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It has recently been shown that two-loop kite-type diagrams can be computed analytically in terms of
iterated integrals with algebraic kernels. This result was obtained using a new integral representation for
two-loop sunset subgraphs. In this paper, we have developed a similar representation for a three-loop
banana integral in d ¼ 2 − 2ε dimensions. This answer can be generalized up to any given order in the
ε-expansion and can be calculated numerically both below and above the threshold. We also demonstrate
how this result can be used to compute more complex three-loop integrals containing the three-loop banana
as a subgraph.
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I. INTRODUCTION

Computing Feynman diagrams, in particular those with
masses is one of the most important problems in modern
quantum field theory. There are various methods for
calculating these integrals,1 the most effective of which
is the differential equations (DE) method [2–8]. The latter is
essentially based on the existence of the so-called integra-
tion by parts (IBP) relations [9–11], due to which any
integral from a given family can be represented as a linear
combination of a finite number of master integrals. The
number of master integrals is fixed and determined by
critical points of the integrand [12] in Feynman or Baikov
[13] representation.
Feynman integrals are usually expressed in terms of

special functions. The multiple polylogarithms (MPLs)
[14,15] are proved to be the most successful here. For
MPLs there are many functional dependencies and, which
is important, they can be calculated numerically with high
precision, see [16,17] and references therein. The system of
differential equations for the system of master integral can
be solved in terms of MPLs if it can be reduced to the so-
called ε-form [18,19], which exists only in certain cases.
Here we need to give a little clarification about the ε-form.

In this work, we will talk about the ε-form if the kernels of
differential equations in d log form contain only rational
arguments. Otherwise, if the arguments are algebraic, then
it may not be possible to express the solution in terms of
MPLs [20]. However, it is known that not every system of
differential equations can be reduced to the ε-form. In these
cases, MPLs are no longer sufficient. To solve such
equations, it is necessary to involve more complex func-
tions, the simplest functions beyond multiple polylogar-
ithms are the so-called elliptic polylogarithms (eMPLs)
[21–43], but wider extensions are also possible [29,44–50].
The purpose of this work is to generalize the func-

tions and methods used to calculate the two-loop sunset
graph from the work [50] to the case of the three-loop
banana graph with equal masses.2 The main element of this
technique for a two-loop sunset was the use of the Feynman
parametrization in order to combine two propagators from
three into one. Then a system of differential equations was
written for the integrand. Finally, the system of equations is
brought into ε-form and solved iteratively. In the three-loop
generalization of the technique, we use the Feynman
parameterization twice separately for two pairs of propa-
gators. This change was necessary and allows us to reduce
the system of differential equations for the obtained
integrand to the ε-form, which would not have been
possible otherwise. After that, the technique works without
any fundamental changes. We restrict ourselves to the case
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1For a detailed overview of basic methods for computing loop
Feynman integrals see [1].

2For other methods of calculating banana integrals, see
[29,41,46,51,52] and references therein, a similar elliptic integral
also occurs when calculating the ρ parameter at three loops, see
[53–55] and references therein.
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in d ¼ 2 − 2ε dimensions using the analogy with work [50]
where in this case the results were more compact. We also
demonstrate with a simple example that the obtained results
can be used to compute three-loop diagrams which contain
a three-loop banana as a subgraph.
We believe that the results of this work can be of

practical use for calculating three-loop corrections to
actually measurable processes and quantities. As an exam-
ple, we think that the developed techniques can be applied
to the analytic calculation of the three-loop Higgs-gluon
form factor, see [56–58] and references therein, and
similarly to the three-loop Higgs-photon form factor in
QCD, see [59] and references therein.
The remainder of the paper is organized as follows. In

Sec. II, we will explain our notations for iterated integrals
that we will frequently use in this paper. Further, in Sec. III
we derive a new representation for three nontrivial master
integrals from the three-loop banana family. Next, in
Sec. IV, we use this representation to compute a simple
three-loop integral containing the three-loop banana as a
subgraph. Finally, in the last Sec. V, we will draw our
conclusions.

II. THE CLASS OF FUNCTIONS

In this section, we shall review the main classes of
functions that we will use in subsequent sections.
In this paper we will frequently use functions called

MPLs [14,15]. They can be defined recursively:

Gða1;…; an; xÞ ¼
Z

x

0

Gða2;…; an; x0Þ
x0 − a1

dx0; n > 0; ð1Þ

where ai; x ∈ C, n ∈ N- is called the weight and the
recursion starts with Gð; xÞ ¼ 1.
This description is not fully complete because if all ai are

equal to zero then the integral will be divergent. Therefore,
it is necessary to add a regularization rule to the definition,
it is defined as:

Gð0;…; 0|fflfflffl{zfflfflffl}
n

; xÞ ¼ lognx
n!

; ð2Þ

MPLs are a well-known and widely used class of
functions. Among their main advantages is that they obey
the Shuffle algebra and the Hopf algebra [60], the latter
allows one to find many functional dependencies between
them. A more detailed review of MPLs including the
related Hopf algebra can be found in [61–63].
We will express the answers for master integrals in a

special class of functions similar to the one introduced in
the work [50] and called iterated integrals with algebraic
kernels. In general, the iterated integrals used in our work
will have the form:

JðΨ;ωs
1;…;ωs

n;ωx
1;…;ωx

n;ωα
1;…;ωα

m;ω
y1
1 ;…;ωy1

l ;sÞ ð3Þ

whereΨ is some 2-form in y1 and y2 integrated in the limits
y1;2 ∈ ½2;∞� the presence of this form is the only notice-
able difference from the functions presented in the work
[50] where only 1-forms took place. Next, ωs,ωx,ωα, and
ωy1 , are some 1-form in s, x, α ¼ y2=y1, and y1 respectively
and J-functions form iterated integrals in these 1-forms. In
this case, the variable x is not independent and depends on
the parameters s, y1 and α as

xðs; α; y1Þ ¼
y21ð1þ α2Þ − s

2y21α

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − y21ð1 − α2ÞÞ2 − 4y41α

2
p

2y21α
ð4Þ

Note that since s and x are not independent variables,
integrals over s variables can be easily rewritten in terms of
integrals over x variables, and actually, we have only 1-
forms in three variables x, α, and y1. The use of 1-forms in s
simply makes the results of Sec. IV more compact.
In general, iterated integrals in our results contain the

following Ψ and Λ 2-forms (Jy ¼ 4

y2
ffiffiffiffiffiffiffiffi
y2−4

p ):

Ψ�n ¼
y21Jy1Jy2dy1dy2

ðx ∓ 1Þn ; ð5Þ

Ψm
�n ¼

y21α
mJy1Jy2dy1dy2
ðx ∓ 1Þn ; ð6Þ

Λn ¼ y21α
nJy1Jy2dy1dy2 ð7Þ

and ω, ζ and η 1-forms:

ωx
a ¼

dx
x − a

; ωα
b ¼

dα
α − b

; ð8Þ

ωy1
c ¼ dy1

y1 − c
; ωs

a ¼
ds

s − a
; ð9Þ

ωs
a;b ¼

ds
ðs − aÞðx − bÞ ; ζsa;b ¼

ds
ðs − aÞðx − bÞ2 ; ð10Þ

ηsa;b ¼
ds

ðs − aÞðx − bÞ3 : ð11Þ

Where we tried to choose notations so that they, if possible,
coincide with notations from [50].
Here are some examples that explain the structure of

these functions.
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JðΨ1;ωs
a;ωx

b;ω
α
c;ω

y1
d ; sÞ ¼

Z
∞

2

Z
∞

2

y21Jy1Jy2dy1dy2
ðx − 1Þ

Z
s

0

ds0

s0 − a

Z
x

0

dx0

x0 − b

Z
α

0

dα0

α0 − c

Z
y1

0

dy01
y01 − d

; ð12Þ

JðΨ1; ζsa1;b0 ;ω
s
a2 ;ω

x
b1
;ωx

b2
;ωx

b3
; sÞ ¼

Z
∞

2

Z
∞

2

y21Jy1Jy2dy1dy2
ðx − 1Þ

Z
s

0

ds0

ðs0 − a1Þðxðs0Þ − b0Þ2
Z

s0

0

ds00

s00 − a2

×
Z

x

0

dx0

x0 − b1

Z
x0

0

dx00

x00 − b2

Z
x00

0

dx000

x000 − b3
; ð13Þ

JðΨ1;ωs
a1 ;ω

x
b1
;ωα

c1 ;ω
α
c2 ; sÞ ¼

Z
∞

2

Z
∞

2

y21Jy1Jy2dy1dy2
ðx − 1Þ

Z
s

0

ds0

s0 − a1

Z
x

0

dx0

x0 − b1

Z
α

0

dα0

α0 − c1

Z
α0

0

dα00

α00 − c2
; ð14Þ

JðΨ1;ωs
a1 ;ω

s
a2 ;ω

x
b1
;ωx

b2
;ωx

b3
; sÞ ¼

Z
∞

2

Z
∞

2

y21Jy1Jy2dy1dy2
ðx − 1Þ

Z
x

0

dx0

x0 − b1

Z
x0

0

dx00

x00 − b2

×
Z

y1

0

dy01
y01 − b1

Z
y0
1

0

dy001
y001 − b2

Z
y00
1

0

dy0001
y0001 − b3

; ð15Þ

and regularization occurs in a similar way as in the case of MPLs

JðΨm
�n;ω

x
0;…;ωx

0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
j

;ωα
0;…;ωα

0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k

;ωy1
0 ;…;ωy1

0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
l

; sÞ ¼
Z

∞

2

Z
∞

2

y21α
mJy1Jy2dy1dy2
ðx ∓ 1Þn

logjðxÞlogkðαÞloglðy1Þ
j!k!l!

; ð16Þ

It is clear from these examples that the presented
functions differ from Chen iterated integrals [64] in two
ways. First, in our definition, iterated integrations are
performed over several variables, and at least three of
them are independent. Second, in our definition, the last
two integrations are not iterated. Hence, we can conclude
that iterated integrals with algebraic kernels are a more
complex class of functions than the Chen iterated integrals.
The following considerations can serve as a motivation

for using this particular class of functions. First, it was
shown in [50] that these functions are more general than
eMPLs and can serve as a solution to more complex
integrals which cannot be solved in the eMPL class of
functions. This was done using the example of a two-loop
kite with one massless line and a two-loop kite with all
massive lines. Second, as shown in Ref. [50] solutions
expressed in terms of this class of functions can be more
compact than solutions expressed in terms of eMPLs. The
later was demonstrated using the example of a kite-type
integral with two massless lines. Of course, this statement
applies only to those cases where a solution via eMPLs is
possible.
It should also be noted that at the moment the properties

of these functions are not fully understood. In our future
work we hope to study these functions in more detail.

III. BANANA GRAPH

First let us define the following notation for the master
integrals in the elliptic banana family, see Fig. 1.

jbanða1;…; a4Þ ¼
e3εγEðm2Þa−3

2
d

ðiπd=2Þ3
Z

ddl1ddl2ddl3
Da1

1 Da2
2 Da3

3 Da4
4

; ð17Þ

D1 ¼ m2 − l23; D2 ¼ m2 − ðl2 þ l3Þ2; ð18Þ

D3 ¼ m2 − ðl1 þ l2Þ2; D4 ¼ m2 − ðl1 þ pÞ2; ð19Þ

with d ¼ 2 − 2ε, s ¼ p2=m2, a ¼ P
4
i¼1 ai and γE is the

Euler-Mascheroni constant. Further in this work, to sim-
plify the formulas, we will always assume that m ¼ 1,
bearing in mind that, if necessary, the dependence from m
can always be restored based on simple dimensional
considerations. The vector of four IBP master integrals
obtained as a result of IBP reduction [9–11] can be chosen
in the following form:

FIG. 1. Banana graph. Thick lines represent massive propa-
gators.
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IIBP ¼ fjbanð1; 1; 1; 0Þ; jbanð1; 1; 1; 1Þ;
jbanð2; 1; 1; 1Þ; jbanð2; 1; 2; 1Þg⊤; ð20Þ

a graphical representation of these master integrals can be
found in Fig. 2.
The first master integral is a simple constant and can be

expressed analytically in the following form:

jbanð1; 1; 1; 0Þ ¼ ΓðεÞ3 ð21Þ

where ΓðxÞ is the gamma function.
In order to find the other three master integrals we use

Feynman parameter trick for pairing two pairs of propa-
gators3 [50,70–72], and we introduce a new family of
integrals defined as (t̄1;2 ¼ 1 − t1;2)

jsubðb1; b2; t1; t2Þ ¼ e3εγE
Z

ddl1ddl2ddl3
ðiπd=2Þ3

1

Db1
12D

b2
34

; ð22Þ

D12 ¼ 1 − t1l23 − t̄1ðl2 þ l3Þ2; ð23Þ

D34 ¼ 1 − t2ðl1 þ l2Þ2 − t̄2ðl1 þ pÞ2; ð24Þ

where t1 and t2 are Feynman parameters which run through
the unit segment (t1; t2 ∈ ½0; 1�), for the convenience
of the reader, we will suppress the dependence on param-
eters t1 and t2 in the following and we write instead
jsubðb1; b2; t1; t2Þ ¼ jsubðb1; b2Þ. Then the three nontrivial
master integrals from (20) can be expressed by integrating
the integrals of the family (22) over these parameters, we
have

jbanðn; 1; m; 1Þ ¼ nm
Z

1

0

tn−11 dt1

Z
1

0

tm−1
2 dt2

× jsubðnþ 1; mþ 1Þ: ð25Þ

Now we will use the DE method in order to evaluate the
necessary integrals from the family (22). The vector of
three IBP master integrals can be chosen in such a way that
they can be immediately substituted into expression (25)
without any IBP reduction

IIBP ¼ fjsubð2; 2Þ; jsubð3; 2Þ; jsubð3; 3Þg⊤ ð26Þ

To evaluate these master integrals we consider their system
of differential equations with respect to the variable xwhich
is associated with the old variable s in the following way

s ¼ −
ðxy1 − y2Þðxy2 − y1Þ

x
ð27Þ

where we have introduced new notations

y1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t1ð1 − t1Þ
p ; y2 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2ð1 − t2Þ

p : ð28Þ

With the help of IBP identities the system of differential
equations with respect to the variable x can be reduced to
the ε-form4 [18,19] and we have:

dĨcanonical
dx

¼ εMĨcanonical ð29Þ

where(α ¼ y2
y1
):

M ¼ 1

x
M0 þ

1

x − 1
M1 þ

1

xþ 1
M−1

þ 1

x − α
Mα þ

1

x − 1=α
M1=α; ð30Þ

The particular expressions for coefficient matrices Mi
together with transformation matrix to canonical basis T
(IIBP ¼ TĨcanonical) can be found in the accompanying
Mathematica notebook [76]. The canonical basis (i.e.,
the T matrix) after the variable change (27) was obtained
with the help of standard Lee algorithm [19,73].
The boundary conditions for (29) at x ¼ α (s ¼ 0) can be

found by direct integration. Using the Feynman paramet-
rization we find

FIG. 2. Set of IBP master integrals for the three-loop banana family. Thick lines represent massive propagators and a dot on a line
means that the corresponding propagator is taken in the power two.

3For an example of using such a trick for nonelliptic cases see
[65–69] and references therein.

4The subsequent reduction of system of differential equations
to ε-form was performed with the use of Libra [73] package and
the IBP reduction was performed with the help of LiteRed [74,75]
package
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jsubðb1; b2Þjs¼0 ¼ y2−2ε1 α2ðb2−1þεÞ Γðb1 þ b2 þ 3ε − 3Þ
Γðb1ÞΓðb2Þ

×
Z

1

0

tb1−2þεð1 − tÞb2−2þεdt
ðtþ ð1 − tÞα2Þb1þb2−3þ3ε : ð31Þ

For our values of b1 and b2 integral (31) is convergent and
can be easily calculated in the form of a Laurent series, the
results are as follows:

jsubð2; 2Þjs¼0 ¼
y21α

2Gð0; αÞ
α2 − 1

þOðεÞ; ð32Þ

jsubð3; 2Þjs¼0 ¼
y21α

2ðα2 − 1 − 2Gð0; αÞÞ
2ðα2 − 1Þ2 þOðεÞ; ð33Þ

jsubð3; 3Þjs¼0 ¼
y21α

2ðα4 − 1 − 4α2Gð0; αÞÞ
4ðα2 − 1Þ3 þOðεÞ: ð34Þ

With the boundary conditions available the solution for all
master integrals (26) can be found recursively in the regulari-
zation parameter ε, after substituting these results into the for-
mula (25)andchangingvariables from t1, t2 toy1,y2 the results
for nontrivial banana master integrals will be as follows:

jbanð1; 1; 1; 1Þ ¼
Z

∞

2

Z
∞

2

4dy1
y21

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 − 4

p 4dy2
y22

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 − 4

p 2αxy21Gð0; xÞ
x2 − 1

þOðεÞ; ð35Þ

jbanð2; 1; 1; 1Þ ¼
Z

∞

2

Z
∞

2

4dy1
y21

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 − 4

p 4dy2
y22

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 − 4

p
�
x2y21ðx2 − 2αxþ 1ÞGð0; xÞ

ðx2 − 1Þ3 þ xy21ðαþ αx2 − 2xÞ
2ðx2 − 1Þ2

�
þOðεÞ; ð36Þ

and

jbanð2; 1; 2; 1Þ ¼
Z

∞

2

Z
∞

2

4dy1
y21

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 − 4

p 4dy2
y22

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 − 4

p ½B1
33 þ B2

33� þOðεÞ; ð37Þ

where

B1
33 ¼

x3y21ð2αþ 2αx4 − 3ðα2 þ 1Þx3 þ 8αx2 − 3ðα2 þ 1ÞxÞGð0; xÞ
ðx2 − 1Þ5 ð38Þ

B2
33 ¼

x2y21ðα2 þ ðα2 þ 1Þx4 − 12αx3 þ 10ðα2 þ 1Þx2 − 12αxþ 1Þ
4ðx2 − 1Þ4 ð39Þ

or in notations from Sec. II:

jbanð1; 1; 1; 1Þ ¼ JðΨ1
−1;ω

x
0; sÞ þ JðΨ1

1;ω
x
0; sÞ þOðεÞ; ð40Þ

jbanð2; 1; 1; 1Þ ¼ −
1

4
JðΨ−3;ωx

0; sÞ þ
3

8
JðΨ−2;ωx

0; sÞ −
1

8
JðΨ−1;ωx

0; sÞ þ
1

8
JðΨ1;ωx

0; sÞ þ
3

8
JðΨ2;ωx

0; sÞ

þ 1

4
JðΨ3;ωx

0; sÞ −
1

4
JðΨ1

−3;ω
x
0; sÞ þ

3

8
JðΨ1

−2;ω
x
0; sÞ −

3

8
JðΨ1

2;ω
x
0; sÞ −

1

4
JðΨ1

3;ω
x
0; sÞ −

1

4
JðΨ−2; sÞ

þ 1

4
JðΨ−1; sÞ −

1

4
JðΨ1; sÞ −

1

4
JðΨ2; sÞ −

1

4
JðΨ1

−2; sÞ þ
1

4
JðΨ1

−1; sÞ þ
1

4
JðΨ1

1; sÞ þ
1

4
JðΨ1

2; sÞ þOðεÞ;
ð41Þ

jbanð2; 1; 2; 1Þ ¼ 3

16
JðΨ−5;ωx

0; sÞ −
15

32
JðΨ−4;ωx

0; sÞ þ
21

64
JðΨ−3;ωx

0; sÞ −
3

128
JðΨ−2;ωx

0; sÞ

−
3

128
JðΨ−1;ωx

0; sÞ þ
3

128
JðΨ1;ωx

0; sÞ −
3

128
JðΨ2;ωx

0; sÞ −
21

64
JðΨ3;ωx

0; sÞ −
15

32
JðΨ4;ωx

0; sÞ

−
3

16
JðΨ5;ωx

0; sÞ þ
3

8
JðΨ1

−5;ω
x
0; sÞ −

15

16
JðΨ1

−4;ω
x
0; sÞ þ

23

32
JðΨ1

−3;ω
x
0; sÞ −

9

64
JðΨ1

−2;ω
x
0; sÞ
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þ 9

64
JðΨ1

2;ω
x
0; sÞ þ

23

32
JðΨ1

3;ω
x
0; sÞ þ

15

16
JðΨ1

4;ω
x
0; sÞ þ

3

8
JðΨ1

5;ω
x
0; sÞ þ

3

16
JðΨ2

−5;ω
x
0; sÞ

−
15

32
JðΨ2

−4;ω
x
0; sÞ þ

21

64
JðΨ2

−3;ω
x
0; sÞ −

3

128
JðΨ2

−2;ω
x
0; sÞ −

3

128
JðΨ2

−1;ω
x
0; sÞ þ

3

128
JðΨ2

1;ω
x
0; sÞ

−
3

128
JðΨ2

2;ω
x
0; sÞ −

21

64
JðΨ2

3;ω
x
0; sÞ −

15

32
JðΨ2

4;ω
x
0; sÞ −

3

16
JðΨ2

5;ω
x
0; sÞ þ

3

16
JðΨ−4; sÞ −

3

8
JðΨ−3; sÞ

þ 5

32
JðΨ−2; sÞ þ

1

32
JðΨ−1; sÞ −

1

32
JðΨ1; sÞ þ

5

32
JðΨ2; sÞ þ

3

8
JðΨ3; sÞ þ

3

16
JðΨ4; sÞ þ

3

8
JðΨ1

−4; sÞ

−
3

4
JðΨ1

−3; sÞ þ
3

8
JðΨ1

−2; sÞ −
3

8
JðΨ1

2; sÞ −
3

4
JðΨ1

3; sÞ −
3

8
JðΨ1

4; sÞ þ
3

16
JðΨ2

−4; sÞ −
3

8
JðΨ2

−3; sÞ

þ 5

32
JðΨ2

−2; sÞ þ
1

32
JðΨ2

−1; sÞ −
1

32
JðΨ2

1; sÞ þ
5

32
JðΨ2

2; sÞ þ
3

8
JðΨ2

3; sÞ þ
3

16
JðΨ2

4; sÞ þOðεÞ: ð42Þ

Results for master integrals (20) up to Oðε2Þ corrections
can be found in the accompanying Mathematica file [76].
Integrals in Eqs. (35), (36) and (37) as well as higher ε

corrections can be taken numerically, for this it is conven-
ient to change the integration variables y1;2 → iy1;2 and
change the contour of integration to y1;2 ∈ ½2i;−∞�,
see Fig. 3.
After this trick, all double integrals can be calculated

using standard methods, one can simply use the NIntegrate
function that is implemented in the Wolfram Mathematica
software. To numerically calculate the MPLs that are
present in the integrand, we used the handyG package
[17]; for greater accuracy, one can also use the GiNaC

package [16,77]. We want to note that the numerical
calculation goes much faster than with the usage of the
sector decomposition method [78–84] as implemented in
the FIESTA package [85], for example, the gain in speed
reaches almost two orders of magnitude in the calculation
of ε0 corrections.5 For higher ε-corrections, the speed gain
is not so significant, but it also takes place. The example of
numerical integration and their comparison with the sector
decomposition method for the ε0 corrections and ε1

correction for jbanð1; 1; 1; 1Þ integral can be found in
Figs. 4 and 5. Similar pictures can be drawn for higher
ε-corrections, but they would greatly clutter up the text.
At the end of this chapter, we would like to give a more

detailed discussion of our results and compare them with
other solutions, in particular with the results obtained in
[41]. In particular, in [41], there are two fundamental points
to which we would like to draw attention. First, the
technique presented in [41] allows one to obtain solutions
for the integrals in the banana family only up to the order ε0

in the regularization parameter. To obtain higher correc-
tions with respect to ε an additional nontrivial work is
required, if at all possible within the framework of this
technique. Nevertheless, for the master integrals, we would

like to have a technique that allows us to get an answer to
any given order in ε. This is important because we do not
know in advance how these master integrals will be
included in the expressions for the final measurable
quantities. Second, the results obtained in Ref. [41] are
applicable only to a three-loop banana and we do not see a
way, at least obvious one, how these results can be directly
used to calculate more complex three-loop integrals con-
taining a three-loop banana as a subgraph. And such
integrals should undoubtedly appear in more complex
practical calculations. Therefore, we would like to be able
to use solutions for banana subgraphs for calculation of
more complex integrals. This was done, for example, with a
two-loop sunset graph in [50]. The method we have
developed in this article enabled us to overcome the above
difficulties. First of all, results (40), (41), and (42) are
obtained by solving a system of differential equations (29)
which are in canonical form in the sense as understood in
[18,19]. This means that we can obtain solutions up to any
predetermined order in the regularization parameter ε
simply by recursively solving Eq. (29). This does not

FIG. 3. Change of the integration contour, green—old integra-
tion contour, red—new integration contour. Note, that we do not
just replace y1;2 → iy1;2, we also additionally deform the inte-
gration contour itself so that the integration goes to −∞ instead of
−i∞, such deformation is possible since the integration contour
lying entirely at infinity makes a zero contribution to the integral.

5These results may vary depending on the characteristics of the
computer.
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require the introduction of any new methods and is quite
simple computationally. The only thing we need is the
initial conditions, but they can be easily obtained from (31)
to any order in ε. Further, results (40), (41), and (42) as well
as all higher ε-corrections have a special structure. The
latter is related to the fact that the kinematic variable s is
contained only at the upper limit of integration and in the Ψ
2-form.6 This property allows us to use the obtained results
to calculate more complex three-loop integrals. An example
of such calculation will be given in the next section. It
should also be noted that our results, at least for the
integrals jbanð1; 1; 1; 1Þ and jbanð2; 1; 1; 1Þ, are written in a
relatively compact form. The latter can greatly help in
understanding of the results.

Unfortunately, we cannot say that our results are perfect.
The main advantage of [41], in our opinion, is the fact that
these results are presented in the form of iterated integrals of
modular forms which are a well-established class of func-
tions [36,86–88]. Iterated integrals ofmodular forms thatwas
used in [41] also can be rewritten in the form of eMPls. The
latter are also a well-studied class of functions [36–39]. In
contrast, the functions that was used in our work were pre-
viously presented only in [50] and require additional study.

IV. TRIANGLE WITH TWO MASSIVE LOOPS

In the previous section, we obtained an integral repre-
sentation for the three-loop banana family; in this section,
we will show how this representation can be used to
compute more complex Feynman integrals. For this pur-
pose, we will use the family associated with the triangle
with two massive loops defined as (see Fig. 6):

FIG. 4. Plot of the ε0 correction to the jbanð1; 1; 1; 1Þ integral on the left and ε0 correction to the jbanð2; 1; 1; 1Þ integral on the right. The
solid points represent values computed numerically with the FIESTA package [85]. Here, for convenience, we have introduced shortened
notations jbanð1; 1; 1; 1Þ ¼ j01 þ j11εþOðε2Þ and jbanð2; 1; 1; 1Þ ¼ j02 þOðεÞ.

FIG. 5. Plot of the ε0 correction to the jbanð2; 1; 2; 1Þ integral on the left and ε1 correction to the jbanð1; 1; 1; 1Þ integral on the right. The
solid points represent values computed numerically with the FIESTA package [85]. Here, for convenience, we have introduced shortened
notations jbanð1; 1; 1; 1Þ ¼ j01 þ j11εþOðε2Þ and jbanð2; 1; 2; 1Þ ¼ j03 þOðεÞ.

6The kinematic variable s is hidden in the variable x through
relation (27) and does not appear in any other form in the results
(40), (41), and (42) as well as in higher ε corrections.
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jtriða1;…;a5Þ ¼
e3εγEðm2Þa−3

2
d

ðiπd=2Þ3
Z

ddl1ddl2ddl3
Da1

1 Da2
2 Da3

3 Da4
4 Da5

5

ð43Þ

D1 ¼ m2 − l23; D2 ¼ m2 − ðl2 þ l3Þ2; ð44Þ

D3 ¼ m2 − ðl1 þ l2Þ2; D4 ¼ m2 − ðl1 þ pÞ2; ð45Þ

D5 ¼ −l21; ð46Þ

with d ¼ 4 − 2ε, s ¼ p2=m2, a ¼ P
5
i¼1 ai and γE is the

Euler-Mascheroni constant. Further, we will set m ¼ 1
exploiting the same considerations as in the previous
section. The vector of seven IBP master integrals obtained
as a result of IBP reduction [9–11] together with dimension
recurrence relations [89] can be chosen in the following
form:

IIBP ¼ fjtrið0; 2; 2; 2; 0Þ; jtrið0; 2; 2; 2; 1Þ; jtrið1; 1; 1; 0; 1Þ;
jbanð1; 1; 1; 1Þ; jbanð2; 1; 1; 1Þ;
jbanð2; 1; 2; 1Þ; jtrið2; 2; 1; 1; 1Þg⊤; ð47Þ

a graphical representation of these master integrals can be
found in Fig. 7. Note that we are using the expressions for

the three-loop banana graph in two dimensions as basis
elements for the triangle with two massive loops family in
four dimensions. This can be done because the master
integrals in two and four dimensions are not independent
but are related to each other by linear dependencies. These
linear dependencies are called dimension recurrence rela-
tions [89]. In other words, we choose three linear combi-
nations of four-dimensional integrals as three IBP master
integrals so that these combinations are exactly equal to
three nontrivial two-dimensional master integrals from the
three-loop banana family.
The first and third master integrals are simple constants

and can be written as

jtrið0; 2; 2; 2; 0Þ ¼ ΓðεÞ3 ð48Þ

and

jtrið1; 1; 1; 0; 1Þ ¼ 1

ε3
þ 15

4ε2
þ 65þ 2π2

8ε

þ
�
135

16
− ζ3 þ

45

8
ζ2 þ

81

4
S2

�
þOðεÞ

ð49Þ

where S2 ¼ 4

9
ffiffi
3

p Cl2ðπ3Þ, Cl2ðxÞ ¼ ImðLi2ðeixÞÞ and Li2ðxÞ
is the dilogarithm. And the integrals jbanð1; 1; 1; 1Þ;
jbanð2; 1; 1; 1Þ, and jbanð2; 1; 2; 1Þ were found in the pre-
vious section.
To evaluate the remaining master integrals we consider

their system of differential equations with respect to p2 ¼ s.
Using balance transformations of [19] via the package [73]
the latter can be reduced to the following Aþ Bε form:

dĨcanonical
ds

¼ AĨcanonical ð50Þ

FIG. 6. Triangle with two massive loops. Dashed lines denote
massless propagators and thick lines represent massive propa-
gators.

FIG. 7. Set of IBP master integrals for the family (43). Dashed lines denote massless propagators and thick lines represent massive
propagators. A dot on a line means that the corresponding propagator is taken in the power two.
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with

A ¼ 1

s
A0 þ

1

s − 1
A1 þ

1

s − 4
A4 þ

1

s − 16
A16; ð51Þ

and

A0 ¼

0
BBBBBBBBBBBB@

0 0 0 0 0 0 0

0 ϵ 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −3ϵ− 1 4ð4ϵþ 1Þ 0 0

0 0 0 1
4
ð−3ϵ− 1Þ 4ϵþ 1 0 0

ϵ
8

0 0 − 3
32
ð2ϵþ 1Þ 5

8
ð2ϵþ 1Þ −ϵ− 1 0

0 0 0 5
12
ð4ϵþ 1Þ − 5

3
ð4ϵþ 1Þ 0 ϵ

1
CCCCCCCCCCCCA

;

ð52Þ

A1 ¼

0
BBBBBBBBBB@

0 0 0 0 0 0 0

−ϵ −2ϵ 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1
6
ð−11ϵ− 2Þ 5

3
ð4ϵþ 1Þ 0 −2ϵ

1
CCCCCCCCCCA
;

ð53Þ

A4 ¼

0
BBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1
4
ð3ϵþ 1Þ −2ð3ϵþ 1Þ 3ð3ϵþ 1Þ 0

0 0 0 1
8
ð2ϵþ 1Þ −2ϵ− 1 3

2
ð2ϵþ 1Þ 0

0 0 0 0 0 0 0

1
CCCCCCCCCCCCA

;

ð54Þ

A16¼

0
BBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

− ϵ
8
0 0 1

32
ð−2ϵ−1Þ 3

8
ð2ϵþ1Þ −3

2
ð2ϵþ1Þ 0

0 0 0 0 0 0 0

1
CCCCCCCCCCCCA

:

ð55Þ
And the elements of the canonical basis Ĩcanonical¼
fI1;…;I7g⊤ are related to the elements of the IBP basis
(7) as

I1 ¼ ε2jtrið0; 2; 2; 2; 0Þ; ð56Þ

I2 ¼ sε2jtrið0; 2; 2; 2; 1Þ; ð57Þ

I3 ¼ jtrið1; 1; 1; 0; 1Þ; ð58Þ

I4 ¼ ð1þ 3εÞð1þ 4εÞjbanð1; 1; 1; 1Þ; ð59Þ

I5 ¼ ð1þ 3εÞjbanð2; 1; 1; 1Þ; ð60Þ
I6 ¼ jbanð2; 1; 2; 1Þ ð61Þ

and

I7 ¼
ð1þ 3εÞð1þ 4εÞ

s − 1

�
5

12
jbanð1; 1; 1; 1Þ

− sð1 − 2εÞjtrið2; 2; 1; 1; 1Þ
�
: ð62Þ

Having obtained the differential system in this form it is
easy to see, that the solution for required master integrals
jtrið0; 2; 2; 2; 1Þ and jtrið2; 2; 1; 1; 1Þ can be obtained recur-
sively in the regularization parameter ε similarly to what one
typically does for differential systems reduced to ε-form. Of
course, of greatest interest is the solution for the integral
jtrið2; 2; 1; 1; 1Þwhich can bewritten through the J-functions
from the Appendix

jtrið2; 2; 1; 1; 1Þ ¼ s − 1

12s

�
−5JðΛ0; ζs0;−1; sÞ − 5JðΛ0; ζs0;1; sÞ þ 5JðΛ0; ζs1;−1; sÞ þ 5JðΛ0; ζs1;1; sÞ

− 5JðΛ1; ζs0;−1; sÞ þ 5JðΛ1; ζs0;1; sÞ þ 5JðΛ1; ζs1;−1; sÞ − 5JðΛ1; ζs1;1; sÞ þ 5JðΛ0;ωs
0;−1; sÞ

− 5JðΛ0;ωs
0;1; sÞ − 5JðΛ0;ωs

1;−1; sÞ þ 5JðΛ0;ωs
1;1; sÞ þ 5JðΛ1;ωs

0;−1; sÞ þ 5JðΛ1;ωs
0;1; sÞ

− 5JðΛ1;ωs
1;−1; sÞ − 5JðΛ1;ωs

1;1; sÞ þ
15

2
JðΛ0; ζs0;−1;ω

x
0; sÞ þ

15

2
JðΛ0; ζs0;1;ω

x
0; sÞ

−
15

2
JðΛ0; ζs1;−1;ω

x
0; sÞ −

15

2
JðΛ0; ζs1;1;ω

x
0; sÞ þ

15

2
JðΛ1; ζs0;−1;ω

x
0; sÞ −

15

2
JðΛ1; ζs0;1;ω

x
0; sÞ

INTEGRAL REPRESENTATION FOR THREE-LOOP BANANA … PHYS. REV. D 104, 076017 (2021)

076017-9



−
15

2
JðΛ1; ζs1;−1;ω

x
0; sÞ þ

15

2
JðΛ1; ζs1;1;ω

x
0; sÞ − 5JðΛ0; ηs0;−1;ω

x
0; sÞ þ 5JðΛ0; ηs0;1;ω

x
0; sÞ

þ 5JðΛ0; ηs1;−1;ω
x
0; sÞ − 5JðΛ0; ηs1;1;ω

x
0; sÞ − 5JðΛ1; ηs0;−1;ω

x
0; sÞ − 5JðΛ1; ηs0;1;ω

x
0; sÞ

þ 5JðΛ1; ηs1;−1;ω
x
0; sÞ þ 5JðΛ1; ηs1;1;ω

x
0; sÞ −

5

2
JðΛ0;ωs

0;−1;ω
x
0; sÞ þ

5

2
JðΛ0;ωs

0;1;ω
x
0; sÞ

þ 5

2
JðΛ0;ωs

1;−1;ω
x
0; sÞ −

5

2
JðΛ0;ωs

1;1;ω
x
0; sÞ − 5JðΛ1;ωs

0;−1;ω
x
0; sÞ − 5JðΛ1;ωs

0;1;ω
x
0; sÞ

þ 4JðΛ1;ωs
1;−1;ω

x
0; sÞ þ 4JðΛ1;ωs

1;1;ω
x
0; sÞ þ

5JðΨ1
−1;ω

x
0; sÞ

s − 1
þ 5JðΨ1

1;ω
x
0; sÞ

s − 1

�
þOðεÞ ð63Þ

For reference, we also present the result for the second
master integral, which can be expressed in terms of usual
MPLs:

jtrið0; 2; 2; 2; 1Þ ¼ −
Gð1; sÞ
sε2

þ 2Gð1; 1; sÞ −Gð0; 1; sÞ
sε

−
π2Gð1; sÞ

4s
−
Gð0; 0; 1; sÞ

s

þ 2Gð0; 1; 1; sÞ
s

þ 2Gð1; 0; 1; sÞ
s

−
4Gð1; 1; 1; sÞ

s
þOðεÞ ð64Þ

Note, that with the use of the presented procedure we can
have as many terms in ε expansion of considered master
integrals as required.
Unfortunately, the method of numerical evaluation of

these functions that was applied in previous section does
not work for the case of a triangle with two massive loops.
The reason for this is the appearance of additional singu-
larities, for example, along the line y1 ¼ y2 and the similar
ones. Nevertheless, we were able to verify the results
numerically below the threshold using the CUBA package
[90]. In the future, we hope to develop a methodology for
calculating these functions similar to the one for conven-
tional MPLs [16].
We believe that the technique presented in this chapter

can be useful for calculating three-loop integrals that
contain a three-loop banana integral as a subgraph. This
technique definitely works for the integrals discussed in
this paper. As for more complex cases, this issue requires
additional study.

V. CONCLUSION

In this paper, we have obtained a new representation for
the three-loop equal-mass banana graph in d ¼ 2 − 2ε
dimensions. These results are written in terms of new
functions defined as iterated integrals with algebraic
kernels. These functions have already been used earlier
in [50] to compute the two-loop sunset diagram as well as
the massive kite diagram. Our work can be seen as a
straightforward generalization of techniques from [50] to
the three-loop case. The obtained representation for the
three-loop banana graph can be used to calculate some
more complex three-loop graphs, we have illustrated the
last statement by using the example of the triangle with two
massive loops. In our work, we also carried out a
comparative analysis of our results with those of [41]
and showed that our results have both advantages and
disadvantages over these results. The analytical results for
the three-loop banana can be numerically calculated with
good accuracy both above and below the threshold and are
in agreement with the sector decomposition method [78–
84] as implemented in [85]. The result for a triangle with
two massive loops was verified numerically only below the
threshold and its analytical continuation above it will be the
subject of our future research. All main results of this work
can be found in digital form in the supplemental materi-
als [76].
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