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With the isovector coupling constants adjusted to reproduce the physical pion mass and lattice QCD
results in baryon-free quark matter, we have carried out rigourous calculations for the pion condensate in
the three-flavor Nambu-Jona-Lasinio model, and studied the three-dimensional QCD phase diagram. With
the increasing isospin chemical potential y;, we have observed two nonzero solutions of the pion
condensate at finite baryon chemical potentials y, representing, respectively, the pion superfluid phase and
the Sarma phase, and their appearance and disappearance correspond to a second-order (first-order) phase
transition at higher (lower) temperatures 7 and lower (higher) pp. Calculations by assuming equal
constituent mass of u and d quarks would lead to large errors of the QCD phase diagram within
up € (500,900) MeV, and affect the position of the critical end point.
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I. INTRODUCTION

Understanding the structure of the phase diagram for the
quantum chromodynamics (QCD) is one of the main goals
of high-energy nuclear physics. Efforts are mostly devoted
to exploring the two-dimensional QCD phase diagram, i.e.,
in the plane of the temperature and the baryon chemical
potential. Due to the sign problem [1-6], lattice QCD
(LQCD) calculations are unable to provide solid informa-
tion in the high baryon chemical potential region, where
our knowledge on the QCD phase diagram mostly relies on
low-energy relativistic heavy-ion collisions and effective
QCD models. Experiments at RHIC-BES, FAIR-CBM, and
also at NICA and HIAF, etc., have been or are to be carried
out, in order to search for the signal of the QCD critical
end point, which was observed in effective QCD models,
such as the Nambu-Jona-Lasinio (NJL) model [7-10], the
Dyson-Schwinger approach [11,12], and the functional
renormalization group method [13,14].
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Our knowledge on the QCD phase diagram can be
extended to another degree of freedom, i.e., the isospin
[15]. As the isospin chemical potential increases and
reaches the mass of a pion, pions can be produced out
of the vacuum and a Bose-Einstein condensate is expected
to form. The formation of the pion condensate has profound
effects on the QCD phase diagram [16-29]. Unlike the case
at finite baryon chemical potentials, LQCD calculations do
not suffer from the sign problem and can give reliable
results at finite isospin chemical potentials. Intuitively, the
QCD phase diagram at finite isospin chemical potentials is
related to the isovector interaction in quark matter, and
the latter has ramifications in both relativistic heavy-ion
collisions and nuclear astrophysics. For example, in rela-
tivistic heavy-ion collisions induced by neutron-rich nuclei
at RHIC-BES, the elliptic flow splitting between 7z~ and #™
favors a finite isovector interaction in quark matter [30],
and the charge susceptibility is largely affected by the
isovector interaction [31]. The isovector quark interaction
may also affect properties of strange quark stars [32,33]. It
is of great interest to reproduce the LQCD results [34,35] at
finite isospin chemical potentials but zero baryon chemical
potential by varying the strength of the isovector quark
interaction, and then extrapolate the calculations to finite
baryon chemical potentials, thus exploring the whole three-
dimensional QCD phase diagram.

Published by the American Physical Society


https://orcid.org/0000-0001-5243-5549
https://orcid.org/0000-0002-8353-2875
https://orcid.org/0000-0002-4010-4539
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.076009&domain=pdf&date_stamp=2021-10-11
https://doi.org/10.1103/PhysRevD.104.076009
https://doi.org/10.1103/PhysRevD.104.076009
https://doi.org/10.1103/PhysRevD.104.076009
https://doi.org/10.1103/PhysRevD.104.076009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

LU-MENG LIU, JUN XU, and GUANG-XIONG PENG

PHYS. REV. D 104, 076009 (2021)

In this manuscript, we report such a study based on a
three-flavor NJL. model. We reproduce the physical pion
mass and LQCD results in baryon-free quark matter by
adjusting the coupling constants of the scalar-isovector and
vector-isovector interaction. Afterwards, we extrapolate the
model to finite baryon chemical potentials, and study on the
three-dimensional QCD phase diagram in the presence of
the pion condensate. We note that the constituent masses of u
and d quarks are generally set to be equal in previous studies
at small or vanishing baryon chemical potentials (see, e.g.,
Refs. [25,35,36]). In the present study for exploring the
whole three-dimensional QCD phase diagram, we carry out
a rigourous calculation without this drawback. Effects from
productions of other mesons, e.g., the kaon condensate, are
neglected in the present study. Section II gives the main
formulas for the three-flavor NJL model, with the derivations
of the Lagrangian in the mean-field approximation, the
thermodynamic potential, and the quark condensates and
densities detailed in the Appendices. Results in baryon-free
and baryon-rich quark matter as well as the three-dimentional
QCD phase diagram are given in Sec. III. We conclude and
provide an outlook in Sec. IV.

II. THEORETICAL FRAMEWORK OF THREE-
FLAVOR NJL MODEL

A. The Lagrangian

We start from the Lagrangian density of a three-flavor
NJL model expressed as [37]

Ly = Lo+ L+ Ly + Lxmr + Lis + Ly, (1)

where

Lo = w(ir'0, — iy, (2)

oS

— a H a,,\2

Lg= 7; A%y )* + (WiysA®y)?], 3)

v S
= TZ (r"2%w)? + (wiysy"Aw)?.  (4)

a=0
Ly = —K[dety (1 +ys)y + det(1 —ys)w], (5)

Lis = Gis S_[(@2%y)? + (Fiysioy)?),  (6)

a=1

3
Ly = -Gy Z[(U_W”ﬂ”’l/)z + (wiysy"2w)?),  (7)

a=1

are the kinetic term, the scalar-isoscalar term, the vector-
isoscalar term, the Kobayashi-Maskawa-t” Hooft (KMT)
term, the scalar-isovector term, and the vector-isovector

term, respectively. In the above, w = (u,d, s)T represents
the three-flavor quark fields with each flavor containing
quark fields of three colors; /i1 = diag(m,,, my, my) is the
current quark mass matrix for u, d, and s quarks; A¢
(a=1,...,8) are the Gell-Mann matrices in SU(3) flavor
space w1th 20 = /2/3I; Gg and Gy are, respectively, the
scalar-isoscalar and the vector-isoscalar coupling constant;
Gis and Gyy are, respectively, the scalar-isovector and the
vector-isovector coupling constant. Since the Gell-Mann
matrices with a = 1, 2, 3 are identical to the Pauli matrices
in u and d space, the isovector couplings break the SU(3)
symmetry while keeping the isospin symmetry. K denotes
the strength of the six-point KMT interaction [38] that
breaks the axial U(1), symmetry, where “det” denotes the
determinant in flavor space, i.e.,

ul'u ul'd ul's
det(yTy) = det| dTu dr'd dIs |,
sTu 5Td 3Ts

- Zeijk(ﬁr%)(ar%)(fqu), (8)
ik

with ' = 1 + 75, and €, being the Levi-Civita symbol with
4i» 9> and g, representing the u, d, and s quark fields. In the
present study, we employ the parameters m, = m; =
3.6 MeV, m, = 87 MeV, GgA? =3.6, KA’ = 8.9, and
the cutoff value in the momentum integral A =
750 MeV/c given in Refs. [7,39], and define R;g =
Gis/Gys and Ry = Gy /Gy as the reduced scalar-isovector
and vector-isovector coupling constant, respectively.

B. The Lagrangian density and the thermodynamic
potential in the mean-field approximation

To study the system at finite chemical potentials and
temperature, we introduce the chemical potentials in the
Lagrangian density

L= Ly +Wwiyow,

=y (iy, 0" + fiyo — )y

where i = diag(u,, ptg, p,) is the chemical potential matrix
with

_HB M
/’lu_ 3 + 27
_HB _H1
Ha 3 2
Y2
ﬂs:?B—ﬂSv (10)

or equivalently
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~ 3(uy +pa) Based on the mean-field approximation as detailed in
Hp = 2 ’ Appendix A, the above Lagrangian density can be written
Hi = fy — M, as
b + Ha
Sl 11 -
Hs 2 Hs ( ) EMF :l//S_ll//—V, (12)
where pp, p;, and pg are the baryon, isospin, and strange-
ness chemical potential, respectively. where
}/ﬂp” + ﬁu}/() - Mu lAyS 0
S'(p) = iAys YuP" + fayo — My 0 (13)
0 0 yupﬂ + ﬁsVO - MS

is the inverse of the quark propagator S(p) as a function of
quark momentum p, with

A= (GS + 2GIS - KO'S)ﬂ' (14)

being the gap parameter, and

G
0u+ 0yt 03) + 5 7+ Gis(oy — 04)°

— Ko,n?

_GIV(pu _pd)2 (15)

V = G

+ Gign? — 4Ko,0,0,

1
- gGv(Pu + pa+ps)?

being the condensation energy independent of the quark
fields. In the above, p,= (g70q) and 6,= (gq) are the net-
quark density and the chiral condensate, respectively, with
g =u,d,s,and x = (iysA'y) is the pion condensate. The
Dirac effective mass or the constituent mass of quarks can
be expressed as

MM = mu - 2GSGM - ZGIS(JIA - Gd) + 2K6d6s7

Md = md - 2GSGd ‘I— 2GIS(6u - Gd) + 2K6uO'S,

K
Mg =m, —2Ggo, + 2Ko,0, + 577,'2.

Note that M,, = M ; is used in some previous studies for the
two-flavor system [18,34] or at up ~ 0 [25,35,36], while we
consider the most general case in the present study on the
QCD phase diagram at high baryon and isospin chemical
potentials. The effective chemical potentials can be ex-
pressed as

M M1 2
W =%+ 5 =2Gyp =26 (py — pa).

3 2 3
ks 2
— 3B—EI—§GVID+2GIV()OL¢ pd)’
I 2
i, = ?B—,ug —gGVP

Similarly, the effective baryon, isospin, and strangeness
chemical potentials are

~ 3(ay + )

Hp = uf = up —2Gyp,

ﬁl = ﬁu _ﬁd = U — 4GIV<pu _pd)’

~ ﬂu +/’~td ~

Hs = T — Hs = Hs- (16)

Starting from the partition function as detailed in
Appendix B, the thermodynamic potential can be expressed
as

Q:——l Z,
ﬂVn

G
= ZQk+Qs + Gs(os + 0 + 07) +7S”2
k=1
+ Gis(6, — 64)* + Gsn* — 4Ko 6,46, — Kn’o,

1
=3Gv(Pu+pa+ ps)t = Gy (pu — pa)*. (17)

where f = 1/T is the inverse of the temperature, and

= N /<d3>

+Tln(1+ e‘ﬁE“ )],

A /
[ +Tln (1 +eP4)|,

(14 ePE)
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are the kinetic contribution from light quarks and s quarks,
respectively. The quantities in the above are defined as 4j =
A — @ with 4, being the quasiparticle energy as detailed in
Appendlx B, and Ef = E, +ji, with E; = \/M? + p*
being the single s quark energy. In the present study

without considering the color superconductivity, the color
degree of freedom contributes a factor of N, = 3.

C. Gap equations

Using the quark propagator as detailed in Appendix C,
the expressions of the chiral condensates and the net-quark
densities for u, d, and s quarks in terms of the phase-space
distribution function can be written as

4 3
o= NS / (;’T;gm,(z;)fu;), (18)
4 d3p
G4 = 4N, L Gea (B F (2, 19
b= Y [ Gt (1)

_ dp My
Oy = 2Nc / (27[)3E_S[f(ES

)+ FED = 1], (20
L 1

po= Y [ Ehsano|-5+sa). @
L 1

pr= Y [ s [—5 LI e

d3
o, /

The net baryon density pp and the isospin density p; can be
calculated from

- f(ES)). (23)

P = (Pu+pa+ps)/3. (24)
p1 =(pu—pa)/2. (25)

The expression of the pion condensate 7 is

n—4Nz/( LI, (26)

In the above expressions,

1
exp(fE) + 1

is the Fermi-Dirac distribution, the g functions have the
form of

f(E) = (27)

(4% + f1a)* — EGIM, — A*M,
) = , 28
gau( k) H] Lk (/1/ /1;) ( )
(& + An)* = Ei]M, — A°M,,
9oa(A) = . (29)
o H, jk (A = 45)
o H, 1,¢k(/1 /1’) ’
pU ~ \2 E2 l/ ~ AZ pU ~
gpu(/u{):[( k+ﬂd) K +:uu) : ( k+ﬂd)’ (31)
H/ 1/#1{(’1 -4 )
(A + Fi)* = E3) (A +fa) = A (A + i)
Gpa(A) = . (32)
rak [T} (2= 2))
and they satisfy the following relations
4 4 4
Zg(m(ﬂ;c) = Zgo'd(ﬂ;c) = Zgﬂ(/%c) = 0’
k=1 k=1 k=1
4 4
ngu(%) = ngd(/l;J =1
k=1 k=1
1

Equations (18)—(23) can be obtained equivalently from

0 9Q 9

PR _ B 4
do, Op on % (34)

q

with ¢ = u, d, s being the quark flavor, leading to the
relations

0Q 0Q = —8—9. (35)

Oy =5  Pg=—7 >
17 oM, 7 Ou, DA

D. Equation of state

The energy density can be obtained from the
thermodynamic potential through the thermodynamical
relation

s—Q+ﬂ .Q+ Zquq 0
q=u,d,s

_mi [kl -ra)
—2N, / LB, - E; f(E;) -

+ Z HaPy +V—£0, (36)

q=u,d,s

ESf(EY)]
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where ¢ is to ensure that the energy density is zero in a
vacuum. The pressure of the quark matter is

P:—Q+Qo,

where Q) = ¢, is the thermodynamic potential in a
vacuum to ensure that the pressure is zero in a vacuum.

III. RESULTS AND DISCUSSIONS

Based on the theoretical framework of the three-flavor
NJL model, we discuss the behavior of the pion condensate
in both baryon-free and baryon-rich quark matter as well as
the corresponding three-dimensional phase diagram. We
neglect the vector-isoscalar interaction Gy = 0, and the s
quark chemical potential is set to be u, = 0 throughout
the study.

A. Pion condensate in baryon-free quark matter

We start from fitting the physical pion mass and the
lattice results by adjusting the isovector coupling con-
stants. By choosing R;g = —0.002, the pion mass is fitted
to be m, = 140.9 MeV. Once y; is larger than this value,
the reduced pion condensate 7/26, becomes nonzero in
cold and baryon-free quark matter, with ¢, being the light
quark condensate in a vacuum, as shown in Fig. 1(a). This

1.5
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0.5

0.0

1.0
0.8
© =06

LQCD
this work

06 08 10 12 14 16
20 T T T T T

(c) LQCD:

15} T=0,p,=0 ——1=16 1
——1L=20
10+ ——L=24

1.8 20

S/SSB

5t i

b

0 L L
l“ll/mfc

FIG. 1. Reduced pion and chiral condensate (z/20 and o,,/0)
(a), reduced isospin density p;/m; (b), and reduced energy
density €/egg (c) as a function of the reduced isospin chemical
potential y;/m,, in cold (T = 0) and baryon-free (uz = 0) quark
matter. Available results from lattice QCD calculations are
compared in panels (b) and (c).

behavior can be intuitively understood [40] from the
expression of the pion condensate 7 [Eq. (26)] together
with the relation Egs. (30) and (14). It can be seen that
7 = 0 is always a solution of Eq. (26), while for y; > m,
there appear to be nonzero solutions of z. For very large
ur ~2 GeV, the nonzero solutions of z disappear again.
Also shown in Fig. 1(a) is the decrease of the reduced
chiral condensate of u quarks ¢, /0 after the appearance
of the pion condensate. This corresponds to a second-
order phase transition, where the values of the chiral and
pion condensate change continuously while their deriv-
atives have a sudden jump as y; increases. For cold and
baryon-free quark matter, the densities are zero below the
threshold isospin chemical potential, and become finite
above y; ~ m, as a result of the nonzero pion condensate.
By choosing Ry = 0.25, the reduced isospin density as a
function of the reduced isospin chemical potential repro-
duces very well the result from LQCD calculations [41],
as shown in Fig. 1(b). With the fitted R;g and Ry, which
are used throughout this study, the reduced energy
density e/eqg as a function of the reduced isospin
chemical potential is shown in Fig. 1(c), with

NyNe (pr\*
€sp = 4fﬂz <51) (37)

being the energy density in the Stefan-Boltzmann limit.
Comparing with the LQCD results in Fig. 22 of Ref. [42],
our result gives a similar peak position of u;/m, ~ 1.3,
while the peak value of ¢/egp decreases with increasing
spatial extent L from the LQCD calculations [42].

Similar results but in hot and baryon-free quark matter at
T = 50, 100, and 150 MeV are displayed in Fig. 2. Due to the
diffuseness of the Fermi-Dirac distribution at finite temper-
atures in Egs. (18) and (26), the reduced chiral condensate
0,/0o of u quarks is smaller at small y;, while the reduced
pion condensate 7/20, also decreases, compared to that at
T = 0. It is also interesting to see that the threshold isospin
chemical potential y; increases with the increasing temper-
ature. Since at finite temperatures the densities become
nonzero even for small chemical potentials, the isospin
density p; becomes finite and increases with the increasing
temperature below the threshold isospin chemical potential.
As a consequence, the energy density shows a similar
behavior below the threshold isospin chemical potential. It
is seen that there is still a peak around pu; = 1.3m, at
T = 50 MeV, while such peak disappears at higher temper-
atures. It is worth noting that eqg approaches y; ~ 0 in the
power of ,u‘,‘. Although ¢ is zero at T = 0 below the threshold
isospin chemical potential, it becomes finite at finite temper-
atures. This leads to the divergence behavior of &/eg5 when
u; approaches 0 as shown in Fig. 2(c).

The equation of state of cold and baryon-free quark matter
is displayed in Fig. 3. It is seen that the energy density and
the pressure become finite at a much larger isospin chemical
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FIG. 2. Same as Fig. 1 but in hot (T = 50, 100, and 150 MeV)
and baryon-free quark matter.
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FIG. 3. Energy density ¢ (left) and pressure P (right) as a

function of the reduced isospin chemical potential y;/m, (upper)
and the isospin density p; (lower) in cold and baryon-free quark
matter with and without the pion condensate.

potential u; ~2M, with M being the Dirac mass of light
quarks in a vacuum, in the absence of the pion condensate,
compared to the case with the pion condensate incorporated.
This leads to a larger energy density and pressure for a given
isospin chemical potential in the presence of the pion
condensate. As for the equation of state as a function of
the isospin density p;, the energy density is reduced while the
pressure is increased with the pion condensate, compared to
the case without considering the pion condensate. This is due
to the different relations between p; and y; in the two cases.

It can be seen from Fig. 3 the pion condensate will stiffen the
P ~ ¢ relation. It could thus be further speculated that this
might affect the properties of compact stars from solving
the Tolman-Oppenheimer-Volkoff equation. However, this
generally does not happen [43,44], since it requires a large
isospin chemical potential but a not too large baryon
chemical potential reached at the same time, related to the
discussions in the next subsection.

B. Pion condensate in baryon-rich quark matter

For the ease of discussions on the complete three-
dimensional QCD phase diagram, we display in Figs. 4
and 5 the reduced pion and chiral condensate in cold
(T = 0 MeV)and hot (T" = 50) and baryon-rich quark matter.
Our rigourous calculation reduces to those in other studies
using the assumption M, =M, at up =0, but some
differences are expected to appear at large baryon chemical
potentials, and results from the two cases are compared in this
and the next subsections. Itis seen from Figs. 4(a) and 5(a) that
the results for smaller pp are not qualitatively different from
those in baryon-free quark matter shown in Figs. 1(a)
and 2(a). As pp increases, except for the pion condensate
becoming zero again at a slightly smaller y;, there appears a
second nonzero solution (z,) of the pion condensate from
Eq. (26) between about y; ~ 10m, and u; ~ 14m,, as shown
in Figs. 4(b) and 5(b). At an even higher up, the occurrence
of 7, is at an even lower y;. On the other hand, there is a first-
order phase transition of the pion condensate at large y; for
both 7 and 7,, where the pion condensate changes suddenly
from a finite value to zero, as shown by the vertical lines in
Figs. 4(c) and 5(c). In addition, as shown in the same panel,
it is seen that the assumption of M, = M, overestimates
significantly the threshold y; for z,, and underestimates the
threshold y; for z, especially at 7 = 50 MeV compared with

()

T=0MeV
g = 200 MeV

FIG. 4. Reduced pion and chiral condensate (/20 and 6,,/6,)
as a function of the reduced isospin chemical potential y;/m, in
cold (T = 0 MeV) and baryon-rich [ug = 200 (a), 400 (b), 800
(c), and 950 (d) MeV] quark matter. Results are compared with
those obtained using the assumption M, = M.
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" (b)

solid: m
dashed: m,

T =50 MeV
5 = 400 MeV

T =50 MeV

clo, ™ /26, black:
M, =M,
08¢ red:
M, =M,
0.4}
T =50 MeV T =50 MeV

1, = 800 MeV Hg = 897 MeV
00 4 8 0 4 8 12
l"LI/I"nn
FIG. 5. Similar to Fig. 4 but in hot (T = 50 MeV) and baryon-

rich [up = 400 (a), 500 (b), 800 (c), and 897 (d) MeV] quark
matter. Results are compared with those obtained using the
assumption M, = M.

those at 7 =0 MeV. If the baryon chemical potential is
further increased, then the occurrence of the pion condensate
becomes a first-order phase transition as well, and this is
displayed in Figs. 4(d) and 5(d). It is also seen in Fig. 5(d)
that the region of 7 # 0 and 7, # 0 is much smaller from the
rigourous calculations of M, # M, compared to those by
assuming M, = M,. In addition, the chiral condensate
generally has a sudden increase (decrease) once the pion
condensate has a sudden decrease (increase) with the
increasing isospin chemical potential. Figure 5(d) shows
that the QCD phase structure can be different at large pup
and higher temperatures from the rigourous calculations
comparing with those by assuming equal constituent mass
for u and d quarks.

Although 7 and 7, calculated based on Eq. (26) satisfy the
condition 0Q2/0x = 0, they are not both stable. For the T,
up, and four typical isospin chemical potential 4; chosen
according to Fig. 4(c), we show in Fig. 6 the thermodynamic
potential Q as a function of the reduced pion condensate,
after subtracting the contribution ; in a vacuum. At
u; = 141 MeV, it is seen that a local minimum point of
Q is about to appear, leading to the occurrence of z. At
u; = 355 MeV, except for a local minimum point corre-
sponding to z, a local maximum point of € is about to
appear, leading to the occurrence of 7,. At y; = 800 MeV,
there are both local maximum and local minimum points of
Q, showing the existence of both 7 and 7, states. At
u; = 2437 MeV, both the local maximum and local mini-
mum of Q are about to disappears, and z and 7, turn to 0
accordingly. Since the solution 7z, corresponds to a maxi-
mum thermodynamic potential, it is an unstable solution,
and the system favors z rather than z,. It is also argued that
the instability of 7, could be cured by considering the free
energy of a system with a fixed baryon density [45] or in a

Fermi system with a finite-range momentum-dependent
interaction [46].

To understand in more details the properties of 7 and
7, we display in Fig. 7 the dispersion relations and
net-quark momentum distributions for u and d quarks in
the condition of Fig. 6(c) and also at 7 =50 MeV.
For the dispersion relation, we show one of the four
solutions of A = 4; — ’%B with k =1,2,3,4 and A, being
the quasiparticle energy as detailed in Appendix B. The
net-quark momentum distribution is defined as

. 1
i =23 a5+ S| (9

so integrating n,(g) gives the net-quark density, i.e.,

d*p
Pu(d) = 2Nc / (2”)3 Ny(d)- (39)

Itis seen from Fig. 7(a) that the quasiparticle energy for 7,
becomes negative when the momentum p is between
about 200 and 500 MeV/c. For the other three quasipar-
ticle energy solutions for 7,, they do not change sign as a
function of the momentum. The negative quasiparticle
energy state corresponds to the so-called Sarma phase
[47], where the quasiparticle excitation does not need
additional energy. The Sarma phase breaks the pairing of
u and d quarks, as can be see from Fig. 7(c) that n, and n,,
is approximately of a constant value 0 and 1 in the region
of negative 1/, respectively, compared with the pairing
states when n,(p) = —ny(p) is always satisfied. At
T = 50 MeV, the dispersion relation of A’ is similar to
that at 7 = 0 MeV, while there is no sudden jump in the
net-quark momentum distribution, though n,(p) and

1, =141 MeV

1, = 355 MeV

(a)

, =800 MeV W, = 2437 MeV

1-430

0.0 0.5 1.0 15 2.0
n/2a,

FIG. 6. Thermodynamic potential Q (subtracting the contribu-
tion Q, in a vacuum) as a function of the reduced pion condensate
at different isospin chemical potentials y; in cold (T = 0 MeV)
and baryon-rich (up = 800 MeV) quark matter, corresponding to
the condition in Fig. 4(c).
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400+ solid lines:
dashed lines: m,

nu(d)(p)

T=50MeV |

(d)

200 400 600 800 O 200 400 600 800 1000
p (MeV/c)

FIG. 7. Dispersion relations (upper) and net-quark momentum
distributions (lower) for u and d quarks in baryon-rich
(up = 800 MeV) and isospin-asymmetric (y; = 800 MeV)
quark matter at 7 = 0 [(a), (c)] and 50 MeV [(b), (d)].

ny(p) become asymmetric around the momentum region
where A’ is negative. This behavior corresponds to the
“quasi” Sarma phase at finite temperatures [48,49]. Also
shown are the dispersion relation of A’ for the z solution
corresponding to the local minimum of the thermody-
namic potential as shown in Fig. 6. In such case, it is seen
that A’ does not change sign, and n,(p) = —ny(p) is
always satisfied at 7 = 0 MeV and approximately satis-
fied at T = 50 MeV.

C. Three-dimensional phase diagram

We then move to the discussions of the three-dimensional
QCD phase diagram. Since the appearance of the pion
condensate always leads to the decrease of the chiral
condensate, here we only discuss the behavior of the
pion condensate in the 7 — up — y; space, where the chiral
condensate generally has an opposite behavior. Figure 8
displays the phase diagrams in the 7 — up plane at different
isospin chemical potentials, where we show three phases as
discussed above. Phase I is the normal baryon-rich and
isospin-asymmetric quark matter with 7 = 0. Phase Il is the
pion superfluid phase with 7 # 0. Phase Il is the phase with
both nonzero solutions of z and =,, with the latter corre-
sponding to the existence of the Sarma phase as discussed
above. It is seen that phase I generally exists at larger 7" or
larger y, while phase II generally exists at smaller 7" and pup.
Phase III exists in the area between the solid line and the
dash-dotted line. It is seen that the phase transition between
phase I and phase I, in the absence of phase 11, is always a
second-order one, with the phase boundary represented by
the dashed lines, so are the phase transition between phase I1
and phase III, with the phase boundary represented by the
dash-dotted lines. On the other hand, the phase transition
between phase I and phase III is always a first-order one,
with the phase boundary represented by the solid lines. The

1, =200 MeV ' a) 1, =400 MeV " (b)
200t black: M, =M, +--__
Moo
------ red: M, =M, 3
s~ CEP
o solid: N
100} AN L 1st-order PT (Iand M)+
L dashed: AN
" u - CEP 2nd-order PT (1and II) AU
< \ dash-dotted: o
% 0 ) ‘ 2nd-order PT (Iland 1) | L )
g , =600 MeV (C) 1, = 800 MeV (d)
= 200f-----. . SRREE
) TS\ CEP
)
100} ;]
7 /,
i
0 L L
0 500 1000 0 500 1000
iy (MeV)
FIG. 8. Phase diagrams in the 7' — y5 plane at different isospin

chemical potentials y; = 200 (a), 400 (b), 600 (c), and 800
(d) MeV, from rigourous calculations of M, # M, and approxi-
mated calculations of M, = M,. Solid lines represent the
first-order phase transition (PT) between phase I and phase III,
dashed lines represent the second-order phase transition between
phase I and phase II, and dash-dotted lines represent the second-
order phase transition between phase II and phase III.

critical end point (CEP), which connects the boundaries of
the first-order phase transition and the second-order phase
transitions, moves to a higher temperature with y; changing
from 200 to 400 MeV, and the increasing trend saturates
above y; = 400 MeV. The assumption of M, = M, leads
to a different phase structure at larger up, resulting in a CEP
at lower temperatures and larger baryon chemical potentials.

Figure 9 displays the phase diagrams in the 7 — y; plane
at different baryon chemical potentials. It is seen that the
normal quark phase (phase I) generally exists at very small
or large isospin chemical potentials, or at high temper-
atures, while the area of the pion superfluid phase (phase
IT) shrinks dramatically with the increasing baryon chemi-
cal potential. The phase transitions are always of second-
order at smaller baryon chemical potentials, while the
first-order phase transition becomes more and more
dominate with the increasing baryon chemical potential.
Phase III with 7z, # 0 does not exist at uz = 0 (not shown
here), but it gradually appears inside phase II at small
baryon chemical potentials, and its area becomes larger
and dominate at large baryon chemical potentials. The
difference between results from rigourous calculations
(M, # M) and approximations (M, = M) on the phase
diagram is seen in Figs. 9(b) and 9(c), and it mainly exists
in the relative area of phase II and phase III as well as the
position of the CEP.

Figure 10 displays the phase diagrams in the up — p;
plane at different temperatures. Again, the normal quark
phase (phase I) exists at larger up and/or very small or large
iy, and the pion superfluid phase (phase II) is observed at
smaller 4z and intermediate y;, already seen in Figs. 8 and 9.
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200

- uy=400Mev (D) 1, = 600 MeV

150F

100 ! .
ol 1 black: M, =M, \
< 1 red: Mu =M P ' |
3 o SATIN N | .
§ (c) 1, = 800 MeV | (d) 1 = 1000 MeV
150 rsolid:

1st-order PT (I and 1)

dashed:

2nd-order PT (Iand II)
dash-dotted:
2nd-order PT (1l and II)

100} |\

501

= 111
OO 1000 2000 0 1000 2000 3000
p, (MeV)

FIG. 9. Similar to Fig. 8 but in the 7" — y; plane at different
baryon chemical potentials pp = 400 (a), 600 (b), 800 (c), and
1000 (d) MeV.

1500

T=0 " (@) T=50Mev (b)

1000} black: M, = M,

|CEP !
PN red: M, =M, ‘

soof:  vme_ ol 7
> ! T R 1
] | ' | '
=  op ; ; ; —
= T =100 MeV (C)| T=150 MeV  solid: (d)
= 1st-order PT (I and III)

dashed:

2nd-order PT (I and II)
dash-dotted:

2nd-order PT (Il and I1I)

1000+

500 !

o 1000 2000 0 1000 2000 3000
V

FIG. 10. Similar to Fig. 8 but in the pp — p; plane at different
temperatures 7 = 0 (a), 50 (b), 100 (c), and 150 (d) MeV.

The area of phase II shrinks with the increasing temperature.
Also, the first-order phase transition and phase III become
less dominate at higher temperatures. The deviations of
results using the approximation (M, = M) from rigourous
calculations (M, # M ;) can now be quantitatively seen
within upz € (500,900) MeV. Figure 10 is of course con-
sistent with Figs. 8 and 9, and they together give a whole
picture of the three-dimensional QCD phase diagram.

IV. CONCLUSION

With the scalar-isovector and vector-isovector coupling
constants adjusted to fit the physical pion mass and the
lattice QCD results in baryon-free quark matter, we have
studied the three-dimensional QCD phase diagram by
considering the pion condensate based on the three-flavor
NJL model. We found that the pion condensate becomes
less important at higher temperatures or larger baryon

chemical potentials. Thus, although incorporating the
pion condensate would stiffen the equation of state of
strange quark matter, it generally does not affect the
properties of compact star systems where large baryon
chemical potentials are reached. Besides the normal
solution, we observe the appearance of a second nonzero
solution of the pion condensate with the increase of the
isospin chemical potential in baryon-rich quark matter,
while both solutions disappear at very large isospin
chemical potentials. The normal solution corresponds to
the local minimum of the thermodynamic potential and
represents the pion superfluid phase, while the second
solution corresponds to the local maximum of the
thermodynamic potential and is related to the Sarma
phase. The occurrence or the disappearance of the pion
condensate is a second-order phase transition at higher
temperatures or smaller baryon chemical potentials, while
it becomes a first-order one at lower temperatures or larger
baryon chemical potentials. The calculations by assuming
equal constituent mass of u and d quarks may introduce
large errors in the three-dimensional QCD phase diagram
within up € (500,900) MeV, and affect the extraction
of the critical end point, compared with the rigourous
calculations in the present study.

To further explore the QCD phase structure, one can
incorporate the polyakov loop into the NJL model, and study
the interplay among the chiral condensate, the pion con-
densate, and the polyakov loop [22]. The kaon condensate
can be further incorporated by considering systems at large
strangeness chemical potentials. In addition, although the
pion condensate generally will not affect the equation of state
of strange quark matter and thus properties of compact stars,
it is of great interest to further incorporate the chiral
imbalance [50], the color superconductivity [51], etc., and
to see their effects on the QCD phase diagram and compact
star properties. Further detailed properties of the QCD phase
structure, e.g., the Larkin-Ovchinnikov-Fudde-Ferrell phase,
are also worth investigating, as shown in Refs. [45,52].

ACKNOWLEDGMENTS

J. X. was supported by the National Natural Science
Foundation of China under Grant No. 11922514. G. X. P.
was supported by the National Natural Science Foundation
of China under Grants No. 11875052, No. 11575190, and
No. 11135011.

APPENDIX A: THE LAGRANGIAN FROM MEAN-
FIELD APPROXIMATION

In the mean-field approximation, it is assumed that
deviations due to fluctuations of all quantities A from their
thermal average values (A) are small. Thus, the following
relations can be introduced to linearize the Lagrangian
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WTwy) ~ W),
(FTiw)* ~ 29Ty (G iy) —
Tyl )

(Why)?,

~ Ly Wl ) + ol (Ty)
— (@) WL y),

Ty ) T ) (P yr)

+ (@) (WL ) (P ayr)

+ (@) Py (W1 jyr)

= 2(pT ) (W ) WL wyr),

WLyl yyTy) ~

(A1)

withI" = {1, ys,7,.757,}, and the angular bracket denoting
the expectation value from the quantum statistical average.
In our previous studies [37], we assumed (pyfy) =
(prstw) = (WrsA®y) = (prsy'w) =0 due to the parity
symmetry in a static quark matter, so the condensates
(wy ;) with i # j vanish since it is assumed that the flavor
is conserved in the case of y; < m,. In order to study the
three-dimensional QCD phase diagram, we consider sys-
tems at larger isospin chemical potentials where pion
condensates may arise, i.e.,

nt = (piysiky

) = V2{airsd) = e,

7 = (Fiysiiy) = V2(diysu) = = e,
(wiysi_w) (diysu) 7
m = (wiysA'y) = (aiysd) + (diysu),

with 2} = -5 (4" & i2?). In such case, the nonzero expect-

ation value of (iiysd) or (diysu) spontaneously break the
U,(1) symmetry, corresponding to the Bose-Einstein
condensation of charged pions. The phase 8, represents
the direction of the U;(1) symmetry breaking. Since the
thermodynamic potential does not depend on 6,, but
depends only on |z%|? or |z|%, we can set them to be real
values corresponding to 8,, = 0 without losing general-
ity. The Kaon condensate, which could be important at
large strangeness chemical potentials, is not considered in
the present study.

In the mean-field approximation by using the relations of
Eq. (Al), the scalar-isoscalar term can be expressed as

8

%3 ()

a=0

+ (piyshw)?] = wZsy = Vs, (A2)

where Vg = Gg(02 + 02 + 02) + 7% is the scalar-isosca-

lar condensate energy, with

o, = (i),
Oy = <c_1d>,
oy = (3s) (A3)

being the chiral condensates for u, d, and s quarks,
respectively, and

ZGSO-M iGsﬂj/j 0
ZS = iGsf[}/S ZGSGd O (A4)
0 0  2Ggo,

is the self-energy contributed from the scalar-isoscalar
interaction. The scalar-isovector term in the mean-field
approximation can be expressed as

3
Gis Z[(V_/MW)Z
a=1

where Vig = Gis(0, — 6,)> + Gign? is the scalar-isovector
condensate energy, and

+ (WiysAy)?] = wEisy — Vis, (AS)

2Gls(0u —04) i2Ggmys 0
Zpg = i2Gismys  —2Gis(o, —04) O (A6)
0 0 0

is the self-energy contributed from the scalar-isovector
interaction. The KMT term in the mean-field approxima-
tion can be expressed as

—K{det(@ (1 +ys)y) +det(y(1 —ys)w)} = wZky — Vi,

(A7)
where Vx = —4Ko,6,0, — Kn’o, is the condensate energy
contribution from the KMT interaction, and

—2Ko,0, —iKnmo,ys 0
Yk = | —iKnoyys —2Ko,0; 0 (AB)
0 0 —2Ko,0, — *7[2

is the self-energy contributed from the KMT interaction.
Considering only the flavor-singlet state, the vector-
isoscalar term in the mean-field approximation can be
expressed as

Gy . __
= > ey + @iy 2w)’l = wivrow = V.
a=0
(A9)
where Vy = —%Gv(pu + pa + ps)? is the vector-isoscalar

condensate energy, with p, (¢ = u, d, s) being the net-
quark density, and

—%va 0 0
py = 0 —%Gvﬂ 0 (A10)
0 0 —%va
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represents the contribution of the effective chemical potential
from the vector-isoscalar interaction, with p = p, + p; + p;
being the total net-quark density. The vector-isovector term
in the mean-field approximation can be expressed as

~Gy Z 2w )? + (riysy* Ay )] = Wi row — Vv,

(Al1)

where Viy = =Gy (p, — pq)? is the vector-isovector con-

densate energy, and

—2Gw(pu = Pa) 0 0
v = 0 2Gw(pu—pa) O (A12)
0 0 0

represents the contribution of the effective chemical potential
from the vector-isovector interaction.

APPENDIX B: THERMODYNAMIC POTENTIAL

In this appendix, we obtain the thermodynamic potential
from the partition function, which in the grand canonical
ensemble is written as

Z=Tre 0 =37 [ v, (e, (B

where = T~! is the inverse of the temperature, y is the
chemical potential, and A and N are the Hamiltonian
operator and the quark number operator, respectively. The
sum Y, [ d¥, is carried out over all states. According to
the finite-temperature field theory, the partition function in
the mean-field approximation can be expressed in the form
of the path integral

B
Z—/Dz;‘/Dy/xexp {/ dT/d3X£MF:|7 (B2)
0

with the real time r = x; converted to the imaginary time
7 = it, and the functional integral f DDy covering all
quark species. In the above equation, the condensate energy
independent of y and y can be factorized in Z, and after
applying the relation

1n(/Diy/TDy/ei"’%S_]"’)=ln detS~'=TrInS~!, (B3)

the partition function can be simplified as

4

nZ = —i/}V/(;i—l;

= ﬂVTZ /

Tr InS(p)~' = pVV,

s Tr InS(iw,. p)~' = pVV, (B4)

where V is the system volume, and the 4-momentum
becomes p = (po, p) = (iw,, p) with w, = (2n+ 1)aT
being the Matsubara frequency for a Fermi system.

The thermodynamic potential of the quark system can be
obtained from the partition function through

O—-timz,
pv

= —TZ/ <p Tr InS(iw,, p)~' + V.
— | (2x)? "

(B5)

With the form of the quark propagator as Eq. (13) and
keeping in mind that p, = iw,, we can get the following
relation after some algebras

Tr InS~!(p)
= 2N In{[(E5 = (po + /1)* — A?)
x (Eg = (po + fig)* — A?)
+ (M, +My)* +4p% = (2po + i, + ia)*) A’]

x [ES = (po + iis)]} (B6)

with A = (Gs + 2G5 — Ko, )z being the gap parameter,
and E, = /M2 + p* with ¢ = u, d, s being the single-

quark energy. Replacing i, and ji; with the effective
baryon and isospin chemical potential jiz and fi; according
to Eq. (16), Eq. (B6) becomes

Tr InS~!(p)

fig)* i\
:2Ncln{ [a<p0+?> —I—b<po+?>

+c<p0 +’2—B>2+d<po +’?) +e] [ES = (po + i) }}
S ()

Hm—@r%MFm—@ﬁ%M} (B7)

where A, is the solution of the quartic equation for
Po + fig/3, with the coefficients
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d = jiy (M7, — M)

_ 2 fir\* 2 2 5 (Hr\?
e=gE+(5) +E+ e (a2 - (5

+ (”; — (M, — My)* + A2) A, (B8)

In the general situation with M,, # M ; and thus d # 0, we
can get the analytical expressions of the four roots A;

VX 1 z
=+~ v+
: 2 2 4VX

VX

Ay = ! Y z
2= 7575 /X
X 1 Z
PRE Ny 2
2 2 4v/X
VX 1 z
M=+——-=4|/Y+—F B9
4 2 2 4vX (B)
with
X=—-+E, Y=—-c—-E, Z=-8d, (BI10)
where = is expressed as
¢ BB, F
2= — B11
3 * 385 3x 23 ( )
with
B =c?+ 12e, B, =20 + 27d* — T2ce,
By = (B, + 1/ 48} + E2)". (B12)
These roots satisfy the following relations
4
- A-b=0,
k=1
S [Lk-e=0
i<j k=ij
4
S [a-d=0
i=1 ki
4
[[4#-e=0 (B13)

In the special case of M, = M, the four roots become

_ AR
2
Iy 2
/12_—\/(E+%> + A2,

7\ 2
13 — <E—ﬂ1) +A2,

2

7\ 2
Aa :—\/(E—/g> + A2,

with E = /M3 + p*> = \/M? + p>. Since the sign is

degenerate, there are actually only two solutions. In
the baryon-free system, the general case always reduces
to the special case of M, = M.

Using the summation formula of the Matsubara frequen-
cies

(B14)

0 E
T Y In(iw, - E) = S+ Tin(1- ePE)

n=—0o

and combining Egs. (B5) and (B7), we can get the
expression of the thermodynamic potential as Eq. (17).

APPENDIX C: QUARK CONDENSATE AND
QUARK DENSITY

In this appendix we obtain the expressions of the chiral
condensates, the net-quark densities, and the pion con-
densate in terms of the phase-space distribution function
from the quark propagator. In the absence of the pion
condensate, u, d, and s quarks are decoupled, and the quark
propagator can be written as

Sou 0 0
0 0 S,

In the presence of the pion condensate, u and d quarks are
mixed, and the off-diagonal terms appear. The quark
propagator is then

Suu Sud 0
S= Sdu de 0 (CZ)
0 0 S,

with
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1
S = o>
St = ASpA

1
Sud = o>
W Sol = ASp, A

Sud = _SuuASOd = _SOMAde’
Sdu = _SOdASuu = _deASOM‘

In the above, the diagonal terms of the quark propagator in
the absence of the pion condensate are

_ Ai(ﬁ))’o Az(ﬁ)}’o
SOq(p) - _ E_ E+ )
Po q Po + q
with
o1 r(-p+M,)
A =— |1+ 9
L(p) 2 [ E,

and Ef = /M; + p* £ ji,, for g =u, d, s.

The detailed expressions of each quark propagator are

1 0= A
4 1
Sa(p) =D 9au(¥) —— - (C3)
k=1 k
with
Guu(A)
= {[(A + fia)* = E3)(=7 - B+ (A + fi)vo + M,,)
= A (=7 - P+ (A + fa)vo + My)}
4
A=) x 1}, Cc4
/{,.I,L( -2 <1 (c4)
gdd(/li)
={{(A + i) = E2)(=7 - P+ (A + fia)vo + M)
— AN (=7 P+ (A + i)ro +M,)}
{ f[ (e =4) } (C5)
j=1j#k

gud(lk)

= {[[(t, = fa)yo + M, — MJy -
+ My (& + ) — M, (4 +ﬂd)]70
+( +ﬂ )(’11 +ﬂd) pz_MuMd]iAJ/S —iA3}’5}

A —=A)xTs,
/{jL[ﬁ( -4 <1
gdu(’%c)

= {{[(f#g = fu)yo +My—M,J7 - p

+ [Mu(/l;c +ﬂd> - Md(j';c +ﬂu)]yo
+ (A + fig) (A + fi,) — p* — MM, JiAys — iA3ys}

4
/{ 11 (A;—z;)xl}.
Jj=1.j#k

With the following relations [18]

e
:N"/ (erf
[ G
:NC/ énl)z
[ 2 i)

3
=N, / éT)STZTr[SOS(iwn, p)l.

d* ,
Pu = _Nc/(zﬂsthr[lSuu(p)Y()]y
& .S
-n. [ G T TS i, P

__N/

_ N / %T;n[sdd(iwn,mm,

—N/ Tr[iSos(P)r0l,
I (21;;

(Co)

7 11[iS . (p)],

TZTr[SW(iCOn, Pl

Tr[iSqq(p)],

(iwy,. p)].

Tr[iSqq(p)7o)s

(lwnv ]_5)7’0} ’
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4
= NC/(;IT’;“Tr[Sud(P)Ys + S (P)rs),

& o (e = o (e =
= NL' / (2771;3 TZTr[lSud(lwnv p)YS + lSdu(lwn’ p)yS]’

and the expressions of the quark propagators [Eq. (C3)], we
can obtain the analytical expressions of the chiral conden-
sates, the net-quark densities, and the pion condensate as
Egs. (18)—(23) and (26).
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