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Lattice results on sigma terms and global analysis of parton momentum fractions are used to give the
quark and glue fractions of the proton mass and rest energy. The mass decomposition in terms of the trace
of the energy-momentum tensor is renormalization group invariant. The decomposition of the rest energy
from the Hamiltonian and the gravitational form factors are scheme and scale dependent. The separation of
the energy-momentum tensor into the traceless part, which is composed of the quark and glue parton
momentum fractions, and the trace part has the minimum scheme dependence. We identify the glue part of
the trace anomaly hHβi as the vacuum energy from the glue condensate in the vacuum. From the metric
term of the gravitational form factors, which is the stress part of the stress-energy-momentum tensor, we
find that the trace part of the rest energy, dominated by hHβi, gives a constant restoring pressure that
balances that from the traceless part of the Hamiltonian to confine the hadron, much like the cosmological
constant Einstein introduced for a static universe. From a lattice calculation of hHβi in the charmonium, we
deduce the associated string tension, which turns out to be in good agreement with that from a Cornell
potential, which fits the charmonium spectrum.

DOI: 10.1103/PhysRevD.104.076010

I. INTRODUCTION

In this work, we consider the decompositions of the
proton mass and rest energy into their respective quark and
glue components and will use lattice results and momentum
factions from a global analysis to provide numerical results
for each component. Even though the mass and rest energy
are equal in Einstein’s equation, i.e., E0 ¼ mc2, many
properties associated with the mass and energy are not the
same. For example, the mass is a Lorentz scalar while the
energy is the time component of the 4-momentum vector.
In the example of eþe− annihilation to two photons
eþe− → γγ, the mass of the two photons from the rest
energy is 2me, not the sum of the two photon mass [1,2].
This shows that, while momentum and energy have
additivity properties, mass does not. When there is mass
there is energy but not vice versa. For nonrelativistic
particles, mass appears in Newtonian dynamics and gravi-
tational interaction. In general relatively, however, the
gravitational field is coupled to the energy-momentum
tensor that has 10 components.1

In the present work, we shall make a distinction between
themass and rest energy in the context of separating the quark
and glue components in the proton or other hadrons. As we
shall see in the following text, the mass can be obtained from
the trace of the energy-momentum tensor (EMT). However,
the fraction of each component, although renormalization
group invariant, needs to be defined in the rest frame. On the
other hand, the decomposition of the proton rest energy, be it
through the Hamiltonian or the forward matrix elements of
the gravitational form factors, is scheme and scale dependent.
We shall evaluate the matrix elements associated with the
operators to examine the physical meaning of them and,
moreover, check if they are accessible experimentally and/or
through lattice calculations.
The paper is organized as follows. In Sec. II, we will

discuss the proton mass decomposition via the trace of the
energy-momentum tensor and use lattice QCD calculation
of the sigma terms for quarks with different flavors to find
the fractional contribution for each flavor as well as the trace
anomaly. In Secs. III and IV, we will describe the decom-
position of the rest energy in terms of the Hamiltonian and
the forward matrix elements of the gravitational form
factors. They are related to the quark and glue momentum
fractions of the parton distribution functions which are
obtained from the global analysis of experiments. As such,
they are scale dependent. There is quite a bit of interest lately
in the issue on how to understand the physical meaning of
each component in various ways of apportioning the proton
mass. The first workwas done byX. Ji who has decomposed
the hadron rest energy from the Hamiltonian in terms of the
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1The above discussion of mass and energy can be found in L.
Okun [1,2].
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quark sigma terms, the quark and glue energies, and the
anomaly [3,4]. Lattice calculations based on this decom-
position have been carried out for the mesons [5] and the
nucleon [6]. Also, combined lattice and experimental results
on the momentum fractions have been used to evaluate the
quark and glue components of the nucleon [7]. Examining
the rest energy from the gravitational form factors, C. Lorcé
has interpreted the quark and glue parts in terms of the
internal energies and pressure-volume work [8,9]. Y. Hatta,
A. Rajan, and K. Tanaka have explored the renormalization
group property of the form factor C̄ and performed pertur-
bative calculation of the quark and glue parts of the trace of
the energy-momentum tensor [10]. The scheme dependence
of the quark and glue parts of the mass and rest energy has
been further examined by A. Metz, B. Pasquini, and S.
Rodini [11]. Each of the above-mentioned work has some
different expressions and interpretations in the decomposi-
tion, which we will attempt to address and clarify. We shall
discuss the significance of each term in the gravitational
form factors in terms of thermodynamics. In Sec. V, we
discuss the role of the scalar trace and tensor traceless parts
of the rest energy in the metric term (ημν) of the gravitational
form factor, which is the stress in the energy-momentum
tensor. Comparing them in the energy and pressure equa-
tions, we find that the scalar part of the energy, dominated by
the glue part of the trace anomaly hHβi, has an energy
density, which is a constant so that it gives rise to a constant
restoring pressure to balance those from the quark and
gluons and, thus, confines the proton. This shows that it is
the hadron cosmological constant. As a support of this idea,
we show that the string tension deduced from a lattice
calculation of hHβi in the charmonium agrees well with that
from a Cornell potential for the charmonium spectrum
calculation. A summary is presented in Sec. VI.

II. MASS DECOMPOSITION

The decomposition of proton mass and rest energy are all
based on the EMT. The Belinfante form of the EMT is a
symmetric rank two tensor

Tμν ¼ Tμν
q þ Tμν

g : ð1Þ

The bare operators are

Tμν
q ¼ i

4

X
f

ψ̄fγ
fμ
D
↔νg

ψf

¼ i
4

X
f

ψ̄fðD⃗μγν þ D⃗νγμ − D⃖μγν − D⃖νγμÞψf; ð2Þ

Tμν
g ¼ −GμαGν

α þ
1

4
gμνGαβGαβ; ð3Þ

and

D
↔μ ¼ ∂⃗μ − ∂⃖μ − 2igAμ

aTa; ð4Þ

where Ta is the SUð3Þ color matrix.
It is natural to consider the mass decomposition in terms

of the trace of the EMT, since the matrix element of the
trace gives the nucleon mass and is frame independent

hPjTμ
μjPi ¼ 2M2: ð5Þ

On the other hand, the forward matrix element of the EMT
component is

hPjTμνjPi ¼ 2PμPν: ð6Þ

One can consider the rest energy from the T00 component.
As far as the EMT trace is concerned, the classical trace

is zero when the quark mass is neglected. However, this
conformal symmetry is broken by a trace anomaly in QCD
due to quantum corrections [12–15],

Tμ
μ ¼

X
f

mfð1þ γmðgÞÞψ̄fψf þ
βðgÞ
2g

GαβGαβ; ð7Þ

where βðgÞ is the β function and γm is the mass anomalous
dimension. In dimensional regularization, the quark con-
densate comes from the quark part Tμ

qμ in Eq. (2) and the
anomaly terms with γm and β are from Tμ

gμ, i.e.,

Tμ
qμ ¼

X
f

mfψ̄fψf; ð8Þ

Tμ
aμ ¼

X
f

mfγmðgÞψ̄fψf þ
βðgÞ
2g

GαβGαβ: ð9Þ

It is pointed out that the above separation into quark and
glue parts of the trace is scheme dependent and they can
mix under renromalization giving rise to scheme depend-
ence [10,11,16]. However, since the EMT is conserved, i.e.,

∂νTμν ¼ 0; ð10Þ

the renormalized ðTμνÞR is the same as the original one in
Eqs. (1)–(3).

ðTμνÞR ¼ Tμν: ð11Þ

Therefore, the renormalized matrix elements of the trace are
represented as

hðTμ
μÞRi ¼

X
f

hPjðmfψ̄fψfÞRjPi þ hPj βðgRÞ
2gR

ðGαβGαβÞR

þ γmðgRÞ
X
f

ðmfψ̄fψfÞRjPi ¼ 2M2; ð12Þ
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where h…i ¼ hPj…jPi. As long as one does not take the
renormalized Tμ

q μ and Tμ
a μ in Eqs. (8) and (9) as separate

quark and glue contributions, but considers the renormal-
ized hðTμ

μÞRi as a whole, the expression in Eq. (12) is
scheme independent and renormalization group invariant.
However, the matrix element is proportional to M2, not M
itself. This raised the question and ambiguity about its
proper normalization [9–11,17,18]. The usual definition of

an expectation value
h
R

d3x⃗Tμ
μðrÞi

hPjPi ¼ M2

P0 depends on the frame,

since hPjPi ¼ ð2πÞ32P0δ3ð0Þ. One exception is when
all the components are in the rest frame. In this case,
h
R

d3x⃗Tμ
μðrÞi

hPjPi jP⃗¼0
¼ M. In a moving frame, one should take

the integral
R
d3x⃗γ to be over the proper volume so that

h
R

d3x⃗γTμ
μðrÞi

hPjPi ¼ M, where γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2=c2

p .2 This shows that

mass is frame independent.
In this work, we shall define the fractional contribution

of each term in Eq. (12)

fNf ¼ hPj R d3x⃗mfψ̄fψfjPi
MhPjPi

����
p⃗¼0

; ð13Þ

fNa ¼
hPj R d3x⃗½βðgRÞ

2gR
ðGαβGαβÞR þ γmðgRÞ

P
fðmfψ̄fψfÞR�jPi

MhPjPi
����
p⃗¼0

; ð14Þ

where the quark mass times the quark condensate is know
as the sigma term and the fraction fNf is thus the mass
fraction of the sigma term

σπN ¼ mu þmd

2
hPjūuþ d̄djPiP⃗¼0

=2M;

fNπN ¼ fNu þ fNd ¼ σπN
M

; ð15Þ

σf¼ðs;c;b;tÞ ¼ mfhPjψ̄fψfjPiP⃗¼0
=2M;

fNf¼ðs;c;b;tÞ ¼
σf¼ðs;c;b;tÞ

M
: ð16Þ

The nucleon sigma terms have been calculated on the
lattice and they are tabulated in FLAG [19]. We shall use
the results from the overlap fermion [20] that has exact
chiral symmetry on the lattice à la Gingparg-Wilson
relation [21]. In this calculation [22], several lattice
ensembles with different lattice spacings and quark masses
with one lattice at physical pion mass are used to address
the systematic errors in the continuum and infinite volume
extrapolations at the physical pion point. For QCD at
hadronic scale ∼1 GeV, the heavy quarks are integrated out
so that they are reflected in the β function. In Table I, we
give fNπN and fNs for the (2þ 1)-flavor case. The trace
anomaly contribution fNa is obtained from subtracting theP

f f
N
f from unity. fNa can in principle be calculated on the

lattice which involves more elaborate renormalization [23]
and will have larger errors than that obtained here from the
mass sum rule. As we see from Table I and Fig. 1(a) that
the sigma terms contribute only ∼9% to the nucleon mass.
The rest comes from the trace anomaly.

When one considers QCD as part of the standard model
at the weak scale, the Higgs and heavy quarks (c, b, t) are all
involved as relevant operators and can appear in external
states. This is relevant to high energy processes such as DIS
and high energy hadron collisions. If the dark matter, such
as neutrilino, couples to the Higgs, then the heavy quark
sigma terms will contribute to the scattering cross section of
the dark matter on nucleus [25]. It was pointed out [26] that,
to the leading order in the heavy quark expansion, the
matrix element mQhPjQ̄QjPi is related to the glue con-
densate in the nucleon,

σQ ≡mQhPjQ̄QjPimQ → ∞�����! −
1

3

�
αs
4π

�
hPjG2jPi: ð17Þ

This is precisely the nf term in the leading αs=4π

expansion [27,28] of βðgÞ
2g ¼ − β0

2
ðαs
4πÞ − β1

2
ðαs
4πÞ2 þ…, where

β0 ¼ ð11 − 2
3
nfÞ, except with a negative sign. This shows

that for nf heavy enough quarks, the introduction of their
sigma terms can trade with the nf term in β0, the leading
term in βðgÞ=2g. To study the quark mass dependence, a
lattice calculation with the overlap fermion has been carried
out [24]. It is found that the sigma terms for quark masses
heavier that ∼1=2 of the charm mass are the same within
errors. We take this finding to mean that the sigma terms for
the charm, beauty, and top quarks are the same. For the
charm, it is found [24] that fNc ¼ 0.094ð31Þ, which is taken
to be the same for fNb and fNt . The sigma terms for the
heavy quarks are listed in Table I and the pie chart for the
quark sigma terms for all six flavors and the corresponding
trace anomaly term is given in Fig. 1(b). Even though the
heavy quark sigma terms are listed in Table I and plotted in
Fig. 1(b), it should not be misconstrued to imply that they
are the total heavy quark contributions to the proton mass.2Thanks to C. Lorce for bringing about this point.
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As explained above, the heavy quarks also contribute
negatively through the β function with nf flavor
[cf. Eq. (17)] so that the net contribution of a heavy quark
with mass MH is Oð1=mHÞ, in accordance with the decou-
pling theorem [29,30].

III. REST ENERGY FROM HAMILTONIAN

We shall consider the rest energy from the T00 compo-
nent of the EMT matrix elements at rest. There are several
ways to examine the decomposition into quark and glue
contributions. The decomposition of the proton rest energy
with the Hamiltonian was first considered by X. Ji [3,4].
Since the EMT in the Belinfante form is a symmetric rank
two tensor, they can be separated into the traceless and trace
parts. They are in different representations of the Lorentz
group. The traceless and trace parts are in the irreducible
(1, 1) and (0, 0) representations, respectively. Hence, they
do not mix. The renormalized EMT is separated as

ðTμνÞR ¼ ðT̄μνÞR þ ðT̂μνÞR; ð18Þ

where ðT̂μνÞR ¼ 1
4
ημνTρ

ρ. So far, this separation is scale and
scheme independent. T̄μν can be further split into the quark
and glue parts. In this case, the Hamiltonian, being the
spatial integral of T00, i.e., H ¼ R

d3x⃗T00ðxÞ, can be
written as

H ¼ HqðμÞ þHgðμÞ þHtr; ð19Þ

where

HqðμÞ ¼
Z

d3x⃗

�
i
4

X
f

ψ̄fγ
f0D

↔0g
ψf −

1

4
Tμ
qμ

�
R
; ð20Þ

HgðμÞ ¼
Z

d3x⃗
1

2
ðB2 þ E2ÞR; ð21Þ

Htr ¼
Z

d3x⃗
1

4
ðTμ

μÞR: ð22Þ

Here, the subscript R indicates it is renormalized and mixed
if needed. For example, the separation ofHq andHg from the
traceless T̄μν entails operator mixing besides renormaliza-
tion and the scale dependence is introduced. These nucleon
matrix elements can be extracted from experiments and
lattice calculations at the scale μ. HqðμÞ is the quark mass
and energy operator andHgðμÞ corresponds to the glue field
energy operator. Their matrix elements are related to the
quark and glue momentum fractions

hHqðμÞi ¼
3

4

X
f

hxifðμÞM; ð23Þ

hHgðμÞi ¼
3

4
hxigðμÞM; ð24Þ

hHtri ¼
1

4
M; ð25Þ

TABLE I. Decomposition of proton mass in terms of the quark sigma terms of different flavors and the trace anomaly. They are given
as the percentage fractions of the proton mass. The sigma terms are obtained from lattice calculations [22,24].

nf fNπN fNs fNc fNb fNt fNqtotal fNa

2þ 1 4.9(8) 4.3(1.3) … … … 9.2(1.5) 90.8(1.5)
2þ 1þ 1þ 1þ 1 4.9(8) 4.3(1.3) 9.4(3.1) 9.4(3.1) 9.4(3.1) 37.4(5.6) 62.6(5.6)

(a) (b)

FIG. 1. Proton mass decomposition in terms of quark sigma terms of different flavors and the trace anomaly. They are plotted as the
percentage fractions of the proton mass. The sigma terms are obtained from lattice calculations [22,24]. (a) is for the 2þ 1 flavor case at
the hadron scale ∼1 GeV and (b) for the case including the charm, bottom, and top sigma terms.
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where hxifðμÞ and hxigðμÞ are the momentum fractions for
the quark with flavor f and the glue from DIS or Drell-Yan
experiments at the scale μ and they satisfy momentum
conservation, i.e.,

P
fhxifðμÞ þ hxigðμÞ ¼ 1. This decom-

position gives a sum rule for the nucleon rest energy

E0 ¼ M ¼ hHqðμÞi þ hHgðμÞi þ hHtri; ð26Þ

Here, we have defined hH…i ¼ hPjH…jPi=hPjPi at P⃗ ¼ 0.
This is the simplest and well-defined separation of the rest
energy from the Hamiltonian—each term is related to
experimental and/or lattice observables, with the necessary
scale dependence in the MS scheme and there is no further
scheme dependence for the trace term. We shall use hxifðμÞ
and hxigðμÞ from CT18 global analysis of the PDFs [31] for
the rest energy decomposition. They are listed in Table II for
μ ¼ 2 and 250 GeV. As can be seen in Table II, the
momentum fractions of the u and d partons, which are
mostly due to the valence contributions, are shifted to those
of the sea-quark and glue partons as the scale μ increases
from2 to 250GeV, the electroweak scale.We shall define the
fractions

fHf ¼ hHqi=M ¼ 3

4
hxifðμÞ; ð27Þ

fHg ¼hHgi=M ¼ 3

4
hxigðμÞ; ð28Þ

fHtr ¼hHtri=M ¼ 1

4
; ð29Þ

and plot them in Fig. 2(a) for μ ¼ 2 GeV and Fig. 2(b) for
μ ¼ 250 GeV. We note that fHtr can be further decomposed
as in Eqs. (13) and (14). It is shown that this separation can
have a Lorentz-invariant interpretation [8,17,32].
There are suggestions to separate Htr into the sigma

terms and the trace anomaly [3,4,11] so that the
Hamiltonian is

H ¼ HqðμÞ þHgðμÞ þ
1

4
Hm þ 1

4
Ha; ð30Þ

where

Hm ¼
Z

d3x⃗
X
f

mfψ̄fψf; ð31Þ

Ha ¼
Z

d3x⃗

�X
f

mfγmðgÞψ̄fψf þ
βðgÞ
2g

GαβGαβ

�
: ð32Þ

However, it was pointed out that the separation of Htr
introduces a scheme dependence [10,11,16] and the sep-
aration suggested here amounts to taking a specific D2
scheme [11]. Nevertheless, this is a physically motivated
separation in the sense that Hm and Ha are each scale
invariant and they can be determined from lattice

(a) (b)

FIG. 2. Proton rest energy in terms of the quark mass-energy, the glue field energy and the trace of the EMTwhich is a quarter of the
proton mass. They are given as the percentage fractions of the proton mass. The traceless parts of the EMT are related to the quark and
glue momentum fractions on the light front and they are given from the CT18 global analysis of DIS and Drell-Yan experiments: (a) is
for the decomposition at μ ¼ 2 GeV (b) for μ ¼ 250 GeV.

TABLE II. The quark and glue momentum fractions hxifðμÞ and hxigðμÞ from CT18 global analysis of the PDFs [31] are tabulated for
μ ¼ 2 GeV in the second row and μ ¼ 250 GeV in the third row in the MS scheme [33]. They are given as percentages of the total
proton momentum.

u d s c b t qtotal glue

hxif;g (2 GeV) 35.0(7) 19.4(7) 3.3(1.5) 1.1(4) 0 0 58.7(1.5) 41.3(1.4)
hxif;g (250 GeV) 24.5(4) 15.2(4) 5.6 (9) 4.3(9) 2.9(4) 0 52.5(1.3) 47.5(5)
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calculations as we alluded to in Sec. II. It has also been
suggested [3,4] to further separate the Hq þ 1

4
Hm into Hm

and HE by applying the equation of motion,

H ¼ Hm þHEðμÞ þHgðμÞ þ
1

4
Ha: ð33Þ

The classical form of HEðμÞ is ψ†iα⃗ · D⃗ψ and can be
interpreted as the quark kinetic and potential energy. The
renormalized matrix element of HE has mixings with both
Hg and Hm. The mixing of the traceless matrix elements is

� hHqiRðμÞ
hHgiRðμÞ

�
¼

�
ZqqðμÞ ZqgðμÞ
ZgqðμÞ ZggðμÞ

�� hHqiðμrÞ
hHgiðμrÞ

�
; ð34Þ

where ZqqðμÞ ¼ 1 − ZgqðμÞ and ZggðμÞ ¼ 1 − ZqgðμÞ to
preserve momentum conservation and μr is a reference
scale for the unmixed matrix element, such as the lattice
spacing in lattice calculations. The renormalization group
equation for the evolution of the moments, to first order, is

∂
lnμ

�hxiqðμÞ
hxigðμÞ

�
¼ αs
4π

�−16
3
CF

4
3
nf

16
3
CF

4
3
nf

��hxiqðμÞ
hxigðμÞ

�
; ð35Þ

where CF ¼ 4=3. The renormalized and mixed ðHEÞRðμÞ is
then

ðHEÞRðμÞ¼
X
f

ðψ†
fiα⃗ ·D⃗ψfÞRþ

�
−ZgqHmþ

4

3
ZqgHgðμrÞ

�
:

ð36Þ

The first term on the right-hand side is the self-renormalized
operator and the terms in the square bracket are from mixing
with Hm and Hg. The matrix element of HEðμÞ in terms of
hxiðμÞ and hHmi turns out to be

hHEiðμÞ ¼
3

4
ðhxiqðμÞ − hHmiÞ; ð37Þ

which is the same as in Refs. [3,4] so that the rest energy sum
rule

E0 ¼ M ¼ hHmi þ hHEðμÞi þ hHgðμÞi þ
1

4
hHai ð38Þ

is satisfied.
In an effort to have a simplified decomposition with

physical interpretation for each term, Metz, Pasquini, and
Rodini [11] have derived a decomposition based on dimen-
sional regularization in the MS scheme. It is composed of
three terms

H ¼ H0
m þH0

E þH0
g; ð39Þ

which represent the quark mass, quark energy, and glue
energy, respectively. They have the same formal expres-
sions for the corresponding operators as in Eqs. (31), (21),
and (36) for Hm, Hg, and HE (without the perturbative Z
terms), but without Ha as compared to Eq. (33). The
difference appears to be due to the definition of the
operators. When the matrix elements are involved,

hH0
gi ¼

3

4
hxig þ

1

4
hHai; ð40Þ

which is the sum of hHgi and 1
4
hHai. Thus, in the end, the

same sum rule is satisfied as in Eq. (38).

IV. REST ENERGY FROM GRAVITATIONAL
FORM FACTORS

The rest energy has also been discussed in the context of
the gravitational form factors. These are form factors for the
EMT and contain the following terms [34–37] for the
quarks and gluons

hP0jðTμν
q;gÞRðμÞjPi=2M ¼ ūðP0Þ

�
T1q;g

ðq2; μÞγðμP̄νÞ þ T2q;g
ðq2; μÞ P̄

ðμiσνÞαqα
2M

þDq;gðq2; μÞ
qμqν − ημνq2

M
þ C̄q;gðq2; μÞMημν

�
uðPÞ; ð41Þ

where T1q;g
ð0Þ ¼ hxiq;gðμÞ is the momentum fraction, and

T1q;g
ð0Þ þ T2q;g

ð0Þ ¼ 2Jq;gðμÞ is the angular momentum
fraction [36,37]. From the conservation of momentum
and angular momentum, one has the following sum
rules [36,37]

T1q
ð0Þ þ T1g

ð0Þ ¼ hxiqðμÞ þ hxigðμÞ ¼ 1;

T1q
ð0Þ þ T21q

ð0Þ þ T1g
ð0Þ þ T21g

ð0Þ ¼ 2J ¼ 1: ð42Þ
T1 and T2 are named after F1 and F2 of the electromagnetic
form factors due to their analogy to the form factor
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structure of the vector current, where the forward F1ð0Þ is
the charge and forward F1ð0Þ þ F2ð0Þ ¼ μp;n the magnetic
moments of the nucleon. By making a connection to the
stress tensor of the continuous medium, it is shown by
Polyakov [38] and Polyakov and Schweitzer [39] that
Dq;gðq2Þ is related to the internal force of the hadron
and encodes the shear forces and pressure distributions of
the quarks and glue in the nucleon. The D term, which is
Dð0Þ, has been emphasized [39] to be the least known
fundamental constant of the nucleon as compared to
charge, magnetic moments, gA, gP, etc. The pressure
distribution of the quarks have been deduced from the
experimentally measured Dqðq2Þ [40] and the pressure
distributions for both the quarks and glue fromDq;gðq2Þ are
calculated on the lattice [41].
C̄ has the constraint in that the quark and glue parts

cancel due to EMT conservation in Eq. (10), i.e.,

C̄totalð0; μÞ ¼ C̄qð0; μÞ þ C̄gð0; μÞ ¼ 0: ð43Þ

For the forward matrix elements at rest, Eq. (41) becomes

hPjðT00
q;gÞRðμÞjPi=2M ¼ hxiq;gðμÞM þ C̄q;gð0; μÞM; ð44Þ

hPjðTii
q;gÞRðμÞjPi=2M ¼ −3C̄q;gð0; μÞM: ð45Þ

From Eqs. (44), (45) and (12), we obtain

C̄qð0; μÞ ¼
1

4

X
f

ðfNf − hxifðμÞÞ;

C̄gð0; μÞ ¼
1

4
ðfNa − hxigðμÞÞ: ð46Þ

Thus, Eq. (44) reproduces the mass sum rule in Eq. (30)
from the Hamiltonian without having to be separated
into the trace and traceless parts explicitly. We find
that at μ¼2GeV, C̄uþdð0Þ, C̄sð0Þ, C̄cð0Þ are −0.124ð3Þ,
0.003 (5), and −0.003ð1Þ, respectively for a total
C̄qð0; 2 GeVÞ ¼ −0.124ð6Þ. At μ ¼ 250 GeV, the corre-
sponding C̄uþdð0Þ, C̄sð0Þ, C̄cð0ÞC̄bð0Þ, C̄tð0Þ are
−0.087ð2Þ, −0.003ð17Þ, 0.013(8), 0.016(8), and 0.024(8)
for a total of C̄qð0; 250 GeVÞ ¼ −0.038ð14Þ. We see that at
the hadronic scale C̄qð0Þ is negative and its absolute value
decreases as the scale increases. It is in agreement with the
estimate of−0.11 at μ ¼ 2 GeV [8]. However, it is different
in sign from C̄qð0Þ ∼ 0.014 estimated from the instanton
vacuum [42].
In view of the similarity between the structure of the

gravitational form factor in Eq. (41)

hPjðTμν
q;gÞRðμÞjPi=2MV ¼ T1q;g

ð0ÞPμPν þ ημνC̄ð0Þ ð47Þ

and that of the stress tensor of the perfect fluid frequently
used in general relativity

Tμν ¼ ðϵþ pÞuμuν − pημν; ð48Þ

where uμ ¼ Pμ=M, C. Lorcé identified the quark and glue
parts of the EMT in Eq. (41) as two fluids [8,9] with

ϵq;g ≡ ½T1q;g
ð0Þ þ C̄q;gð0Þ�

M
V
; ð49Þ

pq;g ≡ −C̄q;gð0Þ
M
V
; ð50Þ

where V is the proper volume. Therefore, the rest energy
has been interpreted in terms of the following thermody-
namic functions

Uq ¼ ϵqV ¼ ½hxiq þ C̄qð0Þ�M ¼
�
3

4
hxiq þ

1

4

X
f

fNf

�
M;

Ug ¼ ϵgV ¼ ½hxig þ C̄gð0Þ�M ¼
�
3

4
hxiq þ

1

4
fNa

�
M: ð51Þ

Here Uq and Uq are the internal energies for the quarks
and glue and they are equal to the matrix elements of
Hq þ 1

4
Hm and Hg þ 1

4
Ha in Eq. (30), respectively. The

work W is

Wq;g ¼ pq;gV ¼ −C̄q;gð0ÞM: ð52Þ

Since the enthalpy is H ¼ U þW, one finds the enthalpies
for quarks and glue are

Hq;g ¼ Uq;g þWq;g ¼ hxiq;g: ð53Þ

The rest energy and total work are the sum of the quark and
glue internal energies and their works

E0 ¼ Uq þ Ug; ð54Þ

W ¼ Wq þWg ¼ 0: ð55Þ

In view of Eqs. (55) and (52), one finds the total pressure to
be zero, i.e., P ¼ pq þ pg ¼ 0. It is thus concluded by
C. Lorce that the quark gives a positive pressure (pq > 0)
and is balanced by the negative pressure from the glue part
(pg < 0) to have a stability condition for the nucleon, and
hadrons in general.
It has been pointed out by Y. Hatta, A. Rajan, and

K. Tanakain [10] that the renormalization and trace taking
of individual quark and glue EMT do not commute in
dimensional regularization, i.e.,

ημνðTμν
q;gÞR ≠ ðTμ

q;gμÞR; ð56Þ
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and the perturbative mixing of ημνTμν
q;g has been worked out

to two loops [10] and three loops [43]. Taking this into
account, C̄q;g in one loop becomes

C̄qfð0; μÞ ¼
1

4

	
fNf þ αs

4π

�hðG2ÞRi
3MN

þ 4CF

3
fNf

�
− hxiqf



;

ð57Þ

C̄gð0;μÞ¼
1

4

	
αs
4π

�
−
11CA

6

hðG2ÞRi
MN

þ14CF

3

X
f

fNf

�
−hxig



:

ð58Þ

Using γm0
¼6CF and αsð2 GeVÞ ¼ 0.301 and

αsð250GeVÞ¼0.102, we obtain C̄qð2GeVÞ¼−0.161ð10Þ;
C̄qð250 GeVÞ ¼ −0.122ð47Þ, which are close to the
asymptotic value of −0.146 for nf ¼ 3 in the chiral limit
as calculated in Ref. [10]. Separating out the quark from the
glue contributions in the trace, it introduces a scheme
dependence in C̄ð0; μÞ as is the case of decomposition with
the Hamiltonian in Eq. (30). On the other hand, if one does
not separate out Hm from Ha in the trace, the rest energy
from the internal energies,

E0 ¼ UqðμÞ þUgðμÞ

¼
�
3

4
hxiqðμÞ þ

3

4
hxigðμÞ

�
M þ 1

4
M; ð59Þ

has the same decomposition as the rest energy in Eq. (26)
from the Hamiltonian.

V. TRACE ANOMALY, VACUUM ENERGY,
AND COSMOLOGICAL CONSTANT

Throughout the discussion of the nucleon mass and rest
energy decompositions, the role of the trace anomaly
remains mysterious. Besides giving rise to scale breaking,
it is not clear what physical role it plays as far as the hadron
mass and structure are concerned. In the mass decom-
position, the hadron mass is entirely due to the trace
anomaly at the chiral limit in Eq. (12). This does not
reveal any dynamical information of the trace anomaly. On
the other hand, as seen from the decomposition of the rest
energy from the Hamiltonian in Eqs. (26) and (30) and the
gravitational form factors in Eq. (59), there are other terms
besides the trace anomaly that may make them more
susceptible to divulging the dynamical origin and function
of the trace anomaly.
As we shall see, it would be helpful to describe the

nucleon in thermodynamic principles. For that, we need to
first establish that the nucleon can be treated as a statistical
system. To this end, we shall look at the nucleon from the
path-integral formulation of QCD in the Euclidean space.
QCD in Euclidean path-integral formulation has the same

form as that of the classical statistical mechanics. The
vacuum-to-vacuum transition in the quantum field theory is
termed the grand canonical partition function

ZGCðV; T; μÞ ¼
Z

DUDψ̄Dψe−SGðUÞ−SFðU;ψ̄ ;ψ ;μÞ; ð60Þ

where SG and SF are the gauge and fermion actions. T is the
temperature and μ is the chemical potential. There are
infinite degrees of freedom in the partition function.
Extensive lattice calculations have been carried out to
study the QCD phase diagram in finite temperature and
chemical potential (for a review of the status of the lattice
calculation, see for example Ref. [44]). The canonical
ensemble approach has been formulated [45,46] to address
the problem with a definite baryon number. This entails the
projection of the fermion determinant from ZGCðV; T; μÞ
with imaginary μ. Since the center Z3 symmetry is
preserved in the canonical approach, the projected quark
numbers are multiples of 3, thus the canonical partition
ZCðV; T; nBÞ is a function of the baryon number nB. The
chemical potential at fixed baryon number nB is

μðnBÞ ¼ −
1

β
ln
ZCðnB þ 1Þ
ZCðnBÞ

¼ FnBþ1 − FnB

ðnB þ 1Þ − nB
; ð61Þ

where FnB is the free energy. For one nucleon, μðnB ¼ 1Þ is
the nucleon mass, i.e., μðnB ¼ 1Þ ¼ M when T → 0. This
is the same as calculating the nucleon mass from the two-
point nucleon correlator with t → ∞ in the grand canonical
ensemble in Eq. (60) at μ ¼ 0. The quark matrix element of
the nucleon can be similarly obtained with projected quark
propagators [46]. A first-order phase transition at finite
density and temperature is clearly seen with the Maxwell
construction and the critical point is determined [47].
However, this was done on a small 44 lattice. Once the
volume is increased, the sign problem sets in abruptly that
impedes the lattice calculation.
Given the above formalism, we can discuss the nucleon

thermodynamic properties from the canonical ensemble.
We first notice that the C̄ terms are associated with the
metric ημν in the gravitational form factor in Eq. (41), which
are like the cosmological constant, except that the sum
C̄q þ C̄g ¼ 0. However, we need to examine Eq. (46)
further and point out that the origin of fNf and fNa is
different from that of hxiq and hxig in C̄q and C̄g. Instead of
decomposing the EMT in terms of quark and glue con-
tributions, it turns out to be more fruitful to examine the
separation of the traceless and trace contributions in
Eq. (18). We first note that there is a glue condensate in
the vacuum with a negative energy density (i.e.,
h0jG2j0i < 0) so is there a negative quark condensate in
the vacuum (i.e., h0jψ̄ψ j0i < 0). The former is from the
conformal symmetry breaking and the latter from the chiral
symmetry breaking. One can picture the hadrons as bubbles
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in the sea of the condensates. The hadron gas can go
through a first-order phase transition to become the quark-
gluon plasma at finite temperature and chemical potential,
much like the bubbles turning into steam during the first-
order phase transition between water and steam. As such,
the trace anomaly can be considered the vacuum energy of
the hadron due to the fact that the bubble with a finite
proper volume is created from the surrounding condensate
with negative energy. In other words,

Evac ≡ hHai ¼ ϵvacV; ð62Þ

where ϵvac ¼ −h0jHaj0i is the vacuum energy density and
V is the proper three volume of the hadron. Similarly, the
disconnected insertion part of the sigma terms arise from
the quark condensates in the vacuum. Since hHmi is small
compared to hHai—especially the connected insertion part,
in the nucleon at the hadronic scale as shown in Table I and
Fig. 1(a), we shall ignore it. As the volume changes, we
have, from the first law of thermodynamics

dEvac ¼ −PvacdV ð63Þ

at zero temperature where dQ ¼ TdS ¼ 0. Here the pres-
sure Pvac is

Pvac ¼ −ϵvac < 0; ð64Þ

which is negative. On the other hand, the other energies
hHEðμÞi þ hHgðμÞi in Eq. (38) or hxiq;g in Eqs. (26)–(28)
are ascribed to the quark kinetic and potential energy and
the glue field energy. Their energy densities should go
down if the hadron is allowed to expand so that their energy
densities are like those in the cosmological models where
the matter density falls off like 1=a3 and radiation density
falls off like 1=a4 [48], where a is a scale factor for the
radius of the Universe. This will give a positive pressure to
balance that from the hHai so that the nucleon and other
ground state hadrons in QCD are stable. We can para-
metrize the rest energy (or internal energy) of the nucleon
with two terms to illustrate the situation.

E0 ¼ ϵvacV þ ϵmatVp; ð65Þ

where the first term is from the anomaly that is proportional
to the volume and the second term represents the
quark kinetic and potential energies and the glue field
energy as in Eqs. (38) and (26). It is proportional to Vp with
p < 0. Taking the derivative with respect to V gives the
pressure which should be canceled between the two
contributions

Pvac þ Pk ¼ −
dE0

dV
¼ −ϵvac − pϵmatVp−1 ¼ 0: ð66Þ

Given that E0 ¼ 4ES from the Virial theorem consideration
[17], where ES ¼ 1

4
ðhHai þ hHmiÞ is the scalar part of the

energy, one obtains p ¼ − 1
3
. This is the consequence of the

Virial theorem for the scalar and tensor energies. One
notices that Eq. (65) is exactly like the MIT bag model [49]
where ϵvac is the bag constant B which provides the
confinement and ϵmatV−1=3 corresponds to the quark and
gluon normal modes in the bag cavity which are propor-
tional to 1=R where R is the bag radius [50].
More importantly, we notice that the pressure-volume

equation in Eqs. (43), (46) and (55) can be written as

Ptotal ¼ −
dE0

dV
¼ −

ES

V
þ 1

3

ET

V
¼ 0; ð67Þ

where ET and ES are the tensor (traceless) and scalar (trace)
parts of the energy hT00i in Eq. (18), i.e.,

E0 ¼ ET þ ES; ð68Þ

where

ET ¼ hHqfðμÞi þ hHgðμÞi

¼ 3

4

�X
f

hxifðμÞ þ hxigðμÞ
�
M; ð69Þ

ES ¼
1

4
½hHmi þ hHai�: ð70Þ

Notice that the 1
3
factor in Eq. (67) comes from the fact that

ET ¼ 3ES, and it coincides with the p ¼ − 1
3
from the

volume dependence in Eq. (66). Thus the two pressure
equations, Eqs. (67) and (66), are consistent with each other
so that one can conclude that the scalar energy density ES

V ¼
ϵvac is a constant. On the other hand, the tensor energy
density is not a constant and ET is proportional to V−1=3.
Since ES appears in the metric term in the EMT, it yields a
constant restoring pressure to balance that from the tensor
energy ET, leading to the confinement of hadrons.
This is analogous to the cosmological constant Λ that

Einstein introduced to his equation in general relativity [51]

Rμν −
1

2
Rgμν þ Λgμν ¼ 8πGTμν; ð71Þ

where Rμν is the Ricci curvature tensor and R is the scalar
curvature. G is the Newton’s constant and the source Tμν is
the energy-momentum tensor. The positive constant Λ is
introduced to the gμν term so that it balances the gravita-
tional pull from a static uniform matter density ρ. Einstein
found the solution of Λ to be [51,52]

Λ ¼ 4πGρ: ð72Þ
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Later on, when the Universe was found to expand by
Hubble, Einstein considered the introduction of the cos-
mological constant the biggest blunder of his life. The
confinement mechanism with the hadrons is somewhat
different from that of the cosmological constant Λ in
Eq. (71) in that the pressure from the energy density of
ES is negative so that it balances the positive pressure
exerted by the quark and glue kinetic energy from ET .
There have been suggestions that the glue part of the trace
anomaly is the vacuum energy which is responsible for the
confinement of hadrons [4,53–56]. We have proved from
the stress-pressure equation in Eq. (67) that the energy
density of ES is indeed a constant that leads to a constant
restoring pressure that is responsible for the confinement of
hadrons.
Heavy quarkonium is an analogous but more familiar

case. Since the lattice simulation reveals an area law of the
Wilson loop that displays a linearly confining potential
between the infinitely heavy quark-antiquark pair [57] and
the flux tube is formed along the separated color sources
[58], they are consistent with a picture of a constant vacuum
energy density for hHai. When the flux tube has a fixed
cross section A, the static potential between the heavy
quark-antiqurak pair is

VðrÞ ¼ ϵvacAr ¼ σr; ð73Þ

which is the origin of the linearly rising potential, where σ
is the string tension. We can estimate the string tension σ
from the G2 term of the trace anomaly in the charmonium.
The potential between infinitely heavy quark-antiquark pair
can be calculated from the rectangular Wilson loop
WLðr; TÞ which is a plaquette with time T and spatial
extent r.

VðrÞ≡ lim
T→∞

loghWLðr; TÞi
T

: ð74Þ

It is shown that under the renormalization group con-
sideration, the potential and its derivative is related to the
G2 term of the trace anomaly in the quenched approxima-
tion [59,60]

VðrÞ þ r
∂VðrÞ
∂r ¼

h β
2g ð

R
d3x⃗G2ÞWLðr; TÞi
hWLðr; TÞi

: ð75Þ

For the charmonium, we can check this relation to see how
well it holds. In this case, the corresponding matrix element
for the right-hand side of Eq. (75) is

hHβic̄c ¼
hc̄cj β

2g

R
d3x⃗G2jc̄ci

hc̄cjc̄ci : ð76Þ

For the linear potential in Eq. (73), this implies

2σhri ¼ hHβic̄c ð77Þ

for the potential energy. hHβic̄c can be obtained from the
lattice calculation of hHmic̄c,

hHβic̄c ¼ Mc̄c − ð1þ γmÞhHmic̄c: ð78Þ

Taking Mcc̄ to be the spin average of the J=Ψ and ηc
masses, Mcc̄ ¼ 3069 MeV. The sigma term in the char-
monium in a recent lattice calculation of the charmonium
structure [61] has been obtained to be hHmi ¼
2166ð1Þ MeV. At the scale of the lattice spacing a−1 ¼
1.785 GeV used in the lattice calculation [61,62],
γmðμ ¼ 0.1785 GeVÞ ¼ 0.325. This is consistent with a
fit of the charmonium spectrum with the Cornell potential
that determined the effective αs ¼ 0.491ð80Þ [63], and
this implies that the leading order γm ¼ 6CF

αs
4π ¼ 0.31.

With γm ¼ 0.325, one can deduce from Eq. (78) that
hHβi ¼ 199 MeV.
To estimate hri in Eq. (77), we shall use the ratio hri

hr2i1=2.
Since the asymptotic behavior of the 1S wave function of a
linear potential in the Schrödinger equation is between that of
the harmonic oscillator and the Coulomb potential, we shall
use the average of the above ratios from the r2 and −1=r
potentials, i.e., hri

hr2i1=2 ¼ 1
2
½ hri
hr2i1=2 jH:O: þ

hri
hr2i1=2 jCoul� ¼ 0.61. In

a potential model to fit the charmonioum spectrum, which
includes both the linear andCoulombpotentials and the spin-
spin and spin-orbit interactions, hr2i1=2 ¼ 0.21 fm [64]. This
gives hri ∼ 0.13 fm. FromEq. (77) and hHβi from the lattice
calculation in Eq. (78), we obtain the string tension
σ ¼ 0.153 GeV2. This is in very good agreement with
that from the recent Cornell potential analysis of the
charmonium spectrum, which gives the fitted string tension
σ ¼ 0.164ð11Þ GeV2. Despite this close agreement, we
should caution that Eq. (75) is for infinitely heavy quarks
in a pure gauge theory, while the lattice calculation [61,62] is
carried out with realistic finite charm quark mass on (2þ 1)-
flavor dynamical fermion configurations.
An effective low-energy theory in curved spacetime with

broken scale invariance has been formulated which can lead
to confinement [65,66]. The trace anomaly (quantum
anomalous energy) contribution to the nucleon mass has
been considered in a Higgs mechanism [56]. Here, we
identify 1

4
hHβi as the vacuum energy emerged from the

formation of a hadron bubble in the sea of the glue
condensate. We should emphasize the fact that the vacuum
energy density is a constant, and so is its negative restoring
pressure, which inevitably results in confinement. This is
similar to the case where the constant force from a linear
potential confines the heavy quarkonium.
The cosmological constant in general relativity has a

renewed interpretation after the Universe is found to have
an accelerating expansion. The pressure from the energy-
momentum tensor also gravitates and contributes to the
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acceleration of the expanding Universe. The Freidman
equation from the Friedmann-Robertson-Walker metric is

ä
a
¼ −

4πG
3

ðρþ 3PÞ; ð79Þ

where a is a scale factor, ρ=P is the density/pressure from
all matter, radiation, and dark energy. The cosmological
constant, which would appear asΛ=3 on the right-hand side
for historical reasons, has been subsumed into the ρ and p
as vacuum energy and pressure with ρvac ¼ Λ=ð8πGÞ and
pvac ¼ −Λ=ð8πGÞ. When the negative pressure from the
dark energy (cosmological constant) overcomes ρ, the
Universe expansion accelerates. In the case of QCD,
the negative pressure Pvac simply balances out the pressures
from the quark kinetic energy and glue field energy and
confines the quarks and gluons. In this sense, the hadron is
analogous to the static universe that Einstein had imaged
for the cosmological constant to achieve and ES=V or,
more specifically, hHβi plays the role of the cosmological
constant for the hadrons.
It would be interesting to observe the glue part of the

trace anomaly hHβi experimentally [67]. It is shown by
D. Kharzeev [68] that the photoproduction of J=Ψ at
threshold would be a place to probe this. It has also been
explored by Y. Hatta and D.L. Yang, using gauge/string
duality [69]. One could also explore the trace anomaly and
conformal symmetry on the lattice. Through the study of
the Dirac eigenvalue density, there is evidence that there is a
phase above the crossover temperature that displays infra-
red scale invariance [70]. It would be useful to find out what
impact it may have on hHβi. There are efforts to look for
conformal window with multiflavor simulations [71]. One
could ask the same question about hHβi. Also, using it as an
indicator, one could calculate it in nuclei to see if the
conformal symmetry is partially restored.

VI. SUMMARY

We have considered the decomposition of the proton
mass and rest energy in terms of their quark and glue
components. The proton mass from the trace of the EMT
has a unique division in terms of the quark sigma terms and
the quantum trace anomaly that are scheme and scale
independent. Since the mass is not additive in general
frames, the decomposition of the proton mass in terms of
expectation values can be carried out in the rest frame or a
comoving frame. We use the lattice results to enumerate
each term. The role of the heavy quarks is clarified.
There are different ways to decompose the rest energy,

be it from the Hamiltonian or the gravitational form factors.
They are scheme and scale dependent. The simplest and
least scheme dependent way is to divide the Hamiltonian in
terms of the trace and the traceless parts, which is the same
as obtained from the forward gravitational form factors.
The traceless part can be separated into quark and glue

momentum fractions, measurable from DIS and Drell-Yan
experiments. We use the CT18 global fitting of hxiq and
hxig to display this decomposition at μ ¼ 2 and 250 GeV.
We note that the trace anomaly introduces a scale in QCD
and its mass decomposition can be expressed in terms of
the sigma terms and the trace anomaly. The proton mass
from the trace of the EMT is simply four times the scalar
energy, i.e., M ¼ 4ES.
One interesting feature is revealed from the decompo-

sition of the gravitational form factors. The forward ημν

(metric) term C̄q;g is the normal stress of the EMT, which is
the negative of the pressure for the system. The total
pressure from the trace part of the rest energy (ES) and the
traceless part (ET) is zero due to the conservation of the
EMT. It shows that the pressure from ES is canceled by − 1

3

of that of ET . This reflects the fact that ET ¼ 3ES. More
importantly, expressed in terms of their volume depend-
ence, it discloses that ES is linearly dependent on volume,
which gives a constant restoring pressure to balance the
positive pressure from ET (which has a volume dependence
of V−1=3). ES with constant energy density is naturally
interpreted as the vacuum energy from the condensate; in
particular, the glue part of the trace anomaly, which
dominates ES, is due to the forming of a nucleon bubble
in the sea of the glue condensate. Einstein introduced the
cosmological constant in general relativity with an inten-
tion to describe a static universe. It is actually more
applicable to delineate the confinement of hadrons.
The linear potential between the heavy quark-antiquark

pair can be understood as due to a constant vacuum energy
density and a flux tube formation between the heavy
quarks. We deduce the string tension from the glue part
of the trace anomaly hHβic̄c in a lattice calculation of the
charmonium and found it to be in very good agreement
with that from a Cornell potential that fits the charmonium
spectrum. This further supports the notion that the glue part
of the trace anomaly is the hadron cosmological constant,
which is responsible for hadron confinement. Studies of the
trace anomaly in conformal symmetry restored phase in
QCD and in conformal field theories may shed light on
this issue.
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