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We examine the quark-induced Drell-Yan process at next-to-leading power (NLP) in soft-collinear
effective theory. Using an approach with no explicit soft or collinear modes, we discuss the factorization of
the differential cross section in the small-qT hierarchy with q2 ≫ q2T ≫ Λ2

QCD. We show that the cross
section may be written in terms of matrix elements of power-suppressed operators Tði;jÞ, which contribute

to Oðq2T=q2Þ coefficients of the usual parton distribution functions. We derive a factorization for this
observable at NLP which allows the large logarithms in each of the relevant factors to be resummed. We
discuss the cancellation of rapidity divergences and the overlap subtractions required to eliminate double
counting at next-to-leading power.
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I. INTRODUCTION

The Drell-Yan (DY) process N1ðP1ÞN2ðP2Þ → γ�ðqÞ þ
X → ðll̄Þ þ X has been extensively studied in perturbative
QCD [1–3]. In the limiting case that the transverse
momentum qT of the lepton pair is parametrically larger
than ΛQCD and smaller than its invariant mass

ffiffiffiffiffi
q2

p
, the

cross section may be written as [4]

1

σ0

dσ
dq2dydq2T

¼
X
a;b

Z
dz1
z1

dz2
z2

Cab
ffðz1;z2;q2;q2TÞ

×fa=N1

�
ξ1
z1

�
fb=N2

�
ξ2
z2

�
þO

�Λ2
QCD

q2T

�
; ð1Þ

where qμ is the four-momentum of the lepton pair,
ξ1 ≡ q−=P−

1 , ξ2 ≡ qþ=Pþ
2 , y ¼ logðq−=qþÞ=2, and P−

1

and Pþ
2 are the large light-cone components of the incom-

ing hadron momenta. The sum is over parton types a, b,
and the fi are the usual parton distribution functions
(PDFs). In this paper we only study the quark-induced
process for a single flavor of quark, so we define
Cff ≡ Cqq̄

ff.
The coefficient function Cff may be expanded in powers

of q2T=q
2,

Cffðz1; z2; q2; q2TÞ ¼ Cð0Þ
ff ðz1; z2; q2; q2TÞ

þ 1

q2
Cð2Þ
ff ðz1; z2; q2; q2TÞ þ � � � : ð2Þ

where each subsequent term is suppressed by increasing
powers of q2T=q

2. Since they depend on two parametrically
different scales q2 and q2T , the fixed-order perturbative

expansions for each CðnÞ
ff contain large logarithms of q2T=q

2

which can spoil the behavior of perturbation theory and
need to be resummed. The resummation of the leading

power (LP) term Cð0Þ
ff has been extensively studied in the

literature, using both perturbative QCD techniques [4–15]
and effective field theory methods [16–19]. Factorization
theorems allow Cð0Þ

ff to be written as a product of separate
terms depending on distinct scales, each of which may be
resummed to arbitrary order using a variety of renormal-
ization group (RG) or related techniques. The most recent
analyses achieve a resummation up to N3LLþ NNLO
order [20–26]. However, much less is known about the
factorization and resummation properties of the first power

correction Cð2Þ
ff . Cff has been computed in QCD at fixed

order in perturbation theory up to N2LO [27,28], but an all-
orders RG resummation at next-to-leading power (NLP)
has not been performed.
Soft-collinear effective theory (SCET) [29–35] is an

effective field theory (EFT) that provides a systematic
framework in which to study power corrections in hard
QCD processes. There has been much recent work study-
ing power corrections to various processes, with applica-
tions including beam thrust [36], Drell-Yan production
near threshold [37], threshold Higgs production from
gluon fusion [38], Higgs production and decay [39], the

*minglis@physics.utoronto.ca
†luke@physics.utoronto.ca
‡jro1@physics.utoronto.ca
§aspourda@physics.utoronto.ca

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 076018 (2021)

2470-0010=2021=104(7)=076018(31) 076018-1 Published by the American Physical Society

https://orcid.org/0000-0001-5734-7070
https://orcid.org/0000-0002-6786-3877
https://orcid.org/0000-0002-4574-5386
https://orcid.org/0000-0002-4960-1734
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.076018&domain=pdf&date_stamp=2021-10-20
https://doi.org/10.1103/PhysRevD.104.076018
https://doi.org/10.1103/PhysRevD.104.076018
https://doi.org/10.1103/PhysRevD.104.076018
https://doi.org/10.1103/PhysRevD.104.076018
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


energy-energy correlator in N ¼ 4 Supersymmetric Yang-
Mills [40], and Higgs to diphoton decays [41–43]. Power
corrections have also been studied using non-EFT QCD
techniques [44–50].
The DY process at small q2T is typically referred to as a

SCETII process, characterized by collinear and softmodes in
the EFT, and exhibiting rapidity logarithms in matrix
elements. Rapidity logarithms are large logarithms inmatrix
elements which arise in SCET due to divergences in
individual diagrams at large values of the rapidity of one
of the particles. These divergences cancel between graphs
with different modes, but the final result contains large finite
logarithmsof the hard scale of the scatteringwhich cannot be
resummed using usual RG techniques. Rapidity divergences
require an additional regulator beyond dimensional regu-
larization, and various techniques have been successfully
employed to handle the rapidity resummation, including off-
the-light-cone techniques [4], the rapidity renormalization
group [51], the collinear anomaly framework [17], the
exponential regulator [52], and the recently proposed pure
rapidity regulator [40,53]. The latter regulator has recently
been used [53] to calculate the small-qT DY cross section by
expanding the QCD graphs in the soft and collinear limits,
where it correctly treats the power-law rapidity divergences
arising at NLP. The connection between rapidity renormal-
ization in SCETII and the usual renormalization group
equation (RGE) in SCETI was discussed in [54].
In this paper we study power corrections to DY pro-

duction using the version of SCET developed in [55–57]. In
this approach the degrees of freedom in the EFT are not
analyzed using the method of regions [58] in which they are
explicitly separated into soft, collinear, ultrasoft, and
possibly additional modes. Instead, states are separated
into distinct sectors, where the relative invariant mass of
particles within each sector is less than the renormalization
scale μ of the EFT, but the relative invariant mass of
different sectors is larger than the renormalization scale. As
with the mode expansion, particles of the same type but in
different sectors are described by different fields; however,
interactions within a sector are described by QCD, while
interactions between sectors are mediated via the external
current, which is expanded in inverse powers of the hard
matching scale. Factorization of different modes (soft-
collinear, ultrasoft-collinear, and others) does not occur
explicitly in the Lagrangian since different modes in a
given sector are described by the same fields, but instead
arises through the usual EFT process of integrating out
degrees of freedom and matching onto a new EFT at
appropriate threshold scales.
This reduces the number of separate fields in the

Lagrangian and therefore simplifies the formalism, both
conceptually and practically. One immediate feature is that
subleading terms in the effective Lagrangian coupling
different modes and violating manifest factorization are
not present in this approach. In addition, rather than

deriving a factorization theorem in terms of jet and soft
functions which are individually well-defined and renor-
malized at the appropriate scale, the rate is simply
expressed in terms of bilocal products of operators in
the EFTwhich may be run both in the renormalization scale
μ as well as in the rapidity scale ν. Similar to the situation at
LP discussed in [57], we show here that the DY cross
section naturally factorizes into hard matching coefficients,
rapidity evolution factors, soft matching coefficients, and
parton distribution functions, and give expressions for the
first three quantities up to NLP at one loop. The complete
resummation of rapidity logarithms is left for a future work.
Consistency of this theory requires that double counting

of degrees of freedom between the two sectors is consis-
tently subtracted, similar to the usual zero-bin subtraction
[59] in SCET. This procedure of overlap subtraction is
necessary for the theory to be well-defined and is implicit in
all matrix elements. Furthermore, as discussed in detail in
[57], the scheme dependence of this subtraction allows
rapidity logarithms to be summed using techniques similar
to [51,53] without having manifest factorization of soft and
collinear modes in the effective Lagrangian. At subleading
powers this subtraction is nontrivial, requiring contributions
from multiple operators as well as subleading corrections to
the leading power subtraction. While these subtractions
vanish using an appropriately chosen regulator, the interplay
of these subtraction terms explains patterns of rapidity
divergence cancellation between different operators, similar
to the nontrivial cancellations of rapidity and endpoint
divergences at NLP seen in other approaches [41–43].
QCD proofs of factorization in hard scattering processes

require that the effects of the exchange of soft gluons in the
Glauber regime relevant to small angle parton scattering
cancel in the relevant observable [1–3,60,61]. Glauber
modes have been the subject of much recent interest in
SCET [62], and a consistent treatment of gluons in the
Glauber regime has been shown to be necessary to ensure
that operator statements in SCET are independent of the
external states [63]. Investigation of these effects in the
formalism presented here are beyond the scope of this
paper, but we will assume that gluons in the Glauber regime
do not introduce factorization-violating effects in the
context of this calculation.
In Sec. I Awe sketch the ingredients of the calculation and

the approach to factorization in this formalism. We present
the one-loop calculations of the various pieces in Sec. II and
compare our fixed-order results with the unsummed QCD
result. In Sec. III we consider the cross section with no
rapidity regulator to demonstrate the cancellation of rapidity
divergences between different operators and their respective
overlap subtractions across different regions of phase space.
We present our conclusions in Sec. IV. A few details of plus
distributions used here are given in the appendixes, aswell as
a comparison to a recent one-loop analysis [53] of power
corrections to the DY process.
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A. Factorization

In the SCET formalism introduced in [55–57] there are
no explicit soft, collinear, or ultrasoft modes, so factoriza-
tion does not arise explicitly from a Lagrangian mode
expansion, but instead by integrating out ultraviolet degrees
of freedom at the relevant matching scales. In this section
we briefly review the approach of [57] to DY scattering and
introduce its extension to subleading power. Precise def-
initions of quantities appearing in this section will be given
in Sec. II.
The cross section for the electromagnetic Drell-Yan

production process, N1N2 → γ� þ X → ðll̄Þ þ X, is given
in QCD by

dσ ¼ 4πα2

3q2s
d4q
ð2πÞ4

Z
ddxe−iq·xð−gμνÞ

× hN12jJμ†QCDðxÞJνQCDð0ÞjN12i; ð3Þ

where q2 ¼ ðpl þ pl̄Þ2 is the invariant mass of the
lepton pair, s ¼ ðP1 þ P2Þ2 is the invariant mass of the
incoming hadrons, the initial hadronic state is jN12i ¼
jN1ðP1ÞN2ðP2Þi, and the vector QCD current JμQCD is

JμQCDðxÞ ¼ ψ̄ðxÞγμψðxÞ ð4Þ

for a single flavor of light quark. The extension to
electroweak currents is straightforward [4,17].
For q2T ≪ q2, perturbative corrections to the cross section

in Eq. (3) contain powers of logarithms of q2T=q
2, which

can spoil the apparent convergence of perturbation theory.
SCET provides a systematic approach to resumming these
terms. At the renormalization scale μ ¼ μH ∼

ffiffiffiffiffi
q2

p
≫ qT ,

hard interactions are integrated out of the theory and QCD
is matched onto SCET. In the formalism used here, SCET
consists of two decoupled QCD sectors, denoted by the
lightlike vectors nμ and n̄μ, with total momenta pμ

n and pμ
n̄;

the sectors are distinguished by the power counting

p2
n; p2

n̄ ≪ q2; pn · pn̄ ∼ q2: ð5Þ

Interactions between the sectors are mediated by the
external current JμSCET, which is written as a sum of
operators of increasing dimension,1

JμSCETðxÞ ¼
X
i

1

q½i�L
CðiÞ
2 ðμÞOðiÞμ

2 ðx; μÞ; ð6Þ

where an operator OðiÞ
2 has mass dimension [i] in excess

of the leading-power operator Oð0Þ
2 . We have defined

q2L ≡ qþq−, and for brevity we will not explicitly include
the μ dependence of operators in subsequent equations
unless required for clarity. It is convenient to expand in
inverse powers of q2L rather than q2 ¼ q2L − q2T so that the
hard scale of the EFT is independent of the infrared (IR)
scale q2T . This expansion has been performed up to
Oð1=q2LÞ [55,64–67], the details of which are summarized
in Sec. II A. The SCET expansion for the differential cross
section is then given in SCET by

dσ
dq2dydq2T

¼ 4πα2

3q2s
ð−gμνÞ

Z
dΩT

2

Z
ddx

2ð2πÞd
X
ij

Hði;jÞðμÞ
q½i�þ½j�
L

× e−iq·xhN12jOðiÞμ†
2 ðxÞOðjÞν

2 ð0ÞjN12i; ð7Þ

where Hði;jÞðμÞ≡ CðiÞ†
2 ðμÞCðjÞ

2 ðμÞ and the final angular
integral dΩT corresponds to the angular integral in the
transverse momentum qT . Since we have not subdivided
the degrees of freedom of SCET into separate soft and
collinear modes, there is no expansion of the SCET
Lagrangian beyond that in Eq. (6); in particular, there
are no power corrections arising from soft-collinear mixing
terms in the Lagrangian [34,35,68–71]. This simplifies the
analysis of power corrections considerably.
While matrix elements of the operator products in Eq. (7)

may be directly evaluated between partons in perturbation
theory, it is convenient to perform a Fierz rearrangement to
write the operator product as a convolution of transverse
momentum dependent distribution operators (whose had-
ronic matrix elements are generally referred to as
TMDPDFs), one in the n sector and one in the n̄ sector.
This is a standard procedure at leading power [2,17]; at
subleading powers a similar procedure may be used to
express the basis of operator products as convolutions of
power-suppressed distribution operators,

Z
ddx

2ð2πÞd ð−gμνÞe
−iq·xOðiÞμ†

2 ðxÞOðjÞν
2 ð0Þ

¼
X
k;l

1

Nc
Kði;jÞ

ðk;lÞTðk;lÞðq−; qþ;qTÞ

þ spin dependent; ð8Þ

where each Tði;jÞ relevant to this calculation will be defined
explicitly in Sec. II. Rewriting the operator products in
terms of the operators Tði;jÞ is simply a change of operator
basis, and not a matching condition or expansion in SCET,
and so introduces no new perturbative corrections.
Typically in SCET this Fierz rearrangement is performed
to write the operator product in a form that manifestly
factorizes into jet and soft functions; since this factorization
is not needed here this change of basis is not strictly
necessary, but it is included here for easier comparison with
other approaches.

1Subleading operators are also labeled by continuous indices,
so the discrete sums over operators also include integrals, which
we neglect for simplicity in this section.
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At OðαsÞ matrix elements of the Tði;jÞ’s at small qT are
insensitive to the cutoff scale qL and so running the
scattering operators O2;ðiÞ from μH ∼ qL to μS ∼ qT sums
the usual renormalization group logarithms of q2L=q

2
T in the

rate. If qT ∼ ΛQCD, matrix elements of each Tði;jÞ are
nonperturbative quantities which would have to be either
modeled or extracted from experiment. In the scaling of
interest here, qT ≫ ΛQCD, each Tði;jÞ may be further
expanded in powers Λ2

QCD=q
2
T , allowing the operator

product in Eq. (7) to be matched onto the usual light-cone
distribution operators whose hadronic matrix elements are
the parton distribution functions. This expansion corre-
sponds to matching SCET onto a soft theory of completely
decoupled sectors of QCD at the scale μS ∼ qT , and at
leading twist takes the form

Tðk;lÞðq−; qþ;qT; μSÞ →
Z

dz1
z1

dz2
z2

CS;ðk;lÞðz1; z2;qT; μSÞ

×Oq

�
q−

z1
; μS

�
Oq̄

�
qþ

z2
; μS

�
; ð9Þ

where the various CS;ðk;lÞ are matching coefficients and the
hadronic matrix elements of the light-cone quark and
antiquark distribution operators Oq;q̄ are the usual spin-
averaged parton distribution functions

fq=N1
ðζ1Þ ¼ hN1ðP1ÞjOqðζ1P−

1 ÞjN1ðP1Þi;
fq̄=N2

ðζ2Þ ¼ hN2ðP2ÞjOq̄ðζ2Pþ
2 ÞjN2ðP2Þi; ð10Þ

with P−
i ≡ Pi · n̄ and Pþ

i ≡ Pi · n. Combining these match-
ing steps gives an expression for the DY cross section for a
single quark flavor of the form

dσ
dq2dydq2T

¼ σ0

Z
dz1
z1

dz2
z2

Cffðz1; z2; q2L; q2TÞ

× fq=N1

�
ξ1
z1

�
fq̄=N2

�
ξ2
z2

�
þ � � � ; ð11Þ

where σ0 ¼ 4πα2=ð3Ncq2sÞ, ξ1 ¼ q−=P−
1 , ξ2 ¼ qþ=Pþ

2 ,
and Cff has the partially factorized form

Cffðz1; z2; q2L; q2TÞ ¼
Z

dΩT

2

X
ijkl

Kði;jÞ
ðk;lÞ

�
1

qL

�½i�þ½j�

×Hði;jÞðμSÞCS;ðk;lÞðz1; z2;qT; μSÞ:
ð12Þ

However, in this form the matching coefficients CS still
contain large logarithms of q2T=q

2
L which are not resummed

by the usual renormalization group evolution. These
rapidity logarithms arise because the graphs renormalizing
matrix elements of Tði;jÞ in SCET are separately divergent

in each sector, even in d dimensions, and the divergences
only cancel in the sum. These graphs therefore require the
introduction of an additional regulator beyond dimensional
regularization, and the rapidity divergences are reflected in
logarithms of the (scheme-dependent) rapidity scale. While
a number of regulators have been used at leading power
[51–53,72,73], the “pure rapidity regulator” introduced in
[53] is particularly convenient for studying power correc-
tions, as it properly regulates the power divergences in
phase space integrals arising at NLP.
In this paper we use a version of the pure rapidity

regulator appropriate for our formalism which introduces
separate scheme dependence for the n and n̄ sectors,
denoted by the parameters νn and νn̄. Rapidity logarithms
are summed by running the operators Tði;jÞ from νHn;n̄ ¼ qL
to νSn;n̄ ¼ μ ∼ qT . Under rapidity renormalization the oper-
ators Tði;jÞ can mix, leading generically to rapidity renorm-
alization group running of the form

Tði;jÞðq−;qþ;qT;μS;νHn;n̄Þ

¼
X
k;l

Z
dω1

ω1

dω2

ω2

d2pTVði;jÞ;ðk;lÞðω1;ω2;pT;μS;νHn;n̄;ν
S
n;n̄Þ

×Tðk;lÞ

�
q−

ω1

;
qþ

ω2

;qT −pT;μS;νSn;n̄

�
; ð13Þ

where by νn;n̄ we denote depends on both νn and νn̄
separately, and the large logarithms of νHn;n̄=ν

S
n;n̄ have been

resummed in the rapidity evolution factors Vði;jÞ;ðk;lÞ.
Combining all these steps gives the DY cross section in
Eq. (11), where Cff now has the fully factorized form

Cffðz1; z2; q2L; q2TÞ

¼
Z

dΩT

2

Z
dω1

ω1

dω2

ω2

X
ijkk0ll0

Hði;jÞðμSÞKði;jÞ
ðk;lÞ

q½i�þ½j�
L

×
Z

d2pTVðk;lÞ;ðk0;l0Þðω1;ω2;pT; μS; νHn;n̄; ν
S
n;n̄Þ

× CS;ðk0;l0Þ

�
z1
ω1

;
z2
ω2

;qT − pT; μS; νSn;n̄

�
: ð14Þ

In this paper the fixed-order OðαsÞ contributions to each
of the factors in Eq. (14) which are required to determine
the fixed-order cross section at NLP are calculated. The
OðαsÞ anomalous dimensions of the relevant hard matching
coefficients may be found in the literature [56,65], and here
we also calculate the OðαsÞ off-diagonal entries for the
rapidity evolution kernels γðk;lÞ;ð0;0Þ which mix the various
subleading operators Tðk;lÞ into the leading operator Tð0;0Þ
with an NLP coefficient. The calculation of the one-loop
entries which mix the subleading operators among them-
selves is left for future work. Additionally, in most
phenomenological applications, qT resummation is
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performed for the Fourier conjugate of qT (b space); here
we will work in qT space, where the SCEToperators we are
using are defined. Fourier transforming our results to b
space may be useful for future applications.

II. NLP OPERATOR PRODUCTS IN SCET

In this section the OðαsÞ ingredients that contribute to
Cff at next to leading power in SCET are calculated. We
begin by summarizing the hard-scale matching of the QCD
current onto SCET scattering operators, and then proceed
by Fierz rearranging products of these scattering operators
into a smaller basis of operators. The matrix elements of
these operators are calculated using the pure rapidity
regulator, and the final result is compared to the corre-
sponding fixed order result from QCD.

A. Hard-scale matching

The invariant mass of the lepton pair is q2 ¼
qþq− − q2T ≡ q2L − q2T , where q

2
L ≫ q2T ≫ Λ2

QCD and qþ ≡
q · n and q− ¼ q · n̄ are the large light-cone components of
the external current defined in terms of the lightlike vectors
nμ ¼ ð1; 0; 0; 1Þ and n̄μ ¼ ð1; 0; 0;−1Þ. This defines the
relevant scales for this process. The incoming state consists
of two hadrons; the invariant mass of partons in the same
hadron is of orderΛQCD, while the invariant mass of partons
in different hadrons is of order qL. Therefore, at a hard scale
μH ∼ qL partons in different hadrons are above one
another’s cutoff, and QCD is matched onto an EFT in
which direct interactions between the sectors have been
integrated out. In the SCET formalism used in this paper,
SCET consists of decoupled copies of QCD for each sector
which only mutually interact via the external electromag-
netic current Eq. (6). Only quark and antiquark PDFs are
considered in this paper. Gluon PDFs may be included in
the same formalism, and the relevant hard-scattering
operators are listed in Appendix A, but the calculation
for incoming gluons is beyond the scope of this work. We
work in a reference frame where the incoming hard quark is
in the n sector and the antiquark is in the n̄ sector.
The matching of the external vector current from QCD to

SCETat subleading power has been considered in a number
of papers [37,38,40,55,56,74] and is obtained by expanding
QCD amplitudes in powers of pi · n=q · n for particles in
the n sector and pi · n̄=q · n̄ for particles in the n̄ sector. In
addition to the analogs of operators considered in [56] for
two incoming partons, there are also operators suppressed
by single powers of the net transverse momentum pni;T in
either sector (which were eliminated by a choice of
reference frame in [56]) as well as corrections to the
multipole expansion of the energy-momentum conserving
delta functions.
The SCET current has the expansion Eq. (6). The

corresponding scattering operators are constructed from
the field building blocks [56,75]

χ̄n̄ðxÞ¼ ψ̄ n̄ðxÞW̄n̄ðxÞPn;

χnðxÞ¼ W̄†
nðxÞPnψnðxÞ;

Bμ1���μN
n̄ ðxÞ¼ W̄†

n̄ðxÞiDμ1
n̄ ðxÞ���iDμN

n̄ ðxÞW̄n̄ðxÞ;
B†μ1���μN
n ðxÞ¼ð−1ÞNW̄†

nðxÞiD⃖μ1
n ðxÞ���iD⃖μN

n ðxÞW̄nðxÞ; ð15Þ

where we note that ðBμ1���μN Þ† ¼ B†μN ���μ1 . The incoming
Wilson lines W̄ are defined as

W̄†
nðxÞ ¼ P̄ exp

�
−ig

Z
0

−∞
dsn̄ · Anðxþ n̄sÞes0þ

�
;

W̄n̄ðxÞ ¼ P exp

�
ig
Z

0

−∞
dsn · An̄ðxþ nsÞes0þ

�
: ð16Þ

We use the conventions

iDμ
n̄ðxÞ¼ i∂μþgAμ

n̄ðxÞ; iD⃖μ
nðxÞ¼ i∂⃖μ−gAμ

nðxÞ; ð17Þ
and it is convenient to define the four-vectors introduced
in [55]

ημ ¼
ffiffiffiffiffiffiffiffiffi
n̄ · q
n · q

r
nμ; η̄μ ¼

ffiffiffiffiffiffiffiffiffi
n · q
n̄ · q

r
n̄μ; ð18Þ

which are invariant under the boost reparametrization
nμ → eynμ, n̄μ → e−yn̄μ.
At leading power there is a single scattering operator,

Oð0Þμ
2 ðxÞ ¼ ½χ̄n̄ðxn̄Þ�γμ½χnðxnÞ�; ð19Þ

where

xμn ≡ xþ
n̄μ

2
þ xμ⊥; and xμn̄ ≡ x−

nμ

2
þ xμ⊥: ð20Þ

Note that the fields in the operator are multipole expanded;
this is necessary for the energy-momentum conserving
delta functions to preserve the correct power counting. For
example, if pμ

n and pμ
n̄ are momenta in the n and n̄ sectors,

respectively, we have the expansion

δðp−
n þp−

n̄ −q−Þ¼δðp−
n −q−Þþp−

n̄ δ
0ðp−

n −q−Þþ��� ð21Þ
and similarly for the n components. Performing this
expansion up to Oð1=q2LÞ gives

½χ̄n̄ðxÞ�γμ½χnðxÞ� ¼ Oð0Þμ
2 ðxÞ

þ 1

q2L
ðOð2δþÞμ

2 ðxÞ þOð2δ−Þμ
2 ðxÞÞ; ð22Þ

where

Oð2δþÞμ
2 ðxÞ ¼ 1

2
q−qþx−½χ̄n̄ðxn̄Þ�γμ½n · ∂χnðxnÞ�;

Oð2δ−Þμ
2 ðxÞ ¼ 1

2
q−qþxþ½n̄ · ∂χ̄n̄ðxn̄Þ�γμ½χnðxnÞ�: ð23Þ
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Power counting the multipole-expanded operators is not

immediately obvious. In Oð2δþÞ
2 , for example, qþx− is of

order 1 since x− ∼ ∂=∂qþ, whereas q−pþ
n ∼Oðp−

npþ
n Þ∼

Oðp2
n⊥Þ; thus, matrix elements of the operators in Eq. (23)

are Oð1=q2LÞ relative to leading power. Since we are
working up to 1=q2L suppression, the contributions from
higher multipole expansions in the fields are only included

for the leading power operator Oð0Þ
2 .

At Oð1=qLÞ, there are two operators suppressed by a
single perpendicular derivative,

Oð1⊥nÞμ
2 ðxÞ ¼ ½χ̄n̄ðxn̄Þ�γμ

=̄η
2
γ⊥α ½−i∂αχnðxnÞ�;

Oð1⊥n̄Þμ
2 ðxÞ ¼ ½−i∂αχ̄n̄ðxn̄Þ�γ⊥α

=η
2
γμ½χnðxnÞ�: ð24Þ

These were not required in [55,56] since they could be
removed by a suitable choice of reference frame, while here
the presence of initial-state radiation prevents such a choice.
Finally, there are several operators containing factors of

Bn;n̄ whose matrix elements begin at OðgsÞ. These oper-
ators are labeled by a continuous parameter t which
parametrizes the separation of fields along the light cone
[67]. We define the dimensionless parameter t̂≡ q−t if the
shift occurs in the n sector, and by t̂≡ qþt if the shift
occurs in the n̄ sector. We define the A-type operators in
which a gluon is emitted at leading order in the n sector,

Oð1A1Þμ
2 ðx; t̂Þ ¼ ½χ̄n̄ðxn̄Þ�γ⊥α

=η
2
γμ½B†α

n ðxn − n̄tÞχnðxnÞ�;

Oð1A2Þμ
2 ðx; t̂Þ ¼ −½χ̄n̄ðxn̄Þ�γμ

=̄η
2
γ⊥α ½B†α

n ðxn − n̄tÞχnðxnÞ�;

Oð2A1Þμ
2 ðx; t̂Þ ¼ −2πiθðt̂Þ ⊗ ½χ̄n̄ðxn̄Þ�γ⊥α γ⊥β γμ

× ½B†αβ
n ðxn − n̄tÞχnðxnÞ�; ð25Þ

and the corresponding B-type operators where the gluon is
emitted in the n̄ sector,

Oð1B1Þμ
2 ðx; t̂Þ ¼ −½χ̄n̄ðxn̄ÞBα

n̄ðxn̄ − ntÞ�γμ =̄η
2
γ⊥α ½χnðxnÞ�;

Oð1B2Þμ
2 ðx; t̂Þ ¼ ½χ̄n̄ðxn̄ÞBα

n̄ðxn̄ − ntÞ�γ⊥α
=η
2
γμ½χnðxnÞ�;

Oð2B1Þμ
2 ðx; t̂Þ ¼ −2πiθðt̂Þ ⊗ ½χ̄n̄ðxn̄ÞBαβ

n̄ ðxn̄ − ntÞ�
× γμγ⊥α γ⊥β ½χnðxnÞ�: ð26Þ

Following [67], it is convenient to work with the Fourier-
transformed operators

OðiÞ
2 ðx; uÞ ¼

Z
dt̂
2π

e−iut̂OðiÞ
2 ðx; t̂Þ;

CðiÞ
2 ðx; uÞ ¼

Z
dt̂eiut̂CðiÞ

2 ðx; t̂Þ: ð27Þ

We have also defined the convolutions in t̂ space in these
definitions as

fðt̂Þ ⊗ gðt̂Þ ¼
Z

dxdy
2π

fðxÞgðyÞδðt̂ − x − yÞ: ð28Þ

Note that the one-gluon matrix element of Oð2A1Þ
2 ðx; uÞ is

proportional to δðuþ k−Þ=u, where kμ is the gluon
momentum. If the convolution with θðt̂Þ had not been
included in its definition (as was the case in [56]), the
matrix element of the operator would instead be propor-
tional to δðuþ k−Þ, and the operator would have a factor of
1=u in its Wilson coefficient. This is inconvenient because
in the DY process studied here, this factor of 1=u ∼ 1=k−

corresponds to a rapidity divergence, and rapidity renorm-

alizing operator products such as Oð2A1Þ†
2 Oð0Þ

2 without the
factor of 1=u in its matrix element would then give rise to
an unregulated rapidity divergence in the final integral
over u.2 These are similar to the endpoint divergences
which have been previously noted at NLP in SCET, in
particular in b-mediated h → γγ decay [41–43]. With the
definition given here—which is similar to the modification
of SCET operators proposed in [78]—the u integral does
not introduce any additional singularities, and thus all
rapidity divergences are correctly regulated by the pure
rapidity regulator. We illustrate this with an example in
Sec. II D 3.
Since SCET currents and their products contain

operators with zero, one, or two factors of u at this order,
we use the notation fug to denote the dependence of a
quantity on any number of u’s, as well as

R
dfug to indicate

integration over any number of u’s (including zero).
The expansion of the SCET current may therefore be
written

JμSCETðxÞ ¼
X
i

Z
dfug 1

q½i�L
CðiÞ
2 ðfugÞOðiÞμ

2 ðx; fugÞ

¼ Cð0Þ
2

�
Oð0Þμ

2 ðxÞ þ 1

qL
ðOð1⊥nÞμ

2 ðxÞ þOð1⊥n̄Þμ
2 ðxÞÞ þ 1

q2L
ðOð2δþÞμ

2 ðxÞ þOð2δ−Þμ
2 ðxÞÞ

�

þ 1

qL

X
i

Z
duCð1iÞ

2 ðuÞOð1iÞμ
2 ðx; uÞ þ 1

q2L

X
i

Z
duCð2iÞ

2 ðuÞOð2iÞμ
2 ðx; uÞ þO

�
1

q3L

�
; ð29Þ

2The importance of having a finite integral over convolution variables was stressed in [74,76,77].
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where on the first line the sum is over all operators
i ¼ 0; 1⊥n;…; 2B1, while in the last two lines the sums
are over the operators of the appropriate dimension whose
coefficients are not fixed by reparametrization or translation

invariance. The operators Oð1⊥n;n̄Þ
2 are related to Oð0Þ

2

through reparametrization invariance (RPI) [65,70],
and so to all orders in αs we have the equalities

Cð0Þ
2 ¼ Cð1⊥nÞ

2 ¼ Cð1⊥n̄Þ
2 , while the translation invariance

of QCD ensures that Cð0Þ
2 ¼ Cð2δþÞ

2 ¼ Cð2δ−Þ
2 . The normal-

izations of all operators have been chosen so that their tree-
level matching coefficient is unity in u space,

CðiÞ
2 ðμ; fugÞ ¼ 1þOðαsÞ: ð30Þ

The one-gluon matrix elements of the operators

OðiÞ
2 ðμ; fugÞ are given in Appendix A.
There are additional operators not included in Eqs. (25)

and (26) that are part of the general SCET current
expansion [56], but which do not contribute to Cff at
the order (in αs, q2T=q

2, or Λ2
QCD=q

2) to which we are
working, or which contribute only to the gluon-initiated
Drell-Yan subprocess. These operators do not mix under
renormalization at one loop with the operators considered
here, and so are not included in this analysis, though we list
them in Appendix A for completeness.

B. Renormalization group running

The anomalous dimensions of all the required matching
coefficients CðiÞ

2 ðfugÞ have been calculated previously in
[56,64,65]. They obey the integro-differential equation

d
d log μ

CðiÞ
2 ðμ; fugÞ ¼

Z
dfvgγðiÞ2 ðfug; fvgÞCðiÞ

2 ðμ; fvgÞ;

ð31Þ

where the kernels γðiÞ2 have the form

γðiÞ2 ðfug; fvgÞ ¼ ΓðiÞ
cusp½αs� log

−q2L − i0þ

μ2
δðfug − fvgÞ

þ γðiÞnon−cuspðfug; fvgÞ: ð32Þ

Working in the leading-log approximation only the cusp
anomalous dimension is required. The one-loop cusp
anomalous dimension is universal,

Γð0Þ
cusp ¼ Γð1AiÞ

cusp ¼ Γð2AiÞ
cusp ¼ Γð1BiÞ

cusp ¼ Γð2BiÞ
cusp ¼ αsCF

π
: ð33Þ

With the definition Hði;jÞðfugÞ ¼ CðiÞ†
2 ðfugÞCðjÞ

2 ðfugÞ, the
leading-log running of the hard functions is determined by
the RGE,

d
d log μ

Hði;jÞðμ; fugÞ ¼
�
2Γcusp log

q2L
μ2

�
Hði;jÞðμ; fugÞ:

ð34Þ

This gives the leading log (LL) unitary evolution for all
Hði;jÞ,

Hði;jÞðμ; fugÞ ¼ ULL
H ðμ; μHÞHði;jÞðμH; fugÞ; ð35Þ

where, with β½αs�≡ dαs=d log μ ¼ −β0α2s=2π þ � � �,

logULL
H ðμ; μHÞ

¼ −4
Z

αsðμÞ

αsðμHÞ

dα
β½α�Γcusp½α�

Z
α

αðqLÞ

dα0

β½α0�

¼ 16πCF

β20

�
1

αsðμHÞ
−

1

αðμÞ −
1

αðqLÞ
log

αðμÞ
αðμHÞ

�
: ð36Þ

Beyond LL there will be operator mixing, and the solution
to the RGE will be more involved. This sums the RG
logarithms of μH=μ in the hard functions.

C. Tði;jÞ definitions

Thedifferential cross section forDYproduction is given in
terms of hadronic matrix elements of products of operators

OðiÞ†
2 ðxÞOðjÞ

2 ð0Þ in Eq. (7).Matrix elements of these operator
products may be evaluated between partons in perturbation
theory to calculate the matching conditions onto light-cone
distribution operators (whose matrix elements are the usual
PDFs); however, it is convenient to perform a Fierz rear-
rangement for each operator product towrite it as the product
of factors in the n and n̄ sectors, corresponding to the
convolutionof generalized transversemomentumdependent
distribution operators. At leading power, this gives

Z
ddx

2ð2πÞd ð−gμνÞe
−iq·xOð0Þμ†

2 ðxÞOð0Þν
2 ð0Þ

¼ 1

Nc

Z
ddx

2ð2πÞd e
−iq·xΦð0Þ

n ðxnÞΦð0Þ
n̄ ðxn̄Þ

≡ 1

Nc
Tð0;0Þðq−; qþ;qTÞ: ð37Þ

The leading power position space distribution operators are
defined as

ΦnðxnÞ≡ χ̄nðxnÞ
=̄n
2
χnð0Þ;

Φn̄ðxn̄Þ≡ χ̄n̄ð0Þ
=n
2
χn̄ðxn̄Þ; ð38Þ

where xn and xn̄ are defined in (20), and thus consist of quark
fields separated in the transverse direction by xμ⊥ as well as
along the light cone.
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Products of power-suppressed operators may similarly
be written as convolutions of higher dimension operators,

Tði;jÞðq;fugÞ¼
Z

ddx
2ð2πÞd e

−iq·xΦðiÞ
n ðxn;fugÞΦðjÞ

n̄ ðxn̄;fugÞ;

ð39Þ

where we define the relevant subleading transverse
momentum dependent light-cone distribution operators

ΦðiÞ
n ðx; ftgÞ as

Φð21Þ
n ðxn; t̂Þ≡ ði∂μχ̄nðxnÞÞ

=̄n
2
γ⊥μ γ⊥ν B†ν

n ð−n̄tÞχnð0Þ;

Φð22Þ
n ðxn; t̂1; t̂2Þ≡ −χ̄nðxnÞBμ

nðxn − n̄t1Þ
=̄n
2
γ⊥μ γ⊥ν

× B†ν
n ð−n̄t2Þχnð0Þ;

Φð23Þ
n ðxn; t̂Þ≡ 2πiθðt̂Þ ⊗ χ̄nðxnÞBμν

n ðxn − n̄tÞ

×
=̄n
2
γ⊥ν γ⊥μ χnð0Þ;

Φð24Þ
n ðxnÞ≡ qþq−

x−

2
ðn · ∂χ̄nðxnÞÞ =̄n

2
χnð0Þ: ð40Þ

The corresponding n̄-sector operators ΦðiÞ
n̄ are found by

taking the Hermitian conjugate and changing n ↔ n̄. The
u-space Fourier conjugates of these building blocks are
defined by the transformation in Eq. (27) for shifts relative
to the origin (since these shifts come from an operator), and
by the conjugate transformation for shifts relative to xn
(since these shifts come from the conjugated operator).
Thus, for example,

Tð0;21Þðq; uÞ ¼
Z

ddx
2ð2πÞd e

−iq·xΦð0Þ
n ðxnÞΦð21Þ

n̄ ðxn̄; uÞ

¼
Z

ddx
2ð2πÞd

dt̂
2π

e−iut̂e−iq·x
�
χ̄nðxnÞ

=̄n
2
χnð0Þ

�

×

�
χ̄n̄ð0ÞBν

n̄ð−ntÞγ⊥ν γ⊥μ
=n
2
ð−i∂μχn̄ðxn̄ÞÞ

�
:

ð41Þ

In general, we can write

Z
ddx

2ð2πÞd ð−gμνÞe
−iq·xOðiÞμ†

2 ðxÞOðjÞν
2 ð0Þ

¼
X
k;l

1

Nc
Kði;jÞ

ðk;lÞTðk;lÞ þ spin dependent; ð42Þ

where the only nonzero elements of K which are relevant at
this order are

Kð1⊥n;1A1Þ
ð21;0Þ ¼ Kð1A1;1⊥nÞ

ð21;0Þ ¼ Kð1A2;1A1Þ
ð22;0Þ ¼ Kð1A1;1A2Þ

ð22;0Þ

¼ Kð1⊥n̄;1B1Þ
ð0;21Þ ¼ Kð1B1;1⊥n̄Þ

ð0;21Þ ¼ Kð1B2;1B1Þ
ð0;22Þ

¼ Kð1B1;1B2Þ
ð0;22Þ ¼ Kð2A1;0Þ

ð23;0Þ ¼ Kð0;2A1Þ
ð23;0Þ

¼ Kð2δþ;0Þ
ð24;0Þ ¼ Kð0;2B1Þ

ð0;23Þ ¼ Kð2B1;0Þ
ð0;23Þ

¼ Kð2δ−;0Þ
ð0;24Þ ¼ 1: ð43Þ

D. Matrix elements of operator products

Individual n- and n̄-sector graphs contributing to the
matrix elements of each Tði;jÞ are rapidity divergent and
require a regulator to give finite results. We use a version of
the pure rapidity regulator introduced in [53]. As discussed
in that reference, other commonly used rapidity regulators
such as the δ regulator [72] or the η regulator [79] are not
suitable for handling the power-law rapidity divergences
that arise at NLP. An explicit example of the δ regulator
failing to regulate rapidity divergences at NLP is given in
Sec. II D 3.
In what follows we define the pure rapidity regulator by

modifying the integration measure of n-sector and n̄-sector
particles as

ddkn → w2
n

�
q2L
ν2n

�
ηn=2

�
q−

qþ
kþn
k−n

�
ηn=2

ddkn;

ddkn̄ → w2
n̄

�
q2L
ν2n̄

�
ηn̄=2

�
qþ

q−
k−n̄
kþn̄

�
ηn̄=2

ddkn̄: ð44Þ

This regulator has the distinct advantage that—as in
dimensional regularization—scaleless integrals vanish,
and as a result all overlap integrals evaluate to zero.
This greatly simplifies the calculation since, as is discussed
in detail in Sec. III, in a scheme where overlap integrals do
not vanish, the overlap subtraction procedure must be
carried out to subleading powers.
The regulator in Eq. (44) is slightly modified from the

form presented in [53]: the factors of q� ensure boost
invariance, as in [40], the dimensionless parameter υ has
been replaced by the equivalent dimensionful parameters
νi, and distinct parameters ηi, νi, and wi have been
introduced for each sector, since the fields in the n and
n̄ sectors are independent. As discussed in [57], rapidity
logarithms in SCET correspond to a scheme dependence in
defining the sum of individually rapidity divergent graphs
in the n and n̄ sectors. Regulating both sectors (and their
corresponding overlap graphs) in the same way and then
removing the regulator is equivalent to naïvely adding the
individual graphs together before performing the loop
integrals, and reproduces the rapidity logarithms of
QCD. Since QCD has no rapidity divergences, rapidity
divergences cancel for this choice, which corresponds
to choosing the parameters ηn ¼ −ηn̄, νnνn̄ ¼ q2L, and
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wn ¼ wn̄. This was explicitly demonstrated up to NLP in
[53]: these authors showed that if QCD diagrams are first
rapidity regulated and then expanded in the n-collinear, n̄-
collinear, and soft limits, the leading and subleading power
matrix elements reproduce the rapidity-finite QCD results
expanded to the same order. A similar cancellation of
rapidity divergences will be shown here.
Using different rapidity regulator parameters in the two

sectors moves the rapidity logarithm of q2L into the Wilson
coefficients of the EFT and allows the scheme dependence
of the resulting graphs to be exploited to sum the corre-
sponding rapidity logs. The corresponding rapidity diver-
gences correspond to 1=ηi singularities which are canceled
by introducing the appropriate counterterms into the EFT,
and rapidity logarithms are then summed using rapidity
renormalization group (RRG) techniques similar to [79].
The bookkeeping constants wi are taken to formally obey
the RRG equation

dwi

d log νi
¼ ηi

2
wi; ð45Þ

which cancels the scheme dependence in the measure,
keeping the bare theory νi independent and allowing
techniques analogous to those in dimensional regulariza-
tion to be used to extract the rapidity anomalous dimen-
sions. As in [53,79], these bookkeeping constants are set to
unity at the end of calculation. Rapidity logarithms are
minimized by the appropriate choice of the dimensionless
parameters νn;n̄.
As noted in [57], choosing νnνn̄ ≠ q2L requires rapidity

counterterms for each Tði;jÞ which are sensitive to the scale
qT . Scale sensitivities in the counterterm generate the same
scale dependence in the Wilson coefficient through the
RGE, and since Wilson coefficients in an EFT must be
independent of infrared physics, this adds the constraint
that the theory must first be evolved to μ ∼ qT before
running in rapidity. This will be discussed in more detail in
Sec. II F.
At LP the only operator is Tð0;0Þ, so its divergences are

absorbed by the renormalization constant Zð0;0Þ;ð0;0Þ,

TB
ð0;0Þðq−; qþ;qTÞ ¼

Z
dω1

ω1

dω2

ω2

dd−2pT

× Zð0;0Þ;ð0;0Þðω1;ω2;pTÞ

× Tð0;0Þ

�
q−

ω1

;
qþ

ω2

;qT − pT

�
; ð46Þ

where TB
ði;jÞ and Tði;jÞ denote the bare and renormalized

operators, respectively, and the integral corresponds to
summing over the infinite set of operators
Tð0;0Þðk−; kþ;kTÞ. At subleading powers the various oper-
ators may mix with one another, so we have the general
relation

TB
ði;jÞðq−; qþ;qT; fugÞ

¼
X
ðk;lÞ

Z
dω1

ω1

dω2

ω2

dd−2pTdfvg

× Zði;jÞ;ðk;lÞðω1;ω2;pT; fvgÞ

× Tðk;lÞ

�
qþ

ω2

;
q−

ω1

;qT − pT; fu − vg
�
; ð47Þ

where the sum over operators includes each subleading
Tði;jÞ as well as the leading operator Tð0;0Þ with a power-
suppressed coefficient, as will be discussed in the following
sections.

1. Leading power example

The leading power calculation of DY production in this
formalism was presented in [57] using the δ regulator; we
repeat the calculation here with the pure rapidity regulator.
At leading power, there is a single bilocal operator
contributing to the rate,

Tð0;0Þðq−;qþ;qTÞ

¼
Z

ddx
2ð2πÞd e

−iq·x
�
χ̄nðxnÞ

=̄n
2
χnð0Þ

��
χ̄n̄ð0Þ

=n
2
χn̄ðxn̄Þ

�
: ð48Þ

With incoming quark and antiquark states qðp1Þ and q̄ðp2Þ
the tree-level matrix element of this operator is

1

4

X
spins

hpn
1p

n̄
2jTð0;0Þjpn

1p
n̄
2i

¼ 1

4

X
spins

Z
ddx

2ð2πÞd e
−iq·xhpn

1j
�
χ̄nðxnÞj0i

=̄n
2
h0jχnð0Þ

�
jpn

1i

× hpn̄
2j
�
χ̄n̄ð0Þj0i

=n
2
h0jχn̄ðxn̄Þ

�
jpn̄

2i

¼ δðz̄1Þδðz̄2Þδd−2ðqTÞ≡ δ1δ2δT; ð49Þ

where the superscripts n and n̄ in Eq. (49) denote the sector
of the corresponding parton. We also use the notation

z1 ≡ q−

p−
1

; z2 ≡ qþ

pþ
2

; z̄i ≡ 1 − zi; ð50Þ

and

δi ≡ δðz̄iÞ; δ0i ≡ δ0ðz̄iÞ; δT ≡ δd−2ðqTÞ: ð51Þ

At OðαsÞ, the matrix element corresponding to the
emission of a real n-sector gluon is given by the three
n-sector graphs shown of Fig. 1. Denoting the spin-
averaged one-loop matrix element of Tð0;0Þ by Mð0;0Þ,
we write
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Mð0;0Þ ¼ Mn
ð0;0Þ þMn̄

ð0;0Þ −MO
ð0;0Þ; ð52Þ

where the superscripts n and n̄ denote the OðαsÞ contri-
bution from a gluon in the corresponding sector and the O
superscript denotes the overlap subtraction. Since these
matrix elements correspond to a matching calculation at the
scale μS ∼ qT ≫ ΛQCD we use the initial-state kinematics
pþ
1 ¼ p1⊥ ¼ 0 ¼ p2⊥ ¼ p−

2 , and we obtain

Mn
ð0;0Þ ¼ −2πg2CF

Z
ddk
ð2πÞd w

2
n

�
q2L
ν2n

q−

qþ
kþ

k−

�
ηn=2

× δðk2Þδðp−
1 − q− − k−Þδðpþ

2 − qþÞδd−2ðqT þkTÞ

×Tr

�
p1

2

�
2pα

1 − γα=k
−2p1 · k

þ n̄α

k−

�
=̄n
2

×

�
2p1α −=kγα
−2p1 · k

−
n̄α
−k−

��
Tr

�
p2

2

=n
2

�
; ð53Þ

which evaluates to

Mð0;0Þn ¼
ᾱ

π
fϵw2

nδ2
ðμ2Þ−ηn=2
ðq2

TÞ1−ηn=2
�
z1μ
νn

�
ηn

×
ð2 − 2z̄1 þ ð1 − ϵÞz̄21Þ

z̄1þηn
1

; ð54Þ

where

ᾱ≡ αsCF

2π
; fϵ ≡ ðπμ2eγÞϵ; ð55Þ

and we work in d ¼ 4 − 2ϵ dimensions.
To extract the singularity structure of this matrix element

at z̄1 ¼ 0 we use the distributional identity

θðz̄1Þ
z̄1þη
1

¼ −
δðz̄1Þ
η

þ
�
θðz̄1Þ
z̄1

�
þ
þ � � � ð56Þ

for scalars (see Appendix B for definitions) as well as the
identity [19]

ðμ2Þ−η=2
ðq2

TÞ1−η=2
¼ μ−2ϵ

Sd−2
2

�
δT

η
2
− ϵ

þL0T þ η

2
L1T þ � � �

�
ð57Þ

for vectors in (d − 2) dimensions, where the LnT are vector
plus distributions [19,51] defined in Appendix B 2,

LnT ≡ LnðqT; μÞ ¼
2μ2ϵ

Sd−2

�logn q2T
μ2
θðq2

TÞ
q2
T

�μ2
þ
; ð58Þ

and Sd−2 ¼ 2π
d−2
2 =Γðd−2

2
Þ. Upon expanding first in ηn then

in ϵ, the n-sector contribution to the matrix element from a
single real emission is

Mn
ð0;0Þ ¼

ᾱ

2
w2
nδ2

�
4

ηn
δ1

�
δT
ϵ
−L0T

�

þ δ1δT

�
2

ϵ2
þ
3 − 2 log ν2n

μ2

ϵ

�

þ 2

�
L0T −

δT
ϵ

��
1þ z21
z̄1

�
þ
δT

þ 2z̄1δT − ζ2δ1δT − 2δ1L1T

− δ1L0T

�
3 − 2 log

ν2n
μ2

��
: ð59Þ

The n̄-sector contribution is obtained under the replace-
ments z1 → z2, wn → wn̄, νn → νn̄, and ηn → ηn̄.
As in [55], the overlap between the two sectors is

obtained by taking the opposite-sector gluon limit of the
n- and n̄-sector graphs. As detailed in Sec. III, the
subtraction prescription corresponds to subtracting half
the wrong sector limit for the gluon of each sector,3 which
we denote

MO
ð0;0Þ ¼

1

2
ðMn→n̄

ð0;0Þ þMn̄→n
ð0;0ÞÞ: ð60Þ

For example, the wrong sector limit of Eq. (53) is

(a) (b) (c)

FIG. 1. Nonvanishing graphs in the n sector contributing to the matrix element hpn
1p

n̄
2 jTð0;0Þjpn

1p
n̄
2i at OðαsÞ.

3In [55], the limits from either sector were equal.
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Mn→n̄
ð0;0Þ ¼ −2πg2CF

Z
ddk
ð2πÞd w

2
n

�
q2L
ν2n

q−

qþ
kþ

k−

�
ηn=2

× δðk2Þδðp−
1 − q−Þδðpþ

2 − qþÞδd−2ðqT þ kTÞ

× Tr

�
p1

2

�
nα

−kþ
þ n̄α

k−

�
=̄n
2

�
nα
−kþ

−
n̄α
−k−

��

× Tr

�
p2

2

=n
2

�
þ � � � ; ð61Þ

where the dots indicate terms suppressed by powers of
1=qL relative to leading power. Integrating with respect to
kT and then kþ, we find the n̄ limit of the n-sector graphs is

Mn→n̄
ð0;0Þ ¼

2ᾱ

π
fϵw2

nδ1δ2

�
q2L
ν2n

q−

qþ

�
ηn=2 1

ðq2TÞ1−ηn=2

×
Z

∞

0

dk−

ðk−Þ1þηn
; ð62Þ

which is a scaleless divergence and vanishes in this
regularization scheme. The overlap subtraction between
the two sectors is therefore zero when using the pure
rapidity regulator at OðαsÞ, and this remains true beyond
leading power.
Summing the contributions from each sector and sub-

tracting off the (vanishing) overlap, we find the OðαsÞ
contribution to the matrix element of Tð0;0Þ,

Mð0;0Þ ¼ ᾱ

�
2

�
w2
n

ηn
þ w2

n̄

ηn̄

�
δ1δ2

�
δT
ϵ
−L0T

�

þ δ1δ2δT

�
2

ϵ2
þ
3 − 2 log νnνn̄

μ2

ϵ

�

þ
�
L0T −

δT
ϵ

��
δ2

�
1þ z21
z̄1

�
þ
þ δ1

�
1þ z22
z̄2

�
þ

�

− δ1δ2

�
2L1T þL0T

�
3 − 2 log

νnνn̄
μ2

��

þ ðz̄1δ2 þ z̄2δ1 − δ1δ2ζ2ÞδT
�
; ð63Þ

where we have set wn;n̄ ¼ 1 for all ηi-independent terms. As
discussed earlier, the rapidity divergences appear as the
η-divergent terms in the first line. The rapidity-finiteness of
the full theory is reflected in the fact that setting wn ¼ wn̄
and ηn ¼ −ηn̄ gives a total rate that is free from η poles,
which is to be expected since this scheme corresponds to
regulating the n and n̄ sectors identically; using different
schemes for the two sectors spoils the cancellation of
rapidity divergences between the sectors. However, resum-
ming the rapidity logarithms requires keeping the wn;n̄ and
ηn;n̄ scheme dependence. This introduces explicit rapidity
divergences in the matrix elements which require rapidity
counterterms, from which the RRG may be derived.

In the scheme where νnνn̄ ¼ q2L, the purely ϵ-divergent
terms (ultraviolet divergences) in the first line of Eq. (63)

are canceled by the renormalization constant Z2;ð0Þ for O
ð0Þ
2

Z2;ð0Þ ¼ 1þ ᾱ

2

�
2

ϵ2
þ
3 − 2 log q2L

μ2

ϵ

�
; ð64Þ

which follows the product of renormalized operators
O†μ

2;ð0ÞO
†ν
2;ð0Þ through the Fierz rearrangement. Since Z2;ð0Þ

depends only on logðq2L=μ2Þ, the scheme νnνn̄ ¼ q2L is
enforced at μ ∼ qL and throughout the μ running when
μ > qT . As we later discuss in Sec. II F, when μ ∼ qT then
qT is no longer an infrared scale, and then νn;n̄ can be
evolved with the RRG, allowing for the resummation of
rapidity logarithms.
The IR divergent terms in the third line of Eq. (63) are the

Altarelli-Parisi splitting functions and are reproduced by
the infrared divergences in the light-cone distribution
operators in the low-energy theory. The remaining diver-
gences are rapidity divergences, and are absorbed by the
counterterm in Eq. (46), where

Zð0;0Þ;ð0;0Þðω1;ω2;qTÞ

¼ δ1δ2ðδT þ 2ᾱ

�
w2
n

ηn
þ w2

n̄

ηn̄

�

×

�
δT
ϵ
−L0T

�
þ 2ᾱ

δT
ϵ
log

q2L
νnνn̄

�
: ð65Þ

Using the running of the fictional coupling wn;n̄ in Eq. (45),
we can obtain the rapidity anomalous dimension and
rapidity evolution equation for Tð0;0Þ, which we further
discuss in Sec. II F.
Note that for ηn ¼ −ηn̄ and νn;n̄ ¼ q2L there are no

additional ultraviolet (UV) divergences in the matrix

element of Tð0;0Þ beyond the renormalization of Oð0Þ
2 ðμÞ,

indicating that the phase space integral in SCET is UV
finite at OðαsÞ. Similarly, one-loop matrix elements at NLP
will also be found to be UV finite. Additional UV
divergences in matrix elements of the Tði;jÞ’s would indicate
phase space integrals which were sensitive to the UV scale
qL, in which case the RG running of the corresponding
Tði;jÞ would not simply be given by the running of its
constituent SCET operators, but would have additional
contributions. It is possible that this could complicate the
RG running of the Hði;jÞ’s at higher orders in αs, where the
final state phase space can include multiple gluons with
individually large kT which largely cancel to contribute at
small qT , but this would not affect the one-loop running or
the form of the factorization Eq. (14).
Subtracting the counterterms yields the renormalized

matrix element

FACTORIZATION OF POWER CORRECTIONS IN THE DRELL- … PHYS. REV. D 104, 076018 (2021)

076018-11



hpn
1p

n̄
2jTð0;0Þ

�
q−; qþ;qT;

μ

qT
;
νn;n̄
μ

�
jpn

1p
n̄
2i1−gluon

¼ ᾱ

��
L0T −

δT
ϵ

��
δ2

�
1þ z21
z̄1

�
þ
þ δ1

�
1þ z22
z̄2

�
þ

�

− δ1δ2

�
2L1T þL0T

�
3 − 2 log

νnνn̄
μ2

��

þ ðz̄1δ2 þ z̄2δ1 − δ1δ2ζ2ÞδT
�
; ð66Þ

which, with the replacement νnνn̄ ¼ ν2, also reproduces the
result in [57].

2. Next-to-leading power example: Tð24;0Þ
SinceOðΛQCDÞ contributions are not considered, there is

no 0-gluon contribution to the matrix element of Tð24;0Þ, and
there is also no n̄-sector contribution at OðαsÞ. Thus at first
nontrivial order the graphs Tð24;0Þ are those shown in Fig. 1,
yielding

Mn
ð24;0Þ ¼ 2πg2CFqþq−

Z
ddk
ð2πÞd w

2
n

�
q2L
ν2n

q−kþ

qþk−

�
ηn=2

kþδðk2Þδðp−
1 − q− − k−Þδ0ðpþ

2 − qþÞ

× δd−2ðqT þ kTÞTr
�
p1

2

�
2pα

1 − γα=k
−2p1 · k

þ n̄α

k−

�
=̄n
2

�
2p1α − =kγα
−2p1 · k

−
n̄α
−k−

Þ
�
Tr

�
p2

2

=n
2

�

¼ −
ᾱ

π
fϵz1z2w2

nδ
0
2

�
z1qT
νn

�
ηn ð2 − 2z̄1 þ ð1 − ϵÞz̄21Þ

z̄2þηn
1

: ð67Þ

Here, we use the scalar distributional identity

θðz̄1Þ
z̄2þη
1

¼ δ0ðz̄1Þ
η

− δðz̄1Þ þ
�
θðz̄1Þ
z̄1

�
þþ

þ � � � ; ð68Þ

where the double-plus distribution [53] is defined in
Appendix B. We also use the usual expansion

ðμ2Þ−η=2
ðq2TÞ−η=2

¼ 1 −
η

2
log

μ2

q2T
þ � � � : ð69Þ

Equation (67) is finite as ϵ → 0. Expanding in ηn, we find
the bare matrix element of Tð24;0Þ,

Mn
ð24;0Þ ¼

ᾱ

π
z1z2δ02

�
ðδ1 þ δ01Þ

�
−
2w2

n

ηn
þ log

ν2n
q2T

�

− 2

�
θðz̄1Þ
z̄1

�
þþ

þ 2

�
1

z̄1

�
þ
− 1

�
: ð70Þ

The 1=ηn rapidity divergence in (70) is similar in form to
that found in the study of NLP jet and soft functions in
[36,40,74,80]. The divergence is independent of qT and
may be absorbed through mixing of Tð24;0Þ with the leading-
power operator Tð0;0Þ, as in Eq. (47), with

Zð24;0Þ;ð0;0Þðω1;ω2;qTÞ

¼ −2
ᾱ

π

w2
n

ηn
ω1ω2ðδðω̄1Þ þ δ0ðω̄1ÞÞδ0ðω̄2Þ: ð71Þ

This rapidity renormalization factor is suppressed by one
power of q2T relative to the leading term Zð0;0Þ;ð0;0Þ in (65)
since it does not contain a factor of δðq2TÞ, and so the

mixing is consistent with power counting. Equivalently, the
divergence may be absorbed by Oð1Þ mixing with the NLP
operator

Z
dd−2pTTð0;0Þðq−; qþ;pTÞ: ð72Þ

This is similar to the cumulant operators introduced in
[36,40,74,80] except that Eq. (72) has no upper cutoff
jpT j < Λ on the integral.

3. Next-to-leading power example: Tð0;23Þ
Tð0;23Þ provides an example of a matrix element with

nontrivial u dependence. Calculating its spin-averaged
matrix element, the only contribution comes from an n̄-
sector gluon, and we find

Mn̄
ð0;23Þ ¼ −2πg2CF

Z
ddk
ð2πÞd w

2
n̄

�
q2L
ν2n̄

qþk−

q−kþ

�
ηn̄=2

δðk2Þ

× δðp−
1 − q− − k−Þδðpþ

2 − qþÞδd−2ðqT þ kTÞ

× Tr

�
p1

2

=n
2

�
Tr

�
1

u
v̄ðp2Þ

�
2p2α − γα=k
−2p2 · k

−
n̄α
−k−

�

×
=n
2
γ⊥ν γ⊥μ ΔαμðkÞkνvðp2Þδ

�
uþ kþ

qþ

��
: ð73Þ

After using δðuþ kþ=qþÞ=u ¼ −qþδðuþ kþ=qþÞ=kþ
and integrating over the gluon’s phase space, the bare
matrix element is

Mn̄
ð0;23Þ ¼−

ᾱ

π
fϵw2

n̄z1z2

�
z2qT
νn̄

�
ηn̄ 1

z̄2−ηn̄2

δ1δ

�
uþ z̄2

z2

�
: ð74Þ
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Using distributional identities to extract the pole structure
of Eq. (74), we expand to find

Mn̄
ð0;23Þ ¼ −

ᾱ

π
z1z2δ1

�
δ02

�
w2
n̄

ηn̄
−
1

2
log

ν2n̄
q2T

�

þ
�
θðz̄2Þ
z̄22

�
þþ

�
δ

�
uþ z̄2

z2

�
; ð75Þ

where the rapidity divergence is absorbed by Eq. (47) with
the renormalization constant

Zð0;23Þ;ð0;0Þðω1;ω2;qT; uÞ

¼ −ᾱ θ̃ðq2TÞ
w2
n̄

ηn̄
ω1ω2δðω̄1Þδ0ðω̄2Þδ

�
uþ ω̄2

ω2

�
: ð76Þ

Note that if the operator definition of Oð2B1Þ
2 ðx; t̂Þ had not

included the θðt̂Þ convolution discussed in Sec. II A,
then its u-space matching coefficient would instead be

Cð2B1Þ
2 ¼ 1=u, and the corresponding expression in (74)

would contain only delta functions and single plus dis-
tributions in z̄2,

M ∼
1

z̄1−ηn̄2

δ

�
uþ z̄2

z2

�

¼
�
δðz̄2Þ
ηn̄

þ
�
θðz̄2Þ
z̄2

�
þ
þOðηn̄Þ

�
δ

�
uþ z̄2

z2

�
: ð77Þ

Multiplying this by the Wilson coefficient ∼1=u and
integrating over u would then give an unregulated diver-
gence at z̄2 ¼ 0. Instead, keeping the singular 1=u depend-
ence in the matrix element of the operator gives the
properly regulated result in Eqs. (75) and (76) in terms
of δ0 and double-plus distributions.
Finally, we can also demonstrate here that the δ regulator

does not regulate all rapidity divergences at NLP. Replacing
the previous pure rapidity regulator in Eqs. (73) and (74)
with the δ regulator, the same expressions read

Mn̄δ
ð0;23Þ ¼−2πg2CF

Z
ddk
ð2πÞdTr

�
p1

2

=n
2

�
δ

�
uþkþ

qþ

�
δðk2Þ

×δðp−
1 −q−−k−Þδðpþ

2 −qþÞδd−2ðqTþkTÞ

×Tr

�
1

u
v̄ðp2Þ

�
2p2α−γα=k
−2p2 ·k

−
n̄α

−k−−δn̄

�

×
=n
2
γ⊥ν γ⊥μ

�
gαμ−

nαkμ

kþþδn̄

�
kνvðp2Þ

�

¼−
ᾱ

π
fϵw2

n̄z1z2
1

z̄2ðz̄2þδn̄=p
þ
2 Þ

δ1δ

�
uþ z̄2

z2

�
; ð78Þ

which contains an uncontrolled rapidity divergence when
integrated over z̄2. Since the unregulated divergence does
not originate from a Wilson line propagator, any regulator

that only modifies the definition of a Wilson line, such as
the η regulator of [51], will suffer from similar problems.

4. One-loop results

As shown in previous examples, matrix elements of the
Tði;jÞ’s are rapidity divergent and require subtractions via
rapidity counterterms proportional to the leading order
operator Tð0;0Þ. The renormalization constants for the rest of
the subleading Tði;jÞ’s are found to be

Zð21;0Þ;ð0;0Þðω1;ω2;qT; uÞ ¼
ᾱ

π

w2
n

ηn
δðω̄1Þδðω̄2ÞδðuÞ;

Zð0;21Þ;ð0;0Þðω1;ω2;qT; uÞ ¼
ᾱ

π

w2
n̄

ηn̄
δðω̄1Þδðω̄2ÞδðuÞ; ð79Þ

and

Zð22;0Þ;ð0;0Þðω1;ω2;qT; u1; u2Þ

¼ −
ᾱ

π

w2
n

ηn
δðω̄1Þδðω̄2Þδðu1Þδðu2Þ;

Zð0;22Þ;ð0;0Þðω1;ω2;qT; u1; u2Þ

¼ −
ᾱ

π

w2
n̄

ηn̄
δðω̄1Þδðω̄2Þδðu1Þδðu2Þ; ð80Þ

for the operators Tð21;0Þ through Tð0;22Þ, and

Zð23;0Þ;ð0;0Þðω1;ω2;qT; uÞ

¼ −
ᾱ

π

w2
n

ηn
ω1ω2δ

0ðω̄1Þδðω̄2Þδ
�
uþ ω̄1

ω1

�
;

Zð0;23Þ;ð0;0Þðω1;ω2;qT; uÞ

¼ −
ᾱ

π

w2
n̄

ηn̄
ω1ω2δðω̄1Þδ0ðω̄2Þδ

�
uþ ω̄2

ω2

�
;

Zð24;0Þ;ð0;0Þðω1;ω2;qTÞ

¼ −2
ᾱ

π

w2
n

ηn
ω1ω2ðδðω̄1Þ þ δ0ðω̄1ÞÞδ0ðω̄2Þ;

Zð0;24Þ;ð0;0Þðω1;ω2;qT; uÞ

¼ −2
ᾱ

π

w2
n̄

ηn̄
ω1ω2ðδðω̄2Þ þ δ0ðω̄2ÞÞδ0ðω̄1Þ; ð81Þ

for the remaining operators Tð23;0Þ through Tð0;24Þ.
In contrast to the leading power operator, the matrix

elements of the power suppressed operators Tði;jÞ are
individually rapidity divergent even when setting wn ¼
wn̄ ¼ 1 and ηn ¼ −ηn̄. Nevertheless, these divergences
cancel pairwise between Tð21;0Þ and Tð0;21Þ, and Tð22;0Þ
and Tð0;22Þ. The divergences also cancel in the sum over
the four operators in Eq. (81) when weighted and integrated

against their appropriate prefactor Hði;jÞðfugÞKði;jÞ
ðk;lÞ.
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The cancellation of rapidity divergences in the total rate
reflects the rapidity finiteness of the total NLP cross section
in SCETand is a nontrivial check on the validity of the EFT
expansion. In Sec. III B we will show that this cancellation
can be understood without an explicit regulator, in which
case the correct treatment of overlap subtraction graphs,
which vanished here when using the pure rapidity regulator,
is critical.
The hard-scale matching coefficients of all the sublead-

ing operators Tði;jÞ have the same LL anomalous dimen-
sions [56], so these cancellations are manifestly maintained
to all orders in the leading-log approximation. Since the
rate must be finite beyond leading logarithms, finiteness of
the theory will place constraints on rapidity divergences
which are beyond the scope of this paper.
As in Eq. (9), the Tði;jÞ operators are matched onto a

theory solely consisting of light-cone distribution opera-
tors, defined as

Oqðl−Þ ¼ 1

2π

Z
dξe−iξl

−
ψ̄nðn̄ξÞ

=̄n
2
Wðn̄ξ; 0Þψnð0Þ;

Oq̄ðlþÞ ¼ 1

2π

Z
dξe−iξl

þ
ψ̄ n̄ð0Þ

=n
2
Wð0; nξÞψ n̄ðnξÞ: ð82Þ

Since the renormalized partonic matrix element of the
product of these soft theory operators is [64,81]

hpn
1p

n̄
2jOqðq−ÞOq̄ðqþÞjpn

1p
n̄
2i

¼
�
δ1−

ᾱ

ϵ

�
1þ z21
z̄1

�
þ

��
δ2−

ᾱ

ϵ

�
1þ z22
z̄2

�
þ

�
þ�� � ; ð83Þ

and since these IR divergences are precisely reproduced in
the renormalized matrix element of Tð0;0Þ [see Eq. (63)], the
leading-power soft matching coefficient is then

CS;ð0;0Þ

�
z1; z2;qT;

μ

qT
;
νn;n̄
μ

�

¼ δ1δ2δT þ ᾱ

�
−δ1δ2

�
2L1T þL0T

�
3 − 2 log

νnνn̄
μ2

��

þ
�
δ2

�
1þ z21
z̄1

�
þ
þ δ1

�
1þ z22
z̄2

�
þ

�
L0T

þ ðz̄1δ2 þ z̄2δ1 − δ1δ2ζ2ÞδT
�
: ð84Þ

This also provides the fixed order expansion of Vð0;0Þ;ð0;0Þ,

Vð0;0Þ;ð0;0Þ

�
z1; z2;qT;

μ

qT
;
qL
νn;n̄

�

¼ δ1δ2δT þ 2ᾱL0T log
q2L
νnνn̄

þ � � � ; ð85Þ

where higher order terms can be generated using the
running in Sec. II F.
At subleading power the renormalized matrix elements

of Tði;jÞ begin at OðαsÞ and thus match onto the tree-level
term δðz̄1Þδðz̄2Þ of Eq. (83). The renormalized matrix
elements of Tði;jÞ are thus equal to the soft matching
coefficients CS;ði;jÞ. Suppressing their scale dependence,
the first four NLP soft matching coefficients are

CS;ð21;0Þðz1; z2;qTÞ ¼ −
ᾱ

π
δ2

��
θðz̄1Þ
z̄1

�
þ
þ 1

2
δ1 log

ν2n
q2T

�

× δ

�
uþ z̄1

z1

�
;

CS;ð0;21Þðz1; z2;qTÞ ¼ −
ᾱ

π
δ1

��
θðz̄2Þ
z̄2

�
þ
þ 1

2
δ2 log

ν2n̄
q2T

�

× δ

�
uþ z̄2

z2

�
;

CS;ð22;0Þðz1; z2;qTÞ ¼
ᾱ

π
δ2

��
θðz̄1Þ
z̄1

�
þ
þ 1

2
δ1 log

ν2n
q2T

�

× δ

�
u1 þ

z̄1
z1

�
δðu1 − u2Þ;

CS;ð0;22Þðz1; z2;qTÞ ¼
ᾱ

π
δ1

��
θðz̄2Þ
z̄2

�
þ
þ 1

2
δ2 log

ν2n̄
q2T

�

× δ

�
u2 þ

z̄2
z2

�
δðu1 − u2Þ; ð86Þ

and the remaining four matching coefficients are

CS;ð23;0Þðz1; z2;qTÞ ¼
ᾱ

π
z1z2δ2δ

�
uþ z̄1

z1

�

×

�
1

2
δ01 log

ν2n
q2T

−
�
θðz̄1Þ
z̄21

�
þþ

�
;

CS;ð0;23Þðz1; z2;qTÞ ¼
ᾱ

π
z1z2δ1δ

�
uþ z̄2

z2

�

×

�
1

2
δ02 log

ν2n̄
q2T

−
�
θðz̄2Þ
z̄22

�
þþ

�
;

CS;ð24;0Þðz1; z2;qTÞ ¼
ᾱ

π
z1z2δ02

�
ðδðz̄1Þ þ δ0ðz̄1ÞÞ log

ν2n
q2T

− 2

�
θðz̄1Þ
z̄21

�
þþ

þ 2

�
θðz̄1Þ
z̄1

�
þ
− 1

�
;

CS;ð0;24Þðz1; z2;qTÞ ¼
ᾱ

π
z1z2δ01

�
ðδðz̄2Þ þ δ0ðz̄2ÞÞ log

ν2n̄
q2T

− 2

�
θðz̄2Þ
z̄22

�
þþ

þ 2

�
θðz̄2Þ
z̄1

�
þ
− 1

�
:

ð87Þ
Matching QCD onto SCET at μ ¼ qL and νn;n̄ ¼ qL,

these matrix elements have large logarithms of q2L=q
2
T .
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We will discuss the resummation of these logarithms using
the rapidity renormalization group in Sec. II F.

E. Cff at fixed order

It is useful at this stage to check the fixed order results for
Cff by comparing with the corresponding QCD calcula-

tion. At leading power, the OðαsÞ expression for Cð0Þ
ff in

SCET is given by CSð0;0Þ in Eq. (84) with νn;n̄ ¼ qL and

multiplied by the hard function Hð0;0Þ ¼ Cð0Þ†
2 Cð0Þ

2 . After
integrating dΩT , this gives the one-loop expression

Cð0Þ
ff ðz1; z2; q2L; q2TÞ

¼ ᾱ

�
δ1δ2δðq2TÞ

�
−log2

q2L
μ2

þ 3 log
q2L
μ2

− 8þ 7ζ2

�

þ
�
1

q2T

�
μ2

þ

�
δ1

�
1þ z22
z̄2

�
þ
þ δ2

�
1þ z21
z̄1

�
þ

�

− δ1δ2

�
2

�log q2T
μ2

q2T

�μ2
þ
þ
�
1

q2T

�
μ2

þ

�
3 − 2 log

q2L
μ2

��

þ δðq2TÞðz̄1δ2 þ z̄2δ1 − ζ2δ1δ2Þ
�
: ð88Þ

At NLP, adding up the contributions from the unsummed
matching coefficients in Eqs. (86) and (87) with νn;n̄ ¼ qL
weighted by the corresponding coefficients Hði;jÞK

ði;jÞ
ðk;lÞ

gives the OðαsÞ coefficient function

Cð2Þ
ff ðz1;z2;qTÞ¼ ᾱz1z2

��
2log

ŝ
q2T

−3

�
δ01δ

0
2

þ
�
2 log

ŝ
q2T

þ1

�
ðδ01δ2þδ1δ

0
2Þþ4δ1δ2

−δ01

�
2−2z̄2þ z̄22

z̄22

�
þþ

−δ02

�
2−2z̄1þ z̄21

z̄21

�
þþ

−2

�
δ1

�
1

z̄22

�
þþ

þδ2

�
1

z̄21

�
þþ

��
; ð89Þ

where, along with q2L ¼ z1z2ŝ, we have used the identities

�
θðz̄Þ
z̄

�
þþ

¼ ½θðz̄Þ
z̄

�
þ
þ δ0ðz̄Þ;

½θðz̄Þ�þþ ¼ 1þ 1

2
δ0ðz̄Þ − δðz̄Þ: ð90Þ

These results may be compared with the direct QCD
calculation. Cff is determined in QCD by the partonic rate

RQCD ¼ −
Z

ddx
ð2πÞd hp1p2jψ̄ðxÞγμψðxÞψ̄ð0Þγμψð0Þjp1p2i

¼ 1

2

Z
ddx
ð2πÞd hp1p2jψ̄ðxÞγμψð0Þψ̄ð0ÞγμψðxÞjp1p2i:

ð91Þ

The single gluon real emission contribution evaluates to

R1g
QCD ¼ ᾱ

π
fϵ

δðz̄1z̄2ŝ − q2
TÞ

z̄1z̄2
½2 − 2ðz̄1 þ z̄2Þ

þðz̄21 þ z̄22Þ − ϵðz̄1 þ z̄2Þ2�: ð92Þ

Expanding (92) in powers of q2T=q
2
L,

R1g
QCD ¼ Rð0Þ1g

QCD þRð2Þ1g
QCD þ � � � ; ð93Þ

is straightforward away from z̄1 ¼ z̄2 ¼ 0,

R1g
QCDjz̄1≠0 ¼

ᾱ

π

fϵ
q2
T

�
δðz̄2Þ

�
2 − 2z̄1 þ z̄21

z̄1

�

− 2
q2T
ŝ
δ2

�
1

z̄21

�
−
q2T
ŝ
δ02

�
2 − 2z̄1 þ z̄21

z̄21

�

þO

�
q4T
ŝ2

��

(with a similar result for z̄2 ≠ 0), but care is required at the
singular points. At leading power, R may be written

Rð0Þ1g
QCD ¼ ᾱ

π

fϵ
q2
T
ðAð0Þδ1δ2þδ2½fnðz̄1Þ�þþδ1½fn̄ðz̄2Þ�þÞ; ð94Þ

where, from (94),

fn;n̄ðz̄Þ ¼
�
2 − 2z̄þ z̄2

z̄

�
ð95Þ

and Að0Þ is determined from the integrated rate

A ¼ q2T
ᾱ
π fϵ

Z
1

0

dz̄1dz̄2R
1g
QCD ¼ Að0Þ þ q2T

ŝ
Að2Þ þ � � � : ð96Þ

Similarly at NLP the rate has the general form

Rð2Þ1g
QCD ¼ ᾱ

π

fϵ
ŝ
ðAð2Þδ1δ2 þ Bð2Þδ01δ

0
2 þ Cð2Þðδ01δ2 þ δ1δ

0
2Þ

þ δ02½gnðz̄1Þ�þþ þ δ2½hnðz̄1Þ�þþ þ δ01½gn̄ðz̄2Þ�þþ
þ δ1½hn̄ðz̄2Þ�þþÞ; ð97Þ

where
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gn;n̄ðz̄Þ ¼ −
�
2 − 2z̄þ z̄2

z̄2

�
;

hn;n̄ðz̄Þ ¼ −2
�
1

z̄2

�
; ð98Þ

and the constants B and C are given by the appropriate
moments of the rate,

B ¼ q2T
ᾱ
π fϵ

Z
1

0

dz̄1dz̄2z̄1z̄2R
1g
QCD ¼ Bð0Þ þ q2T

ŝ
Bð2Þ þ � � � ;

C ¼ −
q2T
ᾱ
π fϵ

Z
1

0

dz̄1dz̄2z̄1R
1g
QCD ¼ −

q2T
ᾱ
π fϵ

Z
1

0

dz̄1dz̄2z̄2R
1g
QCD

¼ Cð0Þ þ q2T
ŝ
Cð2Þ þ � � � : ð99Þ

The integrals in Eqs. (96) and (99) give the endpoint
constants

Að0Þ ¼ 2 log
ŝ
q2T

− 3 − ϵ;

Að2Þ ¼ 4;

Bð2Þ ¼ 2 log
ŝ
q2T

− 3;

Cð2Þ ¼ 2 log
ŝ
q2T

þ 1; ð100Þ

where we drop the ϵ dependence in the NLP terms since,
unlike the LP rate, the NLP rate contains no infrared
divergences stemming from a 1=q2T prefactor.
At leading power, applying (B23) and (B24) gives

Rð0Þ1g
QCD ¼ ᾱ

π

fϵ
q2
T

��
2 log

ŝ
q2T

− 3 − ϵ

�
δ1δ2 þ δ2

�
2 − 2z̄1 þ z̄21

z̄1

�
þ
þ δ1

�
2 − 2z̄2 þ z̄22

z̄1

�
þ

�

¼ ᾱ

�
δ1δ2δT

�
2

ϵ2
þ
3 − 2 log ŝ

μ2

ϵ

�
þ
�
L0T −

δT
ϵ

��
δ2

�
1þ z21
z̄1

�
þ
þ δ1

�
1þ z22
z̄2

�þ
�

− δ1δ2

�
2L1T þL0T

�
3 − 2 log

ŝ
μ2

��
þ ðz̄1δ2 þ z̄2δ1 − δ1δ2ζ2ÞδT

�
: ð101Þ

The LP vertex correction gives an additional contribution

Rð0Þvirt
QCD ¼ ᾱδ1δ2δT

�
−
�
2

ϵ2
þ
3 − 2 log ŝ

μ2

ϵ

�
− log2

q2L
μ2

þ 3 log
q2L
μ2

− 8þ 7ζ2

�
: ð102Þ

Combining the finite pieces of Eqs. (102) and (101) and then integrating dΩT reproduces the SCET result for Cð0Þ
ff in (88).

The remaining divergent terms are equal to the infrared divergences of the light-cone distribution operator matrix elements
and thus cancel in the matching onto the soft theory.
QCD virtual corrections do not contribute to the NLP coefficient function at OðαsÞ, and so Cð2Þ

ff is determined from
Eqs. (97)–(100). After integrating dΩT , this gives

Cð2Þ
ff ðz1; z2; q2L; q2TÞ ¼ ᾱz1z2

�
4δ1δ2 þ

�
2 log

ŝ
q2T

− 3

�
δ01δ

0
2 þ

�
2 log

ŝ
q2T

þ 1

�
ðδ01δ2 þ δ1δ

0
2Þ

−
�
δ01

�
2 − 2z̄2 þ z̄22

z̄22

�
þþ

þ δ02

�
2 − 2z̄1 þ z̄21

z̄21

�
þþ

�
− 2

�
δ1

�
1

z̄22

�
þþ

þ δ2

�
1

z̄21

�
þþ

��
; ð103Þ

in agreement with the SCET result in Eq. (89). Thus, the
SCET result and the expanded QCD result agree to NLP, as
required.
Our fixed order results may also be compared with those

obtained in [53].4 In that reference, the DY rate was
determined up to NLP by expanding the QCD matrix
element in the n collinear, n̄ collinear, and soft limits,
regulating the ensuing rapidity divergences, and combining

the results. The results in that reference are also in agree-
ment with the expanded QCD results in this section, but are
presented in different variables, which makes the compari-
son more involved. We have checked that our results are in
agreement with theirs; details of this comparison are given
in Appendix C.

F. Rapidity running

Rapidity logarithms arise in this formalism as a scheme
dependence in summing together the individually divergent4Similar results, integrated over rapidity, were presented in [47].
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contributions from the n and n̄ sectors to a given matrix
element. It was argued in [57] that in this formalism
rapidity renormalization should be performed at the match-
ing scale onto the light-cone distribution operators in order
to ensure that Wilson coefficients in SCET are independent
of infrared physics.
As discussed in [57], the rapidity regulators in the two

sectors are fixed by matching at the hard scale from QCD
onto SCET by the requirement that when μ ≫ μS the
Wilson coefficients of SCET are independent of infrared
energy scales of order μS. In the rapidity regularization
scheme used here, this corresponds to choosing νnνn̄ ¼ q2L,
which, as discussed in Sec. II D, corresponds to using the
same rapidity regulator in the n and n̄ sectors, and is
required for the rapidity divergences to cancel in the EFT.
The necessity of this choice can be seen from the qT
dependence of the leading-power matrix element of
Eq. (66), which contains the term

hpn
1p

n̄
2jTð0;0Þðq−; qþ;qT; νn;n̄Þjpn

1p
n̄
2i1−gluon

¼ 2ᾱδ1δ2L0T log
νnνn̄
μ2

þ � � � : ð104Þ

Since physical quantities are independent of the rapidity
regulator, any variation in νnνn̄ in the matrix element of
Tð0;0Þ must be compensated by a Wilson coefficient propor-
tional to L0T in the EFT. This variation would then
introduce nonanalytic dependence on the IR scale qT into
the effective Lagrangian through the Wilson coefficient,
which is inconsistent with factorization of hard and soft
scales.
However, at the soft scale μ ∼ qT where SCET operators

are matched onto light-cone distribution operators, the
scale qT is no longer an infrared scale in the EFT, and
the Wilson coefficients are free to have nonanalytic
dependence on qT . The operators Tði;jÞ may therefore be
run in νn;n̄ to minimize rapidity logarithms in the matching
coefficients CS in Eqs. (84), (86), and (87). These operators
obey the RRG equation

d
d log νn;n̄

Tði;jÞðq−; qþ;qT; νn;n̄Þ

¼
X
k;l

ðγn;n̄ði;jÞ;ðk;lÞ � Tðk;lÞÞðq−; qþ;qT; νn;n̄Þ; ð105Þ

where γn;n̄ is the rapidity anomalous dimension for each
sector, and we define the convolution � by

ðf � gÞðλ1; λ2;kTÞ≡
Z

dω1

ω1

dω2

ω2

dd−2pT

× fðω1;ω2;pTÞg
�
λ1
ω1

;
λ2
ω2

;kT − pT

�
:

ð106Þ

The solution to Eq. (105) can be written in the form of
Eq. (13),

Tði;jÞðq−; qþ;qT; νn;n̄ ¼ qLÞ
¼

X
k;l

ðVði;jÞðk;lÞðqL; νn;n̄Þ � Tðk;lÞðνn;n̄ÞÞðq−; qþ;qTÞ:

ð107Þ

The explicit form of this solution to the RRG in momentum
space can be found using the techniques in [19].
From the counterterm definitions in Eqs. (46) and (47)

relating the bare and renormalized operators, and using the
fact that the bare operators are independent of the param-
eters νn;n̄ (as guaranteed by the fictional coupling wn;n̄), the
rapidity anomalous dimensions for the operators Tði;jÞ may
be calculated in terms of the renormalization constants as

γn;n̄ði;jÞ;ðk;lÞ ¼ −
X
κ;λ

Z−1
ði;jÞ;ðκ;λÞÞ �

d
d log νn;n̄

Zðκ;λÞ;ðk;lÞ: ð108Þ

Here, the inverse counterterm satisfies the relation

X
κ;λ

ðZ−1
ði;jÞðκ;λÞ � Zðκ;λÞðk;lÞÞðω1;ω2;qTÞ

¼ δðω̄1Þδðω̄2ÞδðqTÞδikδjl: ð109Þ

At leading power the rapidity anomalous dimension of
Tð0;0Þ is calculated from the renormalization constant in
Eq. (65), which gives

γnð0;0Þ;ð0;0Þ ¼ γn̄ð0;0Þ;ð0;0Þ ¼ 2ᾱδðω̄1Þδðω̄2ÞL0T: ð110Þ

The leading-power operator Tð0;0Þ thus obeys the RRG
equation

d
d log νn;n̄

Tð0;0Þðω1;ω2;qT; νn;n̄Þ

¼ 2ᾱ

Z
d2pTL0TðqT − pT; μÞTð0;0Þðω1;ω2;pT; νn;n̄Þ;

ð111Þ

similar to the results in [57], and with all the complications
of running and scale setting of vector distributions
described in [19]. Symmetrically, this RRG equation begins
in the scheme νn;n̄ ¼ qT where the logarithms of Tð0;0Þ are
minimized, and runs up to the scheme νn;n̄ ¼ qL which, as
we have argued, reproduces the QCD result.
At subleading power, the rapidity mixing of each Tði;jÞ

with the leading order Tð0;0Þ may easily be read off from
Eqs. (79)–(81):
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γnð21;0Þ;ð0;0Þ ¼ γn̄ð0;21Þ;ð0;0Þ ¼ −
ᾱ

π
δðω̄1Þδðω̄2ÞδðuÞ;

γnð22;0Þ;ð0;0Þ ¼ γn̄ð0;22Þ;ð0;0Þ ¼
ᾱ

π
δðω̄1Þδðω̄2Þδðu1Þδðu2Þ;

γnð23;0Þ;ð0;0Þ ¼
ᾱ

π
ω1ω2δ

0ðω̄1Þδðω̄2Þδ
�
uþ ω̄1

ω1

�
;

γn̄ð0;23Þ;ð0;0Þ ¼
ᾱ

π
ω1ω2δðω̄1Þδ0ðω̄2Þδ

�
uþ ω̄2

ω2

�
;

γnð24;0Þ;ð0;0Þ ¼ 2
ᾱ

π
ω1ω2δ

0ðω̄1Þðδðω̄2Þ þ δ0ðω̄2ÞÞ;

γn̄ð0;24Þ;ð0;0Þ ¼ 2
ᾱ

π
ω1ω2ðδðω̄1Þ þ δ0ðω̄1ÞÞδ0ðω̄2Þ: ð112Þ

As noted in [38], since each subleading Tði;jÞ only has a
nonvanishing matrix element beginning at OðαsÞ, calculat-
ing the complete rapidity renormalization for each Tði;jÞ
requires calculating matrix elements atOðα2sÞ. There will be
some constraints on these rapidity anomalous dimensions
because of μ independence of the final result [51], as
discussed in this formalism in [57], but the full calculation
is beyond the scope of this paper and will be the subject of
future work.

III. OVERLAP SUBTRACTIONS AT NLP

As discussed in [55,57], in this formulation of SCET it is
necessary to subtract the double-counting of low-energy
degrees of freedom which are simultaneously below the
cutoff of both the n and n̄ sectors, analogous to zero-bin
subtraction in SCET [59]. Rapidity logarithms in this
formulation of SCET arise from the scheme dependence
in summing the individually rapidity divergent diagrams in
each sector and subtracting the corresponding overlap.
In this paper we have used a rapidity renormalization

scheme in which overlap subtraction graphs vanish; while
this is convenient for calculations, it obscures the cancel-
lations that occur between different operators in different
regions of phase space which are required to obtain a
rapidity-finite result. In this section we generalize the
overlap subtraction prescription to NLP and repeat the
calculations without a rapidity regulator in order to explic-
itly show the cancellation of rapidity divergences due to the
overlap subtraction, similar to what was done at LP in [57].
At LP, the zero-bin prescription of [59] has been shown

to be equivalent to the nonperturbative subtraction defi-
nition of dividing the naïve matrix element by a vacuum
expectation value of Wilson lines [82–84]. This equiva-
lence also holds for the overlap prescription of [55,56]. At
subleading power, however, this simple prescription does
not hold: matrix elements of the NLP operators Tði;jÞ begin
at OðαsÞ, and thus dividing by a vacuum expectation value
of the form ð1þOðαsÞÞ does not provide the necessary
OðαsÞ subtraction to regulate their matrix elements.
Calculations of probabilities in the effective theory

therefore require a systematic way to implement the
necessary overlap subtraction. In this section we describe
a simple diagram-based prescription to perform the overlap
subtraction at subleading powers, and illustrate in the case
of DYat NLP that it is required to obtain the correct, finite,
result. This allows us to extend the LP discussion of [57] on
the relationship between scheme dependence and rapidity
logarithms up to NLP. We show that the previous obser-
vation in Sec. II D 4—that at NLP rapidity divergences do
not cancel for matrix elements of individual operators, but
instead cancel between distinct operators—occurs because
different linear combinations of operators are required to
reproduce the correct rate in different regions of
phase space.
Consider, for example, the process in Fig. 1 in which a

gluon is produced in DY annihilation in addition to the
lepton pair. In SCET this corresponds to two distinct
processes in which the gluon is emitted in the n sector
or the n̄ sector. At NLP, the first receives contributions from
the Tð2i;0Þ operators while the second receives contributions
from the corresponding Tð0;2iÞ operators. Since in loop
graphs all momenta are integrated over, the first class of
operators will give nonvanishing spurious contributions in
the momentum region described by the second, and vice
versa. Thus, the overlap subtraction procedure at NLP
necessarily involves cancellations between different oper-
ators, and the subtraction required in order to avoid
overcounting in each is found by taking the wrong limit
of matrix elements in the other sector. In the symmetric
process that we are examining in this paper, this may be
achieved by subtracting one-half of each of the wrong
limits from each sector. Schematically, we have the
prescription

PSCET ¼ Pn þ Pn̄ −
1

2
ðPn→n̄ þ Pn̄→nÞ; ð113Þ

where Pi is the probability to produce a gluon in the i sector
and the subscripts i → j denote the wrong sector limits.
The power counting of these subtractions follows the

power counting of the limit in which the gluon is taken. An
n-sector gluon has the scaling k−n =q− ∼Oð1Þ,
kþn =qþ ∼Oðq2T=q2LÞ, while its wrong-sector limit has the
scaling k−n→n̄=q

− ∼Oðq2T=q2LÞ and kþn→n̄=q
þ ∼Oð1Þ. This

definition of overlap subtraction ensures that probabilities
in QCD are properly reproduced to the appropriate order by
SCET in all regions of phase space. This prescription is
inherently perturbative, and further work is required to
determine an operator definition of overlap subtraction
which correctly reproduces QCD probabilities at both
leading and next-to-leading power.
In the next subsection we review the discussion of

overlap subtraction at LP presented in [57] using the
prescription (113). We then demonstrate that the same
prescription may be used to calculate the NLP coefficient
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function Cð2Þ
ff , and discuss the nature of the overlap

subtraction in various regions of phase space.

A. Overlap subtraction and scheme
dependence at LP

The DY cross section at LP is determined by the spin-
averaged matrix element of Tð0;0Þ, which takes the general
form

Mð0;0Þ ¼
ᾱ

π

fϵ
q2T

ðAð0;0Þδ1δ2 þ δ2½fnðz̄1Þ�þ þ δ1½fn̄ðz̄2Þ�þÞ;

ð114Þ

where as before we define δ1 ≡ δðz̄1Þ, δ2 ≡ δðz̄2Þ. Away
from the singular point z̄1 ¼ z̄2 ¼ 0 the unregulated n- and
n̄-sector contributions to the matrix element of Tð0;0Þ are
determined by the graphs in Fig. 1 and their n̄-sector
equivalents, and are given by Eq. (54) (and the correspond-
ing expression in the n̄ sector) with ωn ¼ 1 and ηn ¼ 0.
This immediately gives the functions fnðz̄1Þ and fn̄ðz̄2Þ in
(95) which describe the spectrum away from the
endpoint. Since each fn;n̄ only receives contributions from
a single sector, there is no overcounting, and these
expressions are finite and well-defined without a rapidity
regulator.
The constant Að0;0Þ may be most simply obtained by

integrating the rate over z̄1 and z̄2, which receives con-
tributions from both sectors. Adding these contributions
overcounts the probability of producing a gluon that lies
below the cutoff of both sectors and so must be subtracted
using the overlap prescription (113), given by taking
the wrong limit of the matrix elements in each sector.
These are given by Eq. (61) with the rapidity regulator set
to unity,

Mn→n̄
ð0;0Þ ¼ −2πg2CF

Z
ddk
ð2πÞd δðp

−
1 − q−Þδðpþ

2 − qþÞ

× δd−2ðqT þ kTÞδðk2ÞTr
�
p1

2

�
nα

−kþ
þ n̄α

k−

�

×
=̄n
2

�
nα
−kþ

−
n̄α
−k−

��
Tr

�
p2

2

=n
2

�
þ � � � ; ð115Þ

and the corresponding (and identical) wrong limitMn̄→n
ð0;0Þ of

the n̄matrix element. The dots indicate terms suppressed by
powers of 1=qL relative to leading power, which do not
contribute at LP but which will be important at NLP. By
integrating these graphs with respect to z̄1 and z̄2 before
integrating over the gluon momentum the contributions to
the endpoint constant Að0;0Þ from each sector and their
wrong limit subtractions can be obtained. As discussed in
[57], because the individual graphs each have rapidity
divergences, the ordering of integration is important; the
sum is defined here by performing the z̄1, z̄2, kT , and kþ

integrals, leaving only a single rapidity-divergent k−

integral5

Að0;0Þ ¼
Z

∞

0

dk−

k−

�
θðp−

1 − k−ÞAn
ð0;0Þðk−Þ

þ θ

�
k− −

q2T
pþ
2

�
An̄
ð0;0Þðk−Þ

−
1

2
ðAn→n̄

ð0;0Þðk−Þ þ An̄→n
ð0;0Þðk−ÞÞ

�
; ð116Þ

where

An
ð0;0Þðk−Þ ¼ 2 − 2

�
k−

p−
1

�
þ ð1 − ϵÞ

�
k−

p−
1

�
2

;

An̄
ð0;0Þðk−Þ ¼ 2 − 2

�
q2T

k−pþ
2

�
þ ð1 − ϵÞ

�
q2T

k−pþ
2

�
2

;

An→n̄
ð0;0Þðk−Þ ¼ An̄→n

ð0;0Þðk−Þ ¼ 2: ð117Þ

Physically, regions of phase space where k− ∼Oðq−Þ are
properly described in the EFT by n-sector gluons. Regions
where kþ ¼ k2T=k

− ∼OðqþÞ give spurious contributions in
the n sector, producing the unphysical divergence in
An
ð0;0Þðk−Þ as k− → 0. Similarly, the divergence in the n̄

sector as k− → ∞ corresponds to the large k− region which
is not properly described by the n̄ sector. Both of these
spurious divergent contributions are cancelled by the
overlap terms, leaving the finite result

Að0;0Þ ¼ 2 log
ŝ
q2T

− 3 − ϵ: ð118Þ

This is the same endpoint constant we determined from
QCD in (100), and so we find the same LP coefficient

function Cð0Þ
ff . Equivalently, in Eq. (117), the constant terms

in Að0;0Þ
n and Að0;0Þ

n̄ are common to both sectors, and so the
double-counting is removed by subtracting the overlap on
the third line.
As discussed in [57], however, the ŝ dependence in Að0;0Þ

is actually a scheme dependence in the EFT, which allows
rapidity divergences to be resummed in SCET. Since each
integral represents the momentum of a distinct particle in
each sector, the momentum in each integral can be
independently rescaled, which changes the term in the
rapidity logarithm. For example, rescaling k− → k−ζ2=ŝ in
the An̄ integral of Eq. (117) gives the manifestly scheme-
dependent result

5This is equivalent to the prescription in [72] of adding the
integrands together before performing any loop integrals.
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Að0;0ÞðζÞ ¼ 2 log
ζ2

q2T
− 3 − ϵ: ð119Þ

In the remainder of this section we will demonstrate a
similar origin of rapidity logarithms at NLP.

B. Overlap subtraction and scheme
dependence at NLP

At NLP the overlap subtraction follows the same
procedure as at LP, but here more terms are kept in the
wrong limit expansion of each operator’s matrix elements.
The NLP cancellation of divergences is also slightly more
involved, since rapidity divergences cancel between differ-
ent operators, as may be seen in Eqs. (79)–(81). Similar
cancellations between different operators in SCET were
also discussed in detail in [43]. There, the endpoint
divergences are regulated by explicit hard cutoffs and
expressed in a refactorized form that makes obvious
the cancellation between different NLP operators contrib-
uting to the observable. Overcounting of hard regions arises
from the convolutional structure of the operators with a
hard cutoff, and thus an “infinity-bin” prescription, distinct
from the usual zero-bin prescription, is introduced to
correct for this double counting. In this section we will
show that the same overlap subtraction required to correct
for overcounting in the soft region also properly regulates
endpoint divergences. This uniform treatment of divergen-
ces is possible because all spurious terms have a common
origin, arising from an overcounting of probabilities
induced by wrong limit contributions in each individual
sector.
The operator products Tð21;0Þ through Tð0;22Þ come from

products of scattering operators O†μ
2;ð1iÞO

ν
2;ð1jÞ whose defi-

nitions pick out the longitudinal Lorentz structure n̄μnν or
n̄νnμ, while the remaining operators Tð23;0Þ through Tð0;24Þ,
along with the leading order Tð0;0Þ, come from products of
operators that are proportional to gμν⊥ . It is therefore
convenient to classify each Tði;jÞ according to its Lorentz
structure, as either transverse or longitudinal. We consider
these two classes of operators in turn.

1. Longitudinal class

From Eqs. (79) and (80), matrix elements of Tð21;0Þ and
Tð0;21Þ are individually rapidity divergent, but the diver-
gences cancel in the sum (and hence in the cross section,
since their Wilson coefficients are equal). The same is true
for Tð22;0Þ and Tð0;22Þ, and in both cases the cancellation
may be understood by examining the unregulated diagrams
and corresponding overlaps, as in the previous section.
Taking Tð21;0Þ as an example, its unregulated spin-

averaged matrix element is

Mn
ð21;0Þ ¼ −2πg2CF

Z
ddk
ð2πÞd δðp

−
1 − q− − k−Þδðpþ

2 − qþÞ

× δd−2ðqT þ kTÞδðk2Þδ
�
uþ k−

q−

�
Tr

�
p2

2

=n
2

�

× Tr

�
p1

2

�
2pα

1 − γα=k
−2p1 · k

þ n̄α

k−

�
=̄n
2
=k⊥γ⊥μ Δ̄αμðkÞ

�

¼ −
ᾱ

π
δ2

Z
∞

0

dk−

k−
p−
1 δðp−

1 − q− − k−Þδ
�
uþ k−

q−

�

¼ −
ᾱ

π

δ2
z̄1

δ

�
uþ z̄1

z1

�
; ð120Þ

where Δ̄ is defined in Appendix A and its wrong-sector
limit is

Mn→n̄
ð21;0Þ ¼ −2πg2CF

Z
ddk
ð2πÞd δðp

−
1 − q−Þδðpþ

2 − qþÞ

× δd−2ðqT þ kTÞδðk2Þδ
�
uþ k−

q−

�
Tr

�
p2

2

=n
2

�

× Tr

�
p1

2

�
nα

−kþ
þ n̄α

k−

�
=̄n
2
=k⊥γ⊥μ Δ̄αμðkÞ

�

¼ −
ᾱ

π
δðz̄1Þδðz̄2Þ

Z
∞

0

dk−

k−
δ

�
uþ k−

q−

�
: ð121Þ

Away from z̄1 ¼ z̄2 ¼ 0 the overlap does not contribute and
(120) gives a well-defined result; however, it is rapidity
divergent at z̄1 ¼ 0. Following the LP approach, the matrix
element may be written in the general form

Mð21;0Þ ¼
ᾱ

π
δ2

�
Að21;0Þδ1δðuÞ−

�
1

z̄1

�
þ
δ

�
uþ z̄1

z1

��
; ð122Þ

in accordance with Eq. (86). The constant Að21;0Þ is
determined by integrating with respect to u, z̄1, and z̄2,
which gives

Að21;0Þ ¼
Z

∞

0

dk−

k−

�
θðp−

1 − k−ÞAn
ð21;0Þðk−Þ

−
1

2
An→n̄
ð21;0Þðk−Þ

�
; ð123Þ

where

An
ð21;0Þðk−Þ ¼ An→n̄

ð21;0Þðk−Þ ¼ −1: ð124Þ

The integral in Eq. (123) is divergent: matrix elements of
Tð21;0Þ alone are not rapidity finite, in agreement with the
result (79) using the pure rapidity regular. This is to be
expected, since gluons in both the n and n̄ sectors are
required to reproduce the QCD rate, and the corresponding
n̄-sector gluon is emitted from the operator Tð0;21Þ.
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Including this operator and its corresponding subtraction
gives

Mð21;0Þ þMð0;21Þ

¼ ᾱ

π

�
A21

δ1δ2δðuÞ − δ2

�
1

z̄1

�
þ
δ

�
uþ z̄1

z1

�

− δ1

�
1

z̄2

�
þ
δ

�
uþ z̄2

z2

��
; ð125Þ

where

A21
¼

Z
∞

0

dk−

k−

�
θðp−

1 − k−ÞAn
ð21;0Þðk−Þ

þθ

�
k− −

q2T
pþ
2

�
An̄
ð0;21Þðk−Þ

−
1

2
ðAn→n̄

ð21;0Þðk−Þ þ An̄→n
ð0;21Þðk−ÞÞ

�
ð126Þ

and

An̄
ð0;21Þðk−Þ ¼ An̄→n

ð0;21Þðk−Þ ¼ −1: ð127Þ

The integral in Eq. (126) is finite; as at LP, the spurious
divergences from the n sector as k− → 0 and the n̄ sector as
k− → ∞ have been canceled by the overlap subtraction to
give the finite result

A21
¼ − log

ŝ
q2T

; ð128Þ

which, by a similar rescaling argument as at leading power,
gives a scheme-dependent rapidity logarithm reproducing
that in Eq. (86).
A similar argument holds for Tð22;0Þ and Tð0;22Þ.

Explicitly, we find

Mð22;0Þ þMð0;22Þ ¼
ᾱ

π

�
A22

δ1δ2δðu1Þ

þ δ2

�
1

z̄1

�
þ
δ

�
u1 þ

z̄1
z1

�

þ δ1

�
1

z̄2

�
þ
δ

�
u1 þ

z̄2
z2

��
δðu1 − u2Þ;

ð129Þ

where

An
ð22;0Þðk−Þ ¼ An→n̄

ð22;0Þðk−Þ ¼ An̄
ð0;22Þðk−Þ

¼ An̄→n
ð0;22Þðk−Þ ¼ 1; ð130Þ

and so

A22
¼ log

ŝ
q2T

; ð131Þ

again in agreement with Eq. (86). The total fixed-order
contribution to the cross section therefore cancels between
the four longitudinal operators.

2. Transverse class

Matrix elements of the transverse class of operators
Tð23;0Þ through Tð0;24Þ are more complicated because they
originate from operator products having the same Lorentz
structure as those that produce the leading-power operator
Tð0;0Þ, and power corrections to the overlap subtraction of
Tð0;0Þ must also be included to achieve a rapidity-finite
combination. Thus, while in the longitudinal case rapidity
divergences canceled between the corresponding n- and n̄-
sector operators, here they only cancel in the particular
linear combination of transverse operators that contribute to
the DY cross section.
The contribution of the transverse operators to the

coefficient function Cð2Þ
ff is calculated from Eq. (12) and

has the general form

Cð2ÞT
ff ¼ ᾱz1z2ðAð2Þ

T δ1δ2 þ Bð2Þ
T δ01δ

0
2 þ Cð2Þ

T ðδ01δ2 þ δ1δ
0
2Þ

þ δ02½gTnðz̄1Þ�þþ þ δ2½hTnðz̄1Þ�þþ
þδ01½gTn̄ðz̄2Þ�þþ þ δ1½hTn̄ðz̄2Þ�þþÞ: ð132Þ

Away from the endpoint z̄1 ¼ z̄2 ¼ 0 there are no
rapidity divergences, so the contribution from each operator
to gTn;n̄ and hTn;n̄ are the same as in Eqs. (86) and (87). After
summing and integrating over u’s, these combine to give
the functions gTn;n̄, h

T
n;n̄:

gTn;n̄ðz̄Þ ¼ −
�
2 − 2z̄þ z̄2

z̄2

�
;

hTn;n̄ðz̄Þ ¼ −
2

z̄2
: ð133Þ

The endpoint region is overcounted in the sum of the two
sectors and must be compensated by subtracting away half
the wrong limit of each sector. In contrast with the previous
cases, the power counting of the required overlap subtrac-
tions is more subtle because the overlap graphsmust subtract
not only logarithmic, but also linear rapidity divergences.
Consider first the various contributions to Að2Þ

T , which are
found by integrating unweighted matrix elements over fug,
z̄1, and z̄2. The naïve contributions from Tð23;0Þ and Tð0;23Þ
are calculated to be

Z
∞

0

dk−

k−

�
θðp−

1 −k−ÞAn
ð23;0Þðk−Þþθ

�
k−−

q2T
pþ
2

�
An̄
ð0;23Þðk−Þ

�
;

ð134Þ
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where

An
ð23;0Þðk−Þ ¼ −2

�
p−
1

k−

�
;

An̄
ð0;23Þðk−Þ ¼ −2

�
k−pþ

2

q2T

�
: ð135Þ

The integral in (134) is rapidity divergent. Both terms in
Eq. (135) are Oð1Þ in their respective correct regions, k− ∼
Oðq−Þ in the n sector and kþ ¼ q2T=k

− ∼OðqþÞ in the n̄
sector, but are enhanced and give rise to linear rapidity
divergences in the regions where this correct momentum
scaling is no longer valid. The contributions to Cff from
these spurious regions are subtracted away by the overlap.

There are two sources of overlap subtraction for Að2Þ
T : the

wrong limits An→n̄
ð23;0Þ and An̄→n

ð0;23Þ, and also the subleading

wrong limits from the leading power operator Tð0;0Þ.
Expanding the Feynman diagrams of Tð23;0Þ and Tð0;23Þ in

their wrong limits gives the same functions as in Eq. (135)
but are integrated over the region 0 < k− < ∞. Explicitly,
there are two nonvanishing terms from the wrong limit of
the Tð23;0Þ matrix element,

Mn→n̄;I
ð23;0Þ ¼ g2CF

Z
ddk
ð2πÞd δðp

−
1 − q−Þδðpþ

2 − qþÞ

× δd−2ðqT þ kTÞ2πδðk2ÞTr
�
p2

2

=n
2

�

× Tr

�
p1

2

1

u
kμΔ̄ðkÞαν =̄n

2
γ⊥ν γ⊥μ

×

�
nα
−kþ

−
n̄α
−k−

�
δ

�
uþ k−

q−

��

¼ ᾱ

π
δ1δ2

Z
∞

0

dk−

k−
1

u
δ

�
uþ k−

q−

�
ð136Þ

and

Mn→n̄;II
ð23;0Þ ¼ g2CF

Z
ddk
ð2πÞd ð−k

−Þδ0ðp−
1 − q−Þδðpþ

2 − qþÞ

× δd−2ðqT þ kTÞ2πδðk2ÞTr
�
p2

2

=n
2

�

× Tr

�
p1

2

1

u
kμΔ̄ðkÞαν =̄n

2
γ⊥ν γ⊥μ

×

�
nα
−kþ

−
n̄α
−k−

�
δ

�
uþ k−

q−

��

¼ −
ᾱ

π
δ0ðz̄1Þδðz̄2Þ

Z
∞

0

dk−

p−
1

1

u
δ

�
uþ k−

q−

�
: ð137Þ

The wrong-limit expansion is truncated after the terms
reach an Oðq2T=q2LÞ suppression relative to the leading-

power operator in the wrong-limit momentum scaling p−
1 ∼

Oðq−Þ and kþ; pþ
2 ∼OðqþÞ. The subtraction term in

Eq. (136) contributes to Að2Þ
T while the term in Eq. (137)

contributes to Cð2Þ
T .

Similarly, expanding the n̄- and n-sector graphs of Tð0;0Þ
up to NLP gives the Oð1=k−Þ term in An

ð23;0Þ and the Oðk−Þ
term in An̄

ð0;23Þ in Eq. (135), respectively, which are again

integrated over all values of k−. Explicitly, expanding
Mn

ð0;0Þ gives two contributions to the subleading overlap,

Mn→n̄;NLP1
ð0;0Þ ¼ −2πg2CF

Z
ddk
ð2πÞd ð−k

−Þδ0ðp−
1 − q−Þ

× δðpþ
2 − qþÞδd−2ðqT þ kTÞδðk2ÞTr

�
p2

2

=n
2

�

× Tr

�
p1

2

�
nα

−kþ
þ n̄α

k−

�
=̄n
2

�
nα
−kþ

−
n̄α
−k−

��

¼ −2δ0ðz̄1Þδðz̄2Þ
ᾱ

π

Z
∞

0

dk−

k−
k−pþ

2

q2T
ð138Þ

and

Mn→n̄;NLP2
ð0;0Þ ¼ −2πg2CF

Z
ddk
ð2πÞd δðp

−
1 − q−Þδðpþ

2 − qþÞ

× δd−2ðqT þ kTÞ2πδðk2ÞTr
�
p2

2

=n
2

�

× Tr

�
p1

2

�
nα

−kþ
þ n̄α

k−

�
=̄n
2

�
=k⊥γμ⊥
p−
1 k

þ ΔαμðkÞ
�

þ p1

2

�
ΔαμðkÞ γ

⊥
μ =k⊥

p−
1 k

þ

�
=̄n
2

�
nα
−kþ

−
n̄α
−k−

��

¼ −2
ᾱ

π
δðz̄1Þδðz̄2Þ

Z
∞

0

dk−

k−
k−pþ

2

q2T
; ð139Þ

the first of which comes from higher corrections to the
momentum-conserving delta function, while the second
comes from higher corrections to the quark propagator
expansions. Only the second term contributes here; the first

contributes to Cð2Þ
T .

Putting these together, we obtain the expression for Að2Þ
T ,

Að2Þ
T ¼

Z
∞

0

dk−

k−

�
θðp−

1 − k−ÞAn
ð23;0Þðk−Þ

þθ

�
k− −

q2T
pþ
2

�
An̄
ð0;23Þðk−Þ

−
1

2
ðAn→n̄;NLP

ð0;0Þ ðk−Þ þ An̄→n;NLP
ð0;0Þ ðk−ÞÞ

−
1

2
ðAn→n̄

ð23;0Þðk−Þ þ An̄→n
ð0;23Þðk−ÞÞ

�
; ð140Þ
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where the contributions from Tð24;0Þ and Tð0;24Þ all vanish,
and explicitly

An→n̄
ð23;0Þðk−Þ ¼ An̄→n;NLP

ð0;0Þ ðk−Þ ¼ −2
�
p−
1

k−

�
;

An̄→n
ð0;23Þðk−Þ ¼ An→n̄;NLP

ð0;0Þ ðk−Þ ¼ −2
�
k−pþ

2

q2T

�
: ð141Þ

This gives the finite result

Að2Þ
T ¼ 4: ð142Þ

Next consider the contributions to the endpoint constant

Cð2Þ
T , which are obtained by integrating the various matrix

elements weighted with z̄1 (or equivalently z̄2). The naïve
contributions to the z̄1 moment give

Z
∞

0

dk−

k−

�
θðp−

1 − k−ÞCn
ð23;0Þðk−Þ

þ θ

�
k− −

q2T
pþ
2

�
Cn̄
ð0;24Þðk−Þ

�
; ð143Þ

where

Cn
ð23;0Þðk−Þ ¼ 2;

Cn̄
ð0;24Þðk−Þ ¼ −2

�
k−pþ

2

q2T

�
þ 2 −

�
q2T

k−pþ
2

�
: ð144Þ

This is again rapidity divergent: Cn
ð23;0Þðk−Þ gives a loga-

rithmically divergent contribution as k− → 0, while
Cn̄
ð0;24Þðk−Þ gives contributions that are both logarithmically

and linearly divergent as k− → ∞. As with Að2Þ
T , taking the

wrong limit of the Feynman diagrams contributing to
Eq. (144) gives the k− → 0 and k− → ∞ expansions of
these terms. For example, the wrong-limit expansion of
Mð0;24Þ

n̄ gives three terms which correspond almost exactly
to the overlaps of Tð0;0Þ in Eqs. (115), (138), and (139),
except they have a different momentum-conserving delta
function structure. These give the contributions

Cn̄→n
ð0;24Þðk−Þ ¼ −2

�
k−pþ

2

q2T

�
þ 2; ð145Þ

while from the Tð23;0Þ overlap given in Eq. (137) is the
contribution

Cn→n̄
ð23;0Þðk−Þ ¼ 2: ð146Þ

The overlap term from Tð0;24Þ contains two terms: the
leading term is proportional to k− and cancels a linear
rapidity divergence, while the Oð1Þ term contributes to the
cancellation of a logarithmic divergence.

We also have the contribution from the NLP overlap of
Tð0;0Þ in Eq. (138),

Cn→n̄;NLP
ð0;0Þ ðk−Þ ¼ −2

�
k−pþ

2

q2T

�
; ð147Þ

with the sum of all contributions giving the result

Cð2Þ
T ¼

Z
∞

0

dk−

k−
½θðp−

1 − k−ÞCn
ð23;0Þðk−Þ

þθ

�
k− −

q2T
pþ
2

�
Cn̄
ð0;24Þðk−Þ −

1

2
ðCn→n̄;NLPÞ

ð0;0Þ ðk−ÞÞ

−
1

2
ðCn→n̄

ð23;0Þðk−Þ þ Cn̄→n
ð0;24Þðk−ÞÞ

�

¼ 2 log
ŝ
q2T

þ 1: ð148Þ

Once again there is a precise interplay between naïve
matrix elements and overlap subtractions required to obtain
the same finite result as using the pure rapidity regulator.
Rescaling the integrals for Cn̄

ð0;24Þðk−Þ, Cn̄→n
ð0;24Þðk−Þ, and

Cn→n̄;NLP
ð0;0Þ ðk−Þ as k− → k−ζ2=ŝ replaces the ŝ dependence

in the result of Eq. (148) with ζ2 scheme dependence. This
correlation between the rescaling of individual integrals is
necessary to maintain a finite result and is a general feature
of power-law divergences.
Finally, the endpoint constant BT is found by weighting

the integrals by z̄1z̄2, giving

Bð2Þ
T ¼

Z
∞

0

dk−

k−

�
θðp−

1 − k−ÞBn
ð24;0Þðk−Þ

þ θ

�
k− −

q2T
pþ
2

�
Bn̄
ð0;24Þðk−Þ

−
1

2
ðBn→n̄

ð24;0Þðk−Þ þ Bn̄→n
ð0;24Þðk−ÞÞ

�
; ð149Þ

where explicitly

Bn
ð24;0Þðk−Þ ¼ 2 − 2

�
k−

p−
1

�
þ
�
k−

p−
1

�
2

;

Bn̄
ð0;24Þðk−Þ ¼ 2 − 2

�
q2T

k−pþ
2

�
þ
�

q2T
k−pþ

2

�
2

; ð150Þ

and the overlap terms cancel just the logarithmic diver-
gences,

Bn→n̄
ð24;0Þðk−Þ ¼ Bn̄→n

ð0;24Þðk−Þ ¼ 2: ð151Þ

This gives
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Bð2Þ
T ¼ 2 log

ŝ
q2T

− 3; ð152Þ

where rescaling the second line of Eq. (150) as k− →
k−ζ2=ŝ replaces the ŝ dependence in Eq. (152) with ζ2

scheme dependence.
This concludes the calculation of all the endpoint

constants AL;T , BL;T , andCL;T . In each case, these constants
agree with those of QCD as calculated in Sec. II E. We have
thus demonstrated an overlap subtraction prescription that
allows us to properly calculate probabilities at NLP without
an explicit rapidity regulator, providing a nontrivial cross-
check of our results using different rapidity regularization
schemes.

IV. CONCLUSION

In this paper we have shown that factorization of the
Drell-Yan production cross section into hard matching
coefficients, rapidity evolution factors, soft matching
coefficients, and PDFs occurs naturally in a formulation
of SCET in which the low energy degrees of freedom are
not separated into distinct fields for each mode relevant to
the process. The DY rate is given by the matrix element of
the nonlocal product of two external currents in SCET.
Usually in SCET observables are factorized into jet and
soft factors which are separately renormalized and run to
the appropriate scales; here, the EFT is first run in μ down
to the soft matching scale μ ∼ qT , at which point the
product of currents is renormalized in rapidity space. After
resumming the rapidity logs at the soft matching scale, the
operator products are then matched onto a product of
light-cone distribution operators, whose hadronic matrix
elements are the usual PDFs. At OðαsÞ, our EFT cross
section reproduces the fixed-order QCD cross section at
NLP, as well as the equivalent fixed-order cross section
calculated using the pure rapidity regulator in [53]. Off-
diagonal rapidity anomalous dimensions were calculated
and rapidity divergences were shown to cancel in the cross
section. The resummation of rapidity logarithms at NLP
requires the complete rapidity anomalous dimension
matrix for the subleading operators Tði;jÞ, which is beyond
the scope of this paper, and will be the subject of
future work.
The factorization and resummation of the DY process is

particularly simple in this approach: it does not depend on
proving factorization at a given order in the SCET
expansion or in the leading-log approximation, but instead
is a straightforward consequence of the usual EFT
approach of matching and running. By not explicitly
factorizing modes in the Lagrangian, the complication
of power corrections coupling different modes in the
Lagrangian is avoided, as is the necessity to refactorize

the result to make individual jet and soft functions
well-defined. Divergences analogous to the endpoint
divergences arising at NLP in other approaches arise,
but are regulated by the rapidity regulator and system-
atically canceled by the same overlap subtraction pro-
cedure required to avoid double counting at leading
power.
Rapidity divergences were considered in detail, and the

cancellation of rapidity divergences in the rate was shown
in two ways. Using the pure rapidity regulator, it was
shown that all rapidity poles canceled between the differ-
ent linear combinations of subleading operators arising in
the expression for the differential rate, as was found in
previous analyses [40–43]. In Sec. III it was shown that
even without an explicit rapidity regulator, rapidity
divergences in the DY cross section cancel between
particular linear combinations of operators, and that these
linear combinations could be understood by requiring
that SCET reproduce the correct differential rate in
different regions of phase space. A consistent treatment
of subleading overlap subtractions from the leading
order operator was shown to be necessary for this
cancellation.
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APPENDIX A: SUMMARY OF MATRIX
ELEMENTS OF HARD SCATTERING

OPERATORS

In the following equations we list all relevant u-space
matrix elements of scattering operators which contribute to
the quark-induced DY process through the emission
of an n-sector gluon. We use the soft-scale matching
kinematics pþ

1 ¼ p1⊥ ¼ 0 ¼ p−
2 ¼ p2⊥, and define the

noncommon factor AðiÞ
n;n̄ of these matrix elements through

the relation

Z
ddx

2ð2πÞd e
−iq·xhkn;n̄jOðiÞμ

2 ðx; fugÞjpn
1p

n̄
2i

≡ gv̄ðpn̄
2ÞTaAðiÞ

n;n̄uðpn
1Þϵ�ν; ðA1Þ

where A is tensor valued with implied Lorentz indices μ
and ν. We find for the n-gluon emissions
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Að0Þ
n ¼ −Pnγ

μPn

�
2pν

1 − =kγν

−2p1 · k
−

n̄ν

−k−

�
δ−n δ

þ
n δ⊥;

Að1⊥nÞ
n ¼ −Pnγ

μ =̄η
2
=k⊥

�
2pν

1 − =kγν

−2p1 · k
−

n̄ν

−k−

�
δ−n δ

þ
n δ⊥;

Að1A1Þ
n ¼ γ⊥α

=η
2
γμPnΔ̄ναðkÞδ−n δþn δ⊥δðuþ k̂−Þ;

Að1A2Þ
n ¼ −Pnγ

μ =̄η
2
γ⊥α Δ̄ναðkÞδ−n δþn δ⊥δðuþ k̂−Þ;

Að2δþÞ
n ¼ qþq−Pnγ

μPn

�
2pν

1 − =kγν

−2p1 · k
−

n̄ν

−k−

�
kþδ−n δþ0

n δ⊥;

Að2A1Þ
n ¼ −

1

u
γ⊥α γ⊥β Pnγ

μPnΔ̄ναðkÞkβδ−n δþn δ⊥δðuþ k̂−Þ;
ðA2Þ

while for the n̄-gluon emissions we find

Að0Þ
n̄ ¼

�
2pν

2− γν=k
−2p2 ·k

−
nν

−kþ

�
Pnγ

μPnδ
−
n̄ δ

þ
n̄ δ⊥;

Að1⊥n̄Þ
n̄ ¼

�
2pν

2− γν=k
−2p2 ·k

−
nν

−kþ

�
=k⊥
=η
2
γμPnδ

−
n̄ δ

þ
n̄ δ⊥;

Að1B1Þ
n̄ ¼−Pnγ

μ =̄η
2
γ⊥αΔναðkÞδ−n̄ δþn̄ δ⊥δðuþ k̂þÞ;

Að1B2Þ
n̄ ¼ γ⊥α

=η
2
γμPnΔναðkÞδ−n̄ δþn̄ δ⊥δðuþ k̂þÞ;

Að2δ−Þ
n̄ ¼ qþq−

�
nν

−kþ
−
2pν

2− γν=k
−2p2 ·k

�
Pnγ

μPnk−δ−0n̄ δ
þ
n̄ δ⊥;

Að2B1Þ
n̄ ¼ 1

u
Pnγ

μPnγ
⊥
α γ

⊥
β k

αΔ̄νβðkÞδ−n̄ δþn̄ δ⊥δðuþ k̂þÞ: ðA3Þ

The one-gluon matrix elements of the scattering oper-
ators defined in Eqs. (A2) and (A3) use the following
definitions:

Δ̄αμðkÞ ¼ gαμ −
n̄αkμ

n̄ · k
; ΔαμðkÞ ¼ gαμ −

nαkμ

n · k
: ðA4Þ

These are common structures associated with the covariant
derivative. We also define the dimensionless quantities

l̂− ¼ l−

q−
; l̂þ ¼ lþ

qþ
; ðA5Þ

and we have used the shorthand notation δ−n ¼
δðp−

1 − k− − q−Þ, δþn ¼ δðpþ
2 − qþÞ, δ−n̄ ¼ δðp−

1 − q−Þ,
δþn̄ ¼ δðpþ

2 − kþ − qþÞ, and δ⊥ ¼ δðd−2Þðk⊥ þ q⊥Þ.
There are additional operators that are present from the

hard-scale matching [56,65,85–87], but that do not con-
tribute to the quark-initiated DY process to the order at
which we are working. Up to a 1=q2L suppression, these
include an operator with two perpendicular derivatives

Oð2⊥⊥Þμ
2 ðxÞ ¼ ½i∂αχ̄n̄ðxn̄Þ�γ⊥α

=η
2
γμ
=̄η
2
γ⊥β ½i∂βχnðxnÞ�; ðA6Þ

the A-type operators

Oð2A2Þμ
2 ðx; t̂Þ ¼ 2πiθðt̂Þ ⊗ ½χ̄n̄ðxÞ�γ⊥α

=η
2
γμ
=̄η
2
γ⊥β

× ½B†αβ
n ðxÞχnðx − n̄tÞ�;

Oð2A3Þμ
2 ðx; t̂Þ ¼ 2πiθðt̂Þ ⊗ ½χ̄n̄ðxÞ�γ⊥β

=η
2
γμ
=̄η
2
γ⊥α

× ½i∂αB†β
n ðxÞχnðx − n̄tÞ�;

Oð2A4Þμ
2 ðx; t̂Þ ¼ −2πiθðt̂Þ ⊗ ½i∂βχ̄n̄ðx − ntÞ�γ⊥β

=η
2
γμ
=̄η
2
γ⊥α

× ½B†α
n ðxÞχnðxÞ�;

Oð2A5Þμ
2 ðx; t̂Þ ¼ 2πiθðt̂Þ ⊗ ½i∂αχ̄n̄ðxÞ�γμfγ⊥α ; γ⊥β g

× ½B†β
n ðx − n̄tÞχnðxÞ�; ðA7Þ

and the corresponding B-type operators

Oð2B2Þμ
2 ðx; t̂Þ ¼ 2πiθðt̂Þ ⊗ ½χ̄n̄ðx − ntÞBαβ

n̄ ðxÞ�

× γ⊥α
=η
2
γμ
=̄η
2
γ⊥β ½χnðxÞ�;

Oð2B3Þμ
2 ðx; t̂Þ ¼ 2πiθðt̂Þ ⊗ ½i∂αχ̄n̄ðx − ntÞBβ

n̄ðxÞ�

× γ⊥α
=η
2
γμ
=̄η
2
γ⊥β ½χnðxÞ�;

Oð2B4Þμ
2 ðx; t̂Þ ¼ −2πiθðt̂Þ ⊗ ½χ̄n̄ðxÞBα

n̄ðx − n̄tÞ�

× γ⊥α
=η
2
γμ
=̄η
2
γ⊥β ½i∂βχnðxÞ�;

Oð2B5Þμ
2 ðx; t̂Þ ¼ 2πiθðt̂Þ ⊗ ½χ̄n̄ðxÞBα

n̄ðx − n̄tÞ�
× γμfγ⊥α ; γ⊥β g½i∂βχnðxÞ�: ðA8Þ

There are also the C-type operators, which are only relevant
for gluon-induced Drell-Yan

Oð1C1Þμ
2 ðx; t̂Þ ¼ −2πiθðt̂Þ ⊗ ½Bαcc0

n ðxÞ�

×

�
χ̄cn̄ðxÞγμ

=η
2
γ⊥α χc

0
n̄ ðx − ntÞ

�
;

Oð1C2Þμ
2 ðx; t̂Þ ¼ 2πiθðt̂Þ ⊗ ½Bαcc0

n ðxÞ�

×

�
χ̄cn̄ðx − ntÞγ⊥α

=η
2
γμχc

0
n̄ ðxÞ

�
: ðA9Þ
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APPENDIX B: PLUS DISTRIBUTION
IDENTITIES

1. Single variable plus distributions

The familiar plus distribution may be written as

½θðxÞfðxÞ�þ ¼ lim
β→0

½FðβÞ − Fð1Þ�δðx − βÞ

þ θðx − βÞfðxÞ; ðB1Þ

where fðxÞ ¼ dFðxÞ=dx, and has the properties

Z
1

0

dx½θðxÞfðxÞ�þ ¼ 0;

½θðxÞfðxÞ�þ ¼ fðxÞ; x > 0: ðB2Þ

Rearranging these equations gives the differential relation

d
dx

½θðxÞFðxÞ� ¼
�
θðxÞ dFðxÞ

dx

�
þ
þ δðxÞFð1Þ; ðB3Þ

which is useful for expanding rapidity divergent integrals in
terms of plus functions. For example, taking fðxÞ ¼ x−1−η

gives FðxÞ ¼ −x−η=η, and so

d
dx

�
−θðxÞ
ηxη

�
¼ θðxÞ

x1þη −
δðxÞ
ηxη

¼
�
θðxÞ
x1þη

�
þ
−
δðxÞ
η

: ðB4Þ

The factor of δðxÞx−η vanishes by analytic continuation, so
expanding about η ¼ 0 gives

θðxÞ
x1þη ¼ −

δðxÞ
η

þ
�
θðxÞ
x

− η
logðxÞθðxÞ

x
þ � � �

�
þ

¼ −
δðxÞ
η

þ
�
θðxÞ
x

�
þ
− η

�
logðxÞθðxÞ

x

�
þ
þ � � � : ðB5Þ

Matrix elements at next-to-leading power involve higher-
order poles that are more singular than the usual plus
distributions. As in [53], we define double-plus distribu-
tions that satisfy

Z
1

0

dx½θðxÞfðxÞ�þþ ¼ 0;
Z

1

0

dxx½θðxÞfðxÞ�þþ ¼ 0;

½θðxÞfðxÞ�þþ ¼ fðxÞ; x > 0: ðB6Þ

They are related to the single-plus distributions by

½θðxÞfðxÞ�þþ − ½θðxÞfðxÞ�þ
¼ lim

β→0
δ0ðx − βÞ

Z
1

β
dyðy − βÞfðyÞ: ðB7Þ

For example, taking fðxÞ ¼ x−2−η, then FðxÞ ¼
−x−1−η=ð1þ ηÞ, and we obtain

θðxÞ
x2þη ¼

�
θðxÞ
x2þη

�
þ
−

δðxÞ
1þ η

: ðB8Þ

Since ½θðxÞx2 �þ is not well-defined, we convert to a double-
plus distribution before expanding in η,

�
θðxÞ
x2þη

�
þ
¼

�
θðxÞ
x2þη

�
þþ

− δ0ðxÞ
Z

1

0

dx
1

x1þη

¼
�
θðxÞ
x2þη

�
þþ

þ δ0ðxÞ
η

ðB9Þ

to obtain the expansion

1

x2þη¼
δ0ðxÞ
η

−
δðxÞ
1þη

þ
�
θðxÞ
x2

�
þþ

−η

�
logðxÞθðxÞ

x2

�
þþ

ðB10Þ

as in Eq. (2.40) of [53].

2. Vector plus distributions

The same techniques may be applied to divergent vector-
valued functions. Since our operators Tði;jÞ live in d ≠ 4
spacetime dimensions, we define the vector plus distribu-
tion (also known as the ξ2 distribution) by the relations

Z
q2T<ξ

2

dd−2qT ½θðq2TÞðfðqTÞ�ξ
2

þ ¼ 0;

½θðq2TÞfðqTÞ�ξ
2

þ ¼ fðqTÞ; q2T > 0: ðB11Þ

When fðqTÞ ¼ fðq2TÞ is a rotationally symmetric function,
we have

Z
dd−2qTfðq2TÞ ¼

Z
JϵqTfðq2TÞdq2T; ðB12Þ

where

JϵqT ≡
S2−2ϵ
2

q−2ϵT ðB13Þ

and Sd−2 ¼ 2π
d−2
2 =Γðd−2

2
Þ, e.g., S2 ¼ 2π. We also note that a

(d − 2)-dimensional delta function at the origin may be
written as

δðqTÞ ¼
δðq2TÞ
JϵqT

: ðB14Þ

Therefore if

gðq2TÞ ¼
Z
p2
T<q2T

dd−2pTfðpTÞ ðB15Þ
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for some rotationally invariant function fðpTÞ, then

fðq2TÞ ¼
1

JϵqT

d
dq2T

gðq2TÞ; ðB16Þ

which is useful for converting between distributions and
their cumulants.
The vector plus distribution may be written as the limit

½fðqTÞ�ξ
2

þ ¼ lim
β→0

Aðβ;ϵ;ξÞδðqTÞþθðq2T −β2ÞfðqTÞ; ðB17Þ

where, from (B11),

Aðβ; ϵ; ξÞ ¼ −
Z
β2<q2T<ξ

2

dd−2qTfðqTÞ: ðB18Þ

For example, we have the explicit form of the ξ2 distribution

�
1

q2
T

�
ξ2

þ
¼ ξ−2ϵ

�
1 −

�
β2

ξ2

�−ϵ�Sd−2
2ϵ

δðqTÞ

þ θðq2T − β2Þ
q2
T

ðB19Þ

(where the limit β → 0 is implicit). We can also derive the
analog of (B3) [19],

1

JϵqT

d
dq2T

θðq2TÞFðq2TÞ ¼
�
θðq2TÞ

1

JϵqT

dFðq2TÞ
dq2T

�
ξ2

þ
þ δðqTÞFðξ2Þ: ðB20Þ

As in Appendix B 1, we may then derive the expansion

ðν2Þ−η=2
ðq2

TÞ1−η=2
¼ Jϵξ

�
ν2

ξ2

�−η=2 δðqTÞ
η
2
− ϵ

þ
�
θðq2TÞ
q2T

�
ξ2

þ

þ η

2

�
log q2T

ν2
θðq2TÞ

q2T

�ξ2
þ
þ � � � : ðB21Þ

The choice of ξ in these identities is entirely arbitrary.
However, since each diagram comes with an overall μ2ϵ,
and since these identities put all the ϵ dependence into the
delta-function prefactor Jϵξ ∝ ξ−2ϵ, the canonical choice that
avoids spurious logarithms is ξ ¼ μ.
It is convenient to rescale the vector plus distributions to

have the same scaling dimensions and π counting as δðqTÞ.
Borrowing from the generalized-log notation of [19], we
define

LnðqT; μÞ ¼
1

Jϵμ

�logn q2
T

μ2
θðq2TÞ

q2
T

�μ2
þ
: ðB22Þ

With these definitions, and taking ν ¼ μ ¼ ξ, we have

ðμ2Þ−η=2
ðq2

TÞ1−η=2
¼ Jϵμ

�
δðqTÞ
η
2
− ϵ

þ Lð0Þ
0 ðqT; μÞ

þ η

2
Lð0Þ
1 ðqT; μÞ þ � � �

�
: ðB23Þ

Finally, we also need the identity

log q2T
μ2

q2
T

¼ Jϵμ

�
−
δðqTÞ
ϵ2

þ Lð0Þ
1 ðqT; μÞ

�
; ðB24Þ

which appears in the context of calculations without a
regulator.

APPENDIX C: FIXED-ORDER COMPARISON

In this section we compare our results to that of [53]. In
that reference, the QCD cross section for the process
N1N2 → V þ X up to NLP is decomposed into a sum of
convolutions of coefficient functions multiplied by PDFs
and their first derivatives, so that

1

σ0

dσ
dq2dyd2qT

¼
Z

dza
za

dzb
zb

�
Cð0Þ
fqfq̄

ðza; zb; q2; q2TÞf
�
xa
za

�
f

�
xb
zb

�
þ 1

q2
Cð2Þ
fqfq̄

ðza; zb; q2; q2TÞf
�
xa
za

�
f

�
xb
zb

�

þ 1

q2
Cð2Þ
f0qfq̄

ðza; zb; q2; q2TÞ
xa
za

f0
�
xa
za

�
f

�
xb
zb

�
þ 1

q2
Cð2Þ
fqf0q̄

ðza; zb; q2; q2TÞf
�
xa
za

�
xb
zb

f0
�
xb
zb

�

þ 1

q2
Cð2Þ
f0qf0q̄

ðza; zb; q2; q2TÞ
xa
za

f0
�
xa
za

�
xb
zb

f0
�
xb
zb

��
; ðC1Þ

where at one-loop

Cð0Þ
fqfq̄

¼ ᾱ

�
δðz̄aÞδðz̄bÞδðq2TÞ

�
−log2

q2

μ2
þ 3 log

q2

μ2
− 8þ 7ζ2

�
þ
�
1

q2T

�
μ2

þ

�
δðz̄aÞ

�
1þ z2b
z̄b

�
þ
þ δðz̄bÞ

�
1þ z2a
z̄a

�
þ

�

− δðz̄aÞδðz̄bÞ
�
2

�
log q2T=q

2

q2T

�
μ2

þ
þ 3

�
1

q2T

�
μ2

þ

�
þ δðq2TÞðz̄aδðz̄bÞ þ z̄bδðz̄aÞ − ζ2δðz̄aÞδðz̄bÞÞ

�
; ðC2Þ
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at LP, and

Cð2Þ
fqfq̄

¼ ᾱ

�
−4δðz̄aÞδðz̄bÞ − δðz̄aÞ

1þ z2b − 4z3b
zb

−
1þ z2a − 4z3a

za
δðz̄bÞ

�
; ðC3Þ

Cð2Þ
f0qfq̄

¼ ᾱ

��
− log

q2

q2T
− 1

�
δðz̄aÞδðz̄bÞ

þ δðz̄aÞ
�
1þ 3zb þ 2z2b

2zb
−
�
1

z̄b

�
þ

�

−
�
1þ za þ 2z3a

2za
þ
�
1

z̄a

�
þ

�
δðz̄bÞ

�
; ðC4Þ

Cð2Þ
fqf0q̄

¼ ᾱ

��
− log

q2

q2T
− 1

�
δðz̄aÞδðz̄bÞ

− δðz̄aÞ
�
1þ zb þ 2z3b

2zb
þ
�
1

z̄b

�
þ

�

þ
�
1þ 3za þ 2z2a

2za
−
�
1

z̄a

�
þ

�
δðz̄bÞ

�
; ðC5Þ

Cð2Þ
f0qf0q̄

¼ ᾱ

��
2 log

q2

q2T
þ 4

�
δðz̄aÞδðz̄bÞ

− δðz̄aÞ
�
1 − 2zb − z2b

2zb
þ 2

�
1

z̄b

�
þ

�

þ
�
1 − 2za − z2a

2za
þ 2

�
1

z̄a

�
þ

�
δðz̄bÞ

�
ðC6Þ

at NLP.
Since the xa;b in Eq. (C1) differ from the ξ1;2 used in

Eq. (11) at Oðq2T=q2LÞ, and since our results are expressed
entirely in terms of PDFs instead of PDFs and their first
derivatives, the results in Eqs. (C2) and (C6) are related to
Eqs. (88) and (89) by a change of variables, integration by
parts, and a few distributional identities. Working in
the hadronic center-of-mass frame for simplicity, where
P−
1 ¼ ffiffiffi

s
p ¼ Pþ

2 , the variables xa;b may be written in terms
of ξ1;2 as

xa ¼ ξ1

�
1 −

1

2

q2T
q2L

þ � � �
�
;

xb ¼ ξ2

�
1 −

1

2

q2T
q2L

þ � � �
�
: ðC7Þ

Expanding (C1)–(C6) up to Oðq2T=q2LÞ gives

1

σ0

dσ
dq2dyd2qT

¼ σ0

Z
dz1
z1

dz2
z2

�
Cð0Þ
fqfq̄

ðz1; z2; q2L; q2TÞf
�
ξ1
z1

�
f

�
ξ2
z2

�

þ 1

q2L
ðCð2Þ

fqfq̄
ðz1; z2; q2L; q2TÞþδCð0Þ

fqfq̄
ðz1; z2; q2L; q2TÞÞf

�
ξ1
z1

�
f

�
ξ2
z2

�

þ 1

q2L

�
Cð2Þ
f0qfq̄

ðz1; z2; q2L; q2TÞ −
1

2

q2T
q2L

Cð0Þ
ff ðz1; z2Þ

�
ξ1
z1

f0
�
ξ1
z1

�
f

�
ξ2
z2

�

þ 1

q2L

�
Cð2Þ
fqf0q̄

ðz1; z2; q2L; q2TÞ −
1

2

q2T
q2L

Cð0Þ
ff ðz1; z2Þ

�
f

�
ξ1
z1

�
ξ2
z2

f0
�
ξ2
z2

�

þ 1

q2L
Cð2Þ
f0qf0q̄

ðz1; z2; q2L; q2TÞ
ξ1
z1

f0
�
ξ1
z1

�
ξ2
z2

f0
�
ξ2
z2

��
; ðC8Þ

where Cð0Þ
fqfq̄

ðz1;z2;q2L;q2TÞ¼Cð0Þ
ff ðz1;z2;q2L;q2TÞ in Eq. (88),

and

Cð2Þ
fqfq̄

þ δCð0Þ
fqfq̄

¼ ᾱ

�
−6δ1δ2 − δ1

1þ z22 − 4z32
z2

−
1þ z21 − 4z31

z1
δ2

�
; ðC9Þ

Cð2Þ
f0qfq̄

−
1

2

q2T
q2L

Cð0Þ
fqfq̄

¼ ᾱ

��
−2 log

q2L
q2T

− 1

�
δ1δ2

þ δ1

�
1þ 4z2 þ 3z22

2z2
− 2

�
1

z̄2

�
þ

�

−
�
1 − z21 þ 2z31

2z1
þ 2

�
1

z̄1

�
þ

�
δ2

�
;

ðC10Þ
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Cð2Þ
fqf0q̄

−
1

2

q2T
q2L

Cð0Þ
fqfq̄

¼ ᾱ

��
−2 log

q2L
q2T

− 1

�
δ1δ2

− δ1

�
1 − z22 þ 2z32

2z2
þ 2

�
1

z̄2

�
þ

�

þ
�
1þ 4z1 þ 3z21

2z1
− 2

�
1

z̄1

�
þ

�
δ2

�
;

ðC11Þ

Cð2Þ
f0qf0q̄

¼ ᾱ

��
2 log

q2L
q2T

þ 4

�
δ1δ2

− δ1

�
1 − 2z2 − z22

2z2
þ 2

�
1

z̄2

�
þ

�

þ
�
1 − 2z1 − z21

2z1
þ 2

�
1

z̄1

�
þ

�
δ2

�
: ðC12Þ

Finally, the comparison is completed by applying the
following integration by parts identities, valid when
fðx=zÞ ¼ 0 for x ≥ z,

Z
dz
z
δðz̄Þ x

z
f0
�
ξ

z

�
¼

Z
dz
z
½−zδ0ðz̄Þ�f

�
ξ

z

�
;

Z
dz
z
zn

x
z
f0
�
ξ

z

�
¼

Z
dz
z
½nzn − zδðz̄Þ�f

�
ξ

z

�
;

Z
dz
z

�
1

z̄

�
þ

x
z
f0
�
ξ

z

�
¼

Z
dz
z

�
z

�
1

z̄2

�
þþ

þ zδ0ðz̄Þ

− zδðz̄Þ
�
f

�
ξ

z

�
: ðC13Þ

These identities transform the coefficient functions in
Eq. (C9) from acting on derivatives of PDFs to the equivalent
form of coefficient functions acting only on PDFs, and in
doing so reproduces theNLP coefficient function in Eq. (89).
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Laenen, L. Magnea, L. Vernazza, and C. D. White, Dia-
grammatic resummation of leading-logarithmic threshold
effects at next-to-leading power, J. High Energy Phys. 11
(2019) 002.

[47] L. Cieri, C. Oleari, and M. Rocco, Higher-order power
corrections in a transverse-momentum cut for colour-singlet
production at NLO, Eur. Phys. J. C 79, 852 (2019).

[48] M. van Beekveld, E. Laenen, J. S. Damst, and L. Vernazza,
Next-to-leading power threshold corrections for finite order
and resummed colour-singlet cross sections, J. High Energy
Phys. 05 (2021) 114.

[49] C. Oleari and M. Rocco, Power corrections in a transverse-
momentum cut for vector-boson production at NNLO: The
qg-initiated real-virtual contribution, Eur. Phys. J. C 81, 183
(2021).

[50] R. Boughezal, A. Isgrò, and F. Petriello, Next-to-leading
power corrections to V þ 1 jet production in N-jettiness
subtraction, Phys. Rev. D 101, 016005 (2020).

[51] J.-y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, A
formalism for the systematic treatment of rapidity loga-
rithms in quantum field theory, J. High Energy Phys. 05
(2012) 084.

[52] Y. Li, D. Neill, and H. X. Zhu, An exponential regulator for
rapidity divergences, Nucl. Phys. B960, 115 (2020).

[53] M. A. Ebert, I. Moult, I. W. Stewart, F. J. Tackmann, G. Vita,
and H. X. Zhu, Subleading power rapidity divergences and
power corrections for qT, J. High Energy Phys. 04 (2019)
123.

[54] C. W. Bauer, A. V. Manohar, and P. F. Monni, Disentangling
observable dependence in SCETI and SCETII anomalous
dimensions: angularities at two loops, J. High Energy Phys.
07 (2021) 214.

INGLIS-WHALEN, LUKE, ROY, and SPOURDALAKIS PHYS. REV. D 104, 076018 (2021)

076018-30

https://doi.org/10.1007/JHEP02(2018)108
https://doi.org/10.1007/JHEP02(2018)108
https://doi.org/10.1007/JHEP06(2019)028
https://doi.org/10.1007/JHEP06(2019)028
https://doi.org/10.1007/JHEP07(2020)117
https://doi.org/10.1007/JHEP04(2021)102
https://doi.org/10.1007/JHEP03(2021)199
https://doi.org/10.1007/JHEP03(2021)199
https://arXiv.org/abs/2103.04974
https://arXiv.org/abs/2104.07509
https://doi.org/10.1016/0550-3213(83)90188-8
https://doi.org/10.1103/PhysRevD.40.2245
https://doi.org/10.1103/PhysRevD.40.2245
https://doi.org/10.1103/PhysRevD.63.014006
https://doi.org/10.1103/PhysRevD.63.114020
https://doi.org/10.1016/S0370-2693(01)00902-9
https://doi.org/10.1103/PhysRevD.65.054022
https://doi.org/10.1103/PhysRevD.65.054022
https://doi.org/10.1103/PhysRevD.66.014017
https://doi.org/10.1016/S0550-3213(02)00687-9
https://doi.org/10.1016/S0370-2693(02)03204-5
https://doi.org/10.1007/JHEP08(2018)013
https://doi.org/10.1007/JHEP08(2018)013
https://doi.org/10.1007/JHEP03(2019)043
https://doi.org/10.1007/JHEP01(2020)094
https://doi.org/10.1007/JHEP01(2020)094
https://doi.org/10.1007/JHEP05(2019)192
https://doi.org/10.1007/JHEP07(2020)005
https://doi.org/10.1007/JHEP04(2020)033
https://doi.org/10.1103/PhysRevD.104.014004
https://doi.org/10.1103/PhysRevD.104.014004
https://doi.org/10.1007/JHEP01(2021)077
https://doi.org/10.1016/S0550-3213(97)00679-2
https://doi.org/10.1016/S0550-3213(97)00679-2
https://doi.org/10.1016/j.physletb.2015.04.036
https://doi.org/10.1016/j.physletb.2015.04.036
https://doi.org/10.1007/JHEP11(2019)002
https://doi.org/10.1007/JHEP11(2019)002
https://doi.org/10.1140/epjc/s10052-019-7361-8
https://doi.org/10.1007/JHEP05(2021)114
https://doi.org/10.1007/JHEP05(2021)114
https://doi.org/10.1140/epjc/s10052-021-08878-3
https://doi.org/10.1140/epjc/s10052-021-08878-3
https://doi.org/10.1103/PhysRevD.101.016005
https://doi.org/10.1007/JHEP05(2012)084
https://doi.org/10.1007/JHEP05(2012)084
https://doi.org/10.1016/j.nuclphysb.2020.115193
https://doi.org/10.1007/JHEP04(2019)123
https://doi.org/10.1007/JHEP04(2019)123
https://doi.org/10.1007/JHEP07(2021)214
https://doi.org/10.1007/JHEP07(2021)214


[55] R. Goerke and M. Luke, Power counting and modes in
SCET, J. High Energy Phys. 02 (2018) 147.

[56] R. Goerke and M. Inglis-Whalen, Renormalization of dijet
operators at order 1=Q2 in soft-collinear effective theory,
J. High Energy Phys. 05 (2018) 023.

[57] M. Inglis-Whalen, M. Luke, and A. Spourdalakis, Rapidity
logarithms in SCET without modes, Nucl. Phys. A1014,
122260 (2021).

[58] M. Beneke and V. A. Smirnov, Asymptotic expansion of
Feynman integrals near threshold, Nucl. Phys. B522, 321
(1998).

[59] A. V. Manohar and I. W. Stewart, The zero-bin and mode
factorization in quantum field theory, Phys. Rev. D 76,
074002 (2007).

[60] J. C. Collins and A. Metz, Universality of Soft and Collinear
Factors in Hard-Scattering Factorization, Phys. Rev. Lett.
93, 252001 (2004).

[61] M. Diehl, J. R. Gaunt, D. Ostermeier, P. Plößl, and A.
Schäfer, Cancellation of Glauber gluon exchange in the
double Drell-Yan process, J. High Energy Phys. 01 (2016)
076.

[62] I. Z. Rothstein and I. W. Stewart, An effective field theory
for forward scattering and factorization violation, J. High
Energy Phys. 08 (2016) 025.

[63] C. W. Bauer, B. O. Lange, and G. Ovanesyan, On glauber
modes in soft-collinear effective theory, J. High Energy
Phys. 07 (2011) 077.

[64] A. V. Manohar, Deep inelastic scattering as x → 1 using soft
collinear effective theory, Phys. Rev. D 68, 114019 (2003).

[65] S. M. Freedman and R. Goerke, Renormalization of sub-
leading dijet operators in soft-collinear effective theory,
Phys. Rev. D 90, 114010 (2014).

[66] K. S. M. Lee and I. W. Stewart, Factorization for power
corrections to B → Xsγ and B → Xulν̄, Nucl. Phys. B721,
325 (2005).

[67] R. J. Hill, T. Becher, S. J. Lee, and M. Neubert, Sudakov
resummation for subleading SCET currents and heavy-to-
light form-factors, J. High Energy Phys. 07 (2004) 081.

[68] D. Pirjol and I. W. Stewart, A complete basis for power
suppressed collinear ultrasoft operators, Phys. Rev. D 67,
094005 (2003).

[69] J. Chay and C. Kim, Collinear effective theory at subleading
order and its application to heavy—light currents, Phys.
Rev. D 65, 114016 (2002).

[70] A. V. Manohar, T. Mehen, D. Pirjol, and I. W. Stewart,
Reparameterization invariance for collinear operators, Phys.
Lett. B 539, 59 (2002).

[71] C. W. Bauer, D. Pirjol, and I. W. Stewart, On power sup-
pressed operators and gauge invariance in SCET, Phys. Rev.
D 68, 034021 (2003).

[72] J.-y. Chiu, A. Fuhrer, A. H. Hoang, R. Kelley, and A. V.
Manohar, Soft-collinear factorization and zero-bin subtrac-
tions, Phys. Rev. D 79, 053007 (2009).

[73] V. A. Smirnov, Asymptotic expansions of two loop Feyn-
man diagrams in the Sudakov limit, Phys. Lett. B 404, 101
(1997).

[74] I. Moult, I. W. Stewart, and G. Vita, Subleading power
factorization with radiative functions, J. High Energy Phys.
11 (2019) 153.

[75] D.W. Kolodrubetz, I. Moult, and I. W. Stewart, Building
blocks for subleading helicity operators, J. High Energy
Phys. 05 (2016) 139.

[76] I. Moult, I. W. Stewart, G. Vita, and H. X. Zhu, The soft
quark Sudakov, J. High Energy Phys. 05 (2020) 089.

[77] M. Beneke, A. Broggio, S. Jaskiewicz, and L. Vernazza,
Threshold factorization of the Drell-Yan process at next-to-
leading power, J. High Energy Phys. 07 (2020) 078.

[78] M. Beneke, M. Garny, R. Szafron, and J. Wang, Violation of
the Kluberg-Stern-Zuber theorem in SCET, J. High Energy
Phys. 09 (2019) 101.

[79] J.-y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, The
Rapidity Renormalization Group, Phys. Rev. Lett. 108,
151601 (2012).

[80] G. Paz, Subleading jet functions in inclusive B decays,
J. High Energy Phys. 06 (2009) 083.

[81] J. C. Collins and D. E. Soper, Parton distribution and decay
functions, Nucl. Phys. B194, 445 (1982).

[82] C. Lee and G. F. Sterman, Momentum flow correlations
from event shapes: Factorized soft gluons and soft-collinear
effective theory, Phys. Rev. D 75, 014022 (2007).

[83] A. Idilbi and T. Mehen, On the equivalence of soft and zero-
bin subtractions, Phys. Rev. D 75, 114017 (2007).

[84] A. Idilbi and T. Mehen, Demonstration of the equivalence of
soft and zero-bin subtractions, Phys. Rev. D 76, 094015
(2007).

[85] S. M. Freedman and M. Luke, SCET, QCD and Wilson
lines, Phys. Rev. D 85, 014003 (2012).

[86] S. M. Freedman, Subleading corrections to thrust using
effective field theory, arXiv:1303.1558.

[87] I. Feige, D. W. Kolodrubetz, I. Moult, and I. W. Stewart, A
complete basis of helicity operators for subleading factori-
zation, J. High Energy Phys. 11 (2017) 142.

FACTORIZATION OF POWER CORRECTIONS IN THE DRELL- … PHYS. REV. D 104, 076018 (2021)

076018-31

https://doi.org/10.1007/JHEP02(2018)147
https://doi.org/10.1007/JHEP05(2018)023
https://doi.org/10.1016/j.nuclphysa.2021.122260
https://doi.org/10.1016/j.nuclphysa.2021.122260
https://doi.org/10.1016/S0550-3213(98)00138-2
https://doi.org/10.1016/S0550-3213(98)00138-2
https://doi.org/10.1103/PhysRevD.76.074002
https://doi.org/10.1103/PhysRevD.76.074002
https://doi.org/10.1103/PhysRevLett.93.252001
https://doi.org/10.1103/PhysRevLett.93.252001
https://doi.org/10.1007/JHEP01(2016)076
https://doi.org/10.1007/JHEP01(2016)076
https://doi.org/10.1007/JHEP08(2016)025
https://doi.org/10.1007/JHEP08(2016)025
https://doi.org/10.1007/JHEP07(2011)077
https://doi.org/10.1007/JHEP07(2011)077
https://doi.org/10.1103/PhysRevD.68.114019
https://doi.org/10.1103/PhysRevD.90.114010
https://doi.org/10.1016/j.nuclphysb.2005.05.004
https://doi.org/10.1016/j.nuclphysb.2005.05.004
https://doi.org/10.1088/1126-6708/2004/07/081
https://doi.org/10.1103/PhysRevD.67.094005
https://doi.org/10.1103/PhysRevD.67.094005
https://doi.org/10.1103/PhysRevD.65.114016
https://doi.org/10.1103/PhysRevD.65.114016
https://doi.org/10.1016/S0370-2693(02)02029-4
https://doi.org/10.1016/S0370-2693(02)02029-4
https://doi.org/10.1103/PhysRevD.68.034021
https://doi.org/10.1103/PhysRevD.68.034021
https://doi.org/10.1103/PhysRevD.79.053007
https://doi.org/10.1016/S0370-2693(97)00545-5
https://doi.org/10.1016/S0370-2693(97)00545-5
https://doi.org/10.1007/JHEP11(2019)153
https://doi.org/10.1007/JHEP11(2019)153
https://doi.org/10.1007/JHEP05(2016)139
https://doi.org/10.1007/JHEP05(2016)139
https://doi.org/10.1007/JHEP05(2020)089
https://doi.org/10.1007/JHEP07(2020)078
https://doi.org/10.1007/JHEP09(2019)101
https://doi.org/10.1007/JHEP09(2019)101
https://doi.org/10.1103/PhysRevLett.108.151601
https://doi.org/10.1103/PhysRevLett.108.151601
https://doi.org/10.1088/1126-6708/2009/06/083
https://doi.org/10.1016/0550-3213(82)90021-9
https://doi.org/10.1103/PhysRevD.75.014022
https://doi.org/10.1103/PhysRevD.75.114017
https://doi.org/10.1103/PhysRevD.76.094015
https://doi.org/10.1103/PhysRevD.76.094015
https://doi.org/10.1103/PhysRevD.85.014003
https://arXiv.org/abs/1303.1558
https://doi.org/10.1007/JHEP11(2017)142

