py

− vy
∂f
∂px

�
¼ −τv⃗:

∂f
∂r⃗ : ð24Þ

Simplifying the terms in the parentheses using the Ansatz
given in Eq. (23), we get,

vx
∂f
∂py

¼ vx

�∂f0
∂py

− τqE
∂2f0

∂py∂px
− χx

∂2f0
∂py∂px

− χy
∂2f0
∂p2

y

− χz
∂2f0

∂py∂pz

�
: ð25Þ
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vy
∂f
∂px

¼ vy

�∂f0
∂px

− τqE
∂2f0
∂p2

x
− χy

∂2f0
∂px∂py

− χx
∂2f0
∂p2

x

− χz
∂2f0

∂px∂pz

�
: ð26Þ

Using Eq. (13),

∂f0
∂px

¼ βf0ðf0 − 1Þpx

ϵ
: ð27Þ

We have,

∂2f0
∂py∂px

¼ βf0pxpy

ϵ2

�
β þ 1

ϵ

�
; ð28Þ

∂2f0
∂py∂pz

¼ βf0pypz

ϵ2

�
β þ 1

ϵ

�
; ð29Þ

∂2f0
∂p2

y
¼ −

βf0
ϵ

�
1 −

p2
y

ϵ2
−
βp2

y

ϵ

�
; ð30Þ

∂2f0
∂p2

x
¼ −

βf0
ϵ

�
1 −

p2
x

ϵ2
−
βp2

x

ϵ

�
; ð31Þ

where we have neglected f20 at high T.
Making use of equations (28), (29), (30), (31) in

expressions (25) and (26), and retaining terms with only
linear power of velocity [59], we get:

vx
∂f
∂py

− vy
∂f
∂px

¼ ∂f0
∂ϵ

1

ϵ
ðχxvy − χyvx þ τqEvyÞ;

where we have used ∂f0∂ϵ ¼ −βðf0 − f20Þ ≃ −βf0.
Thus, the L.H.S. of Eq. (24) becomes:

−χ⃗:
∂f0
∂p⃗ −q2Bτ2E

∂f0
∂ϵ

vy
ϵ
þqBτ

∂f0
∂ϵ

1

ϵ
ðvxχy−vyχxÞ: ð32Þ

We now simplify the R.H.S. of Eq. (24), which, on using
the Ansatz becomes:

− τv⃗ ·

�∂f0
∂r⃗ − τqE

∂
∂r⃗

�∂f0
∂px

�
− χx

∂
∂r⃗

�∂f0
∂px

�

− χy
∂
∂r⃗

�∂f0
∂py

�
− χz

∂
∂r⃗

�∂f0
∂pz

�	
: ð33Þ

We consider only the temperature gradient in the x
direction, ∂T

∂x. Using

∂f0
∂p⃗ ¼ ∂f0

∂ϵ
∂ϵ
∂p⃗ ¼ ∂f0

∂ϵ
p⃗
ϵ
;

and

∂f0
∂r⃗ ¼ −

∂f0
∂ϵ

�
ϵ − μ

T

�
∇⃗r⃗T;

and on neglecting higher order velocity terms, the R.H.S.
simplifies to:

τvx

�∂f0
∂ϵ

��
ϵ − μ

T

� ∂T
∂x : ð34Þ

Equating the L.H.S. and R.H.S. from Eq. (32) and
Eq. (34), respectively, and dividing throughout by τ, we
finally obtain

vx

�
−χx
τ

þ qBχy
ϵ

−
�
ϵ − μ

T

� ∂T
∂x

	

þ vy

�
−χy
τ

−
qBχx
ϵ

−
q2BτE

ϵ

	

þ vz

�
−χz
τ

	
¼ 0: ð35Þ

Calling qB
ϵ ¼ ωc as the cyclotron frequency, we compare

the coefficients of vx, vy and vz on both sides of Eq. (35), to
get:

χx
τ
− ωcχy þ

�
ϵ − μ

T

� ∂T
∂x ¼ 0: ð36Þ

χy
τ
þ ωcχx þ ωcqτE ¼ 0: ð37Þ

χz
τ
¼ 0: ð38Þ

Solving the equations above for χx, χy and χz, we get:

χx ¼
−ω2

cτ
3

1þ ω2
cτ

2
qE −

τ

1þ ω2
cτ

2

�
ϵ − μ

T

� ∂T
∂x : ð39Þ

χy ¼
−ωcτ

2

1þ ω2
cτ

2
qEþ ωcτ

2

1þ ω2
cτ

2

�
ϵ − μ

T

� ∂T
∂x : ð40Þ

χz ¼ 0: ð41Þ

Substituting Eq. (39), Eq. (40) and Eq. (41) in the Ansatz
[Eq. (23)], we obtain:

δf ¼
�
−τqvx þ

ω2
cτ

3

1þ ω2
cτ

2
qvx þ

ωcτ
2

1þ ω2
cτ

2
qvy

	 ∂f0
∂ϵ E

−
�

ωcτ
2

1þ ω2
cτ

2

�
ϵ − μ

T

�
vy

−
τ

1þ ω2
cτ

2

�
ϵ − μ

T

�
vx

	 ∂f0
∂ϵ

∂T
∂x : ð42Þ
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For antiparticles,

δf ¼
�
−τq̄vx þ

ω2
cτ

3

1þ ω2
cτ

2
q̄vx þ

ωcτ
2

1þ ω2
cτ

2
q̄vy

	 ∂f̄0
∂ϵ E

−
�

ωcτ
2

1þ ω2
cτ

2

�
ϵ − μ

T

�
vy

−
τ

1þ ω2
cτ

2

�
ϵ − μ

T

�
vx

	 ∂f̄0
∂ϵ

∂T
∂x : ð43Þ

The induced four current is then obtained from the relation

Jμ ¼ qg
Z

d3p
ð2πÞ3ϵp

μ½δf − δf�; ð44Þ

where q and g are, respectively, the electric charge and
degeneracy factor of the quark species. Substituting in
Eq. (44) the relevant terms from Eq. (42) and Eq. (43), we
thus obtain the spatial part of the induced four current, i.e.,
the induced current density

Jx ¼
qg × 4π

8π3

Z
dp
ϵ2

p4q
τβ

ð1þ ω2
cτ

2Þ ff0ð1 − f0Þ þ f̄0ð1 − f̄0ÞgE

þ qg × 4π

8π3

Z
dp
ϵ2

p4
τβ

Tð1þ ω2
cτ

2Þ fðϵþ μÞf̄0ð1 − f̄0Þ − ðϵ − μÞf0ð1 − f0Þg
∂T
∂x : ð45Þ

Setting Jx ¼ 0, we obtain:

E ¼ 1

qT

R
dp p4τ

ϵ2ð1þω2
cτ

2Þ fðϵ − μÞf0ð1 − f0Þ − ðϵþ μÞf̄0ð1 − f̄0ÞgR
dp p4τ

ϵ2ð1þω2
cτ

2Þ ff0ð1 − f0Þ þ f̄0ð1 − f̄0Þg
∂T
∂x

¼ 1

qT
I2
I1

∂T
∂x ; ð46Þ

where

I1 ¼
Z

dp
p4τ

ϵ2ð1þ ω2
cτ

2Þ ff0ð1 − f0Þ þ f̄0ð1 − f̄0Þg

I2 ¼
Z

dp
p4τ

ϵ2ð1þ ω2
cτ

2Þ fðϵ − μÞf0ð1 − f0Þ − ðϵþ μÞf̄0ð1 − f̄0Þg: ð47Þ

Equating with ðE⃗Þx ¼ Sð∇⃗r⃗TðrÞÞx, we obtain:

S ¼ 1

qT
I2
I1
: ð48Þ

After having calculated the Seebeck coefficient for a
thermal medium consisting of a single species, we move on
to the more realistic case of a multicomponent system,
which in our case corresponds to multiple flavors of quarks
in the QGP. However, gluons being electrically neutral, do
not contribute to the thermoelectric current, therefore, the
total electric current in the medium is the vector sum of
currents due to individual species:

Jx ¼ ðJxÞ1 þ ðJxÞ2 þ ðJxÞ3 þ � � �

¼
�
q21g1
2Tπ2

ðI1Þ1 þ
q22g2
2Tπ2

ðI1Þ2 þ � � �
�
E

−
�

q1g1
2T2π2

ðI2Þ1 þ
q2g2
2T2π2

ðI2Þ2 þ � � �
� ∂T
∂x : ð49Þ

Setting the total current, Jx ¼ 0 as earlier, we get the
induced electric field,

E ¼
P

i
qigiðI2Þi

TP
iq

2
i giðI1Þi

∂T
∂x : ð50Þ

All quarks have the same degeneracy factor. Hence, the
total Seebeck coefficient for the multicomponent system
can be rewritten as

S ¼
P

iSiq
2
i ðI1ÞiP

iq
2
i ðI1Þi

; ð51Þ

which could be viewed as a weighted average of the
Seebeck coefficients of individual species (Si) present in
the medium.
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B. Two-dimensional formulation: Seebeck
and Nernst coefficients

A conducting medium subjected to mutually perpendicular
magnetic field and temperature gradient develops a thermo-
current perpendicular to both the magnetic field and temper-
ature gradient. This phenomenon is called the Nernst effect.
While the Seebeck coefficient determined from the “open
circuit” condition relates the electric field component in a
particular direction to the temperature gradient component in
the same direction, the Nernst coefficient can be thought of as
a Hall type thermoelectric coefficient that relates the electric
field and the temperature gradient in mutually transverse
directions. Thus, evaluating the Nernst coefficient requires a
2-dimensional formulation of the problem. Here, we consider
the electric field and temperature gradient to exist in the x − y
plane with the magnetic field pointing exclusively in the
z direction. Also, we consider a two flavor quark gluon
plasma medium with u and d quarks (and their antiquarks).
We first evaluate the Seebeck and Nernst coefficients for a
QGP medium composed of a single quark species.
With E⃗ ¼ Exx̂þ Eyŷ, the Boltzmann equation [Eq. (21)]

reads:

f−qBτ

�
vx

∂f
∂py

−vy
∂f
∂px

�
¼f0−τv⃗ ·

∂f
∂r⃗−τqE⃗ ·

∂f
∂p⃗; ð52Þ

where f0 is the equilibrium quark distribution function
given by Eq. (13) and f is the total distribution function
satisfying f ¼ f0 þ δf. We modify the Ansatz in Eq. (23)
to include Ey:

f ¼ f0 þ δf ¼ f0 − τqE⃗ ·
∂f0
∂p⃗ − χ⃗:

∂f0
∂p⃗ : ð53Þ

Using Eq. (53), Eq. (52) becomes:

χ⃗ ·
∂f0
∂p⃗ − qBτ

�
vy

∂f
∂px

− vx
∂f
∂py

�
¼ τv⃗ ·

∂f0
∂r⃗ : ð54Þ

The terms in the parentheses, after using the Ansatz and
retaining only linear velocity terms, simplify to

vy
∂f
∂px

−vx
∂f
∂py

¼vyχxþvyτqEx−vxχy−vxτqEy: ð55Þ

This finally leads to

vx

�
χx
τ
− ωcτqEy − ωcχy þ

ϵ − μ

T
∂T
∂x

	

þ vy

�
χy
τ
þ ωcτqEx þ ωcχx þ

ϵ − μ

T
∂T
∂y

	
¼ 0; ð56Þ

where ωc ¼ qB=ϵ is the cyclotron frequency. Equating
coefficients of vx and vy, we get

χx
τ
− ωcτqEy − ωcχy þ

ϵ − μ

T
∂T
∂x ¼ 0: ð57Þ

χy
τ
þ ωcτqEx þ ωcχx þ

ϵ − μ

T
∂T
∂y ¼ 0: ð58Þ

Solving for χx and χy yields:

χx ¼
−ω2

cτ
3

1þ ω2
cτ

2
qEx −

τ

1þ ω2
cτ

2

�
ϵ − μ

T

� ∂T
∂x

þ ωcτ
2

1þ ω2
cτ

2
qEy −

�
ϵ − μ

T

�
ωcτ

2

1þ ω2
cτ

2

∂T
∂y : ð59Þ

χy ¼
−ωcτ

2

1þ ω2
cτ

2
qEx þ

ωcτ
2

1þ ω2
cτ

2

�
ϵ − μ

T

� ∂T
∂x

−
ω2
cτ

3

1þ ω2
cτ

2
qEy −

τ

1þ ω2
cτ

2

�
ϵ − μ

T

� ∂T
∂y : ð60Þ

Substituting in Eq. (53), we obtain:

δf ¼ ∂fo
∂ϵ

�
−τqvx þ

ω2
cτ

3

1þ ω2
cτ

2
qvx þ

ωcτ
2

1þ ω2
cτ

2
qvy

	
Ex þ

∂fo
∂ϵ

�
−τqvy þ

ω2
cτ

3

1þ ω2
cτ

2
qvy −

ωcτ
2

1þ ω2
cτ

2
qvx

	
Ey

þ ∂fo
∂ϵ

�
τ

1þ ω2
cτ

2

�
ϵ − μ

T

�
vx −

ωcτ
2

1þ ω2
cτ

2

�
ϵ − μ

T

�
vy

	 ∂T
∂x þ ∂fo

∂ϵ
�

τ

1þ ω2
cτ

2

�
ϵ − μ

T

�
vy þ

ωcτ
2

1þ ω2
cτ

2

�
ϵ − μ

T

�
vx

	 ∂T
∂y :
ð61Þ

δf is obtained by replacing q by −q in Eq. (61). The
induced 4-current as earlier is given by:

Jμ ¼ qg
Z

d3p
ð2πÞ3ϵp

μ½δf − δf�: ð62Þ

Substituting the expressions for δf and δf above, we
obtain:

Jx¼
qg
6π2

�
ðqβI1ÞExþðqβI2ÞEyþðβ2I3Þ

∂T
∂xþðβ2I4Þ

∂T
∂y

	
;

ð63Þ
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Jy ¼
qg
6π2

�
ðqβI1ÞEy þ ð−qβI2ÞEx þ ðβ2I3Þ

∂T
∂y þ ð−β2I4Þ

∂T
∂x

	
; ð64Þ

where

I1 ¼
Z

dpp4
τ

ϵ2ð1þ ω2
cτ

2Þ ff0ð1 − f0Þ þ f̄0ð1 − f̄0Þg

I2 ¼
Z

dpp4
ωcτ

2

ϵ2ð1þ ω2
cτ

2Þ ff0ð1 − f0Þ − f̄0ð1 − f̄0Þg

I3 ¼
Z

dpp4
τ

ϵ2ð1þ ω2
cτ

2Þ fðϵþ μÞf̄0ð1 − f̄0Þ − ðϵ − μÞf0ð1 − f0Þg

I4 ¼
Z

dpp4
ωcτ

2

ϵ2ð1þ ω2
cτ

2Þ f−ðϵþ μÞf̄0ð1 − f̄0Þ − ðϵ − μÞf0ð1 − f0Þg:

In equilibrium, we have, Jx ¼ 0 ¼ Jy. This leads to

C1Ex þ C2Ey þ C3

∂T
∂x þ C4

∂T
∂y ¼ 0; ð65Þ

−C2Ex þ C1Ey − C4

∂T
∂x þ C3

∂T
∂y ¼ 0; ð66Þ

where C1 ¼ qI1, C2 ¼ qI2, C3 ¼ βI3 and C4 ¼ βI4.
The electric field components are related to the compo-

nents of the temperature gradients via the Seebeck and
Nernst coefficients via a matrix equation

�
Ex

Ey

�
¼

�
S NjB⃗j

−NjB⃗j S

�� ∂T
∂x
∂T
∂y

�
: ð67Þ

Here, S and N refer to the Seebeck and Nernst coefficients,
respectively. The relative minus sign among the Nernst
coefficients is necessitated by the Onsager reciprocity
theorem [24]. Using Eq. (65) and Eq. (66), we finally
obtain:

Ex ¼
�
−
C1C3 þ C2C4

C2
1 þ C2

2

	 ∂T
∂x þ

�
C2C3 − C1C4

C2
1 þ C2

2

	 ∂T
∂y ð68Þ

Ey ¼
�
−
C1C3 þ C2C4

C2
1 þ C2

2

	 ∂T
∂y −

�
C2C3 − C1C4

C2
1 þ C2

2

	 ∂T
∂y : ð69Þ

Thus,

S ¼ −
C1C3 þ C2C4

C2
1 þ C2

2

; ð70Þ

NjB⃗j ¼ C2C3 − C1C4

C2
1 þ C2

2

: ð71Þ

For the physical medium consisting of u and d quarks,
the total currents are given as:

Jx¼
X
a¼u;d

�
qaðI1ÞaExþqaðI2ÞaEyþβðI3Þa

∂T
∂xþβðI4Þa

∂T
∂y

	

ð72Þ

Jy¼
X
a¼u;d

�
−qaðI2ÞaExþqaðI1ÞaEy−βðI4Þa

∂T
∂xþβðI3Þa

∂T
∂y

	
:

ð73Þ

Setting the currents equal to 0 as earlier, we arrive at the
Seebeck and Nernst coefficients of the composite medium:

S ¼ −
K1K3 þ K2K4

K2
1 þ K2

2

; ð74Þ

NjB⃗j ¼ K2K3 − K1K4

K2
1 þ K2

2

; ð75Þ

where

K1 ¼
X
a¼u;d

qaðI1Þa; K2 ¼
X
a¼u;d

qaðI2Þa;

K3 ¼
X
a¼u;d

βðI3Þa; K4 ¼
X
a¼u;d

βðI4Þa:

III. QUASIPARTICLE DESCRIPTION

Quasiparticle description is a phenomenological descrip-
tion of quarks and gluons in a thermal QCD medium, in
which thermal masses of partons are generated, apart from
their current masses in QCD Lagrangian. These masses are
generated due to the interaction of a given parton with other
partons in the medium, therefore, quasiparticle description
describes the collective properties of the medium. It can be
applied to study several thermal properties of QGP near the
crossover temperature, Tc, where perturbation theory cannot
be used directly. Such a model was initially proposed by
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Goloviznin and Satz [70]. Different versions of quasiparticle
description exist in the literature based on different effective
theories, such as Nambu-Jona-Lasinio (NJL) model and its
extension Polyakov-loop extended Nambu Jona Lasinio
model [71–73], Gribov-Zwanziger quantization [74,75],
thermodynamically consistent quasiparticle model [76],
etc. The results arrived at using these models suggest that
it is possible to describe the high temperature QGP phase by
a thermodynamically consistent quasiparticle model. Our
description relies on perturbative thermal QCD, where the
medium generated masses for quarks and gluons are
obtained from the poles of dressed propagators calculated
by the respective self energies at finite temperature.
The relaxation time is in fact an artifact of the quasi-

particle description itself. The gluon exchange that takes
place during parton scattering in the QGP medium is
infested with infrared singularity owing to the zero rest
mass of the gluon. The problem is however circumvented
by the finite thermal mass acquired by the gluons (and also
the quarks) in the quasiparticle description. This mass acts
as an infrared cutoff in transverse gluon exchange processes
that play the dominant role in bringing the system back to
equilibrium post an infinitesimal disturbance. In deriving
the relaxation time, we take help of the Boltzmann transport
equation via which we calculate initially the shear viscosity
(η) of the medium:

1

η
¼ π7α2s

T3480ðζð5ÞÞ2 ln
�

T
mgT

�
: ð76Þ

The issue of the singularity in transverse gluon exchange
processes can be clearly seen above, where the inverse of
shear viscosity would diverge in the absence of medium
generated parton masses owing to the factor lnð T

mgT
Þ. After

having calculated the shear viscosity, we associate with it a
viscous relaxation time τ, defined by the relaxation time
approximation of the Boltzmann transport equation,

Df ¼ −
fðp⃗Þ − f0ðp⃗Þ

τðp⃗Þ ; ð77Þ

where D refers to the total time derivative. In conjunction
with the definition of shear viscosity, this yields the
relaxation time as follows:

τ ≃
η

1.404T4

¼ Nf þ 0.6

0.4ðNf þ 6ÞTα2s
1

lnðT=mgTÞ
: ð78Þ

In the quasiparticle description of quarks and gluons in a
thermal medium, all quark flavors (with current/vacuum
masses, mi ≪ T) acquire the same thermal mass [77,78]

m2
T ¼ g2ðTÞT2

6
; ð79Þ

which is, however, modified in the presence of a finite
chemical potential [79]

m2
T;μ ¼

g2ðTÞT2

6

�
1þ μ2

π2T2

�
: ð80Þ

We take the pure thermal (B ¼ 0) expressions of quasi-
particle masses with magnetic field dependence coming in
implicitly via the coupling constant. This is justified since
we are working in a regime where eB ≪ T2. We use a one
loop running coupling constant αsðΛ2; eBÞ, which runs
with both the magnetic field and temperature: [80]

αsðΛ2; jeBjÞ ¼ αsðΛ2Þ
1þ b1αsðΛ2Þ lnð Λ2

Λ2þjeBjÞ
; ð81Þ

where αsðΛ2Þ is the one-loop running coupling in the
absence of a magnetic field

αsðΛ2Þ ¼ 1

b1 lnð Λ2

Λ2
QCD

Þ ;

with b1 ¼ ð11Nc − 2NfÞ=12π and ΛQCD ∼ 0.2 GeV. The

renormalization scale is chosen to be Λ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2

π2

q
.

αsðΛ2; jeBjÞ determines gðT; jeBjÞ via the relation

αsðΛ2; jeBjÞ ¼ g2ðT; jeBjÞ
4π

: ð82Þ

Thus, the thermally generated mass takes on an implicit
dependence on the magnetic field via the coupling constant.
We take the quasiparticle mass (squared) of ith flavor to be
[76,81–83]:

m02
iT ¼ m2

i þ
ffiffiffi
2

p
mimT þm2

T: ð83Þ

IV. RESULTS

The relaxation time used in this calculation is the one
evaluated for a pure thermal medium (B ¼ 0) with a finite
chemical potential with the justification being that temper-
ature is the hardest scale in the problem. Also, the magnetic
field dependence is implicit in the relaxation time via the
coupling constant αs. The relaxation time for quarks,
antiquarks is given by [34]:

1

τðT; μÞ ¼
0.4:ðNf þ 6Þ
ðNf þ 0.6Þ Tα2s ln

×

�
1

2παs

1

ððNf þ 1Þ þ 3
π2
P

i
μ2i
T2Þ

	
; ð84Þ
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where Nf is the number of quark flavors in the medium and
αs is as given by Eq. (81).

A. 1-D Seebeck coefficient and its comparison with the
strong magnetic field case

The variation of Seebeck coefficients of u and d quarks
with temperature is shown in Fig. 1 for three different values
of quark chemical potential in the presence of a weak
(B ¼ 0.06 GeV2) magnetic field. We observe that the
magnitude of Seebeck coefficient for both u and d quarks
decreases with temperature. This is due to the fact that the net
number density, (n − n̄) (which is proportional to the net
charge) decreases with the temperature for a fixed μ. The rate
of increase (slope) is more pronounced at low temperatures
as compared to higher temperatures. The coefficient
increases with increasing chemical potential for a fixed
value of temperature. For the u quark, a finite chemical
potential implies an abundance of positive charges (particles)
over negative charges (antiparticles), leading to a greater
thermoelectric current for higher chemical potential, and,
hence, a larger Seebeck coefficient. Similarly, for the
d quark, a larger chemical potential means a larger abun-
dance of negative charges over positive charges, leading to a
more negative value of the Seebeck coefficient. The sign of
the Seebeck coefficient is positive for the positively charged
u quark and negative for the negatively charged d quark, in
accordance with our expectation.
The Seebeck coefficient for s quark exhibits the same

trend as far as variation with temperature is concerned, as can
be seen from Fig. 2. For a given value of the magnetic field,
the magnitude of the Seebeck coefficient decreases with
increasing temperature. Also, the sign of the Seebeck
coefficient is negative throughout the entire temperature
range, as a consequence of the negative electric charge of the
s quark. Like in the case of u and d quarks, the magnitude of
the s quark Seebeck coefficient increases with increasing

chemical potential. The d and s quarks carry the same
electric charge. As such, the major differentiators of the two
species are the strangeness quantum number and the current
mass, with only the latter being relevant in this discussion.
Comparing the Seebeck coefficients of the d and s quarks
therefore gives us an idea as to how the mass of the particle
affects the individual Seebeck coefficient. It can be seen
from the comparison that a larger current quark mass has an
amplifying effect on the Seebeck coefficient in the case of a
weak magnetic field. To clearly visualize this, we have
plotted the individual Seebeck coefficient as a function of the
current quark mass at different fixed values of temperature,
taking the charge to be − 2

3
e, in the presence of a weak

magnetic field in Fig. 6(a). As can be seen, the coefficient
magnitude increases with the current mass, with the increase
being more pronounced at lower temperatures.
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FIG. 2. Variation of s quark Seebeck coefficient with temper-
ature for different fixed values of quark chemical potential.
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FIG. 1. Variation of Seebeck coefficient of u (a) and d (b) quarks with temperature for different fixed values of quark chemical
potential.
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To evaluate the total Seebeck coefficient of the medium
comprising of multiple quark flavors (u, d, s in our case),
we make use of the individual Seebeck coefficients already
obtained, and substitute in Eq. (51).
As can be seen from the Fig. 3, the total Seebeck

coefficient of the medium decreases with increasing tem-
perature. Similar to the case of single species, the magni-
tude of the coefficient increases with increasing chemical
potential. As mentioned earlier, the total Seebeck coeffi-
cient is a weighted average of the individual Seebeck
coefficients. Although the individual coefficients for d and
s quarks are negative, the weighted average renders the
total Seebeck coefficient positive for the entire temper-
ature range.
We now discuss briefly the procedure for calculating the

Seebeck coefficient in the presence of a strong magnetic
field [34]. Charged particles in the presence of a magnetic
field occupy discrete energy levels (n ¼ 0; 1; 2;…). This is
referred to as Landau quantization and is thus applicable for
quarks in a magnetized QGP [84]. The thermal occupation
probability of higher Landau levels by the quarks is found

to be exponentially suppressed by e−
ffiffiffi
eB

p
t . Thus for strong

magnetic fields (
ffiffiffiffiffiffi
eB

p
≫ T), the dominant contribution

comes from the lowest Landau level (n ¼ 0) as the higher
ones do not contribute to transport phenomena in leading
order and can be neglected in calculations. This is the
Lowest Landau Level (LLL) approximation. Consequently,
the quark dispersion relation

ωðnÞðpLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
L þm2 þ 2njqBj

q
; ð85Þ

gets reduced to

ωðpLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
L þm2

q
; ð86Þ

where m, q, are respectively, the mass and charge of the
quark and pL is the component of quark momentum along
the direction of B⃗. The transverse momentum (squared)
2njqBj vanishes in the LLL approximation. Thus we have a
dimensional reduction D → D − 2 in fermion dynamics in
a strong magnetic field [85]. Following this approach, the
effect of strong magnetic field is incorporated in the
evaluation of the Seebeck coefficient. Further, instead of
Eq. (80), the thermomagnetic quark mass—which is
nothing but the pole of the full quark propagator in a
strong magnetic field—is used [86]

m2
T;B ¼ g2jqBj

3π2

�
πT
2m

− lnð2Þ
	
; ð87Þ

where m and q are the current mass and electric charge of
the quark in question with g obtained from Eq. (82). As
earlier, the effective quasiparticle mass (squared) of ith
flavor is taken to be

m02
iðT;BÞ ¼ m2

i þ
ffiffiffi
2

p
mimiðT;BÞ þm2

iðT;BÞ; ð88Þ
so that Eq. (86) for i-th quark becomes

ωiðpLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
L þm02

iðT;BÞ
q

: ð89Þ

Starting from the relativistic Boltzmann transport equation
[Eq. (15)], the final expression for the individual Seebeck
coefficient in the presence of a strong magnetic field comes
out to be

S ¼ 1

2Tq
H1

H2

; ð90Þ

where

H1 ¼
Z

dpz

w2
τBp2

zf−f̄ð1 − f̄Þðωþ μÞ

þ fð1 − fÞðω − μÞg; ð91Þ

H2 ¼
Z

dpz

w2
τBp2

zff̄ð1 − f̄Þ þ fð1 − fÞg: ð92Þ

Here, f and f̄ denote the equilibrium distribution functions
for the concerned quark and its antiquark, respectively, pz ≡
pL with ω being given by Eq. (89). τB denotes the relaxation
time for quarks in the presence of strong magnetic field,
which, in the Lowest Landau Level (LLL) approximation, is
given by [87]:

τBðT; BÞ ¼
wðeβω − 1Þ

αsðΛ2; eBÞC2m2ðeβω þ 1Þ

×

�
1R

dp03 1

w0ðeβω0þ1Þ

	
; ð93Þ
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FIG. 3. Variation of total Seebeck coefficient with temperature
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where C2 ¼ 4=3 is the Casimir factor, m is the mass of the
concerned quark species and αsðΛ2; eBÞ is given by Eq. (82).
Proceeding in a similar fashion, the total Seebeck coefficient
of the composite medium is given by

S ¼ 1

2T

P
iqijqiBjðH1ÞiP
iq

2
i jqiBjðH2Þi

; ð94Þ

which could be further expressed in terms of the weighted
average of individual Seebeck coefficients:

Stotal ¼
P

iSijqij3ðH2ÞiP
ijqij3ðH2Þi

; ð95Þ

where the summation is over quark flavors present in the
medium and Si denotes the individual Seebeck coefficient of
a medium containing i-th quark flavor alone.
In Figs. 4(a) and 4(b), we have drawn a comparison

among the Seebeck coefficients of the u and d quarks,
respectively, in different domains of magnetic field
strengths. The behavior is similar in some aspects for both
the light quarks in that the magnitudes of the respective
Seebeck coefficients decrease with temperature for both
strong and weak magnetic fields. For the u quark, the
Seebeck coefficient is significantly larger near Tc in the
strong magnetic field case, compared to the weak B case.
However, at higher temperatures (∼3Tc), the Seebeck
coefficients for both the strong and weak B cases converge.
For the d quark, the magnitude of the Seebeck coefficient is
again maximum in the presence of strong magnetic field
near Tc. However, at higher temperatures, the trend is
reversed and the Seebeck coefficient magnitude is greater
for the weak B case. So, the variation of individual Seebeck
coefficient with temperature or the temperature sensitivity
is maximum in the presence of a strong magnetic field
which holds true for both the light quarks.

Figure 5 compares the variation of s quark Seebeck
coefficient with temperature at different magnetic field
strengths. The usual trends of decrease of the Seebeck
coefficient magnitude with temperature and increase with
chemical potential hold. As earlier, the rate of increase is
more pronounced at lower temperatures. However, the
hierarchy of Seebeck coefficient magnitudes is reversed,
with the magnitude being greater in the presence of weak
magnetic field compared to that in the presence of strong
magnetic field in the entire temperature range. We can
analyze the effect of current quark mass on the magnitude of
individual coefficients at different field strengths by compar-
ing Fig. 4(b) and Fig. 5. It is clear that in the presence of a
strong magnetic field, a greater current mass of the particle
(quark) suppresses the ability of the medium to convert a
temperature gradient into electric current whereas if the
magnetic field is weak, the coefficient gets enhanced slightly
for the quark with the larger current mass. The same
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FIG. 4. Variation of Seebeck coefficient of u (a) and d (b) quarks with temperature for different fixed values of magnetic field.
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comparison can also shed light on temperature sensitivity of
individual coefficients as a function of particle current mass
for different field strengths. In the case of light quarks
[Figs. 4(a) and 4(b)], it was observed that the variation of
Seebeck coefficient with temperature, and thereby the range
of the Seebeck coefficient in the given temperature range,
was most pronounced in the presence of strong magnetic
field. For the s quark, however, the variation is far less
pronounced in the presence of strong magnetic field com-
pared to when the magnetic field is weak. This can be seen
clearly in Fig. 6(b), where we have plotted the range of
individual Seebeck coefficient ðjSTmax

− STmin
jÞ as a function

of the current quark mass for both the weak B and strong B
cases. The opposite trends are clearly visible, based on
which, it can be argued that a larger current mass of the
particle decreases the temperature sensitivity of the individ-
ual Seebeck coefficient when the background magnetic field
is strong, whereas it causes a slight increase in the temper-
ature sensitivity when the magnetic field is weak. In
Fig. 6(a), we have shown the dependence of individual
Seebeck coefficient with q ¼ −2e=3 and μ ¼ 50 MeV on
the current quark mass.
Figure 7 shows the variation of the total Seebeck

coefficient of the composite medium with temperature
for different magnetic field strengths. As can be seen, the
total Seebeck coefficient has a very small positive value
for the weak magnetic field case for which the variation
with temperature is very feeble in the entire temperature
range. It should be remembered that the thermoelectric
responses of positive and negative charges (u and d
quarks in our work) are competitive and since the total
Seebeck coefficient of the medium in the framework
adopted here is a weighted average of the individual
coefficients, the former could be quite different from the

latter values. This is reflected in the strong B case, where
the total Seebeck coefficient is negative in the entire
temperature range, although the individual coefficients
are still positive for positive charges and negative for
negative ones. Physically, this implies that the induced
electric field is generated opposite to the temperature
gradient and the magnitude decreases with increasing
temperature. From Fig. 7 it is clear that in the composite
medium, the thermoelectric response is the most effective
in the presence of a strong magnetic field where the
direction of the induced electric field is opposite to
the direction of the temperature gradient. The response
in the case of weak B is comparatively feeble and
monotonous in the entire temperature range.
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B. Seebeck and Nernst coefficients from 2-D
formulation

As can be seen in Figs. 8(a) and 8(b), the magnitude of
the individual coefficients decreases with temperature and
increases with chemical potential, similar to the observa-
tions in the 1-D result. The individual Seebeck coefficients
are ratios of two integrals [Eq. (70)]. The numerator and
denominator of Eq. (70) for both u and d quarks are all
increasing functions of temperature as far as the absolute
values are concerned. However, the ratios are monotoni-
cally decreasing functions of temperature for the temper-
ature range considered here. The magnitudes and range of
the coefficients also bear a close resemblance to the 1-D
results. As expected, the coefficient is positive for the
positively charged u quark and negative for the negatively
charged d quark. The magnitudes of numerators and

denominators in Eq. (70) for both u and d quarks are
increasing functions of chemical potential as well.
However, the rate of increase is more pronounced for
the numerator than the denominator. This explains the
overall increase of the individual coefficients with chemical
potential.
Figure 9(a) shows the variation of Seebeck coefficient of

the composite medium composed of u and d quarks with
temperature. We see the earlier trend of decrease of
coefficient magnitude with temperature. Also, the coeffi-
cient is positive and increases with increasing chemical
potential. These trends can be understood from analyzing
the integrals in the numerator and denominator of Eq. (74).
Figure 10(a) shows the variation of the numerator and
denominator integrals in Eq. (74) with temperature. It can
be seen that both the numerator and the denominator are
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FIG. 8. Variation of Seebeck coefficient of u (a) and d (b) quarks with temperature for different fixed values of quark chemical
potential.
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increasing functions of temperature. The comparative
increase is such that the ratio is rendered a decreasing
function of temperature. The variation with chemical
potential [Fig. 10(b)] clearly shows that the increase in
the value of the numerator integral with temperature is
significantly more pronounced than that of the denominator
integral. This explains the rise in coefficient magnitude
with increasing chemical potential. It should be noted that
the values of the coefficient in the entire temperature range
is about 2 orders of magnitude greater than the 1-D result.
In this regard, it is important to note that unlike Eq. (95),
there exists no simple way to write the total Seebeck
coefficient in the 2-D formulation as a weighted average of
individual Seebeck coefficients. This suggests that the
evaluation of Seebeck coefficient depends on the method-
ology adopted to evaluate it. Figure 9(b) shows the effect of
magnetic field on the temperature dependence of the total

Seebeck coefficient. As can be seen, the total Seebeck
coefficient increases with increasing background magnetic
field and records the same decreasing trend with temper-
ature for each value of the magnetic field.
Figures 11(a) and 11(b) show the individual Nernst

coefficients for the medium composed exclusively of u
quarks and d quarks, respectively. The magnitude decreases
almost monotonically with temperature for the entire temper-
ature range. The impact of chemical potential is overall
feeble, with it being discernible only near the transition
temperature. From 2–2.5 Tc, there is negligible impact of
chemical potential on the value of the coefficients. The
almost identical values of Nernst coefficient for both the u
quark medium and the d quark medium suggests that the
value is fairly independent of the quantum of charge carried
by the individual charge carrier. This is unlike the case of
Seebeck coefficient where the difference in the quantum of
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charge carried by the u and d quarks is directly reflected in
their respective Seebeck coefficients.
Figures 12(a) and 12(b) show the variation of total Nernst

coefficients with temperature for different values of chemical
potential and magnetic fields, respectively. As can be seen in
Fig. 12(a), the coefficient records an increase with temper-
ature near the crossover temperature after which the slope of
the curve changes sign and the coefficient records a
decreasing trend with temperature. Both the numerator
and the denominator of the Nernst coefficient [Eq. (75)]
are increasing functions of temperature for a fixed chemical
potential. This is shown in Fig. 13. The rate of increase of the
denominator vis-à-vis the numerator is however greater at
higher temperatures compared to lower temperatures. This
leads to the ratio showing an increasing trend with temper-
ature up to around T ¼ 200 MeV. Thereafter, the slope of

the denominator increases faster with temperature, which
leads to a reversal of the trend of the ratio with temperature
[Fig. 12(a)]. This reversal of slope of the total Nernst
coefficient depends on the chemical potential. For a higher
value of chemical potential, the temperature at which the
slope of the coefficient reverses is also higher, as can be seen
from Fig. 12(a). Figure 12(b) shows that the Nernst effect is
more pronounced at higher values of magnetic field for a
fixed chemical potential. This is understandable as a stronger
magnetic field aids the drift of the charge carriers transverse
to the temperature gradient. It should be noted that the
individual as well as total Nernst coefficients come out to be
zero for B ¼ 0, as expected.
Seebeck and Nernst coefficients have been calculated for

both the hadron gas medium and the quark-gluon plasma
medium using a 2-dimensional formulation and relevant
Ansätze. Thermoelectric response in a hadron gas medium
modeled by the Hadron Resonance Gas (HRG) model has
been investigated in [33], the obvious difference with our
work therefore being the choice of the medium. They record
a negative total Seebeck coefficient with an increase in the
absolute value with temperature along with a decrease in the
absolute values with increasing magnetic field. The behavior
is thus different (both the sign and the trend) from that
obtained by us for the QGP medium. The variation of Nernst
coefficient with temperature and chemical potential is
roughly similar to the results obtained by us, with the
difference being the initial increase in the coefficient
magnitude (near the transition temperature) in our work.
Seebeck coefficient (along with thermal and electrical
conductivities) in a baryon asymmetric hot quark matter
in the absence of magnetic field has been evaluated recently
in [88], wherein the authors report a negative Seebeck
coefficient whose absolute value increases monotonically
with temperature and decreases with chemical potential.
Similar to our study, the medium considered by them
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consists of massive u and d quarks. However, they make use
of the Nambu-Jona Lasinio (NJL) model for modeling the
interactions and calculation of the relaxation time of the
medium, where they consider quark-quark, quark-antiquark
and antiquark-antiquark scattering processes mediated by σ
and π meson exchanges. Further, they consider the spatial
gradient of the quark chemical potential to be nonzero. This
is in contrast to our work where scatterings mediated by
thermally screened gluon exchange have been considered for
the evaluation of the relaxation time, and the quark chemical
potential is considered to be space independent. These could
be the reasons for the differences in the results obtained in
the two studies apart from the consideration of a finite
magnetic field in our study. The above two comparisons
show that the nature of the medium and the interactions
considered therein affect both the direction of the induced
electric field (sign of the Seebeck coefficient) as well as its
behavior with temperature and magnetic field. In [35],
thermoelectric effects have been studied in the quark-gluon
plasma medium possessing a finite magnetic field. The
medium interactions have been incorporated using the
Effective Fugacity Quasiparticle Model (EQPM) with zero
current quark masses for the u and d quarks, whereas in our
work, a finite current quark mass has been considered for
both the quarks and interactions manifest via the quasipar-
ticle masses obtained from perturbative QCD calculations.
The other major difference is the Ansatz [Eq. (53)] used for
the calculation. The Ansatz used by us is a natural gener-
alization of the 1-D Ansatz that has been used in multiple
works before. The magnitudes of the total Seebeck coef-
ficient obtained in the temperature range are comparable to
the ones obtained in our study. However, the sign of the
coefficient is negative. This could be because of the differ-
ence in Ansatz or modeling of in-medium interactions. The
variation of Nernst coefficient with temperature and chemi-
cal potential bears rough resemblances with our study except
for the slight increase of NB near Tc reported by us. In [36],
a similar study has been carried out, however, for an
anisotropic QGP medium wherein the anisotropy of the
medium has been incorporated via an anisotropy parameter ξ
in the distribution function. Further, another point of differ-
ence with our work is the expressions for total Seebeck and
Nernst coefficients obtained from the individual ones. They
have reported a negative total Seebeck coefficient with the
magnitude decreasing with temperature and increasing with
magnetic field. The Nernst coefficient reported by them
bears a close resemblance with our study with its temper-
ature variation recording a slight increase near Tc, similar to
our work. This could be because of the similar structure of
the Ansatz used.

V. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the thermoelectric
phenomena of Seebeck effect and Nernst effect in a
deconfined plasma of quarks and gluons in the presence

of a magnetic field. Although large magnetic fields are
produced in noncentral heavy ion collisions, only a small
fraction of this magnetic field is expected to exist in a
thermalized, strongly interacting QGP near Tc due to the
finite, small electrical conductivity of the created medium.
By allowing for only small deviations of the system from
equilibrium, we implicitly constrain the magnetic field to
be not very strong. We have carried out the aforesaid
analysis in the kinetic theory framework by applying the
Boltzmann transport equation for a relativistic system in
the relaxation time approximation wherein we assume that
the phase space and dispersion relations of quarks are not
affected by magnetic field via Landau quantization. We
have quantified the thermoelectric response of the
medium by calculating the Seebeck coefficient which is
the induced electric field per unit temperature gradient of
the medium. To this end, we have undertaken a two part
approach wherein we first calculate only the Seebeck
coefficient in a 1-D formulation and compare the results
with that of the strong magnetic field case, also evaluated
in a 1-D formulation in our previous work. Next, we adopt
a 2-D approach and calculate the Seebeck and Nernst
coefficients again, the 2-D formulation being necessitated
by the study of the transverse Hall type effect, i.e., the
Nernst effect.
From the 1-D study, our work shows that in the presence

of a weak magnetic field, the mass of a particle has an
amplifying effect on the individual Seebeck coefficients as
can be seen from comparing Figs. 1(b) and 2, which might
not be immediately obvious from Eq. (48). We have
commented on the temperature sensitivity of the individual
Seebeck coefficients as a function of the background
magnetic field strength. We have also tried to analyze
the effect of particle mass on the temperature sensitivity of
the individual coefficients in different domains of magnetic
field strengths. We find that the physical medium consisting
of different species of quarks, in the presence of a weak
magnetic field has a feeble thermoelectric response in the
entire temperature range considered, much less than that in
the case of a strong magnetic field, as can be seen in Fig. 7.
The weighted average prescription of calculating the total
Seebeck coefficient can lead to interesting results for the
total coefficient. As can be seen in Fig. 7, the direction of
induced electric field is opposite to the direction of
temperature gradient in the presence of a strong magnetic
field while for the weak B case, the induced electric field
and the temperature gradient are in the same direction. We
have observed that in the presence of weak magnetic field,
the individual Seebeck coefficient magnitude gets ampli-
fied with increasing particle mass, unlike in the case of
strong magnetic field where we see a suppression. We have
also found that the temperature sensitivity of the individual
coefficient increases with increase in the particle mass in
the presence of a weak magnetic field, whereas the same
decreases in the presence of a strong magnetic field.
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From our 2-D results of the Seebeck coefficient, it is
clear that both the individual and the total Seebeck
coefficients follow the same trends with temperature,
chemical potential and magnetic field as their 1-D
counterpart. The major difference is that in the 2-D
formulation it is no longer possible to write the total
Seebeck coefficient of the medium as a simple weighted
average of the individual Seebeck coefficients. For the
Nernst coefficients (NB), we find that the sign of the
individual Nernst coefficient is independent of the charge
of the majority charge carrier of the medium, unlike in the
case of the individual Seebeck coefficients. Also unlike
the Seebeck coefficient, the Nernst coefficient decreases
with chemical potential. The total Nernst coefficient

records a slight increase in magnitude with temperature
near Tc. The slope of the curve then becomes negative
and thus the magnitude decreases with temperature
thereafter. The temperature at which this reversal of slope
takes place is higher for a higher value of chemical
potential.
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