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Factorization of power corrections in the Drell-Yan process in EFT
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We examine the quark-induced Drell-Yan process at next-to-leading power (NLP) in soft-collinear
effective theory. Using an approach with no explicit soft or collinear modes, we discuss the factorization of
the differential cross section in the small-g7 hierarchy with ¢* > g7 > Agcp,. We show that the cross
section may be written in terms of matrix elements of power-suppressed operators 7, ;), which contribute

to O(q3/q?) coefficients of the usual parton distribution functions. We derive a factorization for this
observable at NLP which allows the large logarithms in each of the relevant factors to be resummed. We
discuss the cancellation of rapidity divergences and the overlap subtractions required to eliminate double

counting at next-to-leading power.
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I. INTRODUCTION

The Drell-Yan (DY) process N (P;)N,(P,) = y*(q) +
X — (££) + X has been extensively studied in perturbative
QCD [1-3]. In the limiting case that the transverse
momentum g7 of the lepton pair is parametrically larger
than Agcp and smaller than its invariant mass \/? the
cross section may be written as [4]

1 dz,dz
/ ! 2Ca17 ZI’ZZan?q%)
)

Godqzdyqu
AZ
X fa/n, (gl)fb/z\/2 (%) + 0< ;QSD)’ (1)
T

where ¢" is the four-momentum of the lepton pair,
&=q /P71, &=q7 /Py, y=log(¢g”/q")/2, and Py
and P5 are the large light-cone components of the incom-
ing hadron momenta. The sum is over parton types a, b,
and the f; are the usual parton distribution functions
(PDFs). In this paper we only study the quark-induced
process for a single flavor of quark, so we define
Crp=C4.

1f fr

The coefficient function C;; may be expanded in powers
of g7/4”,
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Cff(Zl,sz qz’ CI%) = Cﬁrf) (Zl, 22, qz, CI%)

I
+?C}f>(zl3‘z27 qzv CI%) + Tt (2)

where each subsequent term is suppressed by increasing
powers of ¢3/4*. Since they depend on two parametrically
different scales ¢*> and g%, the fixed-order perturbative

expansions for each C}'}) contain large logarithms of ¢%/¢>

which can spoil the behavior of perturbation theory and
need to be resummed. The resummation of the leading

power (LP) term ngp) has been extensively studied in the

literature, using both perturbative QCD techniques [4—15]
and effective field theory methods [16—19]. Factorization
(0)

theorems allow C 7 to be written as a product of separate
terms depending on distinct scales, each of which may be
resummed to arbitrary order using a variety of renormal-
ization group (RG) or related techniques. The most recent
analyses achieve a resummation up to N’LL + NNLO
order [20-26]. However, much less is known about the

factorization and resummation properties of the first power

correction C}zf?. Cyy has been computed in QCD at fixed

order in perturbation theory up to N’LO [27,28], but an all-
orders RG resummation at next-to-leading power (NLP)
has not been performed.

Soft-collinear effective theory (SCET) [29-35] is an
effective field theory (EFT) that provides a systematic
framework in which to study power corrections in hard
QCD processes. There has been much recent work study-
ing power corrections to various processes, with applica-
tions including beam thrust [36], Drell-Yan production
near threshold [37], threshold Higgs production from
gluon fusion [38], Higgs production and decay [39], the
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energy-energy correlator in NV = 4 Supersymmetric Yang-
Mills [40], and Higgs to diphoton decays [41-43]. Power
corrections have also been studied using non-EFT QCD
techniques [44-50].

The DY process at small g is typically referred to as a
SCETj; process, characterized by collinear and soft modes in
the EFT, and exhibiting rapidity logarithms in matrix
elements. Rapidity logarithms are large logarithms in matrix
elements which arise in SCET due to divergences in
individual diagrams at large values of the rapidity of one
of the particles. These divergences cancel between graphs
with different modes, but the final result contains large finite
logarithms of the hard scale of the scattering which cannot be
resummed using usual RG techniques. Rapidity divergences
require an additional regulator beyond dimensional regu-
larization, and various techniques have been successfully
employed to handle the rapidity resummation, including off-
the-light-cone techniques [4], the rapidity renormalization
group [51], the collinear anomaly framework [17], the
exponential regulator [52], and the recently proposed pure
rapidity regulator [40,53]. The latter regulator has recently
been used [53] to calculate the small-g; DY cross section by
expanding the QCD graphs in the soft and collinear limits,
where it correctly treats the power-law rapidity divergences
arising at NLP. The connection between rapidity renormal-
ization in SCETy and the usual renormalization group
equation (RGE) in SCET; was discussed in [54].

In this paper we study power corrections to DY pro-
duction using the version of SCET developed in [55-57]. In
this approach the degrees of freedom in the EFT are not
analyzed using the method of regions [58] in which they are
explicitly separated into soft, collinear, ultrasoft, and
possibly additional modes. Instead, states are separated
into distinct sectors, where the relative invariant mass of
particles within each sector is less than the renormalization
scale u of the EFT, but the relative invariant mass of
different sectors is larger than the renormalization scale. As
with the mode expansion, particles of the same type but in
different sectors are described by different fields; however,
interactions within a sector are described by QCD, while
interactions between sectors are mediated via the external
current, which is expanded in inverse powers of the hard
matching scale. Factorization of different modes (soft-
collinear, ultrasoft-collinear, and others) does not occur
explicitly in the Lagrangian since different modes in a
given sector are described by the same fields, but instead
arises through the usual EFT process of integrating out
degrees of freedom and matching onto a new EFT at
appropriate threshold scales.

This reduces the number of separate fields in the
Lagrangian and therefore simplifies the formalism, both
conceptually and practically. One immediate feature is that
subleading terms in the effective Lagrangian coupling
different modes and violating manifest factorization are
not present in this approach. In addition, rather than

deriving a factorization theorem in terms of jet and soft
functions which are individually well-defined and renor-
malized at the appropriate scale, the rate is simply
expressed in terms of bilocal products of operators in
the EFT which may be run both in the renormalization scale
u as well as in the rapidity scale v. Similar to the situation at
LP discussed in [57], we show here that the DY cross
section naturally factorizes into hard matching coefficients,
rapidity evolution factors, soft matching coefficients, and
parton distribution functions, and give expressions for the
first three quantities up to NLP at one loop. The complete
resummation of rapidity logarithms is left for a future work.

Consistency of this theory requires that double counting
of degrees of freedom between the two sectors is consis-
tently subtracted, similar to the usual zero-bin subtraction
[59] in SCET. This procedure of overlap subtraction is
necessary for the theory to be well-defined and is implicit in
all matrix elements. Furthermore, as discussed in detail in
[57], the scheme dependence of this subtraction allows
rapidity logarithms to be summed using techniques similar
to [51,53] without having manifest factorization of soft and
collinear modes in the effective Lagrangian. At subleading
powers this subtraction is nontrivial, requiring contributions
from multiple operators as well as subleading corrections to
the leading power subtraction. While these subtractions
vanish using an appropriately chosen regulator, the interplay
of these subtraction terms explains patterns of rapidity
divergence cancellation between different operators, similar
to the nontrivial cancellations of rapidity and endpoint
divergences at NLP seen in other approaches [41-43].

QCD proofs of factorization in hard scattering processes
require that the effects of the exchange of soft gluons in the
Glauber regime relevant to small angle parton scattering
cancel in the relevant observable [1-3,60,61]. Glauber
modes have been the subject of much recent interest in
SCET [62], and a consistent treatment of gluons in the
Glauber regime has been shown to be necessary to ensure
that operator statements in SCET are independent of the
external states [63]. Investigation of these effects in the
formalism presented here are beyond the scope of this
paper, but we will assume that gluons in the Glauber regime
do not introduce factorization-violating effects in the
context of this calculation.

In Sec. I Awe sketch the ingredients of the calculation and
the approach to factorization in this formalism. We present
the one-loop calculations of the various pieces in Sec. Il and
compare our fixed-order results with the unsummed QCD
result. In Sec. III we consider the cross section with no
rapidity regulator to demonstrate the cancellation of rapidity
divergences between different operators and their respective
overlap subtractions across different regions of phase space.
We present our conclusions in Sec. IV. A few details of plus
distributions used here are given in the appendixes, as well as
a comparison to a recent one-loop analysis [53] of power
corrections to the DY process.
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A. Factorization

In the SCET formalism introduced in [55-57] there are
no explicit soft, collinear, or ultrasoft modes, so factoriza-
tion does not arise explicitly from a Lagrangian mode
expansion, but instead by integrating out ultraviolet degrees
of freedom at the relevant matching scales. In this section
we briefly review the approach of [57] to DY scattering and
introduce its extension to subleading power. Precise def-
initions of quantities appearing in this section will be given
in Sec. II.

The cross section for the electromagnetic Drell-Yan
production process, N{N, — y* + X — (££) + X, is given
in QCD by

dra® d*q

— dixe 1 (—
3¢%s (271)4/ X~ (=g)
X (N 1250 () 74en (0) [N 12), (3)

where ¢*> = (p, + pz)* is the invariant mass of the
lepton pair, s = (P, + P,)? is the invariant mass of the
incoming hadrons, the initial hadronic state is |N,) =
IN1(P)N,(P5)), and the vector QCD current Jiycp is

Jocp (X) = w(x)r'y(x) (4)

for a single flavor of light quark. The extension to
electroweak currents is straightforward [4,17].

For g2 < ¢, perturbative corrections to the cross section
in Eq. (3) contain powers of logarithms of ¢%/¢?*, which
can spoil the apparent convergence of perturbation theory.
SCET provides a systematic approach to resumming these
terms. At the renormalization scale y = uy ~ \/? > qr,
hard interactions are integrated out of the theory and QCD
i1s matched onto SCET. In the formalism used here, SCET
consists of two decoupled QCD sectors, denoted by the
lightlike vectors n* and 7##, with total momenta p), and p%;
the sectors are distinguished by the power counting

PaPa <G’ Py DPi~qR (5)

Interactions between the sectors are mediated by the
external current JSCET, which 1s written as a sum of
operators of increasing dimension,'

1 i i
Ficgr () = > 7 & w0 (x.p),  (6)
i qr
(i)

where an operator O,’ has mass dimension [i] in excess

of the leading-power operator 0&0). We have defined

'Subleading operators are also labeled by continuous indices,
so the discrete sums over operators also include integrals, which
we neglect for simplicity in this section.

g7 = q*q~, and for brevity we will not explicitly include
the p dependence of operators in subsequent equations
unless required for clarity. It is convenient to expand in
inverse powers of g7 rather than ¢> = g7 — g so that the
hard scale of the EFT is independent of the infrared (IR)
scale g%. This expansion has been performed up to
0(1/4q?%) [55,64-67], the details of which are summarized
in Sec. IT A. The SCET expansion for the differential cross
section is then given in SCET by

do 47ra dQr
dg’dydq: ~ 3¢’s (=) / / 2(27) dz +1
12|02i ”T(X)OJ (0)|N12), (7)

where H; ;(u) = " (u)CY (u) and the final angular
integral dQ; corresponds to the angular integral in the
transverse momentum qr. Since we have not subdivided
the degrees of freedom of SCET into separate soft and
collinear modes, there is no expansion of the SCET
Lagrangian beyond that in Eq. (6); in particular, there
are no power corrections arising from soft-collinear mixing
terms in the Lagrangian [34,35,68—71]. This simplifies the
analysis of power corrections considerably.

While matrix elements of the operator products in Eq. (7)
may be directly evaluated between partons in perturbation
theory, it is convenient to perform a Fierz rearrangement to
write the operator product as a convolution of transverse
momentum dependent distribution operators (whose had-
ronic matrix elements are generally referred to as
TMDPDFs), one in the n sector and one in the 7 sector.
This is a standard procedure at leading power [2,17]; at
subleading powers a similar procedure may be used to
express the basis of operator products as convolutions of
power-suppressed distribution operators,

X e~ (N

ddx i i j)v
/ 2027)° (=gu)e 405 ()05 (0)

i _
= —KE;;Q)T(k,f) (¢ q".ar)
ke Ve

+ spin dependent, (8)

where each T'; ;) relevant to this calculation will be defined
explicitly in Sec. II. Rewriting the operator products in
terms of the operators 7'(; ;) is simply a change of operator
basis, and not a matching condition or expansion in SCET,
and so introduces no new perturbative corrections.
Typically in SCET this Fierz rearrangement is performed
to write the operator product in a form that manifestly
factorizes into jet and soft functions; since this factorization
is not needed here this change of basis is not strictly
necessary, but it is included here for easier comparison with
other approaches.
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At O(ay) matrix elements of the 7'; ;)’s at small g7 are
insensitive to the cutoff scale g; and so running the
scattering operators O, (;) from py ~ q; to pg ~ gy sums
the usual renormalization group logarithms of g2 /g% in the
rate. If gy ~ Aqcp, matrix elements of each 7';; are
nonperturbative quantities which would have to be either
modeled or extracted from experiment. In the scaling of
interest here, gr > Aqcp, each T(; ;) may be further
expanded in powers AéCD /q%, allowing the operator
product in Eq. (7) to be matched onto the usual light-cone
distribution operators whose hadronic matrix elements are
the parton distribution functions. This expansion corre-
sponds to matching SCET onto a soft theory of completely
decoupled sectors of QCD at the scale pg~ gy, and at
leading twist takes the form

dz, dz
Twe)(q 9", ar, ps) —’/—l—zcs(kf)(ZhZzJIT,ﬂs)

o L)oo

where the various Cy (; ») are matching coefficients and the

hadronic matrix elements of the light-cone quark and
antiquark distribution operators O, ; are the usual spin-
averaged parton distribution functions

(N1{(P1)|O4 (&1 PT)IN((Py)),
(N2(P2)|05(£2PF)|INA(P)), (10)

fq/N1 (Cl) =
fq/Nz(Cz) =
with P; = P; - i and P = P; - n. Combining these match-

ing steps gives an expression for the DY cross section for a
single quark flavor of the form

do le de
iiddl = ") = o, Sl diar)
f ¢
Xfll/M( ! fq/Nz z Tty (11)
where 6, = 47a?/(3N.¢%s), & =q /Py, & = q"/P5,

and Cyy has the partially factorized form

dQ i]+[j]
Cyr(21: 22,915 97) / TZK <>
ijk¢

x H; jy(1s)Cs k.e) (215 22, A7 Hs)-

(12)

However, in this form the matching coefficients Cy still
contain large logarithms of ¢7/¢7 which are not resummed
by the usual renormalization group evolution. These
rapidity logarithms arise because the graphs renormalizing
matrix elements of 7'; ;) in SCET are separately divergent

in each sector, even in d dimensions, and the divergences
only cancel in the sum. These graphs therefore require the
introduction of an additional regulator beyond dimensional
regularization, and the rapidity divergences are reflected in
logarithms of the (scheme-dependent) rapidity scale. While
a number of regulators have been used at leading power
[51-53,72,73], the “pure rapidity regulator” introduced in
[53] is particularly convenient for studying power correc-
tions, as it properly regulates the power divergences in
phase space integrals arising at NLP.

In this paper we use a version of the pure rapidity
regulator appropriate for our formalism which introduces
separate scheme dependence for the n and 7 sectors,
denoted by the parameters v, and v;. Rapidity logarithms
are summed by running the operators 7'; j from v =qp
to vnﬁ = u ~ gr. Under rapidity renormahzatlon the oper-
ators T'; ) can mix, leading generically to rapidity renorm-
alization group running of the form

a7 gt ar.pus. v )

dw|dw
/ l ZdszV( i), (ke )(wl’wvaTaﬂS’I/nHﬁ’yiﬁ)

T q"
XT(k.f) (a)_l’a)_z’qT_pT’MS’yﬁ’rl)’ (13)

where by v,; we denote depends on both v, and v;
separately, and the large logarithms of v /v5 . have been
resummed in the rapidity evolution factors V) .z)-
Combining all these steps gives the DY cross section in
Eq. (11), where Cyy now has the fully factorized form

Crr(z1.22.43. q7)
(i.])
H jy(us)K )
ST

dw, dw,

_/@ doy
o 2 w1

X /dszV(k.f).(k’f’)(a)l,wz,pr,ﬂs"/nHﬁ’l/g,ﬁ)

D2 iwee

i1 2

X CS,(k’,f’) <w1 ’ Wy »Adr — P15 Hs, Uy, n> (14)

In this paper the fixed-order O(«a,) contributions to each
of the factors in Eq. (14) which are required to determine
the fixed-order cross section at NLP are calculated. The
O(a,) anomalous dimensions of the relevant hard matching
coefficients may be found in the literature [56,65], and here
we also calculate the O(a,) off-diagonal entries for the
rapidity evolution kernels y #) ,0) Which mix the various
subleading operators 7' ¢ into the leading operator 7'
with an NLP coefficient. The calculation of the one-loop
entries which mix the subleading operators among them-
selves is left for future work. Additionally, in most
phenomenological applications, ¢ resummation is
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performed for the Fourier conjugate of g (b space); here
we will work in g space, where the SCET operators we are
using are defined. Fourier transforming our results to b
space may be useful for future applications.

II. NLP OPERATOR PRODUCTS IN SCET

In this section the O(a;) ingredients that contribute to
Cys at next to leading power in SCET are calculated. We
begin by summarizing the hard-scale matching of the QCD
current onto SCET scattering operators, and then proceed
by Fierz rearranging products of these scattering operators
into a smaller basis of operators. The matrix elements of
these operators are calculated using the pure rapidity
regulator, and the final result is compared to the corre-
sponding fixed order result from QCD.

A. Hard-scale matching

The invariant mass of the lepton pair is ¢ =
474~ — 47 = 47 — q7. where g7 > g7 > Ajep and ¢+ =
q-nand g~ = g - 7 are the large light-cone components of
the external current defined in terms of the lightlike vectors
n* =(1,0,0,1) and 7# = (1,0,0,—1). This defines the
relevant scales for this process. The incoming state consists
of two hadrons; the invariant mass of partons in the same
hadron is of order Agcp, while the invariant mass of partons
in different hadrons is of order ¢; . Therefore, at a hard scale
Uy ~ qp partons in different hadrons are above one
another’s cutoff, and QCD is matched onto an EFT in
which direct interactions between the sectors have been
integrated out. In the SCET formalism used in this paper,
SCET consists of decoupled copies of QCD for each sector
which only mutually interact via the external electromag-
netic current Eq. (6). Only quark and antiquark PDFs are
considered in this paper. Gluon PDFs may be included in
the same formalism, and the relevant hard-scattering
operators are listed in Appendix A, but the calculation
for incoming gluons is beyond the scope of this work. We
work in a reference frame where the incoming hard quark is
in the n sector and the antiquark is in the 7 sector.

The matching of the external vector current from QCD to
SCET at subleading power has been considered in a number
of papers [37,38,40,55,56,74] and is obtained by expanding
QCD amplitudes in powers of p;-n/q - n for particles in
the n sector and p; - /g - i for particles in the 7 sector. In
addition to the analogs of operators considered in [56] for
two incoming partons, there are also operators suppressed
by single powers of the net transverse momentum p,, 7 in
either sector (which were eliminated by a choice of
reference frame in [56]) as well as corrections to the
multipole expansion of the energy-momentum conserving
delta functions.

The SCET current has the expansion Eq. (6). The
corresponding scattering operators are constructed from
the field building blocks [56,75]

() =Pa (1) Wa (%) P,
In(x)= Iz( )Py, (x),
BR ™ (x) = Wh(x)iDj! (x) -+ iD" (x) Wa (x),
B (x) = (= 1)V W (x)iDly (x) - iDY (x) Wy (x). (15)

where we note that (Br#v)T = Biuv-m,

Wilson lines W are defined as

The incoming

- _ 0

Wh(x) = Pexp (—ig/ dsi-A,(x + Fzs)esw),

; 0 N

Wi(x) = Pexp (z’g/ dsn - Ay(x + ns)e*® > (16)
We use the conventions
iD"(x) = io" +gA"(x), iD'(x)=id —gAl(x),  (17)

and it is convenient to define the four-vectors introduced

in [55]
,7/4 — /_nﬂ ‘ﬂ — /_ﬁﬂ (18)

which are invariant under the boost reparametrization
nt — e’nt, " — e Vnt.
At leading power there is a single scattering operator,

O (x) = [7a (el [ ()], (19)
where
xﬁE)ﬁﬁ—;—kx’i, and x,-lzx‘n—;—f—x’i. (20)

Note that the fields in the operator are multipole expanded;
this is necessary for the energy-momentum conserving
delta functions to preserve the correct power counting. For
example, if p}, and p’ are momenta in the n and 7 sectors,
respectively, we have the expansion

(pn+pi—q )=8py—q )+ pid(pr—q )+ (21)

and similarly for the n components.
expansion up to O(1/q?) gives

b_(r'z (x)]yﬂ b(n (X)] - 0(0

Performing this
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Power counting the multipole-expanded operators is not
immediately obvious. In 0225+>, for example, g*x~ is of
order 1 since x~ ~0/0q", whereas ¢~ p;\ ~ O(p;, pi) ~
O(p?,); thus, matrix elements of the operators in Eq. (23)
are O(1/g?) relative to leading power. Since we are
working up to 1/g? suppression, the contributions from
higher multipole expansions in the fields are only included
for the leading power operator 0&0).

At O(1/q,), there are two operators suppressed by a
single perpendicular derivative,

05" (x) = [gaen)ly? 5 v (=i, (),

oLy [_iaa-ﬁm)]ygg’mm)}. (24)

These were not required in [55,56] since they could be
removed by a suitable choice of reference frame, while here
the presence of initial-state radiation prevents such a choice.

Finally, there are several operators containing factors of
B,; whose matrix elements begin at O(g,). These oper-
ators are labeled by a continuous parameter ¢ which
parametrizes the separation of fields along the light cone
[67]. We define the dimensionless parameter 7 = g~ ¢ if the
shift occurs in the n sector, and by 7= ¢ if the shift
occurs in the 7 sector. We define the A-type operators in
which a gluon is emitted at leading order in the n sector,

04 (. ) = [z ey — Ay,

O™ (x,1) = ~[pa (xa) Ir* 2y 1Bi (x — it (x,)].
05" ¥ (x,1) = —27i0(7) ® u (xa)lrar i7"
X [BY (3, = i) ()], (25)

and the corresponding B-type operators where the gluon is
emitted in the 7 sector,

S B (x
ﬂ vt

O P ¥ (x, 1) = [ (xa) B (x f—now Sln ()],

FZ)B%(-XF: - nt)}?olti}/ﬂb(n(xn)}’
O (x,1) = 27i6(2) ® [7(xa) BY (x5 — )]
X ' va v ben(xn)- (26)

o) =3 [ atu)—

=cy [ogow (x) +—

05" (x,) = [ga(x

|
) ({u}) 0" (x

1

qL

ll 11
+qLZ/d uCi(

Following [67], it is convenient to work with the Fourier-
transformed operators

A

; di .. i,
0§)<X, u) = /Ee‘”"oy(x, 1),

) (x, u) = / dieC) (x,7). (27)

We have also defined the convolutions in 7 space in these
definitions as

A n dxdy n
10 @ g(0) = [ G rwa)aE-x=y). @9
Note that the one-gluon matrix element of 02 (x u) is

proportional to &(u+ k7)/u, where k* is the gluon
momentum. If the convolution with 6(7) had not been
included in its definition (as was the case in [56]), the
matrix element of the operator would instead be propor-
tional to 5(u + k™), and the operator would have a factor of
1/u in its Wilson coefficient. This is inconvenient because
in the DY process studied here, this factor of 1/u ~ 1/k~

corresponds to a rapidity divergence, and rapidity renorm-

alizing operator products such as O(ZZAI)T 0£0> without the

factor of 1/u in its matrix element would then give rise to
an unregulated rapidity divergence in the final integral
over u.” These are similar to the endpoint divergences
which have been previously noted at NLP in SCET, in
particular in b-mediated i — yy decay [41-43]. With the
definition given here—which is similar to the modification
of SCET operators proposed in [78]—the u integral does
not introduce any additional singularities, and thus all
rapidity divergences are correctly regulated by the pure
rapidity regulator. We illustrate this with an example in
Sec. II D 3.

Since SCET currents and their products contain
operators with zero, one, or two factors of u at this order,
we use the notation {u} to denote the dependence of a
quantity on any number of u’s, as well as [ d{u} to indicate
integration over any number of u’s (including zero).
The expansion of the SCET current may therefore be
written

Aub)

(054 (x) + O (x)) + iz (05" (x) + 0&”’”‘@»}

(29)

; 1
§ /d uC( 22)"(x,u)+0(—3>,
i qr

The importance of having a finite integral over convolution variables was stressed in [74,76,77].
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where on the first line the sum is over all operators
i=0,1,,,...,2B;, while in the last two lines the sums
are over the operators of the appropriate dimension whose
coefficients are not fixed by reparametrization or translation

invariance. The operators 021”"7‘) are related to 0&0)

through reparametrization invariance (RPI) [65,70],

and so to all orders in a, we have the equalities

C§°> = C;u") = Cgllﬁ), while the translation invariance
0) _ ~(26%) _ ~(267)

of QCD ensures that C;” = C," * = C,  ’'. The normal-

izations of all operators have been chosen so that their tree-

level matching coefficient is unity in u space,

) (u. {u}) =1+ O(ay). (30)

The one-gluon matrix elements of the operators

0Y) (4. {u}) are given in Appendix A.

There are additional operators not included in Egs. (25)
and (26) that are part of the general SCET current
expansion [56], but which do not contribute to Cj, at
the order (in a,, q7/q* or Ajep/q*) to which we are
working, or which contribute only to the gluon-initiated
Drell-Yan subprocess. These operators do not mix under
renormalization at one loop with the operators considered
here, and so are not included in this analysis, though we list
them in Appendix A for completeness.

B. Renormalization group running

The anomalous dimensions of all the required matching
coefficients Cg>({u}) have been calculated previously in
[56,64,65]. They obey the integro-differential equation

d
dlogu

e up) = [ o fu) (o) (o))
(1)

where the kernels ygw have the form

7y ({u}. {v}) = Tplay] 1o

eI sy — o))
u
(). {0]). (32)

Working in the leading-log approximation only the cusp
anomalous dimension is required. The one-loop cusp
anomalous dimension is universal,

a,C
T =o' = T =Tagy) =Tag == (33)

With the definition H,; ;,({u}) = C3"" ({u})CY ({u}), the
leading-log running of the hard functions is determined by
the RGE,

2
Hmmw{w>:(mawmg%)H@Mm{w>
(34)

dlogpu

This gives the leading log (LL) unitary evolution for all
H,.
(i)

Hj(p {u}) =

where, with f[a;]

UIFIL(ﬂ’ﬂH)H(i,j)<MH7{u})’ (35)
= da,/dlogpu = —foaz/2m + - - -,
log U (4, ppr)
a(n) do a do
:—4/ — T [a]/
aun) BlA] T Jaq,) B

_162Cp 1 1 o a(u)
R <%wm o) m%fgawm>‘ (36)

Beyond LL there will be operator mixing, and the solution
to the RGE will be more involved. This sums the RG
logarithms of uy/p in the hard functions.

The differential cross section for DY productionis givenin
terms of hadronic matrix elements of products of operators

04" (x)0Y (0) in Eq. (7). Matrix elements of these operator
products may be evaluated between partons in perturbation
theory to calculate the matching conditions onto light-cone
distribution operators (whose matrix elements are the usual
PDFs); however, it is convenient to perform a Fierz rear-
rangement for each operator product to write it as the product
of factors in the n and 7 sectors, corresponding to the
convolution of generalized transverse momentum dependent
distribution operators. At leading power, this gives

definitions

dix —igax (0 0w
/W(—gw)e 0" (x) 0" (0)

*“®9@0¢@uﬂ

n

——T(oo)(q .47 qr). (37)

2

The leading power position space distribution operators are
defined as

X (X7)s (38)

where x,, and x; are defined in (20), and thus consist of quark
fields separated in the transverse direction by x'| as well as
along the light cone.

076018-7



INGLIS-WHALEN, LUKE, ROY, and SPOURDALAKIS

PHYS. REV. D 104, 076018 (2021)

Products of power-suppressed operators may similarly
be written as convolutions of higher dimension operators,

D (e {u}),
(39)

(e () = [ 3 ze ol s ()

where we define the relevant subleading transverse
momentum dependent light-cone distribution operators

@ (x,{t}) as

O3 (5,,1) = (1047, (5,)) & 772 Bt (=) 0),
ﬁi’iﬁ

q)ElZZ)(xn’ ,il ’ 22) = )

_)?n(xn)B/Vll(xn - ﬁtl)
x By (—nity)y,(0),
O (x,., ) = 27i0(1) ® 7, (x,) B (x, — i)

it
5 vevaxn(0),

X~ _
O (x,) =qtq > (n-07,(x,))

X —

P, @0)

The corresponding 7-sector operators <I>§;> are found by
taking the Hermitian conjugate and changing n <> 7. The
u-space Fourier conjugates of these building blocks are
defined by the transformation in Eq. (27) for shifts relative
to the origin (since these shifts come from an operator), and
by the conjugate transformation for shifts relative to x,
(since these shifts come from the conjugated operator).
Thus, for example,

—iq‘xq)glo) (xn )q)(zl)

(x5, u)

d
T(02,)(q:u) :/zé;)de
d ~
:/2é;)d;i.e_lm _qu|: n( n) g)(n(o)]

X[)’m() By(-noybri b zaﬂmxn»]
(41)

In general, we can write

dx
d

(27)
Lk

—igx AT Jv
(=gu)e 05" (x) 05 (0)

[\

T (1.¢) + spindependent,  (42)

where the only nonzero elements of K which are relevant at
this order are

14,.14,) _ (1A,.14,)

KE%O) V= KE%O) - KE 0~ K
= Kooy " = Kl = Kooy ™
= Koo = K =Ko
=Kz =Ko = Kion)
=Ko =1. (43)

D. Matrix elements of operator products

Individual n- and #i-sector graphs contributing to the
matrix elements of each T, ;) are rapidity divergent and
require a regulator to give finite results. We use a version of
the pure rapidity regulator introduced in [53]. As discussed
in that reference, other commonly used rapidity regulators
such as the o regulator [72] or the 5 regulator [79] are not
suitable for handling the power-law rapidity divergences
that arise at NLP. An explicit example of the 6 regulator
failing to regulate rapidity divergences at NLP is given in
Sec. IID 3.

In what follows we define the pure rapidity regulator by
modifying the integration measure of n-sector and 7-sector
particles as

/2 ki /2
d qr \" q
d%k, - w; <y%) ( +kn) a4 k,,

2N\ /2 (gt =\ el
dk; — w% <q_§> (q__ k_’}r) dk;.
Vi q Ki

This regulator has the distinct advantage that—as in
dimensional regularization—scaleless integrals vanish,
and as a result all overlap integrals evaluate to zero.
This greatly simplifies the calculation since, as is discussed
in detail in Sec. III, in a scheme where overlap integrals do
not vanish, the overlap subtraction procedure must be
carried out to subleading powers.

The regulator in Eq. (44) is slightly modified from the
form presented in [53]: the factors of g* ensure boost
invariance, as in [40], the dimensionless parameter v has
been replaced by the equivalent dimensionful parameters
v;, and distinct parameters #;, v;, and w; have been
introduced for each sector, since the fields in the n and
n sectors are independent. As discussed in [57], rapidity
logarithms in SCET correspond to a scheme dependence in
defining the sum of individually rapidity divergent graphs
in the n and 7 sectors. Regulating both sectors (and their
corresponding overlap graphs) in the same way and then
removing the regulator is equivalent to naively adding the
individual graphs together before performing the loop
integrals, and reproduces the rapidity logarithms of
QCD. Since QCD has no rapidity divergences, rapidity
divergences cancel for this choice, which corresponds
to choosing the parameters 1, = —1;, V,Vz = q7, and

(44)
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w, = wj. This was explicitly demonstrated up to NLP in
[53]: these authors showed that if QCD diagrams are first
rapidity regulated and then expanded in the n-collinear, 7-
collinear, and soft limits, the leading and subleading power
matrix elements reproduce the rapidity-finite QCD results
expanded to the same order. A similar cancellation of
rapidity divergences will be shown here.

Using different rapidity regulator parameters in the two
sectors moves the rapidity logarithm of g2 into the Wilson
coefficients of the EFT and allows the scheme dependence
of the resulting graphs to be exploited to sum the corre-
sponding rapidity logs. The corresponding rapidity diver-
gences correspond to 1/7; singularities which are canceled
by introducing the appropriate counterterms into the EFT,
and rapidity logarithms are then summed using rapidity
renormalization group (RRG) techniques similar to [79].
The bookkeeping constants w; are taken to formally obey
the RRG equation

dw; i
:—W-’
dlogy, 2 '

(45)

which cancels the scheme dependence in the measure,
keeping the bare theory v; independent and allowing
techniques analogous to those in dimensional regulariza-
tion to be used to extract the rapidity anomalous dimen-
sions. As in [53,79], these bookkeeping constants are set to
unity at the end of calculation. Rapidity logarithms are
minimized by the appropriate choice of the dimensionless
parameters v, ;.

As noted in [57], choosing v,v; # ¢ requires rapidity
counterterms for each 7'; ;) which are sensitive to the scale
qr- Scale sensitivities in the counterterm generate the same
scale dependence in the Wilson coefficient through the
RGE, and since Wilson coefficients in an EFT must be
independent of infrared physics, this adds the constraint
that the theory must first be evolved to p ~ gy before
running in rapidity. This will be discussed in more detail in
Sec. ITF.

At LP the only operator is T ), so its divergences are
absorbed by the renormalization constant Z g ) (0,0,

dw, dw,

T?o,o)(Q_, g9t .qr) = d=*py

W) Wy

X Z(0,0),(0.0) (@1, @2, Pr)

9 q"
X T(0,0) <a)_1 "oy qr — PT>, (46)

where Tfi.’].) and T'; j denote the bare and renormalized

operators, respectively, and the integral corresponds to
summing over the infinite set of operators
T(00)(k™. k", k). At subleading powers the various oper-
ators may mix with one another, so we have the general
relation

T<Bl'.j)(q_’ q+’ qTa {M})

= Z/@@dd_zprd{ﬂ}
(k.1)

Wy Wy

X Z(i ). (ki) (@1, 02, pr, {V})
+

9 q9
X T(k,l) <_ —qr — Pr» {I/l - U}) ’ (47)

b 9,
Wy Wy

where the sum over operators includes each subleading
T(;j) as well as the leading operator T ) with a power-

suppressed coefficient, as will be discussed in the following
sections.

1. Leading power example

The leading power calculation of DY production in this
formalism was presented in [57] using the 6 regulator; we
repeat the calculation here with the pure rapidity regulator.
At leading power, there is a single bilocal operator
contributing to the rate,

Too(g.q".qr)
~ [z [t 5 0)] [0 |- )

With incoming quark and antiquark states ¢(p;) and g(p»)
the tree-level matrix element of this operator is

1 _ _
1 > (PipiIT 00 Pt PE)

spins

=12 [ st il 2ax)0) 5 02, )] 1)

spins

(4] 72 010) 5 Oz 1)
= 8(21)8(22)5"(ar) = 6,6,07, (49)

where the superscripts n and 7 in Eq. (49) denote the sector
of the corresponding parton. We also use the notation

&2
I
2N
(3]

1

+
1 q—+1 ;= 1 — I (50)
Py 2)

and

i = 08(z), 5 =0'(z), or=6(qr). (51

At O(ay), the matrix element corresponding to the
emission of a real n-sector gluon is given by the three
n-sector graphs shown of Fig. 1. Denoting the spin-
averaged one-loop matrix element of T (oo by M),
we write
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D1 p1 »
D2 (a) P2 P2
FIG. 1.
M(OO) = M?O,O) + M?O,O) - M%O)’ (52)

where the superscripts n and 7 denote the O(a,) contri-
bution from a gluon in the corresponding sector and the O
superscript denotes the overlap subtraction. Since these
matrix elements correspond to a matching calculation at the
scale ug ~ qr > Agcp we use the initial-state kinematics

'k (q% q k*)'“/ ’

Qo) "\LZq ko

Moo = _2”92CF/

x 8(k*)8(py —q~ —k7)8(py — q")8" *(ar +kr)
< [{2 ( “2p; - (Zé+ k—> Z
by o

which evaluates to

()™ [z
Mo = fe 352()17,7/2 v,

(2 2Z1 _l'—+(1 - e)zl) (54)
s
<1

where
C
a=2"E o= (mler), (55)
2

and we work in d = 4 — 2¢ dimensions.
To extract the singularity structure of this matrix element
at Z; = 0 we use the distributional identity

0(z1) _ 6(z1)  [0(z1)
A +{ Z ]++ 0

for scalars (see Appendix B for definitions) as well as the
identity [19]

(u*)™/? 2eSd2

or n
W:M ) <g_€+£or+2£17+"'> (57)

P P1 P1

P2 D2 (c) D2

Nonvanishing graphs in the n sector contributing to the matrix element (p{ p3|T )| P{p5) at O(ay).

for vectors in (d — 2) dimensions, where the £, are vector
plus distributions [19,51] defined in Appendix B 2,

2

. (58)

2
2% rog” %H(q%)]

L.r=L,(q7r. 1) =
! ! Si q7

and S,_, = 27'7 /T(42). Upon expanding first in 7, then
in €, the n-sector contribution to the matrix element from a
single real emission is

. a 5
M(O,O) = 2W 5 |:;/I 51 (:_‘COT)
2
2 3-2log%
—|—5167<2+”2>
€ €
0 1 2
+2<£0T T” J_rzl] 5y
€ Z] +
+ 22,67 — 26,60 — 26, L1
2
U

The 7i-sector contribution is obtained under the replace-
ments z; = 2, W, = Wj, V,, = Uy, and 17, = 1;.

As in [55], the overlap between the two sectors is
obtained by taking the opposite-sector gluon limit of the
n- and 7i-sector graphs. As detailed in Sec. III, the
subtraction prescription corresponds to subtracting half
the wrong sector limit for the gluon of each sector,” which
we denote

1
M(OO,O) — E(Mn()—z)n 4 Mn—»n) (60)

For example, the wrong sector limit of Eq. (53) is

In [55], the limits from either sector were equal.
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B ddk qz q- kT N./2
n—-n __ _ 2 2 L
M(o,o) = —2ng Cp/ 20)? ws <uﬁ e k‘)

x 8(k*)8(py — q7)8(p3 — q" )6 *(qr + kr)

171 na ﬁa ﬁ ny ﬁa
< [7 (—w * ;) 2 (—w - —k—)]

xTr[””i] Yo (61)

22

where the dots indicate terms suppressed by powers of
1/q, relative to leading power. Integrating with respect to
Kk and then k™, we find the 7 limit of the n-sector graphs is

2 g7 g~ \"/? 1
n—n __ 2 L
M(o,o) T fewn616, (l/z g ORE

which is a scaleless divergence and vanishes in this
regularization scheme. The overlap subtraction between
the two sectors is therefore zero when using the pure
rapidity regulator at O(«y), and this remains true beyond
leading power.

Summing the contributions from each sector and sub-
tracting off the (vanishing) overlap, we find the O(a;)
contribution to the matrix element of T (),

2 2 S
M(O,O) =a |:2 (ﬁ + &> 5152 <—T - EOT)
M N €

72 3—2log“e
+ 66,87 <—2 + 7">
€ €

o 1+22 1+23
e ) o5 - 5)

— 5,5, [2[," + Loy <3 —2log ”’;)}
u

+ (2162 + 2261 — 5152§2>5T] ) (63)

where we have set w,, ; = 1 for all 5;-independent terms. As
discussed earlier, the rapidity divergences appear as the
n-divergent terms in the first line. The rapidity-finiteness of
the full theory is reflected in the fact that setting w, = wy;,
and 7, = —n; gives a total rate that is free from 7 poles,
which is to be expected since this scheme corresponds to
regulating the n and 7 sectors identically; using different
schemes for the two sectors spoils the cancellation of
rapidity divergences between the sectors. However, resum-
ming the rapidity logarithms requires keeping the w, ; and
..» scheme dependence. This introduces explicit rapidity
divergences in the matrix elements which require rapidity
counterterms, from which the RRG may be derived.

In the scheme where v,v; = ¢, the purely e-divergent

terms (ultraviolet divergences) in the first line of Eq. (63)

are canceled by the renormalization constant Z, ) for 0;0)

2
a(2 3-2logik

which follows the product of renormalized operators
O;f‘(())O;(O) through the Fierz rearrangement. Since Z; ()

depends only on log(g?/u?), the scheme v,v; = g7 is
enforced at y ~ ¢g; and throughout the y running when
u > qr. As we later discuss in Sec. I F, when y ~ g7 then
qr is no longer an infrared scale, and then v, ; can be
evolved with the RRG, allowing for the resummation of
rapidity logarithms.

The IR divergent terms in the third line of Eq. (63) are the
Altarelli-Parisi splitting functions and are reproduced by
the infrared divergences in the light-cone distribution
operators in the low-energy theory. The remaining diver-
gences are rapidity divergences, and are absorbed by the
counterterm in Eq. (46), where

Z0.0).000) (@1, 02, q7)

2 2
M M

2
X (‘%T - EOT> + 2&%log 9L > (65)

Vi

Using the running of the fictional coupling w,, ; in Eq. (45),
we can obtain the rapidity anomalous dimension and
rapidity evolution equation for 7' (), which we further
discuss in Sec. IIF.

Note that for n, = —n; and v,; = g7 there are no
additional ultraviolet (UV) divergences in the matrix

element of 7o) beyond the renormalization of 0(20) (u),
indicating that the phase space integral in SCET is UV
finite at O(a;). Similarly, one-loop matrix elements at NLP
will also be found to be UV finite. Additional UV
divergences in matrix elements of the 7'; ;)’s would indicate
phase space integrals which were sensitive to the UV scale
qr, in which case the RG running of the corresponding
T(; ;) would not simply be given by the running of its
constituent SCET operators, but would have additional
contributions. It is possible that this could complicate the
RG running of the H ; j’s at higher orders in a,, where the
final state phase space can include multiple gluons with
individually large k; which largely cancel to contribute at
small g7, but this would not affect the one-loop running or
the form of the factorization Eq. (14).

Subtracting the counterterms yields the renormalized
matrix element
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_ _ 77 -
<p’11pg|T(00) <q ’q+7qT7E’ :tn>|p’11p21>l—gluon

(o) 5 of3)

Vi
o+ o (32052

which, with the replacement v,v; = 12, also reproduces the
result in [57].

2. Next-to-leading power example: T, ¢
Since O(Aqcp) contributions are not considered, there is
no 0-gluon contribution to the matrix element of 7', o), and
there is also no 7i-sector contribution at O(a,). Thus at first

+ (216, + 226, — 51524’2)0}) (66) nontrivial order the graphs 7',, o) are those shown in Fig. 1,
yielding
|
A% q2 q—k+ Na/2
ML =27¢*C *‘/ 2 21L kt6(k*)o(p7 —q~ — k)8
() =HTCRT T [ a2 T ()o(py =g~ = k)8 (p; —q")
vkt 2P0 = fra T Pt
5d 2 k)T 4 p] 4 k I’L_ ﬁ la = *a a Tr | 222
<0 ar + k) r[z 2k )2\ ek S22
29r\" (2-22% + (1-€)7)
= __fGZIZZWn ( LnT> _2+11,, : (67)
[
Here, we use the scalar distributional identity mixing is consistent with power counting. Equivalently, the
divergence may be absorbed by O(1) mixing with the NLP
0(z 5(z 0(z
—(ZiIr/) _ (z1) _5(z)) + [ (_Zl)] o (68) operator
% n IS

where the double-plus distribution [53] is defined in
Appendix B. We also use the usual expansion

W)™ o
W g ©

Equation (67) is finite as € — 0. Expanding in 7,,, we find
the bare matrix element of 7', o),

2 2w, .
:7%11226’2<(5] +6’1)<— id +1ogy—2>

Mn qr
] )

The 1/1, rapidity divergence in (70) is similar in form to
that found in the study of NLP jet and soft functions in
[36,40,74,80]. The divergence is independent of q; and
may be absorbed through mixing of 7', o) with the leading-
power operator T ), as in Eq. (47), with

M, 0)

(70)

Z(2,.0),(0,0) (@1, @,,q7)
2
- _2%W—wlw2(5(@1) +8 (@

n

1)) (@s). (71)
This rapidity renormalization factor is suppressed by one
power of g% relative to the leading term Z(0.0),00,0) In (65)
since it does not contain a factor of §(¢%), and so the

/dd_2PTT(0,0)(q_, q".pr). (72)

This is similar to the cumulant operators introduced in
[36,40,74,80] except that Eq. (72) has no upper cutoff

|PT

3. Next-to-leading power example: T 5,

T2,y provides an example of a matrix element with
nontrivial u dependence. Calculating its spin-averaged
matrix element, the only contribution comes from an 7-
sector gluon, and we find

ddk q2 q+k— na/2
—2ng? 2( % (K
x8(py —q” = k7)8(p3 —q" )8 (qr + ky)
ﬁl ﬂ 2p2a 7ak ﬁa
XTr[z 2}“[ op: )< “py k| —k

i
X zyu Yi A"’”(k)k”v(pz)é(u + Z—Jr)} .

Moo, =

(73)
After using S(u+k"/q")/u=—q S(u+k*/q")/k"

and integrating over the gluon’s phase space, the bare
matrix element is

] z
few Z122<%> _2_]7"615<u+z—2>. (74)

M(O %)~

n
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Using distributional identities to extract the pole structure
of Eq. (74), we expand to find

_ a w1 2
L R X A M e
M == (353 )

PE ) o

where the rapidity divergence is absorbed by Eq. (47) with
the renormalization constant

Z(0.24).(0.0) (w1, @5, q7, u)

- 2 W% — = 6)2
= —a0lgr)  ~01028(@1)8'(@2)5( u+ 7" ). (76)

Note that if the operator definition of 05231)()6, 7) had not
included the 0(7) convolution discussed in Sec. IIA,

then its u-space matching coefficient would instead be

ngB Y = 1/u, and the corresponding expression in (74)

would contain only delta functions and single plus dis-
tributions in z,,

M~ z;”n 5<u + %)
- (20 1) o )o(w+2). )

Multiplying this by the Wilson coefficient ~1/u and
integrating over # would then give an unregulated diver-
gence at 7, = 0. Instead, keeping the singular 1/u depend-
ence in the matrix element of the operator gives the
properly regulated result in Egs. (75) and (76) in terms
of & and double-plus distributions.

Finally, we can also demonstrate here that the 6 regulator
does not regulate all rapidity divergences at NLP. Replacing
the previous pure rapidity regulator in Eqgs. (73) and (74)
with the 0 regulator, the same expressions read

. dk o) (K
M((()S,Z3) :—27[92CF/(2”)dTr |:7§:|6<M+q—+)5(k2)
x8(py —q~ —k7)8(py —q" )6 (ar + k)

1— 2p2a_7ak ﬁa
Tr|= -
. r[u”“’”( 2k —k -5,

nkk
ngh,% (g"” - ) k”v(pz)]

kt+6;

a 1 Z
=——fwiz1 iy 0 5<u+—2>, 78
ﬂf 1 222(22+5ﬁ/p§) ] 2 (78)

which contains an uncontrolled rapidity divergence when
integrated over Z,. Since the unregulated divergence does
not originate from a Wilson line propagator, any regulator

that only modifies the definition of a Wilson line, such as
the 7 regulator of [51], will suffer from similar problems.

4. One-loop results
As shown in previous examples, matrix elements of the
T(; j)’s are rapidity divergent and require subtractions via
rapidity counterterms proportional to the leading order
operator 7' o). The renormalization constants for the rest of
the subleading 7'; ;)’s are found to be

)
aw, _ _
Z2,0).00) (@1, 02,97, u) = ;n_fs(wlﬁ(wz)fs(”)’
= 1,2
aws . _ _
Z(o,zl),(o.o>(w17w27QT, u) = ;'T- (@1)8(@2)6(u), (79)

and

Z2,0).000) (@1, 02, qr, g, )

— _;”_:5(@1)5(@2)5@1)5(@%

Z0.2).(0.0) (@1, @2, q7, Uy, U5)

= —=5(@,)5(@,)6(uy)6(us), (80)
for the operators T'(,, o) through T'(,,), and

Z2,.0).0.0) (@1, @2, q7, 1)

_ 9 _
= —*7"6016025,(&)1 )5(&)2)6(“ + > .
VA

n

Z0.29).00) (@1, 02,7, u)

- 2 -
- —“lewza(@l)a/(@z)(s(u + “’2> ,

T Ny (2]
Z2,.0).000) (@1, @2, 47)
~ o
aw? _ _ _
= —27—”7—0)10)2(5(0)1) +8'(@1))8' (@2),
Z(0.24).(0.0) (@1, @5, q7, 1)
aw% = /(= /(=
= —2;—_601602(5(602) +8'(@,))8' (@1), (81)

for the remaining operators 7', o) through T',,).

In contrast to the leading power operator, the matrix
elements of the power suppressed operators T ; ;) are
individually rapidity divergent even when setting w, =
w; =1 and 5, = —n;. Nevertheless, these divergences
cancel pairwise between T o) and T, ), and Ty,
and T g,,). The divergences also cancel in the sum over
the four operators in Eq. (81) when weighted and integrated

against their appropriate prefactor H(,-,j)({u})K&’Q).
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The cancellation of rapidity divergences in the total rate
reflects the rapidity finiteness of the total NLP cross section
in SCET and is a nontrivial check on the validity of the EFT
expansion. In Sec. III B we will show that this cancellation
can be understood without an explicit regulator, in which
case the correct treatment of overlap subtraction graphs,
which vanished here when using the pure rapidity regulator,
is critical.

The hard-scale matching coefficients of all the sublead-
ing operators 7'(; ;) have the same LL anomalous dimen-
sions [56], so these cancellations are manifestly maintained
to all orders in the leading-log approximation. Since the
rate must be finite beyond leading logarithms, finiteness of
the theory will place constraints on rapidity divergences
which are beyond the scope of this paper.

As in Eq. (9), the T; j operators are matched onto a
theory solely consisting of light-cone distribution opera-
tors, defined as

0,(¢7) = 5 [ dze w3 SW(az. 0, 0),

0y(¢*) =5 [ dee pa(@ WO nws(nd). (52)

Since the renormalized partonic matrix element of the
product of these soft theory operators is [64,81]

(P1P5104(a7)05(q7)IPtP5)

ot ) )

and since these IR divergences are precisely reproduced in
the renormalized matrix element of 7'y o) [see Eq. (63)], the
leading-power soft matching coefficient is then

H Vn.ﬁ
Cs.0.0) (Zl , 2,475 >
qr K

:51526T+(_Z{ |:2£1T+‘COT<3 210

1+ 22 1+23
([ 57 a5 e
<1 + 22 +

+ (216, + 226, — 515252)5T}-

u;vn> }

(84)
This also provides the fixed order expansion of V) 0,0,

H oq
V(0.0).000) <Z1, 2,47,—> L )

ar Vi

2
= 51 6267‘ + 2(_1£0T log qL

n“n

to o (85)

where higher order terms can be generated using the
running in Sec. II F.

At subleading power the renormalized matrix elements
of T; ;) begin at O(a,) and thus match onto the tree-level
term 5(z1)5(z2) of Eq. (83). The renormalized matrix
elements of T;; are thus equal to the soft matching
coefficients Cg ; ;). Suppressing their scale dependence,
the first four NLP soft matching coefficients are

0(z 1 v
CS,(ZI,O)(Zl,Zz,QT) = ——52([ & 1)] +§51 10g_2>
+ qr

a 0(z 1 V2
CS,(O»ZI)(ZhZz,(IT) = —;51 ([ (222)] —|—§52 log—2>
+ T
X5<u+z>,
22
a 0(z 1 V2
Cs.2,0)(21.22.97) ﬂ5z<[ (le)} +§61 10gq2>
+ T
Z
X6\ uy +— ) 6(ur — ua),
|
a 0(z V2
Cs,(0.2,)(215 22, q7) ;@([ (222) ++25210gq—%>
2
x 8 u2+z_2 S(uy —uy), (86)

and the remaining four matching coefficients are

& -
__2122525(M+Z—]>
T |
1 2 [o(z

X (—5’] logy—;— { (_Zzl)] )
2 qr a Jes
:ngZQCsl(s(M“FZ—Z)
T 22
1 2 10(z
X (—5’210gy—’21— { (_222)] ),
2 qr 2 Jr
a
~ %1220, (0(2) + 92 o

P2

z1125 8(z2) +8'(22)) lo
.

Matching QCD onto SCET at 4 = ¢q; and v,; = q,,
these matrix elements have large logarithms of g7 /g3.

Cs.(2,.0)(21522:97)

CS,(O,23) (Zl 225 QT)

2

Cs.2,.0) (z1.22.97)

Cs,02,) (21, 22,497) =

)
2
q%
')

(87)
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We will discuss the resummation of these logarithms using
the rapidity renormalization group in Sec. II F.

E. Cy; at fixed order

It is useful at this stage to check the fixed order results for
Cys by comparing with the corresponding QCD calcula-

tion. At leading power, the O(a,) expression for C](c(}) in

SCET is given by Cg o) in Eq. (84) with v, ; = g, and
multiplied by the hard function H ) = CéO)TCEO). After
integrating dQ, this gives the one-loop expression

0
(212,43, 43)

= &{Slézé(q%) <—log2 i + 310g -8+ 7C2>
u
1]+~ 1 1
el st
qar] + 2 1+ FAT
logZ—Z 4 1714 7
—5152 2 5 + — 3 210g
ar 1+ Uk s

+ 6(q7)(2162 + 226, — 525152)} (88)

At NLP, adding up the contributions from the unsummed
matching coefficients in Eqs. (86) and (87) with v, ; = ¢qr
(i.j)

weighted by the corresponding coefficients H; ;K k)

gives the O(a,) coefficient function

’ . 8
C;f?(zl \22.q7) =021 2 [(ﬂogq—%— 3) 5,8,
§
+ <21°g_z+ 1) (8,6, +8,8,) +48,8,

s [2 212+Z2} 8 {2—221 +z%]
2 52
++ ++

75 7]
20l ) @

where, along with q% = 7,25, we have used the identities

O], =1+55@ =00 (90)

These results may be compared with the direct QCD
calculation. Cy; is determined in QCD by the partonic rate

d
Roeo = = [ s (Pl v (O, 0)p1p2)

dx _
=3 | oy (PRl OO 912,
o1
The single gluon real emission contribution evaluates to
a . 6(217:5 — q%) .
RQCD = ;feT 2-2(z +22)
+(Z+23) — ez +22)7). (92)
Expanding (92) in powers of ¢>/q?,
Rigen = Rowt + Rger) + (93)

is straightforward away from z; =7, =0,

95 32
,%f_; [5(22) (%)

qr 21

2
qr 1 / 2 - 2Z1 Z1
s (L iy (2-20 40
K 2(2%) K 2( Z%

QCD|zl¢O

(with a similar result for z, # 0), but care is required at the
singular points. At leading power, R may be written

R(O)lg_afe
QCD ”q (

: 552-1—52[ D] Folfa(Z2)], ). (94)

where, from (94),

. 2-27+47
fuald) = (27EEE) 95)
z
and A is determined from the integrated rate
2 2
A= af / dZ1dZ2RQCD =AO) L ITAQ) 1o (96)
€ S

Similarly at NLP the rate has the general form

R = %%(A 518, + B8 8, + C? (5,5, + 5,5))

+ 5/2[9n(21)]++ + 6, [hn(zl)]++ + 5/1 [971(22)}++

+ 6177 (22)]4 1) (97)
where
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B} 2-27+7
Ini(Z) = = — )

Z

haa(2) = =2 (i) 08)

<

and the constants B and C are given by the appropriate
moments of the rate,

2

B = aqf /1 dz,d%:%, % R e = B +%%B<2) 4o,
6% b = plg q7 |1
C= _%fe/) dz1d2Z2 Rocep = afé/ ledzzzzRQCD
=CO +q§c(2) 4o (99)

(0)1g afe {(
R =—= 210g——3
Qep 7“1% QT

The integrals in Egs. (96) and (99) give the endpoint
constants

A0 = 210g12—3 —¢,
qar

(100)

where we drop the ¢ dependence in the NLP terms since,
unlike the LP rate, the NLP rate contains no infrared
divergences stemming from a 1/g2 prefactor.

At leading power, applying (B23) and (B24) gives

227 47 2-2
)5152+52 [7? +Z1] s [712”2} }
<1 + {1 n

i 2 3—210g% 8r 142} 1+23
=a 51526T - + — £0T 52 ! + 51 2}+
€ € Z] + Z2

- 5152 |:2£1T + EOT (3 — 210g/%>:| + (2152 + 2251 - 5152§2)6T:| .

The LP vertex correction gives an additional contribution

RQCE“ = a8,6,67 [— (62 +

2 3 —210g:2>

(101)

2qL

—log” =5 +3 log -8+ 7C2} . (102)

Combining the finite pieces of Eqs. (102) and (101) and then integrating dQ7 reproduces the SCET result for C;(}) in (88).
The remaining divergent terms are equal to the infrared divergences of the light-cone distribution operator matrix elements

and thus cancel in the matching onto the soft theory.

2) .

QCD virtual corrections do not contribute to the NLP coefficient function at O(a;), and so Cj; is determined from

Egs. (97)—(100). After integrating dQr, this gives

§ §
o g 6d) = aunzn [45152 + (2 logq—z - 3)5’15/2 + (2 1ogq—2 + 1) (8,8, + 5,5)
T T

in agreement with the SCET result in Eq. (89). Thus, the
SCET result and the expanded QCD result agree to NLP, as
required.

Our fixed order results may also be compared with those
obtained in [53].4 In that reference, the DY rate was
determined up to NLP by expanding the QCD matrix
element in the n collinear, n collinear, and soft limits,
regulating the ensuing rapidity divergences, and combining

*Similar results, integrated over rapidity, were presented in [47].

2-27,+ 72 1 1
=] )2fafg] velg] )] 0w
3 ++ o]y Zl ++

2-27 72
-(a=E
%) ++

|

the results. The results in that reference are also in agree-
ment with the expanded QCD results in this section, but are
presented in different variables, which makes the compari-
son more involved. We have checked that our results are in
agreement with theirs; details of this comparison are given
in Appendix C.

F. Rapidity running

Rapidity logarithms arise in this formalism as a scheme
dependence in summing together the individually divergent
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contributions from the n and 7 sectors to a given matrix
element. It was argued in [57] that in this formalism
rapidity renormalization should be performed at the match-
ing scale onto the light-cone distribution operators in order
to ensure that Wilson coefficients in SCET are independent
of infrared physics.

As discussed in [57], the rapidity regulators in the two
sectors are fixed by matching at the hard scale from QCD
onto SCET by the requirement that when u > ug the
Wilson coefficients of SCET are independent of infrared
energy scales of order ug. In the rapidity regularization
scheme used here, this corresponds to choosing v,v; = ¢7,
which, as discussed in Sec. II D, corresponds to using the
same rapidity regulator in the n and 7 sectors, and is
required for the rapidity divergences to cancel in the EFT.
The necessity of this choice can be seen from the g7
dependence of the leading-power matrix element of
Eq. (66), which contains the term

<PV1LP§ |T(0,0) (61_7 q*.qr, Vn,r‘z) |P'11P£l> 1—gluon
= 2&5152;60]“ IOg V,ﬂ;,—, “+ .-
U

(104)

Since physical quantities are independent of the rapidity
regulator, any variation in v,v; in the matrix element of
T (,0) must be compensated by a Wilson coefficient propor-
tional to Loy in the EFT. This variation would then
introduce nonanalytic dependence on the IR scale g; into
the effective Lagrangian through the Wilson coefficient,
which is inconsistent with factorization of hard and soft
scales.

However, at the soft scale 4 ~ g where SCET operators
are matched onto light-cone distribution operators, the
scale gy is no longer an infrared scale in the EFT, and
the Wilson coefficients are free to have nonanalytic
dependence on g7. The operators T'; j may therefore be
run in v, ; to minimize rapidity logarithms in the matching
coefficients Cy in Egs. (84), (86), and (87). These operators
obey the RRG equation

d
WT( )(q_ q 7qT’Un,r_l)
Z VH—; *Tkg))(q_’qu’qT’Un,ﬁ)’ (105)
k.t

where y*" is the rapidity anomalous dimension for each
sector, and we define the convolution * by

d(l)l da)2

(f * 9) (A A Kp) = / d4-2p;

W Wy
A A
Xf(wl’wzva)g<w]vw227kT —PT>-
1
(106)

The solution to Eq. (105) can be written in the form of
Eq. (13),

T( )(q_ q+’ a7, Vnn = QL)

Z (i.j)(k.2) quUnn)*T(kf(
%

)@ q".qr).
(107)

The explicit form of this solution to the RRG in momentum
space can be found using the techniques in [19].

From the counterterm definitions in Eqgs. (46) and (47)
relating the bare and renormalized operators, and using the
fact that the bare operators are independent of the param-
eters v, ; (as guaranteed by the fictional coupling w, ;), the
rapidity anomalous dimensions for the operators T'(; ;) may
be calculated in terms of the renormalization constants as

_ d
n,n —1
Vi ke) = ;Z(i,j),(x./l)) * Jlogr, . Zen ey (108)
Here, the inverse counterterm satisfies the relation
E;(Z< byeny * Ziahe)) (@1, @2, d7)
= 8(@,)5(0,)5(qr)0k0;- (109)

At leading power the rapidity anomalous dimension of
T () is calculated from the renormalization constant in
Eq. (65), which gives

= 7{00).0.0) = 220(@1)5(@

Z)L”OT- (110)

Y(0.0).(0.0)

The leading-power operator T ) thus obeys the RRG
equation

4
dlogu, ;

= 25!/d2PT£0T(QT

T (0.0) (@1, @2, Q7 Vy 7)

=P )T 00) (@1, 02, P17,V 7)s

(111)

similar to the results in [57], and with all the complications
of running and scale setting of vector distributions
described in [19]. Symmetrically, this RRG equation begins
in the scheme v, ; = gy where the logarithms of 7' ¢ are
minimized, and runs up to the scheme v, ; = ¢, which, as
we have argued, reproduces the QCD result.

At subleading power, the rapidity mixing of each 7'; ;)
with the leading order 7'y may easily be read off from
Egs. (79)-(81):
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a._, _ _
7(02,),000) = —;5(0)1)5(602)5(@,

7(2,.0).000)

n n _ a =~ =
7(22.()) (0,0) = 7(0’22).(0,0) - ;5(0)1)5(@2)5(1’11)5(142)’

a o _
7(2,0).00) = ;wlwzél(wl)é(w2)5<u + —> .

n a _ _ (2)2
Yo2,).000) = 5 @1020(01)8 (@2)0 (u + —) ,

a _ _ _
Y(2,0).00) = 2;“’1‘025'(@1)(5(602) + &' (@,)),

_ a _ _ -
7?0,24),(09) = 2;0)1a)2 (5(0)1) + 5/(601))5,(0)2)' (1 12)
As noted in [38], since each subleading T; ; only has a
nonvanishing matrix element beginning at O(«;), calculat-
ing the complete rapidity renormalization for each 7';

requires calculating matrix elements at O(a?). There will be
some constraints on these rapidity anomalous dimensions
because of u independence of the final result [51], as
discussed in this formalism in [57], but the full calculation
is beyond the scope of this paper and will be the subject of
future work.

III. OVERLAP SUBTRACTIONS AT NLP

As discussed in [55,57], in this formulation of SCET it is
necessary to subtract the double-counting of low-energy
degrees of freedom which are simultaneously below the
cutoff of both the n and 7 sectors, analogous to zero-bin
subtraction in SCET [59]. Rapidity logarithms in this
formulation of SCET arise from the scheme dependence
in summing the individually rapidity divergent diagrams in
each sector and subtracting the corresponding overlap.

In this paper we have used a rapidity renormalization
scheme in which overlap subtraction graphs vanish; while
this is convenient for calculations, it obscures the cancel-
lations that occur between different operators in different
regions of phase space which are required to obtain a
rapidity-finite result. In this section we generalize the
overlap subtraction prescription to NLP and repeat the
calculations without a rapidity regulator in order to explic-
itly show the cancellation of rapidity divergences due to the
overlap subtraction, similar to what was done at LP in [57].

At LP, the zero-bin prescription of [59] has been shown
to be equivalent to the nonperturbative subtraction defi-
nition of dividing the naive matrix element by a vacuum
expectation value of Wilson lines [82—-84]. This equiva-
lence also holds for the overlap prescription of [55,56]. At
subleading power, however, this simple prescription does
not hold: matrix elements of the NLP operators 7'; ;) begin
at O(ay), and thus dividing by a vacuum expectation value
of the form (1 + O(ay)) does not provide the necessary
O(ay) subtraction to regulate their matrix elements.
Calculations of probabilities in the effective theory

therefore require a systematic way to implement the
necessary overlap subtraction. In this section we describe
a simple diagram-based prescription to perform the overlap
subtraction at subleading powers, and illustrate in the case
of DY at NLP that it is required to obtain the correct, finite,
result. This allows us to extend the LP discussion of [57] on
the relationship between scheme dependence and rapidity
logarithms up to NLP. We show that the previous obser-
vation in Sec. II D 4—that at NLP rapidity divergences do
not cancel for matrix elements of individual operators, but
instead cancel between distinct operators—occurs because
different linear combinations of operators are required to
reproduce the correct rate in different regions of
phase space.

Consider, for example, the process in Fig. 1 in which a
gluon is produced in DY annihilation in addition to the
lepton pair. In SCET this corresponds to two distinct
processes in which the gluon is emitted in the n sector
or the 7 sector. At NLP, the first receives contributions from
the 7', o) operators while the second receives contributions
from the corresponding 7', operators. Since in loop
graphs all momenta are integrated over, the first class of
operators will give nonvanishing spurious contributions in
the momentum region described by the second, and vice
versa. Thus, the overlap subtraction procedure at NLP
necessarily involves cancellations between different oper-
ators, and the subtraction required in order to avoid
overcounting in each is found by taking the wrong limit
of matrix elements in the other sector. In the symmetric
process that we are examining in this paper, this may be
achieved by subtracting one-half of each of the wrong
limits from each sector. Schematically, we have the
prescription

1
PSCET:Pt1+Pﬁ__(Pn—>ﬁ+Pﬁ—>n)’

5 (113)

where P; is the probability to produce a gluon in the i sector
and the subscripts i — j denote the wrong sector limits.

The power counting of these subtractions follows the
power counting of the limit in which the gluon is taken. An
n-sector gluon has the scaling k,/q” ~O(1),
ki /q" ~0(q3/q%), while its wrong-sector limit has the
scaling k;_,/q~ ~ O0(q7/q3) and k;i_;/q" ~ O(1). This
definition of overlap subtraction ensures that probabilities
in QCD are properly reproduced to the appropriate order by
SCET in all regions of phase space. This prescription is
inherently perturbative, and further work is required to
determine an operator definition of overlap subtraction
which correctly reproduces QCD probabilities at both
leading and next-to-leading power.

In the next subsection we review the discussion of
overlap subtraction at LP presented in [57] using the
prescription (113). We then demonstrate that the same
prescription may be used to calculate the NLP coefficient
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function C}?, and discuss the nature of the overlap
subtraction in various regions of phase space.

A. Overlap subtraction and scheme
dependence at LP

The DY cross section at LP is determined by the spin-
averaged matrix element of 7' ), which takes the general
form
af. _ _
) (A©0,0)0162 + & [fn(Z0)] 1 +61lf7(Z2)]4)

T

Moo
(114)

where as before we define §; = §(z,), 6, = 8(2,). Away
from the singular point Z; = Z, = 0 the unregulated n- and
ni-sector contributions to the matrix element of T ) are
determined by the graphs in Fig. 1 and their 7-sector
equivalents, and are given by Eq. (54) (and the correspond-
ing expression in the 7 sector) with w, = 1 and 7, = 0.
This immediately gives the functions f,(Z;) and f;(Z,) in
(95) which describe the spectrum away from the
endpoint. Since each f, ; only receives contributions from
a single sector, there is no overcounting, and these
expressions are finite and well-defined without a rapidity
regulator.

The constant Ay may be most simply obtained by
integrating the rate over z; and Z,, which receives con-
tributions from both sectors. Adding these contributions
overcounts the probability of producing a gluon that lies
below the cutoff of both sectors and so must be subtracted
using the overlap prescription (113), given by taking
the wrong limit of the matrix elements in each sector.
These are given by Eq. (61) with the rapidity regulator set
to unity,

_ d’k
Mioo) = _Z”QZCF/WIS(PT -q7)d(p; —q")

502 k)60 Te |20 (T
x 67 (qr + k7)d( )r{z e

ﬁ n(l ﬁ(l p/ ﬂ
A2l

and the corresponding (and identical) wrong limit M?&)’; of

(115)

the 72 matrix element. The dots indicate terms suppressed by
powers of 1/q; relative to leading power, which do not
contribute at LP but which will be important at NLP. By
integrating these graphs with respect to z; and Z, before
integrating over the gluon momentum the contributions to
the endpoint constant A from each sector and their
wrong limit subtractions can be obtained. As discussed in
[57], because the individual graphs each have rapidity
divergences, the ordering of integration is important; the
sum is defined here by performing the z;, Z,, K7, and k*

integrals, leaving only a single rapidity-divergent k~
integral

UGB ICS)] R
where
k= k=\2
A k)=2-2l— ]+ (1—-¢€ <—_),
00 (K7 (m) (=) P
2 2 2
_ qr qr
A (k) =2 -2 41—e<_ ),
AT () = AT (k) = 2, (117)

Physically, regions of phase space where k= ~ O(g~) are
properly described in the EFT by n-sector gluons. Regions
where kt = k%/k~ ~ O(q™) give spurious contributions in
the n sector, producing the unphysical divergence in
A?o,o)(k_) as k= — 0. Similarly, the divergence in the 7

sector as k= — oo corresponds to the large k™ region which
is not properly described by the 7 sector. Both of these
spurious divergent contributions are cancelled by the
overlap terms, leaving the finite result

Apg =2log——3—ec. (118)

qT

This is the same endpoint constant we determined from
QCD in (100), and so we find the same LP coefficient

function ij}) Equivalently, in Eq. (117), the constant terms

in A}(10.0) and A,%QO) are common to both sectors, and so the
double-counting is removed by subtracting the overlap on
the third line.

As discussed in [57], however, the § dependence in A(o,o)
is actually a scheme dependence in the EFT, which allows
rapidity divergences to be resummed in SCET. Since each
integral represents the momentum of a distinct particle in
each sector, the momentum in each integral can be
independently rescaled, which changes the term in the
rapidity logarithm. For example, rescaling k= — k~¢?/5 in
the A; integral of Eq. (117) gives the manifestly scheme-
dependent result

>This is equivalent to the prescription in [72] of adding the
integrands together before performing any loop integrals.
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2

A0 () :210gz:—2—3—€. (119)
qr

In the remainder of this section we will demonstrate a
similar origin of rapidity logarithms at NLP.

B. Overlap subtraction and scheme
dependence at NLP

At NLP the overlap subtraction follows the same
procedure as at LP, but here more terms are kept in the
wrong limit expansion of each operator’s matrix elements.
The NLP cancellation of divergences is also slightly more
involved, since rapidity divergences cancel between differ-
ent operators, as may be seen in Egs. (79)—(81). Similar
cancellations between different operators in SCET were
also discussed in detail in [43]. There, the endpoint
divergences are regulated by explicit hard cutoffs and
expressed in a refactorized form that makes obvious
the cancellation between different NLP operators contrib-
uting to the observable. Overcounting of hard regions arises
from the convolutional structure of the operators with a
hard cutoff, and thus an “infinity-bin” prescription, distinct
from the usual zero-bin prescription, is introduced to
correct for this double counting. In this section we will
show that the same overlap subtraction required to correct
for overcounting in the soft region also properly regulates
endpoint divergences. This uniform treatment of divergen-
ces is possible because all spurious terms have a common
origin, arising from an overcounting of probabilities
induced by wrong limit contributions in each individual
sector.

The operator products 7', o) through 75,y come from

products of scattering operators 0;"(1_)0’5 ) whose defi-
(1) Y2015

nitions pick out the longitudinal Lorentz structure 7##n* or

n“n*, while the remaining operators 7', oy through T'(,,),

along with the leading order T ), come from products of

operators that are proportional to ¢\”. It is therefore

convenient to classify each 7'; ;) according to its Lorentz

structure, as either transverse or longitudinal. We consider
these two classes of operators in turn.

1. Longitudinal class

From Egs. (79) and (80), matrix elements of 7', ¢y and
T(oz,) are individually rapidity divergent, but the diver-
gences cancel in the sum (and hence in the cross section,
since their Wilson coefficients are equal). The same is true
for T(5,0) and T (g,,), and in both cases the cancellation
may be understood by examining the unregulated diagrams
and corresponding overlaps, as in the previous section.

Taking T, ) as an example, its unregulated spin-
averaged matrix element is

dd
My o = =225C; G200 =4 =30 = g")
-

X 62 (qr + kT)a(k2)5<u + q—_) Tr %Q
[ﬁl <2P(1X A

AN
e |2 TN g A (k
S I Py +k‘> 2 kA% )}

a oo dk~ k™
=—=0 —p76(py —qg” —k™)6 —

p ZA = P (Pl q ) <“+q_)
——g?6<u+z—l>,

T 7] V|

where A is defined in Appendix A and its wrong-sector
limit is

(120)

] 'k
MGy = —2ng°Cpp / Wé(pf —q7)3(py —q7)

22

a8 (G ) o]

_ _35(21)5(22) Aw%‘%” +Iq€_:>'

Away from z; = Z, = 0 the overlap does not contribute and
(120) gives a well-defined result; however, it is rapidity
divergent at Z; = 0. Following the LP approach, the matrix
element may be written in the general form

x 52(qy + kT)é(k2)6<u + 1;_:) Tr {@4

(121)

_ X ]
M0 = 352 (A(21,0)515(M) - H 5(u +ﬂ> ) . (122)
+

<1 <1
in accordance with Eq. (86). The constant A ¢y is

determined by integrating with respect to u, Z;, and Z,,
which gives

o dk~
A0 = /) = {9(171_ — k7)AL, ) (k)

1 n [—
— 5 ALk )}7 (123)
where
Ay, (k") = Ay (k7) = =1 (124)

The integral in Eq. (123) is divergent: matrix elements of
T3, ) alone are not rapidity finite, in agreement with the
result (79) using the pure rapidity regular. This is to be
expected, since gluons in both the n and 7 sectors are
required to reproduce the QCD rate, and the corresponding
ni-sector gluon is emitted from the operator 7o)
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Including this operator and its corresponding subtraction
gives

M, 0) + Moo,

_ 1 _
= g {A2]51525(u) — 52 |:_—:| 5(” + Z_1>
T 21+ <1

| _
~ 5 [] 5<u+zz>}, (125)
2]+ 22
where
o dk~
Ay = / = {9(171_ — k7)AL, ) (k)
0
AW
+6 (k_ - E)A&Ml)(k_)
1 n - n—n -
- ) A aon|  a26)
and
Al (k) = AT (k) = -1, (127)

The integral in Eq. (126) is finite; as at LP, the spurious
divergences from the n sector as k=~ — 0 and the 7 sector as
k~ — oo have been canceled by the overlap subtraction to
give the finite result

S

Ay, = —log-5, (128)
ar

which, by a similar rescaling argument as at leading power,
gives a scheme-dependent rapidity logarithm reproducing
that in Eq. (86).

A similar argument holds for T(,, 0 and T(»,).
Explicitly, we find

a
Mz, 0) + Moa,) = . {A2251525(M1)

1 7

+ 52 - ) up +—
21l <1
1 _

+ 51 |:__:| 5(141 + Z_Z) }(S(Ml - M2>7
Z2 + Z2

(129)

where

(130

=

and so

K
A22 = 10g—2 s
T

(131)

again in agreement with Eq. (86). The total fixed-order
contribution to the cross section therefore cancels between
the four longitudinal operators.

2. Transverse class

Matrix elements of the transverse class of operators
T2, ) through 7' ,,) are more complicated because they
originate from operator products having the same Lorentz
structure as those that produce the leading-power operator
T 9,0), and power corrections to the overlap subtraction of
T () must also be included to achieve a rapidity-finite
combination. Thus, while in the longitudinal case rapidity
divergences canceled between the corresponding n- and -
sector operators, here they only cancel in the particular
linear combination of transverse operators that contribute to
the DY cross section.

The contribution of the transverse operators to the
coefficient function C}zf) is calculated from Eq. (12) and
has the general form

" = a2,2,(A06,6, + BY 8,8, + CP (8,6, + 6,3))
+ 5/2[95(21 )]++ +6; [hZ(Z] )]++

+01197 (22)] 44 + 817 (22)]4)- (132)

Away from the endpoint z; =7, =0 there are no
rapidity divergences, so the contribution from each operator
to g7 and h] ; are the same as in Eqgs. (86) and (87). After
summing and integrating over u’s, these combine to give
the functions g/ 5, Al ;:

_ 2-27+472
o) - -(221E)

Z

hna(2) = - Z% (133)

The endpoint region is overcounted in the sum of the two
sectors and must be compensated by subtracting away half
the wrong limit of each sector. In contrast with the previous
cases, the power counting of the required overlap subtrac-
tions is more subtle because the overlap graphs must subtract
not only logarithmic, but also linear rapidity divergences.

Consider first the various contributions to AT2 , which are
found by integrating unweighted matrix elements over {u},
Zj, and Z,. The naive contributions from 7', ) and T (g ,)
are calculated to be

o dk” - —\ AN — — C]%‘ n —
A k—_ 0(1)1 —k >A(230)(k )+9 k —p—+ A(0.23>(k ) R

2
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where

(135)

02K = 2<qu )

The integral in (134) is rapidity divergent. Both terms in
Eq. (135) are O(1) in their respective correct regions, k= ~
O(q™) in the n sector and k™ = ¢ /k~ ~ O(q™") in the 7
sector, but are enhanced and give rise to linear rapidity
divergences in the regions where this correct momentum
scaling is no longer valid. The contributions to Cy; from
these spurious regions are subtracted away by the overlap.
There are two sources of overlap subtraction for A<T2 ) the
wrong limits A’("’” and A’F(;’Z';), and also the subleading
wrong limits from the leading power operator 7' ).

Expanding the Feynman diagrams of T',, o) and 7 (g »,) in
their wrong limits gives the same functions as in Eq. (135)
but are integrated over the region 0 < k= < co. Explicitly,
there are two nonvanishing terms from the wrong limit of
the T<23,0) matrix element,

d
%5(191‘ —-q7)8(p; —q")

& ﬂ]

Mz =g |

x 8472(qr + kp)278(k*) Tr

l—|

7 o dk~ 1 k™
95152/ = s u+—_) (136)
T 0 k™ u q
and
d%k
n—n,Il 2 / _ o+
M(23~0) CF/(zﬂ.)d( )3 (pi )8(py —q")

x 8472 (qr + kp)228(k*) Tr [%g]

x Tr {ﬁ—k/‘A(k)“”

(G- pee )

-2 [TOts(ur ). a3

o P u q

The wrong-limit expansion is truncated after the terms
reach an O(g%/q?) suppression relative to the leading-

power operator in the wrong-limit momentum scaling py ~

O(q™) and k", pJ ~O(gq"). The subtraction term in
Eq. (136) contributes to A% while the term in Eq. (137)
contributes to C(T2 ),

Similarly, expanding the 72- and n-sector graphs of T
up to NLP gives the O(1/k™) term in Al,, ) and the O(k™)
term in A?o,z;) in Eq. (135), respectively, which are again
integrated over all values of k~. Explicitly, expanding
M?o,o) gives two contributions to the subleading overlap,

n—n ddk - - =
M(O,O)’NLPI = _ZHQZCF/W<—]< )8 (py —47)

- )5y + kol e 24

2
ﬂl na ﬁ” ﬁ na _ &
x T [7 (I + k_‘) 2 <_k+ —k‘)]
(

dk= k=
= 28(2)8(z) % / - fz 138)
)y ko qr
and
MIZINP: o e / ﬂﬁ(pf —q7)é(p; —q")
(0.0) (27)?

x 512 (qy + kp)228(k) Tr Ez’ﬂ

g )i ()

P a }/ﬂ kl_ ﬁ Ny ﬁa
o) ()

a__ .. [eodk k pi
= —25(21)5(22)/ ? 22 s (139)
T 0 qr

the first of which comes from higher corrections to the
momentum-conserving delta function, while the second
comes from higher corrections to the quark propagator
expansions. Only the second term contributes here; the first

contributes to C( )
Putting these together we obtain the expression for A(T ),

@ _ / dk~
Ay =
T 0 k

qr _
+9(k pz)A(023)(k )

{em — )AL, o (k)

1 n—in, — n—n —
_E(A(OO)NLP(k )_i_A(O’O),NLP(k ))

3 A () + Aty () (140)
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where the contributions from T, o) and 7', all vanish,
and explicitly

n—n -\ _ ph—=nNLP/ 7\ Py
A(zg,o)(k )= A(O,O) (k) =-2 (k_l>

) . k™ p3
n—n -\ __ l’l—>n,NLP -\ __ 2
Al (k) =A (k7)) = —2( )

oo e (141)

This gives the finite result

AP =4, (142)

Next consider the contributions to the endpoint constant

C(T2 ), which are obtained by integrating the various matrix
elements weighted with Z; (or equivalently Z,). The naive
contributions to the Z; moment give

A ) % [6’(191‘

- k_>C?23,0) (k™)

2
7 _

+9<k ——i)CM)(k )}, (143)

%)

where
C?23~0)(k_) =2,
P k™p3 9}

Clooy (k) = —2( ) +2-— i) (144)

This is again rapidity divergent: C?z;,o)(k_) gives a loga-
rithmically divergent contribution as k- — 0, while
C?0,24) (k™) gives contributions that are both logarithmically

and linearly divergent as k= — co. As with A(T2 ), taking the

wrong limit of the Feynman diagrams contributing to
Eq. (144) gives the k=~ — 0 and k=~ — oo expansions of
these terms. For example, the wrong-limit expansion of
Moz 4)7’ gives three terms which correspond almost exactly
to the overlaps of Ty in Egs. (115), (138), and (139),
except they have a different momentum-conserving delta
function structure. These give the contributions

n—n - k_P;
C(O.m(k )=-2 (—q% ) +2,

(145)

while from the T, ) overlap given in Eq. (137) is the
contribution

Cf‘gﬁ’_(’))(k‘) =2. (146)
The overlap term from T, contains two terms: the
leading term is proportional to k= and cancels a linear

rapidity divergence, while the O(1) term contributes to the
cancellation of a logarithmic divergence.

We also have the contribution from the NLP overlap of
T(O,O) in Eq (138),

_ k_er
Cn—»n,NLP k) = — < 2 ) ,
o =2

(147)

with the sum of all contributions giving the result

U
5 (5% (k) + Clogy (k ))]

= 2log— + 1. (148)
qr

Once again there is a precise interplay between naive
matrix elements and overlap subtractions required to obtain
the same finite result as using the pure rapidity regulator.
Rescaling the integrals for C{, (k™) C{g;(k™), and

(0,24)
C'(’O_g_;’NLP (k™) as k= — k=¢?/5 replaces the § dependence

in the result of Eq. (148) with ¢ scheme dependence. This
correlation between the rescaling of individual integrals is
necessary to maintain a finite result and is a general feature
of power-law divergences.

Finally, the endpoint constant By is found by weighting
the integrals by zZ,Z,, giving

2 o dk~ _
B(T) :/ = [9<P1
0

a7\
+0 (k‘ - p—+) 3?0.24) (k™)

- k_)B?L.O)(k_)

Lo
S BB W] )

where explicitly
_ k™ k™2
ot =2-2(32) + (52).

; qr ar \’
Bloay () =2~ 2<k‘pz+> i <k‘p2+) B

and the overlap terms cancel just the logarithmic diver-
gences,

By o) (k™) = Bigs, (k™) = 2.

(151)

This gives
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BY = 2log— -3,
T

(152)

where rescaling the second line of Eq. (150) as k= —
k=¢?/5 replaces the § dependence in Eq. (152) with &?
scheme dependence.

This concludes the calculation of all the endpoint
constants Ay 7, By 7, and C;, 7. In each case, these constants
agree with those of QCD as calculated in Sec. II E. We have
thus demonstrated an overlap subtraction prescription that
allows us to properly calculate probabilities at NLP without
an explicit rapidity regulator, providing a nontrivial cross-
check of our results using different rapidity regularization
schemes.

IV. CONCLUSION

In this paper we have shown that factorization of the
Drell-Yan production cross section into hard matching
coefficients, rapidity evolution factors, soft matching
coefficients, and PDFs occurs naturally in a formulation
of SCET in which the low energy degrees of freedom are
not separated into distinct fields for each mode relevant to
the process. The DY rate is given by the matrix element of
the nonlocal product of two external currents in SCET.
Usually in SCET observables are factorized into jet and
soft factors which are separately renormalized and run to
the appropriate scales; here, the EFT is first run in y down
to the soft matching scale y ~ gy, at which point the
product of currents is renormalized in rapidity space. After
resumming the rapidity logs at the soft matching scale, the
operator products are then matched onto a product of
light-cone distribution operators, whose hadronic matrix
elements are the usual PDFs. At O(a,), our EFT cross
section reproduces the fixed-order QCD cross section at
NLP, as well as the equivalent fixed-order cross section
calculated using the pure rapidity regulator in [53]. Off-
diagonal rapidity anomalous dimensions were calculated
and rapidity divergences were shown to cancel in the cross
section. The resummation of rapidity logarithms at NLP
requires the complete rapidity anomalous dimension
matrix for the subleading operators 7'(; ;), which is beyond
the scope of this paper, and will be the subject of
future work.

The factorization and resummation of the DY process is
particularly simple in this approach: it does not depend on
proving factorization at a given order in the SCET
expansion or in the leading-log approximation, but instead
is a straightforward consequence of the usual EFT
approach of matching and running. By not explicitly
factorizing modes in the Lagrangian, the complication
of power corrections coupling different modes in the
Lagrangian is avoided, as is the necessity to refactorize

the result to make individual jet and soft functions
well-defined. Divergences analogous to the endpoint
divergences arising at NLP in other approaches arise,
but are regulated by the rapidity regulator and system-
atically canceled by the same overlap subtraction pro-
cedure required to avoid double counting at leading
power.

Rapidity divergences were considered in detail, and the
cancellation of rapidity divergences in the rate was shown
in two ways. Using the pure rapidity regulator, it was
shown that all rapidity poles canceled between the differ-
ent linear combinations of subleading operators arising in
the expression for the differential rate, as was found in
previous analyses [40—43]. In Sec. III it was shown that
even without an explicit rapidity regulator, rapidity
divergences in the DY cross section cancel between
particular linear combinations of operators, and that these
linear combinations could be understood by requiring
that SCET reproduce the correct differential rate in
different regions of phase space. A consistent treatment
of subleading overlap subtractions from the leading
order operator was shown to be necessary for this
cancellation.
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APPENDIX A: SUMMARY OF MATRIX
ELEMENTS OF HARD SCATTERING
OPERATORS

In the following equations we list all relevant u-space
matrix elements of scattering operators which contribute to
the quark-induced DY process through the emission
of an n-sector gluon. We use the soft-scale matching
kinematics p; = p;; =0 = p; = p,;, and define the

noncommon factor AS,l)n of these matrix elements through
the relation

dd'x —igq-x /[ [n,n i n i
[ S 08 e Auh )

= go(p))T* A u(ph)e;, (A1)

where A is tensor valued with implied Lorentz indices u
and v. We find for the n-gluon emissions
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0 _ o (2P K\
W =—P,'P, - 57576,
A ! (—2p1 K —k') .
(11,) i, (205 -k 7\
o) = _p g (L2 57556,
A ! 2h< —2py -k —k_> .

A = il b, Reo(i5; 618,600+ 1),

AW = =Py % yE R (k)6,678,5(u+ k),
" 2pY — Iy —v
AP = grqppp, (I T Vs,
op -k —k

1 .
AN = py Py P A (R)W6;618,6(u + k),
(A2)
while for the 7-gluon emissions we find
o _ (2P3—rK_n* ot
(0) _ P,y'P,575:8
An < 2]72 -k _k+> n? 070501
() _ (205=1 K " Ny oot
Uan) — Zyup 57576,
.An ( 2p2 k k+>kj_2y n®n Y YL
A= b Tt e )61, 6+ 1),
APyt ’”/w*P AV (k)37 6, 6(u+ k),
) _ g (227K pup k-sists
An q 9 <_k+ 2 Dy k) n? 'y n Y% YL
1 .
APE) — PPty kNP (K)555,8 . 6(u +KT). (A3)

The one-gluon matrix elements of the scattering oper-
ators defined in Egs. (A2) and (A3) use the following
definitions:

nekH nekH
, A% (k) = g™ — .
n-k (k) =g n-k

A (k) = g (A4)

These are common structures associated with the covariant
derivative. We also define the dimensionless quantities

(AS)

and we have used the shorthand notation &, =
8(pr =k~ =q7), &7 =d(ps —q"). & =8(py —q7),
5y =68(py —kT —q"), and &, =8 (ky +q1).

There are additional operators that are present from the
hard-scale matching [56,65,85-87], but that do not con-
tribute to the quark-initiated DY process to the order at
which we are working. Up to a 1/g7 suppression, these
include an operator with two perpendicular derivatives

OF M (x) = [i0°7 (xa) 7 2" 2 yalidPya(x,)]. (A6)

SIEN
I\JIS-L

the A-type operators

O (x,1) = 2i0(0) ® [za ()l B 1
< B (o)t x = ).
O (1) = 24i0(1) ® 7)) U H 1

x [i0°BY (x)y, (x — ar))],

NIS\
NISL

OEZA“ (x,7) = =27i0(1) @ [i0Py;(x — nt)]y
x By (x)x (X)),

O (x,1) = 27i6(1) ® [i0°7: (O {r L. 75}
x [BY (x = it (x)], (A7)
and the corresponding B-type operators
OB (2 1) = 2m'9<*> ® 23 (x = nt) B ()]
x 70, v ()],
OB (¢ ) — 2::16( ) ® [zﬁ“‘,—,(x — nt)By(x)]
)
025 (x, 1) = —27719( ) ® [74(x)B3(x — 7ir)]
<t l ptiony, (o),
0 (x,7) = 27i0(F) ® b‘m () B (x — 7ir)]
X Ly, vgio (). (A8)

There are also the C-type operators, which are only relevant
for gluon-induced Drell-Yan

OV (x,1) = —27i0(7) ® [BxC (x))]
X | 7e(x)p* g vaxs (x—nt)],

0V (x,1) = 27i0(1) ® [Bx (x)]

i

y (49)

X ){n('x - nt)yj

s (x ) :
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APPENDIX B: PLUS DISTRIBUTION
IDENTITIES

1. Single variable plus distributions

The familiar plus distribution may be written as

(0@)f(x)], = lm[F(B) = F(1)]5(x = )
+0(x = p)f (x), (B1)
where f(x) = dF(x)/dx, and has the properties
| axtosen, —o.
0(x)f(x)], = f(x), x> 0. (B2)

Rearranging these equations gives the differential relation

4 o) = [e<x> ‘”;—”] LSWE().  (B3)

which is useful for expanding rapidity divergent integrals in
terms of plus functions. For example, taking f(x) = x~1="
gives F(x) = —x7"/n, and so

d [—9()6)] o) 8(x) {a(x)] o)

dx | nx" x\tn gt g

(B4)

The factor of §(x)x™" vanishes by analytic continuation, so
expanding about 7 = 0 gives

00) __o(x) [9<x> _ploseE) ]

X! X X

Matrix elements at next-to-leading power involve higher-
order poles that are more singular than the usual plus
distributions. As in [53], we define double-plus distribu-
tions that satisfy

/0 L ax{6(x) ()], =0,

A ' dex 0 f ()., =0,
[9(x)f(x)]++ = f(x),

x>0. (B6)

They are related to the single-plus distributions by
[0()f ()] 44 = [OC)F ()]
1
=tima(e=p) [[aso-pro). ()

For example, taking f(x)=x"27", then F(x)=
—x~17"/(1 + ), and we obtain

0(x) _ [0x)] _ 6(x)

ot chw N 14+ n’ (BS)
Since [@] . is not well-defined, we convert to a double-

plus distribution before expanding in 7,

to obtain the expansion
1 §kx) 6 0(x log(x)0(x
2 f7 )_1EF’)7+ [ )(52)} ++_n{og(xz | )}++ 88

as in Eq. (2.40) of [53].

2. Vector plus distributions

The same techniques may be applied to divergent vector-
valued functions. Since our operators T, ;) live in d # 4
spacetime dimensions, we define the vector plus distribu-
tion (also known as the &> distribution) by the relations

/ . d"qr[0(¢3) (f(ar)) =0.

2

0(a1)f(ar))s = f(ar), a4>0. (BII)

When f(qr) = f(g%) is a rotationally symmetric function,
we have

/ 24, f (qh) = / I f(@)dg. (B12)
where

S22
Ty, = a7

=5

(B13)

and S,;_, = 271%/1"(%), e.g., S, = 2x. We also note that a
(d — 2)-dimensional delta function at the origin may be
written as

(B14)

Therefore if
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for some rotationally invariant function f(p7), then

1 d

fa7) = ——=9(47).

B16
JZT qu ( )

which is useful for converting between distributions and
their cumulants.
The vector plus distribution may be written as the limit

[Far)l =limA(p.e.)o(ar) +0(¢3 ") (ar).  (B17)

where, from (B11),

Ap.ed—- |

Br<qp<&

d*qrf(qr).  (B18)

For example, we have the explicit form of the & distribution

11¢ 2\ €\ S,
= (-(5)) S
+9(61%—ﬂ2)

(B19)
a7

(where the limit # — 0 is implicit). We can also derive the
analog of (B3) [19],

1 d
J5, dgz

2\1&
OaFa) = [o1h) 5 s

+ 8(ar) F(&).

(B20)

As in Appendix B 1, we may then derive the expansion

NG : (ﬁ) BTN [e(q% )] 2

a

TG S
log % 0(¢3)]°
I et TR LA (B21)
2 2
qar +
|
1 do dz,dzy, | 0 5 by
Y5, o — - C ) ) ) -
U()dqzdydqu /Za 2 |: qu,—[(za Zps g qT)f

I 2 2\Xa o (Xa
+?C ;f[](Za7Zb’q 7QT)Z_f f

a

Za

The choice of &£ in these identities is entirely arbitrary.
However, since each diagram comes with an overall y*¢,
and since these identities put all the ¢ dependence into the
delta-function prefactor J§ o &2, the canonical choice that
avoids spurious logarithms is & = p.

It is convenient to rescale the vector plus distributions to
have the same scaling dimensions and 7 counting as 5(qz).
Borrowing from the generalized-log notation of [19], we
define

2 2
1 rog" %9(61%)]”
-

=— (B22)
J§ q7

‘Cn (qu :“)

With these definitions, and taking v = ¢ = &£, we have

W)™ (%ar) | .o
(q%)l_n/z - Jﬂ %_ € + ’CO (qTaﬂ)

n
P+ ) (B2
Finally, we also need the identity
log € (qr)
w . o4 0
quﬂ =Ju <_ ezT + ES )<QT’/1)>7 (B24)

which appears in the context of calculations without a
regulator.

APPENDIX C: FIXED-ORDER COMPARISON

In this section we compare our results to that of [53]. In
that reference, the QCD cross section for the process
NN, - V + X up to NLP is decomposed into a sum of
convolutions of coefficient functions multiplied by PDFs
and their first derivatives, so that

Xp I 2 2 (xa> <xb>
- +—C as ) ) - -
)f (Zb> 7 Fot,(Zar 260475 q7)f G,

Xb I o ) <xa> Xp /<xh)
— | +=5C7 (24: 26,97, — =/ \—
Zb) e quq( @975 q7)f 2 be 2

I 2 2 o\Ya [ Xa\Xb (XD
_C-/ v as 3 ) - - - - ) Cl
2 s (Zas 25,4 QT>Zaf - be - (C1)
where at one-loop
2 2 1% 1+2z 1+2;
C(f(lnft_&{6(2,1)5(21,)5(51%)<_10g2q—2+3logq—2—8+7C2>+ {—2] (5(20)[ ! Z”} +5(zb){ _Z} )
1 JZ H 97+ b 1+ Za 1+
—vore [ log a3/ 17 e e
_5(Za)5(zb>(2|:7g 5/ +3| | ) +68(q7)(2a6(25) + 266(Za) — £26(24)8(25)) ¢ (€2)
T + 1+
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at LP, and 2
c? =a { (2 log L + 4)5(@,)5(2,,)
7 qr
2 _ s N/ 1+ 23 — 4z 1 =27, — 72 1
Cj(fq)fq =a {—45(251)5(2 ) — 8(z,) —L2—=b —8(z,) <M 42 [__} >
b 2z, W]y
1425 -4z 1-2 1
—76(@)], (C3) +< Ca +2{ } >5(z,,)] (C6)
24 224 Zal 4
5 at NLP.
@ _ &K_ log L — 1) 5(2,)6(z,) Since the x,, in Eq. (C1) differ from the £, used in
falq 7 Eq. (11) at O(¢7/4?), and since our results are expressed
_(1+43z,+22 1 entirely in terms of PDFs instead of PDFs and their first
+6(Za) (T - L—} ) derivatives, the results in Egs. (C2) and (C6) are related to
. b i+ Egs. (88) and (89) by a change of variables, integration by
(142,427 n 1 5(2,) (C4)  paits, and a few distributional identities. Working in
2z, Zal 4+ <k the hadronic center-of-mass frame for simplicity, where
Py = /s = P, the variables x, ;, may be written in terms
e of &5 as
2 - -
C§>f _aK log L - 1)5( 2)8(zp) L2
ar X, = 1<1__q_27+...>’
(147428 [1 291
— 5<Za) —ZZ + Z_ 1 q2
143 +2§ I - xb_é(l_Eq—%m)' €7
Za Za - L
(P e o
a ad+ Expanding (C1)-(C6) up to O(q>/q?) gives
1 do le de (0) ) é:l (52
Y5 . - C 3 ) ) ) — -
o quddeqT 2 2 |: qu,?(Zl 22,41, QT)f Z f Z
1 ¢ S
—I——(C; )f (21,22, QL’qT)J’_(SC(f )f (21,22, %"IT))f(i)f(i)
L] lg S (¢ ¢
2( ZhZzquQT)—E*C()( 1,2 2)> 1f’< 1>f<2>
<] 22
qr (0) S1\ & 52)
) ) ) A 0 C I -
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where C,(f((),_)fq

and
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~
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=
:s
>
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@ _lar o _
quf% 2q qufq

qz
K—zlog—g - 1)5152
qr
1—22 4223 1
(el )
222 22] +
1+4 372 1
(2] e

(C11)
c? —al(210 +4 5,6
qu/ g 2
1—2z2—z,§ 1
-5 —=—242|—
1-2z,— 22 1
+(¢+2{_—} )52]. (C12)
221 21] +

Finally, the comparison is completed by applying the
following integration by parts identities, valid when
f(x/z) =0 for x > z,

[0 (@) = [ e (l)
[£eir(§) - e - ()
[ Q) - JE(, oo
- z5(2)>f <§)

These identities transform the coefficient functions in
Eq. (C9) from acting on derivatives of PDFs to the equivalent
form of coefficient functions acting only on PDFs, and in
doing so reproduces the NLP coefficient function in Eq. (89).
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