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With the isovector coupling constants adjusted to reproduce the physical pion mass and lattice QCD
results in baryon-free quark matter, we have carried out rigourous calculations for the pion condensate in
the three-flavor Nambu-Jona-Lasinio model, and studied the three-dimensional QCD phase diagram. With
the increasing isospin chemical potential μI , we have observed two nonzero solutions of the pion
condensate at finite baryon chemical potentials μB, representing, respectively, the pion superfluid phase and
the Sarma phase, and their appearance and disappearance correspond to a second-order (first-order) phase
transition at higher (lower) temperatures T and lower (higher) μB. Calculations by assuming equal
constituent mass of u and d quarks would lead to large errors of the QCD phase diagram within
μB ∈ ð500; 900Þ MeV, and affect the position of the critical end point.
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I. INTRODUCTION

Understanding the structure of the phase diagram for the
quantum chromodynamics (QCD) is one of the main goals
of high-energy nuclear physics. Efforts are mostly devoted
to exploring the two-dimensional QCD phase diagram, i.e.,
in the plane of the temperature and the baryon chemical
potential. Due to the sign problem [1–6], lattice QCD
(LQCD) calculations are unable to provide solid informa-
tion in the high baryon chemical potential region, where
our knowledge on the QCD phase diagram mostly relies on
low-energy relativistic heavy-ion collisions and effective
QCDmodels. Experiments at RHIC-BES, FAIR-CBM, and
also at NICA and HIAF, etc., have been or are to be carried
out, in order to search for the signal of the QCD critical
end point, which was observed in effective QCD models,
such as the Nambu-Jona-Lasinio (NJL) model [7–10], the
Dyson-Schwinger approach [11,12], and the functional
renormalization group method [13,14].

Our knowledge on the QCD phase diagram can be
extended to another degree of freedom, i.e., the isospin
[15]. As the isospin chemical potential increases and
reaches the mass of a pion, pions can be produced out
of the vacuum and a Bose-Einstein condensate is expected
to form. The formation of the pion condensate has profound
effects on the QCD phase diagram [16–29]. Unlike the case
at finite baryon chemical potentials, LQCD calculations do
not suffer from the sign problem and can give reliable
results at finite isospin chemical potentials. Intuitively, the
QCD phase diagram at finite isospin chemical potentials is
related to the isovector interaction in quark matter, and
the latter has ramifications in both relativistic heavy-ion
collisions and nuclear astrophysics. For example, in rela-
tivistic heavy-ion collisions induced by neutron-rich nuclei
at RHIC-BES, the elliptic flow splitting between π− and πþ
favors a finite isovector interaction in quark matter [30],
and the charge susceptibility is largely affected by the
isovector interaction [31]. The isovector quark interaction
may also affect properties of strange quark stars [32,33]. It
is of great interest to reproduce the LQCD results [34,35] at
finite isospin chemical potentials but zero baryon chemical
potential by varying the strength of the isovector quark
interaction, and then extrapolate the calculations to finite
baryon chemical potentials, thus exploring the whole three-
dimensional QCD phase diagram.
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In this manuscript, we report such a study based on a
three-flavor NJL model. We reproduce the physical pion
mass and LQCD results in baryon-free quark matter by
adjusting the coupling constants of the scalar-isovector and
vector-isovector interaction. Afterwards, we extrapolate the
model to finite baryon chemical potentials, and study on the
three-dimensional QCD phase diagram in the presence of
the pion condensate. We note that the constituent masses of u
and d quarks are generally set to be equal in previous studies
at small or vanishing baryon chemical potentials (see, e.g.,
Refs. [25,35,36]). In the present study for exploring the
whole three-dimensional QCD phase diagram, we carry out
a rigourous calculation without this drawback. Effects from
productions of other mesons, e.g., the kaon condensate, are
neglected in the present study. Section II gives the main
formulas for the three-flavor NJLmodel, with the derivations
of the Lagrangian in the mean-field approximation, the
thermodynamic potential, and the quark condensates and
densities detailed in the Appendices. Results in baryon-free
and baryon-rich quarkmatter as well as the three-dimentional
QCD phase diagram are given in Sec. III. We conclude and
provide an outlook in Sec. IV.

II. THEORETICAL FRAMEWORK OF THREE-
FLAVOR NJL MODEL

A. The Lagrangian

We start from the Lagrangian density of a three-flavor
NJL model expressed as [37]

LNJL ¼ L0 þ LS þ LV þ LKMT þ LIS þ LIV; ð1Þ

where

L0 ¼ ψ̄ðiγμ∂μ − m̂Þψ ; ð2Þ

LS ¼
GS

2

X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2�; ð3Þ

LV ¼ −
GV

2

X8
a¼0

½ðψ̄γμλaψÞ2 þ ðψ̄iγ5γμλaψÞ2�; ð4Þ

LKMT ¼ −K½det ψ̄ð1þ γ5Þψ þ det ψ̄ð1 − γ5Þψ �; ð5Þ

LIS ¼ GIS

X3
a¼1

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2�; ð6Þ

LIV ¼ −GIV

X3
a¼1

½ðψ̄γμλaψÞ2 þ ðψ̄iγ5γμλaψÞ2�; ð7Þ

are the kinetic term, the scalar-isoscalar term, the vector-
isoscalar term, the Kobayashi-Maskawa-t’ Hooft (KMT)
term, the scalar-isovector term, and the vector-isovector

term, respectively. In the above, ψ ¼ ðu; d; sÞT represents
the three-flavor quark fields with each flavor containing
quark fields of three colors; m̂ ¼ diagðmu;md;msÞ is the
current quark mass matrix for u, d, and s quarks; λa

(a ¼ 1;…; 8) are the Gell-Mann matrices in SUð3Þ flavor
space with λ0 ¼ ffiffiffiffiffiffiffiffi

2=3
p

I; GS and GV are, respectively, the
scalar-isoscalar and the vector-isoscalar coupling constant;
GIS and GIV are, respectively, the scalar-isovector and the
vector-isovector coupling constant. Since the Gell-Mann
matrices with a ¼ 1; 2; 3 are identical to the Pauli matrices
in u and d space, the isovector couplings break the SUð3Þ
symmetry while keeping the isospin symmetry. K denotes
the strength of the six-point KMT interaction [38] that
breaks the axial Uð1ÞA symmetry, where “det” denotes the
determinant in flavor space, i.e.,

detðψ̄ΓψÞ ¼ det

0
B@

ūΓu ūΓd ūΓs
d̄Γu d̄Γd d̄Γs
s̄Γu s̄Γd s̄Γs

1
CA;

¼
X
i;j;k

ϵijkðūΓqiÞðd̄ΓqjÞðs̄ΓqkÞ; ð8Þ

with Γ ¼ 1� γ5, and ϵijk being the Levi-Civita symbol with
qi, qj, and qk representing the u, d, and s quark fields. In the
present study, we employ the parameters mu ¼ md ¼
3.6 MeV, ms ¼ 87 MeV, GSΛ2 ¼ 3.6, KΛ5 ¼ 8.9, and
the cutoff value in the momentum integral Λ ¼
750 MeV=c given in Refs. [7,39], and define RIS ¼
GIS=GS and RIV ¼ GIV=GS as the reduced scalar-isovector
and vector-isovector coupling constant, respectively.

B. The Lagrangian density and the thermodynamic
potential in the mean-field approximation

To study the system at finite chemical potentials and
temperature, we introduce the chemical potentials in the
Lagrangian density

L ¼ LNJL þ ψ̄ μ̂ γ0ψ ;

¼ ψ̄ðiγμ∂μ þ μ̂γ0 − m̂Þψ
þ LS þ LV þ LKMT þ LIS þ LIV; ð9Þ

where μ̂ ¼ diagðμu; μd; μsÞ is the chemical potential matrix
with

μu ¼
μB
3
þ μI

2
;

μd ¼
μB
3
−
μI
2
;

μs ¼
μB
3
− μS; ð10Þ

or equivalently
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μB ¼ 3ðμu þ μdÞ
2

;

μI ¼ μu − μd;

μS ¼
μu þ μd

2
− μs; ð11Þ

where μB, μI , and μS are the baryon, isospin, and strange-
ness chemical potential, respectively.

Based on the mean-field approximation as detailed in
Appendix A, the above Lagrangian density can be written
as

LMF ¼ ψ̄S−1ψ − V; ð12Þ

where

S−1ðpÞ ¼

0
B@

γμpμ þ μ̃uγ0 −Mu iΔγ5 0

iΔγ5 γμpμ þ μ̃dγ0 −Md 0

0 0 γμpμ þ μ̃sγ0 −Ms

1
CA ð13Þ

is the inverse of the quark propagator SðpÞ as a function of
quark momentum p, with

Δ ¼ ðGS þ 2GIS − KσsÞπ ð14Þ

being the gap parameter, and

V ¼ GSðσ2u þ σ2d þ σ2sÞ þ
GS

2
π2 þ GISðσu − σdÞ2

þ GISπ
2 − 4Kσuσdσs − Kσsπ2

−
1

3
GVðρu þ ρd þ ρsÞ2 −GIVðρu − ρdÞ2 ð15Þ

being the condensation energy independent of the quark
fields. In the above, ρq¼ hq̄γ0qi and σq¼ hq̄qi are the net-
quark density and the chiral condensate, respectively, with
q ¼ u, d, s, and π ¼ hψ̄iγ5λ1ψi is the pion condensate. The
Dirac effective mass or the constituent mass of quarks can
be expressed as

Mu ¼ mu − 2GSσu − 2GISðσu − σdÞ þ 2Kσdσs;

Md ¼ md − 2GSσd þ 2GISðσu − σdÞ þ 2Kσuσs;

Ms ¼ ms − 2GSσs þ 2Kσuσd þ
K
2
π2:

Note thatMu ¼ Md is used in some previous studies for the
two-flavor system [18,34] or at μB ∼ 0 [25,35,36], while we
consider the most general case in the present study on the
QCD phase diagram at high baryon and isospin chemical
potentials. The effective chemical potentials can be ex-
pressed as

μ̃u ¼
μB
3
þ μI

2
−
2

3
GVρ − 2GIVðρu − ρdÞ;

μ̃d ¼
μB
3
−
μI
2
−
2

3
GVρþ 2GIVðρu − ρdÞ;

μ̃s ¼
μB
3
− μS −

2

3
GVρ:

Similarly, the effective baryon, isospin, and strangeness
chemical potentials are

μ̃B ¼ 3ðμ̃u þ μ̃dÞ
2

¼ μB − 2GVρ;

μ̃I ¼ μ̃u − μ̃d ¼ μI − 4GIVðρu − ρdÞ;
μ̃S ¼

μ̃u þ μ̃d
2

− μ̃s ¼ μS: ð16Þ

Starting from the partition function as detailed in
Appendix B, the thermodynamic potential can be expressed
as

Ω ¼ −
1

βV
lnƵ;

¼
X4
k¼1

Ωk þ Ωs þ GSðσ2u þ σ2d þ σ2sÞ þ
GS

2
π2

þGISðσu − σdÞ2 þGISπ
2 − 4Kσuσdσs − Kπ2σs

−
1

3
GVðρu þ ρd þ ρsÞ2 −GIVðρu − ρdÞ2; ð17Þ

where β ¼ 1=T is the inverse of the temperature, and

Ωk ¼ −2Nc

Z
d3p
ð2πÞ3

�
λ0k
2
þ T ln ð1þ e−βλ

0
kÞ
�
;

Ωs ¼ −2Nc

Z
d3p
ð2πÞ3 ½Es þ T ln ð1þ e−βE

−
s Þ

þ T ln ð1þ e−βE
þ
s Þ�;
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are the kinetic contribution from light quarks and s quarks,
respectively. The quantities in the above are defined as λ0k ¼
λk −

μ̃B
3
with λk being the quasiparticle energy as detailed in

Appendix B, and E�
s ¼ Es � μ̃s with Es ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

s þ p⃗2
p

being the single s quark energy. In the present study
without considering the color superconductivity, the color
degree of freedom contributes a factor of Nc ¼ 3.

C. Gap equations

Using the quark propagator as detailed in Appendix C,
the expressions of the chiral condensates and the net-quark
densities for u, d, and s quarks in terms of the phase-space
distribution function can be written as

σu ¼ 4Nc

X4
k¼1

Z
d3p
ð2πÞ3 gσuðλ

0
kÞfðλ0kÞ; ð18Þ

σd ¼ 4Nc

X4
k¼1

Z
d3p
ð2πÞ3 gσdðλ

0
kÞfðλ0kÞ; ð19Þ

σs ¼ 2Nc

Z
d3p
ð2πÞ3

Ms

Es
½fðE−

s Þ þ fðEþ
s Þ − 1�; ð20Þ

ρu ¼ 4Nc

X4
k¼1

Z
d3p
ð2πÞ3 gρuðλ

0
kÞ
�
−
1

2
þ fðλ0kÞ

�
; ð21Þ

ρd ¼ 4Nc

X4
k¼1

Z
d3p
ð2πÞ3 gρdðλ

0
kÞ
�
−
1

2
þ fðλ0kÞ

�
; ð22Þ

ρs ¼ 2Nc

Z
d3p
ð2πÞ3 ½fðE

−
s Þ − fðEþ

s Þ�: ð23Þ

The net baryon density ρB and the isospin density ρI can be
calculated from

ρB ¼ ðρu þ ρd þ ρsÞ=3; ð24Þ

ρI ¼ðρu − ρdÞ=2: ð25Þ

The expression of the pion condensate π is

π ¼ 4Nc

X4
k¼1

Z
d3p
ð2πÞ3 gπðλ

0
kÞfðλ0kÞ: ð26Þ

In the above expressions,

fðEÞ ¼ 1

expðβEÞ þ 1
ð27Þ

is the Fermi-Dirac distribution, the g functions have the
form of

gσuðλ0kÞ ¼
½ðλ0k þ μ̃dÞ2 − E2

d�Mu − Δ2MdQ
4
j¼1;j≠k ðλ0k − λ0jÞ

; ð28Þ

gσdðλ0kÞ ¼
½ðλ0k þ μ̃uÞ2 − E2

u�Md − Δ2MuQ
4
j¼1;j≠k ðλ0k − λ0jÞ

; ð29Þ

gπðλ0kÞ¼2
½p⃗2þMuMd−ðλ0kþ μ̃uÞðλ0kþ μ̃dÞ�ΔþΔ3Q

4
j¼1;j≠kðλ0k−λ0jÞ

; ð30Þ

gρuðλ0kÞ¼
½ðλ0kþ μ̃dÞ2−E2

d�ðλ0kþ μ̃uÞ−Δ2ðλ0kþ μ̃dÞQ
4
j¼1;j≠kðλ0k−λ0jÞ

; ð31Þ

gρdðλ0kÞ¼
½ðλ0kþ μ̃uÞ2−E2

u�ðλ0kþ μ̃dÞ−Δ2ðλ0kþ μ̃uÞQ
4
j¼1;j≠kðλ0k−λ0jÞ

; ð32Þ

and they satisfy the following relations

X4
k¼1

gσuðλ0kÞ ¼
X4
k¼1

gσdðλ0kÞ ¼
X4
k¼1

gπðλ0kÞ ¼ 0;

X4
k¼1

gρuðλ0kÞ ¼
X4
k¼1

gρdðλ0kÞ ¼ 1;

gρuðλ0kÞ þ gρdðλ0kÞ ¼
1

2
: ð33Þ

Equations (18)–(23) can be obtained equivalently from

∂Ω
∂σq ¼

∂Ω
∂ρq ¼

∂Ω
∂π ¼ 0; ð34Þ

with q ¼ u, d, s being the quark flavor, leading to the
relations

σq ¼
∂Ω
∂Mq

; ρq ¼ −
∂Ω
∂μq ; π ¼ −

∂Ω
∂Δ : ð35Þ

D. Equation of state

The energy density can be obtained from the
thermodynamic potential through the thermodynamical
relation

ε ¼ Ωþ β
∂
∂βΩþ

X
q¼u;d;s

μqρq − ε0;

¼ −2Nc

X4
k¼1

Z
d3p
ð2πÞ3 λ

0
k

�
1

2
− fðλ0kÞ

�

− 2Nc

Z
d3p
ð2πÞ3 ½Es − E−

s fðE−
s Þ − Eþ

s fðEþ
s Þ�

þ
X

q¼u;d;s

μqρq þ V − ε0; ð36Þ
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where ε0 is to ensure that the energy density is zero in a
vacuum. The pressure of the quark matter is

P ¼ −Ωþ Ω0;

where Ω0 ¼ ε0 is the thermodynamic potential in a
vacuum to ensure that the pressure is zero in a vacuum.

III. RESULTS AND DISCUSSIONS

Based on the theoretical framework of the three-flavor
NJL model, we discuss the behavior of the pion condensate
in both baryon-free and baryon-rich quark matter as well as
the corresponding three-dimensional phase diagram. We
neglect the vector-isoscalar interaction GV ¼ 0, and the s
quark chemical potential is set to be μs ¼ 0 throughout
the study.

A. Pion condensate in baryon-free quark matter

We start from fitting the physical pion mass and the
lattice results by adjusting the isovector coupling con-
stants. By choosing RIS ¼ −0.002, the pion mass is fitted
to be mπ ¼ 140.9 MeV. Once μI is larger than this value,
the reduced pion condensate π=2σ0 becomes nonzero in
cold and baryon-free quark matter, with σ0 being the light
quark condensate in a vacuum, as shown in Fig. 1(a). This

behavior can be intuitively understood [40] from the
expression of the pion condensate π [Eq. (26)] together
with the relation Eqs. (30) and (14). It can be seen that
π ¼ 0 is always a solution of Eq. (26), while for μI > mπ

there appear to be nonzero solutions of π. For very large
μI ∼ 2 GeV, the nonzero solutions of π disappear again.
Also shown in Fig. 1(a) is the decrease of the reduced
chiral condensate of u quarks σu=σ0 after the appearance
of the pion condensate. This corresponds to a second-
order phase transition, where the values of the chiral and
pion condensate change continuously while their deriv-
atives have a sudden jump as μI increases. For cold and
baryon-free quark matter, the densities are zero below the
threshold isospin chemical potential, and become finite
above μI ∼mπ as a result of the nonzero pion condensate.
By choosing RIV ¼ 0.25, the reduced isospin density as a
function of the reduced isospin chemical potential repro-
duces very well the result from LQCD calculations [41],
as shown in Fig. 1(b). With the fitted RIS and RIV, which
are used throughout this study, the reduced energy
density ε=εSB as a function of the reduced isospin
chemical potential is shown in Fig. 1(c), with

εSB ¼ NfNc

4π2

�
μI
2

�
4

ð37Þ

being the energy density in the Stefan-Boltzmann limit.
Comparing with the LQCD results in Fig. 22 of Ref. [42],
our result gives a similar peak position of μI=mπ ∼ 1.3,
while the peak value of ε=εSB decreases with increasing
spatial extent L from the LQCD calculations [42].
Similar results but in hot and baryon-free quark matter at

T ¼ 50, 100, and 150MeVare displayed in Fig. 2. Due to the
diffuseness of the Fermi-Dirac distribution at finite temper-
atures in Eqs. (18) and (26), the reduced chiral condensate
σu=σ0 of u quarks is smaller at small μI , while the reduced
pion condensate π=2σ0 also decreases, compared to that at
T ¼ 0. It is also interesting to see that the threshold isospin
chemical potential μI increases with the increasing temper-
ature. Since at finite temperatures the densities become
nonzero even for small chemical potentials, the isospin
density ρI becomes finite and increases with the increasing
temperature below the threshold isospin chemical potential.
As a consequence, the energy density shows a similar
behavior below the threshold isospin chemical potential. It
is seen that there is still a peak around μI ¼ 1.3mπ at
T ¼ 50 MeV, while such peak disappears at higher temper-
atures. It is worth noting that εSB approaches μI ∼ 0 in the
power of μ4I . Although ε is zero at T ¼ 0 below the threshold
isospin chemical potential, it becomes finite at finite temper-
atures. This leads to the divergence behavior of ε=εSB when
μI approaches 0 as shown in Fig. 2(c).
The equation of state of cold and baryon-free quark matter

is displayed in Fig. 3. It is seen that the energy density and
the pressure become finite at a much larger isospin chemical

(a)

(b)

(c)

FIG. 1. Reduced pion and chiral condensate (π=2σ0 and σu=σ0)
(a), reduced isospin density ρI=m3

π (b), and reduced energy
density ε=εSB (c) as a function of the reduced isospin chemical
potential μI=mπ in cold (T ¼ 0) and baryon-free (μB ¼ 0) quark
matter. Available results from lattice QCD calculations are
compared in panels (b) and (c).

THREE-DIMENSIONAL QCD PHASE DIAGRAM WITH A PION … PHYS. REV. D 104, 076009 (2021)

076009-5



potential μI ∼ 2M, with M being the Dirac mass of light
quarks in a vacuum, in the absence of the pion condensate,
compared to the case with the pion condensate incorporated.
This leads to a larger energy density and pressure for a given
isospin chemical potential in the presence of the pion
condensate. As for the equation of state as a function of
the isospin density ρI, the energy density is reduced while the
pressure is increased with the pion condensate, compared to
the case without considering the pion condensate. This is due
to the different relations between ρI and μI in the two cases.

It can be seen from Fig. 3 the pion condensate will stiffen the
P ∼ ε relation. It could thus be further speculated that this
might affect the properties of compact stars from solving
the Tolman-Oppenheimer-Volkoff equation. However, this
generally does not happen [43,44], since it requires a large
isospin chemical potential but a not too large baryon
chemical potential reached at the same time, related to the
discussions in the next subsection.

B. Pion condensate in baryon-rich quark matter

For the ease of discussions on the complete three-
dimensional QCD phase diagram, we display in Figs. 4
and 5 the reduced pion and chiral condensate in cold
(T ¼ 0 MeV) andhot (T ¼ 50) andbaryon-rich quarkmatter.
Our rigourous calculation reduces to those in other studies
using the assumption Mu ¼ Md at μB ¼ 0, but some
differences are expected to appear at large baryon chemical
potentials, and results from the two cases are compared in this
and the next subsections. It is seen fromFigs. 4(a) and 5(a) that
the results for smaller μB are not qualitatively different from
those in baryon-free quark matter shown in Figs. 1(a)
and 2(a). As μB increases, except for the pion condensate
becoming zero again at a slightly smaller μI, there appears a
second nonzero solution (π2) of the pion condensate from
Eq. (26) between about μI ∼ 10mπ and μI ∼ 14mπ , as shown
in Figs. 4(b) and 5(b). At an even higher μB, the occurrence
of π2 is at an even lower μI. On the other hand, there is a first-
order phase transition of the pion condensate at large μI for
both π and π2, where the pion condensate changes suddenly
from a finite value to zero, as shown by the vertical lines in
Figs. 4(c) and 5(c). In addition, as shown in the same panel,
it is seen that the assumption of Mu ¼ Md overestimates
significantly the threshold μI for π2, and underestimates the
threshold μI for π, especially at T ¼ 50 MeV compared with

(a) (b)

(c) (d)

FIG. 3. Energy density ε (left) and pressure P (right) as a
function of the reduced isospin chemical potential μI=mπ (upper)
and the isospin density ρI (lower) in cold and baryon-free quark
matter with and without the pion condensate.

(a)

(b)

(c)

FIG. 2. Same as Fig. 1 but in hot (T ¼ 50, 100, and 150 MeV)
and baryon-free quark matter.

(a) (b)

(c) (d)

FIG. 4. Reduced pion and chiral condensate (π=2σ0 and σu=σ0)
as a function of the reduced isospin chemical potential μI=mπ in
cold (T ¼ 0 MeV) and baryon-rich [μB ¼ 200 (a), 400 (b), 800
(c), and 950 (d) MeV] quark matter. Results are compared with
those obtained using the assumption Mu ¼ Md.
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those at T ¼ 0 MeV. If the baryon chemical potential is
further increased, then the occurrence of the pion condensate
becomes a first-order phase transition as well, and this is
displayed in Figs. 4(d) and 5(d). It is also seen in Fig. 5(d)
that the region of π ≠ 0 and π2 ≠ 0 is much smaller from the
rigourous calculations of Mu ≠ Md compared to those by
assuming Mu ¼ Md. In addition, the chiral condensate
generally has a sudden increase (decrease) once the pion
condensate has a sudden decrease (increase) with the
increasing isospin chemical potential. Figure 5(d) shows
that the QCD phase structure can be different at large μB
and higher temperatures from the rigourous calculations
comparing with those by assuming equal constituent mass
for u and d quarks.
Although π and π2 calculated based on Eq. (26) satisfy the

condition ∂Ω=∂π ¼ 0, they are not both stable. For the T,
μB, and four typical isospin chemical potential μI chosen
according to Fig. 4(c), we show in Fig. 6 the thermodynamic
potential Ω as a function of the reduced pion condensate,
after subtracting the contribution Ω0 in a vacuum. At
μI ¼ 141 MeV, it is seen that a local minimum point of
Ω is about to appear, leading to the occurrence of π. At
μI ¼ 355 MeV, except for a local minimum point corre-
sponding to π, a local maximum point of Ω is about to
appear, leading to the occurrence of π2. At μI ¼ 800 MeV,
there are both local maximum and local minimum points of
Ω, showing the existence of both π and π2 states. At
μI ¼ 2437 MeV, both the local maximum and local mini-
mum of Ω are about to disappears, and π and π2 turn to 0
accordingly. Since the solution π2 corresponds to a maxi-
mum thermodynamic potential, it is an unstable solution,
and the system favors π rather than π2. It is also argued that
the instability of π2 could be cured by considering the free
energy of a system with a fixed baryon density [45] or in a

Fermi system with a finite-range momentum-dependent
interaction [46].
To understand in more details the properties of π and

π2, we display in Fig. 7 the dispersion relations and
net-quark momentum distributions for u and d quarks in
the condition of Fig. 6(c) and also at T ¼ 50 MeV.
For the dispersion relation, we show one of the four
solutions of λ0k ¼ λk −

μ̃B
3
with k ¼ 1; 2; 3; 4 and λk being

the quasiparticle energy as detailed in Appendix B. The
net-quark momentum distribution is defined as

nuðdÞ ¼ 2
X4
k¼1

gρuðdÞðλ0kÞ
�
−
1

2
þ fðλ0kÞ

�
; ð38Þ

so integrating nuðdÞ gives the net-quark density, i.e.,

ρuðdÞ ¼ 2Nc

Z
d3p
ð2πÞ3 nuðdÞ: ð39Þ

It is seen from Fig. 7(a) that the quasiparticle energy for π2
becomes negative when the momentum p is between
about 200 and 500 MeV=c. For the other three quasipar-
ticle energy solutions for π2, they do not change sign as a
function of the momentum. The negative quasiparticle
energy state corresponds to the so-called Sarma phase
[47], where the quasiparticle excitation does not need
additional energy. The Sarma phase breaks the pairing of
u and d̄ quarks, as can be see from Fig. 7(c) that nd and nu
is approximately of a constant value 0 and 1 in the region
of negative λ0, respectively, compared with the pairing
states when nuðpÞ ¼ −ndðpÞ is always satisfied. At
T ¼ 50 MeV, the dispersion relation of λ0 is similar to
that at T ¼ 0 MeV, while there is no sudden jump in the
net-quark momentum distribution, though nuðpÞ and

(a) (b)

(c) (d)

FIG. 5. Similar to Fig. 4 but in hot (T ¼ 50 MeV) and baryon-
rich [μB ¼ 400 (a), 500 (b), 800 (c), and 897 (d) MeV] quark
matter. Results are compared with those obtained using the
assumption Mu ¼ Md.

(a) (b)

(c) (d)

FIG. 6. Thermodynamic potential Ω (subtracting the contribu-
tionΩ0 in a vacuum) as a function of the reduced pion condensate
at different isospin chemical potentials μI in cold (T ¼ 0 MeV)
and baryon-rich (μB ¼ 800 MeV) quark matter, corresponding to
the condition in Fig. 4(c).
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ndðpÞ become asymmetric around the momentum region
where λ0 is negative. This behavior corresponds to the
“quasi” Sarma phase at finite temperatures [48,49]. Also
shown are the dispersion relation of λ0 for the π solution
corresponding to the local minimum of the thermody-
namic potential as shown in Fig. 6. In such case, it is seen
that λ0 does not change sign, and nuðpÞ ¼ −ndðpÞ is
always satisfied at T ¼ 0 MeV and approximately satis-
fied at T ¼ 50 MeV.

C. Three-dimensional phase diagram

We then move to the discussions of the three-dimensional
QCD phase diagram. Since the appearance of the pion
condensate always leads to the decrease of the chiral
condensate, here we only discuss the behavior of the
pion condensate in the T − μB − μI space, where the chiral
condensate generally has an opposite behavior. Figure 8
displays the phase diagrams in the T − μB plane at different
isospin chemical potentials, where we show three phases as
discussed above. Phase I is the normal baryon-rich and
isospin-asymmetric quark matter with π ¼ 0. Phase II is the
pion superfluid phase with π ≠ 0. Phase III is the phase with
both nonzero solutions of π and π2, with the latter corre-
sponding to the existence of the Sarma phase as discussed
above. It is seen that phase I generally exists at larger T or
larger μB, while phase II generally exists at smaller T and μB.
Phase III exists in the area between the solid line and the
dash-dotted line. It is seen that the phase transition between
phase I and phase II, in the absence of phase III, is always a
second-order one, with the phase boundary represented by
the dashed lines, so are the phase transition between phase II
and phase III, with the phase boundary represented by the
dash-dotted lines. On the other hand, the phase transition
between phase I and phase III is always a first-order one,
with the phase boundary represented by the solid lines. The

critical end point (CEP), which connects the boundaries of
the first-order phase transition and the second-order phase
transitions, moves to a higher temperature with μI changing
from 200 to 400 MeV, and the increasing trend saturates
above μI ¼ 400 MeV. The assumption of Mu ¼ Md leads
to a different phase structure at larger μB, resulting in a CEP
at lower temperatures and larger baryon chemical potentials.
Figure 9 displays the phase diagrams in the T − μI plane

at different baryon chemical potentials. It is seen that the
normal quark phase (phase I) generally exists at very small
or large isospin chemical potentials, or at high temper-
atures, while the area of the pion superfluid phase (phase
II) shrinks dramatically with the increasing baryon chemi-
cal potential. The phase transitions are always of second-
order at smaller baryon chemical potentials, while the
first-order phase transition becomes more and more
dominate with the increasing baryon chemical potential.
Phase III with π2 ≠ 0 does not exist at μB ¼ 0 (not shown
here), but it gradually appears inside phase II at small
baryon chemical potentials, and its area becomes larger
and dominate at large baryon chemical potentials. The
difference between results from rigourous calculations
(Mu ≠ Md) and approximations (Mu ¼ Md) on the phase
diagram is seen in Figs. 9(b) and 9(c), and it mainly exists
in the relative area of phase II and phase III as well as the
position of the CEP.
Figure 10 displays the phase diagrams in the μB − μI

plane at different temperatures. Again, the normal quark
phase (phase I) exists at larger μB and/or very small or large
μI , and the pion superfluid phase (phase II) is observed at
smaller μB and intermediate μI , already seen in Figs. 8 and 9.

(a) (b)

(c) (d)

FIG. 7. Dispersion relations (upper) and net-quark momentum
distributions (lower) for u and d quarks in baryon-rich
(μB ¼ 800 MeV) and isospin-asymmetric (μI ¼ 800 MeV)
quark matter at T ¼ 0 [(a), (c)] and 50 MeV [(b), (d)].

(a) (b)

(c) (d)

FIG. 8. Phase diagrams in the T − μB plane at different isospin
chemical potentials μI ¼ 200 (a), 400 (b), 600 (c), and 800
(d) MeV, from rigourous calculations of Mu ≠ Md and approxi-
mated calculations of Mu ¼ Md. Solid lines represent the
first-order phase transition (PT) between phase I and phase III,
dashed lines represent the second-order phase transition between
phase I and phase II, and dash-dotted lines represent the second-
order phase transition between phase II and phase III.
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The area of phase II shrinks with the increasing temperature.
Also, the first-order phase transition and phase III become
less dominate at higher temperatures. The deviations of
results using the approximation (Mu ¼ Md) from rigourous
calculations (Mu ≠ Md) can now be quantitatively seen
within μB ∈ ð500; 900Þ MeV. Figure 10 is of course con-
sistent with Figs. 8 and 9, and they together give a whole
picture of the three-dimensional QCD phase diagram.

IV. CONCLUSION

With the scalar-isovector and vector-isovector coupling
constants adjusted to fit the physical pion mass and the
lattice QCD results in baryon-free quark matter, we have
studied the three-dimensional QCD phase diagram by
considering the pion condensate based on the three-flavor
NJL model. We found that the pion condensate becomes
less important at higher temperatures or larger baryon

chemical potentials. Thus, although incorporating the
pion condensate would stiffen the equation of state of
strange quark matter, it generally does not affect the
properties of compact star systems where large baryon
chemical potentials are reached. Besides the normal
solution, we observe the appearance of a second nonzero
solution of the pion condensate with the increase of the
isospin chemical potential in baryon-rich quark matter,
while both solutions disappear at very large isospin
chemical potentials. The normal solution corresponds to
the local minimum of the thermodynamic potential and
represents the pion superfluid phase, while the second
solution corresponds to the local maximum of the
thermodynamic potential and is related to the Sarma
phase. The occurrence or the disappearance of the pion
condensate is a second-order phase transition at higher
temperatures or smaller baryon chemical potentials, while
it becomes a first-order one at lower temperatures or larger
baryon chemical potentials. The calculations by assuming
equal constituent mass of u and d quarks may introduce
large errors in the three-dimensional QCD phase diagram
within μB ∈ ð500; 900Þ MeV, and affect the extraction
of the critical end point, compared with the rigourous
calculations in the present study.
To further explore the QCD phase structure, one can

incorporate the polyakov loop into the NJL model, and study
the interplay among the chiral condensate, the pion con-
densate, and the polyakov loop [22]. The kaon condensate
can be further incorporated by considering systems at large
strangeness chemical potentials. In addition, although the
pion condensate generally will not affect the equation of state
of strange quark matter and thus properties of compact stars,
it is of great interest to further incorporate the chiral
imbalance [50], the color superconductivity [51], etc., and
to see their effects on the QCD phase diagram and compact
star properties. Further detailed properties of the QCD phase
structure, e.g., the Larkin-Ovchinnikov-Fudde-Ferrell phase,
are also worth investigating, as shown in Refs. [45,52].
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APPENDIX A: THE LAGRANGIAN FROM MEAN-
FIELD APPROXIMATION

In the mean-field approximation, it is assumed that
deviations due to fluctuations of all quantities A from their
thermal average values hAi are small. Thus, the following
relations can be introduced to linearize the Lagrangian

(a) (b)

(c) (d)

FIG. 9. Similar to Fig. 8 but in the T − μI plane at different
baryon chemical potentials μB ¼ 400 (a), 600 (b), 800 (c), and
1000 (d) MeV.

FIG. 10. Similar to Fig. 8 but in the μB − μI plane at different
temperatures T ¼ 0 (a), 50 (b), 100 (c), and 150 (d) MeV.
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ðψ̄ΓiψÞ ≈ hψ̄Γiψi;
ðψ̄ΓiψÞ2 ≈ 2ψ̄Γiψhψ̄Γiψi − hψ̄Γiψi2;

ðψ̄Γiψψ̄ΓjψÞ ≈ ψ̄Γiψhψ̄Γjψi þ ψ̄Γjψhψ̄Γiψi
− hψ̄Γiψihψ̄Γjψi;

ðψ̄Γiψψ̄Γjψψ̄ΓkψÞ ≈ ðψ̄ΓiψÞhψ̄Γjψihψ̄Γkψi
þ ðψ̄ΓjψÞhψ̄Γiψihψ̄Γkψi
þ ðψ̄ΓkψÞhψ̄Γiψihψ̄Γjψi
− 2hψ̄Γiψihψ̄Γjψihψ̄Γkψi; ðA1Þ

with Γ ¼ f1; γ5; γμ; γ5γμg, and the angular bracket denoting
the expectation value from the quantum statistical average.
In our previous studies [37], we assumed hψ̄γkψi ¼
hψ̄γ5τ⃗ψi ¼ hψ̄γ5λaψi ¼ hψ̄γ5γμψi ¼ 0 due to the parity
symmetry in a static quark matter, so the condensates
hψ̄ iψ ji with i ≠ j vanish since it is assumed that the flavor
is conserved in the case of μI < mπ . In order to study the
three-dimensional QCD phase diagram, we consider sys-
tems at larger isospin chemical potentials where pion
condensates may arise, i.e.,

πþ ¼ hψ̄iγ5λ1þψi ¼
ffiffiffi
2

p
hūiγ5di ¼

πffiffiffi
2

p eiθud ;

π− ¼ hψ̄iγ5λ1−ψi ¼
ffiffiffi
2

p
hd̄iγ5ui ¼

πffiffiffi
2

p e−iθud ;

π ¼ hψ̄iγ5λ1ψi ¼ hūiγ5di þ hd̄iγ5ui;

with λ1� ¼ 1ffiffi
2

p ðλ1 � iλ2Þ. In such case, the nonzero expect-
ation value of hūiγ5di or hd̄iγ5ui spontaneously break the
UIð1Þ symmetry, corresponding to the Bose-Einstein
condensation of charged pions. The phase θud represents
the direction of the UIð1Þ symmetry breaking. Since the
thermodynamic potential does not depend on θud but
depends only on jπ�j2 or jπj2, we can set them to be real
values corresponding to θud ¼ 0 without losing general-
ity. The Kaon condensate, which could be important at
large strangeness chemical potentials, is not considered in
the present study.
In the mean-field approximation by using the relations of

Eq. (A1), the scalar-isoscalar term can be expressed as

GS

2

X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2� ¼ ψ̄ΣSψ − VS; ðA2Þ

where VS ¼ GSðσ2u þ σ2d þ σ2sÞ þ GS
2
π2 is the scalar-isosca-

lar condensate energy, with

σu ¼ hūui;
σd ¼ hd̄di;
σs ¼ hs̄si ðA3Þ

being the chiral condensates for u, d, and s quarks,
respectively, and

ΣS ¼

0
B@

2GSσu iGSπγ5 0

iGSπγ5 2GSσd 0

0 0 2GSσs

1
CA ðA4Þ

is the self-energy contributed from the scalar-isoscalar
interaction. The scalar-isovector term in the mean-field
approximation can be expressed as

GIS

X3
a¼1

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2� ¼ ψ̄ΣISψ − VIS; ðA5Þ

where VIS ¼ GISðσu − σdÞ2 þ GISπ
2 is the scalar-isovector

condensate energy, and

ΣIS ¼

0
B@

2GISðσu − σdÞ i2GISπγ5 0

i2GISπγ5 −2GISðσu − σdÞ 0

0 0 0

1
CA ðA6Þ

is the self-energy contributed from the scalar-isovector
interaction. The KMT term in the mean-field approxima-
tion can be expressed as

−Kfdetðψ̄ð1þ γ5ÞψÞ þ detðψ̄ð1 − γ5ÞψÞg ¼ ψ̄ΣKψ − VK;

ðA7Þ

where VK ¼ −4Kσuσdσs − Kπ2σs is the condensate energy
contribution from the KMT interaction, and

ΣK ¼

0
B@

−2Kσdσs −iKπσsγ5 0

−iKπσsγ5 −2Kσuσs 0

0 0 −2Kσuσd − K
2
π2

1
CA ðA8Þ

is the self-energy contributed from the KMT interaction.
Considering only the flavor-singlet state, the vector-
isoscalar term in the mean-field approximation can be
expressed as

−
GV

2

X8
a¼0

½ðψ̄γμλaψÞ2 þ ðψ̄iγ5γμλaψÞ2� ¼ ψ̄ μ̃Vγ0ψ − VV;

ðA9Þ

where VV ¼ − 1
3
GVðρu þ ρd þ ρsÞ2 is the vector-isoscalar

condensate energy, with ρq (q ¼ u, d, s) being the net-
quark density, and

μ̃V ¼

0
B@

− 2
3
GVρ 0 0

0 − 2
3
GVρ 0

0 0 − 2
3
GVρ

1
CA ðA10Þ
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represents the contribution of the effective chemical potential
from the vector-isoscalar interaction, with ρ ¼ ρu þ ρd þ ρs
being the total net-quark density. The vector-isovector term
in the mean-field approximation can be expressed as

−GIV

X3
a¼1

½ðψ̄γμλaψÞ2þðψ̄iγ5γμλaψÞ2�¼ ψ̄ μ̃IVγ0ψ−VIV;

ðA11Þ

where VIV ¼ −GIVðρu − ρdÞ2 is the vector-isovector con-
densate energy, and

μ̃IV ¼

0
B@

−2GIVðρu − ρdÞ 0 0

0 2GIVðρu − ρdÞ 0

0 0 0

1
CA ðA12Þ

represents the contribution of the effective chemical potential
from the vector-isovector interaction.

APPENDIX B: THERMODYNAMIC POTENTIAL

In this appendix, we obtain the thermodynamic potential
from the partition function, which in the grand canonical
ensemble is written as

Z¼Tre−βðĤ−μN̂Þ ¼
X
a

Z
dΨahΨaje−βðĤ−μN̂ÞjΨai; ðB1Þ

where β ¼ T−1 is the inverse of the temperature, μ is the
chemical potential, and Ĥ and N̂ are the Hamiltonian
operator and the quark number operator, respectively. The
sum

P
a

R
dΨa is carried out over all states. According to

the finite-temperature field theory, the partition function in
the mean-field approximation can be expressed in the form
of the path integral

Z¼
Z

Dψ̄Dψ×exp

�Z
β

0

dτ
Z

d3xLMF

�
; ðB2Þ

with the real time t ¼ x0 converted to the imaginary time
τ ¼ it, and the functional integral

R
Dψ̄Dψ covering all

quark species. In the above equation, the condensate energy
independent of ψ and ψ̄ can be factorized in Z, and after
applying the relation

lnð
Z

Diψ†Dψeiψ
†S−1ψ Þ¼ ln detS−1¼Tr lnS−1; ðB3Þ

the partition function can be simplified as

lnZ ¼ −iβV
Z

d4p
ð2πÞ4 Tr lnSðpÞ

−1 − βVV;

¼ βVT
X
n

Z
d3p
ð2πÞ3 Tr lnSðiωn; p⃗Þ−1 − βVV; ðB4Þ

where V is the system volume, and the 4-momentum
becomes p ¼ ðp0; p⃗Þ ¼ ðiωn; p⃗Þ with ωn ¼ ð2nþ 1ÞπT
being the Matsubara frequency for a Fermi system.
The thermodynamic potential of the quark system can be

obtained from the partition function through

Ω ¼ −
1

βV
lnZ;

¼ −T
X
n

Z
d3p
ð2πÞ3 Tr lnSðiωn; p⃗Þ−1 þ V: ðB5Þ

With the form of the quark propagator as Eq. (13) and
keeping in mind that p0 ¼ iωn, we can get the following
relation after some algebras

Tr lnS−1ðpÞ
¼ 2Nc lnf½ðE2

u − ðp0 þ μ̃uÞ2 − Δ2Þ
× ðE2

d − ðp0 þ μ̃dÞ2 − Δ2Þ
þ ððMu þMdÞ2 þ 4p⃗2 − ð2p0 þ μ̃u þ μ̃dÞ2ÞΔ2�
× ½E2

s − ðp0 þ μ̃sÞ2�g; ðB6Þ

with Δ ¼ ðGS þ 2GIS − KσsÞπ being the gap parameter,

and Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

q þ p⃗2
q

with q ¼ u, d, s being the single-

quark energy. Replacing μ̃u and μ̃d with the effective
baryon and isospin chemical potential μ̃B and μ̃I according
to Eq. (16), Eq. (B6) becomes

Tr lnS−1ðpÞ

¼ 2Nc ln

��
a

�
p0 þ

μ̃B
3

�
4

þ b

�
p0 þ

μ̃B
3

�
3

þ c

�
p0 þ

μ̃B
3

�
2

þ d

�
p0 þ

μ̃B
3

�
þ e

�
½E2

s − ðp0 þ μ̃sÞ2�
�

¼ 2Nc ln

��Y4
k¼1

�
p0 þ

μ̃B
3
− λk

��

× ½p0 − ðEs − μ̃sÞ�½−p0 − ðEs þ μ̃sÞ�
�
; ðB7Þ

where λk is the solution of the quartic equation for
p0 þ μ̃B=3, with the coefficients
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a ¼ 1;

b ¼ 0;

c ¼ −E2
u − E2

d −
μ̃2I
2
− 2Δ2;

d ¼ μ̃IðM2
u −M2

dÞ;

e ¼ E2
uE2

d þ
�
μ̃I
2

�
4

þ ðE2
u þ E2

dÞ
�
Δ2 −

�
μ̃I
2

�
2
�

þ
�
μ̃2I
2
− ðMu −MdÞ2 þ Δ2

�
Δ2: ðB8Þ

In the general situation with Mu ≠ Md and thus d ≠ 0, we
can get the analytical expressions of the four roots λk

λ1 ¼ þ
ffiffiffiffi
X

p

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y þ Z

4
ffiffiffiffi
X

p
s

;

λ2 ¼ −
ffiffiffiffi
X

p

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y −

Z

4
ffiffiffiffi
X

p
s

;

λ3 ¼ −
ffiffiffiffi
X

p

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y −

Z

4
ffiffiffiffi
X

p
s

;

λ4 ¼ þ
ffiffiffiffi
X

p

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y þ Z

4
ffiffiffiffi
X

p
s

; ðB9Þ

with

X ¼ −cþ Ξ; Y ¼ −c − Ξ; Z ¼ −8d; ðB10Þ

where Ξ is expressed as

Ξ ¼ c
3
þ 2

1
3Ξ1

3Ξ3

þ Ξ3

3 × 2
1
3

; ðB11Þ

with

Ξ1 ¼ c2 þ 12e; Ξ2 ¼ 2c3 þ 27d2 − 72ce;

Ξ3 ¼ ðΞ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4Ξ3

1 þ Ξ2
2

q
Þ
1
3
: ðB12Þ

These roots satisfy the following relations

−
X4
k¼1

λk − b ¼ 0;

X
i<j

Y
k¼i;j

λk − c ¼ 0;

−
X4
i¼1

Y
k≠i

λk − d ¼ 0;

Y4
k¼1

λk − e ¼ 0: ðB13Þ

In the special case of Mu ¼ Md, the four roots become

λ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Eþ μ̃I

2

�
2

þ Δ2

s
;

λ2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Eþ μ̃I

2

�
2

þ Δ2

s
;

λ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E −

μ̃I
2

�
2

þ Δ2

s
;

λ4 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E −

μ̃I
2

�
2

þ Δ2

s
; ðB14Þ

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

u þ p⃗2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

d þ p⃗2
q

. Since the sign is

degenerate, there are actually only two solutions. In
the baryon-free system, the general case always reduces
to the special case of Mu ¼ Md.
Using the summation formula of the Matsubara frequen-

cies

T
X∞
n¼−∞

lnðiωn − EÞ ¼ E
2
þ T lnð1 − e−βEÞ

and combining Eqs. (B5) and (B7), we can get the
expression of the thermodynamic potential as Eq. (17).

APPENDIX C: QUARK CONDENSATE AND
QUARK DENSITY

In this appendix we obtain the expressions of the chiral
condensates, the net-quark densities, and the pion con-
densate in terms of the phase-space distribution function
from the quark propagator. In the absence of the pion
condensate, u, d, and s quarks are decoupled, and the quark
propagator can be written as

S ¼

0
B@

S0u 0 0

0 S0d 0

0 0 S0s

1
CA: ðC1Þ

In the presence of the pion condensate, u and d quarks are
mixed, and the off-diagonal terms appear. The quark
propagator is then

S ¼

0
B@

Suu Sud 0

Sdu Sdd 0

0 0 S0s

1
CA ðC2Þ

with
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Suu ¼
1

S−1
0u − ΔS0dΔ

;

Sdd ¼
1

S−1
0d − ΔS0uΔ

;

Sud ¼ −SuuΔS0d ¼ −S0uΔSdd;

Sdu ¼ −S0dΔSuu ¼ −SddΔS0u:

In the above, the diagonal terms of the quark propagator in
the absence of the pion condensate are

S0qðpÞ ¼
Λq
þðp⃗Þγ0

p0 − E−
q
þ Λq

−ðp⃗Þγ0
p0 þ Eþ

q
;

with

Λq
�ðp⃗Þ ¼

1

2

�
1� γ0ðγ⃗ · p⃗þMqÞ

Eq

�
;

and E�
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

q þ p⃗2
q

� μ̃q, for q ¼ u, d, s.

The detailed expressions of each quark propagator are

SuuðpÞ ¼
X4
k¼1

guuðλ0kÞ
1

p0 − λ0k
;

SddðpÞ ¼
X4
k¼1

gddðλ0kÞ
1

p0 − λ0k
;

SudðpÞ ¼
X4
k¼1

gudðλ0kÞ
1

p0 − λ0k
;

SduðpÞ ¼
X4
k¼1

gduðλ0kÞ
1

p0 − λ0k
; ðC3Þ

with

guuðλ0kÞ
¼ f½ðλ0k þ μ̃dÞ2 − E2

d�ð−γ⃗ · p⃗þ ðλ0k þ μ̃uÞγ0 þMuÞ
− Δ2ð−γ⃗ · p⃗þ ðλ0k þ μ̃dÞγ0 þMdÞg

=

� Y4
j¼1;j≠k

ðλ0k − λ0jÞ × I

�
; ðC4Þ

gddðλ0kÞ
¼ f½ðλ0k þ μ̃uÞ2 − E2

u�ð−γ⃗ · p⃗þ ðλ0k þ μ̃dÞγ0 þMdÞ
− Δ2ð−γ⃗ · p⃗þ ðλ0k þ μ̃uÞγ0 þMuÞg

=

� Y4
j¼1;j≠k

ðλ0k − λ0jÞ × I

�
; ðC5Þ

gudðλ0kÞ
¼ f½½ðμ̃u − μ̃dÞγ0 þMu −Md�γ⃗ · p⃗
þ ½Mdðλ0k þ μ̃uÞ −Muðλ0k þ μ̃dÞ�γ0
þ ðλ0k þ μ̃uÞðλ0k þ μ̃dÞ − p2 −MuMd�iΔγ5 − iΔ3γ5g

=

� Y4
j¼1;j≠k

ðλ0k − λ0jÞ × I

�
; ðC6Þ

gduðλ0kÞ
¼ f½½ðμ̃d − μ̃uÞγ0 þMd −Mu�γ⃗ · p⃗
þ ½Muðλ0k þ μ̃dÞ −Mdðλ0k þ μ̃uÞ�γ0
þ ðλ0k þ μ̃dÞðλ0k þ μ̃uÞ − p2 −MdMu�iΔγ5 − iΔ3γ5g

=
� Y4

j¼1;j≠k
ðλ0k − λ0jÞ × I

�
:

With the following relations [18]

σu ¼ −Nc

Z
d4p
ð2πÞ4 Tr½iSuuðpÞ�;

¼ Nc

Z
d3p
ð2πÞ3 T

X
n

Tr½Suuðiωn; p⃗Þ�;

σd ¼ −Nc

Z
d4p
ð2πÞ4 Tr½iSddðpÞ�;

¼ Nc

Z
d3p
ð2πÞ3 T

X
n

Tr½Sddðiωn; p⃗Þ�;

σs ¼ −Nc

Z
d4p
ð2πÞ4 Tr½iS0sðpÞ�;

¼ Nc

Z
d3p
ð2πÞ3 T

X
n

Tr½S0sðiωn; p⃗Þ�;

ρu ¼ −Nc

Z
d4p
ð2πÞ4 Tr½iSuuðpÞγ0�;

¼ Nc

Z
d3p
ð2πÞ3 T

X
n

Tr½Suuðiωn; p⃗Þγ0�;

ρd ¼ −Nc

Z
d4p
ð2πÞ4 Tr½iSddðpÞγ0�;

¼ Nc

Z
d3p
ð2πÞ3 T

X
n

Tr½Sddðiωn; p⃗Þγ0�;

ρs ¼ −Nc

Z
d4p
ð2πÞ4 Tr½iS0sðpÞγ0�;

¼ Nc

Z
d3p
ð2πÞ3 T

X
n

Tr½S0sðiωn; p⃗Þγ0�;
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π ¼ Nc

Z
d4p
ð2πÞ4 Tr½SudðpÞγ5 þ SduðpÞγ5�;

¼ Nc

Z
d3p
ð2πÞ3 T

X
n

Tr½iSudðiωn; p⃗Þγ5 þ iSduðiωn; p⃗Þγ5�;

and the expressions of the quark propagators [Eq. (C3)], we
can obtain the analytical expressions of the chiral conden-
sates, the net-quark densities, and the pion condensate as
Eqs. (18)–(23) and (26).
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