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A new exactly solvable case in strong-field quantum electrodynamics with a time-dependent external
electric field is presented. The corresponding field is given by one component of the electromagnetic vector
potential, which is the analytic function AxðtÞ ¼ σE0½1þ exp ðt=σÞ�−1=2, where σ is a timescale parameter.
In contrast to Sauter-like electric field, this field is asymmetric with respect to the time instant, where it
reaches its maximum value, that is why we call it the analytic asymmetric electric field. We managed to
exactly solve the Dirac equation with such a field, which made it possible to calculate characteristics of the
corresponding vacuum instability nonperturbatively. We construct the so-called in- and out-solutions and
with their help calculate mean differential and total numbers of created charged particles, probability of the
vacuum to remain a vacuum, vacuum mean values of current density and energy-momentum tensor of the
particles. We study the vacuum instability in regimes of rapidly and slowly changing analytic asymmetric
electric field, and compare the obtained results with corresponding ones obtained earlier for the case of the
symmetric Sauter-like electric field. We also compare exact results in the regime of slowly changing field
with corresponding results obtained within the slowly varying field approximation proposed by two of the
authors in [S. P. Gavrilov and D. M. Gitman, Phys. Rev. D 95, 076013 (2017)], thus demonstrating the
effectiveness of such an approximation.

DOI: 10.1103/PhysRevD.104.076008

I. INTRODUCTION

Particle creation from the vacuum by strong electromag-
netic and gravitational fields is a remarkable effect (some-
times called the Schwinger effect [1]) predicted by quantum
field theory (QFT). A large number of articles, reviews and
books are devoted to the history of its theoretical descrip-
tion, possibilities of its observation and applications, see,
e.g., Refs. [2–7] and references there. QFT with external
backgrounds is, to a certain extent, an appropriate model
for theoretical study of the effect. In the framework of such
a model, the particle creation is interpreted as a violation of
the vacuum stability. Backgrounds (external fields) that
violate the vacuum stability are electriclike fields that are

able to produce nonzero work when interacting with
charged particles. Creation of charged particles from the
vacuum by electriclike fields needs superstrong field
magnitudes compared with the Schwinger critical field
Ec ¼m2c3=eℏ≃ 1.3× 1016 V · cm−1. Nevertheless, recent
progress in laser physics allows one to hope that this effect
will be experimentally observed in the near future even in
laboratory conditions, see Ref. [8] for the review. Electron-
hole pair creation from the vacuum (analogue of the
electron-positron pair creation) was recently observed in
the graphene by its indirect influence on the graphene
conductivity [9] (the graphene conductivity modification
due to the particle creation was calculated in [10], some
other relevant effects were discussed in Ref. [11]). The need
to consider strong fields in the above mentioned model
leads, in turn, to the need for a nonperturbative consid-
eration of the interaction with external backgrounds and a
development of appropriate methods. Depending on the
structure of such backgrounds, different approaches for
calculating the effect of the vacuum instability in quantum
electrodynamics (QED) with strong backgrounds (strong-
field QED in what follows) were elaborated. The most
consistent formulation of the particle production problem is
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formulated for time-dependent external electric fields that
are switched on and off at infinitely remote times t → �∞,
respectively. A complete nonperturbative with respect to
the external background formulation of strong-field QED
with such external fields was developed in Refs. [5,12]; it
is based on the existence of exact solutions of the Dirac
equation with time dependent external field (more exactly,
complete sets of exact solutions). When such solutions
can be found and all the calculations can be done
analytically, we refer to these examples as exactly solvable
cases. Usually are considered nonstationary homogenous
electric fields of a constant direction. Electromagnetic
vector potential for such fields can be chosen as a timelike
potential step (scalar potential being zero), therefore, below
we call fields of this type t-steps. We note that strong-field
QED with harmonically alternating electric fields also
belongs to the exactly solvable cases [13–15]. It should
be metioned that there exist physically interesting situations
where external backgrounds are represented by constant
(time-independent) but spatially inhomogeneous fields; see
Refs. [16,17] for the review. However, in this article we
discuss only problems of the vacuum instability in strong-
field QED with t-steps.
Until now, there are known only few exactly solvable

cases in strong-field QED with t-steps. Those are Sauter-
like (or adiabatic or pulse) electric field, T-constant elec-
tric field (a uniform electric field which effectively acts
during a sufficiently large but finite time interval T), and
the so-called peak electric fields (composed of two parts,
one increasing and another one decreasing), see e.g.,
Refs. [18,19] for a review. In this article, we present a
new exactly solvable case in strong-fieldQEDwith t-steps.
For the generality, the fields are considered in d ¼ Dþ 1–
dimensional Minkowski space-time, parametrized by the
coordinates X ¼ ðt; rÞ, r ¼ ðx1 ¼ x; x2;…; xDÞ. So far, the
effect has been considered in homogeneous fields with
constant direction (along one of the axis, usually along the
axis x), growing on the interval ð−∞; tmaxÞ monotonically
from zero to its maximum value Emax ¼ jEðtmaxÞj at a time
instant tmax, and then decay monotonically to zero on the
interval ðtmax;þ∞Þ. Their electromagnetic potentials can
be chosen as timelike steps,

A0 ¼ 0; A ¼ ðA1ðtÞ; 0;…; 0Þ;
A1ðtÞ ¼ AxðtÞ ¼ AðtÞ; Að−∞Þ > Aðþ∞Þ; ð1Þ

such that

EðtÞ ¼ ðE1ðtÞ; 0;…; 0Þ;
E1ðtÞ ¼ ExðtÞ ¼ EðtÞ ¼ −A0ðtÞ ≥ 0; ð2Þ

We note that among the above exactly solvable cases
only the external Sauter-like electric field is given by an
analytic function,

EðtÞ ¼ Emaxcosh−2ðt=TSÞ;
AxðtÞ ¼ −TS tanh ðt=TSÞ; Emax > 0: ð3Þ

This field reaches its maximum value at t ¼ tmax ¼ 0 and is
symmetric with respect to the origin. The vacuum insta-
bility in the Sauter-like electric field was first studied
in Ref. [20] and then many researchers returned to this
problem, since in the case under consideration it was
convenient to test various approaches, including approximate
ones; see, for example, Refs. [18,21] and references therein.
Here we present a new example of exactly solvable case

in which the external field is given by the following analytic
function:

EðtÞ ¼E0

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ expðt=σÞ

p
cosh−2ðt=2σÞ; E0 > 0; σ > 0;

Emax ¼EðtmaxÞ ¼ 3−3=2E0; tmax ¼ σ ln2;

AxðtÞ ¼
σE0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ expðt=σÞp : ð4Þ

Assuming σ ¼ TS=2, one can compare this field and the
Sauter-like electric field. For large negative t, both fields
behave in a very similar way. In contrast to the Sauter-like
electric field the field (4) is asymmetrical with respect to the
time instant tmax, where it reaches its maximum value. We
call this field configuration the analytic asymmetric field.
We stress that vacuum instability problems which can be

analytically studied using the exactly solvable cases, may
be useful in understanding similar problems in astrophys-
ics, cosmology, and condense matter physics. In particular,
the study of the vacuum instability in the Sauter-like and
T-constant electric fields is instructive for understanding
the conductivity in the graphene and Weyl semimetals as
was reported in Refs. [10,22–29]. Note that the vacuum
instability in t-steps has many similarities with the insta-
bility in the de Sitter background, as was noted, e.g., in
Refs. [30–33] and cited there works. Besides, using the
exactly solvable cases one can develop and test new
approximation methods for calculating quantum vacuum
effects in strong-field QFT.
Finally, we would like to note that the Sauter-like and

T-constant electric fields are symmetric relative to the point
t ¼ 0. In such fields distributions of created pairs are
symmetric with respect of the longitudinal momentum
px. The latter symmetry is not inherent in realistic asym-
metric fields. The electric field (4) considered in this article
is given (similar to Sauter-like field) by an analytic function
but is not symmetric. As we will see below, it corresponds
to the exactly solvable case of t-step electric field, thus
allowing an analytical and nonperturbative study of how
field asymmetry affects characteristics of the vacuum
instability.
All said above was an incentive for us to study the

vacuum instability in the analytic asymmetric field (4).
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This study is the subject of this article which is organized
as follows. In Sec. II we find exact solutions of the Dirac
equation with the analytic asymmetric field (4), in par-
ticular, we construct the so-called in- and out-solutions
which are the basis for calculating characteristics of the
vacuum instability. With their help, in Sec. III, we find
nonperturbatively the vacuum-to-vacuum transition prob-
ability as well as differential and total mean numbers of
created pairs. We compare these characteristics with ones
corresponding to other exactly solvable cases. In the same
section, we find mean values of the current density and the
energy-momentum tensor of created particles. In Sec. IV
we study the behavior of obtained physical quantities in the
regime of rapidly and slowly varying analytic asymmetric
field (4). Having in hands an exact expression for total
mean number of created pairs in the regime of slowly
varying field, we compare it with an estimate obtained in an
universal slowly varying field approximation proposed in
Ref. [34], thus demonstrating the effectiveness of the latter.
Some final remarks are presented in Sec. V. Useful for us
properties of confluent hypergeometric functions are given
in Appendix.

II. IN- AND OUT-SOLUTIONS

Let us find solutions to the Dirac equation with electric
field (4). The Dirac equation in ðd ¼ Dþ 1Þ-dimensional
Minkowski space-time with such field has the form1:

i∂tψðXÞ ¼ HðtÞψðXÞ;
HðtÞ ¼ γ0fγ1½−i∂x þ eAxðtÞ� − i∇⊥γ⊥ þmg; ð5Þ

where HðtÞ is a one-particle Dirac Hamiltonian, ψðXÞ is a
2½d=2�-component spinor (½d=2� stands for the integer part of
d=2), e > 0 is the absolute value of the electron charge, m
is the electron mass, and γμ are γ-matrices in d dimensions
[35]. The index ⊥ denotes components of the momentum
operator that are perpendicular to the electric field.
We seek solutions of Dirac equation in the following

form:

ψnðXÞ ¼ exp ðiprÞψnðtÞ; n ¼ ðp; sÞ;
ψnðtÞ ¼ fγ0i∂t − γ1½px þ eAxðtÞ� − γp⊥ þmgϕnðtÞ; ð6Þ

where ψnðtÞ and ϕnðtÞ are time-dependent spinors, n is
a complete set of quantum numbers characterizing
the solutions. Spin variables can be separated by the
substitution:

ϕnðtÞ ¼ φnðtÞvχ;s; χ ¼ �1; s ¼ ðs1; s2;…; s½d=2�−1Þ;
sj ¼ �1; ð7Þ

where φnðtÞ are some scalar functions and vχ;s is a set of
constant orthonormalized spinors, satisfying the following
conditions:

γ0γ1vχ;s ¼ χvχ;s; v†χ;svχ0;s0 ¼ δχ;χ0δs;s0 : ð8Þ

Quantum numbers s and χ describe the spin polarization (if
d ≤ 3 there are no spin degrees of freedom that are
described by the quantum numbers s). The solutions of
Dirac equation (6) which differ only by values of χ are
linearly dependent, so it is sufficient to work only with
solutions corresponding to one of the values of χ; see
Refs. [36] for more details. The scalar functions φnðtÞ
satisfy the following second-order differential equation:

�
d2

dt2
þ ½px þ eAxðtÞ�2 þ π2⊥ þ iχe _AðtÞ

�
φnðtÞ ¼ 0;

π⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

q
: ð9Þ

Now, we transform Eq. (9) to the Heun equation [37,38]
of a special form. To this end, we use the ansatz

φnðtÞ ¼ ð1þ zÞα1ð1 − zÞα2unðzÞ; z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ exp ðt=σÞ

p
;

α1 ¼ iτσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpx − eE0σÞ2 þ π2⊥

q
;

α2 ¼ iτσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpx þ eE0σÞ2 þ π2⊥

q
: ð10Þ

Solutions that differ only by the parameter τ are also
linearly dependent. For us it is sufficient to work only with
τ ¼ þ1. Substituting (10) into (9), we obtain the Heun
equation for function unðzÞ,

ĤnunðzÞ ¼ 0;

Ĥn ¼
d2

dz2
þ
�
−
1

z
þ 1þ 2α2

z − 1
þ 1þ 2α1

zþ 1

�
d
dz

þ z½α23 − ðα1 − α2Þ2� þ ðα1 − α2 þ α3Þ
zðz − 1Þðzþ 1Þ ;

α3 ¼ −2iχeσ2E0; τ ¼ �1: ð11Þ

Let us represent the functions unðzÞ as follows:

unðzÞ ¼ UnM̂nwn

�
zþ 1

2

�
;

M̂n ¼
bz − α1 þ α2 − α3

ða − 1Þb
d
dz

þ 1; ð12Þ

whereUn are some constants to be defined below, and wn is
a set of special functions, their properties will be dis-
cussed below.
For what follows, it should be noted that the differential

operator Ĥn satisfies the identity:1We use the relativistic system of units, ℏ ¼ c ¼ 1.
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ĤnM̂n ≡ B̂nR̂n; R̂n ¼
d2

dz2
þ
�

2α1
zþ 1

þ 2α2
z − 1

�
d
dz

þ ða − 1Þb
z2 − 1

;

B̂n ¼
bz − ðα1 − α2 þ α3Þ

ða − 1Þb
d
dz

þ 2ðα1 þ α2 þ 1Þ − b
a − 1

þ 1

ða − 1Þb
�
α1 − α2 þ α3

z
þ b − ðα1 − α2 þ α3Þ

z − 1
−
bþ ðα1 − α2 þ α3Þ

zþ 1

�
; ð13Þ

where imaginary parameters a and b have the form:

a ¼ α1 þ α2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðα21 þ α22Þ − α23

q
; b ¼ α1 þ α2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðα21 þ α22Þ − α23

q
: ð14Þ

Then, we chose the functions wn satisfying the equation:

R̂wnðξÞ ¼ 0; R̂ ¼ d2

dξ2
þ
�
2α1
ξ

þ 2α2
ξ − 1

�
d
dξ

þ ða − 1Þb
ξðξ − 1Þ ; ξ ¼ zþ 1

2
; ð15Þ

which admits solutions in terms of hypergeometric func-
tions. Taking into account Eq. (15), it is a trivial matter to
show that functions (12) obey the initial equation (11).
Let us find the general solution of the hypergeometric

equation (15). To this end we use two pairs of linearly
independent solutions that we denote as wn;iðξÞ; here
additional indices i ¼ 1;…; 4, are introduced to distinguish
between solutions with the same quantum numbers n.
Solutions wn;1ðξÞ and wn;2ðξÞ are

wn;1ðξÞ ¼ ξa−2α1−1ð1 − ξÞ2α1−a−bþ1

× Fð2α1 − aþ 1; 2 − a; 2α1 − a − bþ 2;

2 − α1; 1 − ξ−1Þ;
wn;2ðξÞ ¼ ξ1−aFða − 1; a − 2α1; aþ b − 2α1; 1 − ξ−1Þ:

ð16Þ

Functions Fðα; β; γ; ξÞ2 are Gaussian hypergeometric func-
tions [39]. Solutions (16) are well-defined in a vicinity of
the singular point ξ ¼ 1 (which corresponds to t → −∞).
Solutions wn;3ðξÞ and wn;4ðξÞ are

wn;3ðξÞ ¼ ð−ξÞ−bFðb; b − 2α1 þ 1; b − aþ 2; ξ−1Þ;
wn;4ðξÞ ¼ ð−ξÞ1−aFða − 1; a − 2α1; a − b; ξ−1Þ: ð17Þ

They are well defined in a vicinity of the singular point
ξ ¼ ∞ (which corresponds to t → þ∞). Using functions
(16) and (17) we construct four complete sets φn;iðtÞ, i ¼ 1,
2, 3, 4, of the corresponding solutions of Eq. (9).
Now one can move on to building the so-called in- and

out-solutions ψnðXÞ of the Dirac equation. These solutions
have special asymptotics as t → �∞ and correspond to

initial or final particles and antiparticles. The functions φðtÞ
that correspond to spinors ψðtÞ, that are in-solutions, are
denoted as ζφnðtÞ, while functions φðtÞ that correspond
to spinors ψðtÞ, that are out-solutions, are denoted as
ζφnðtÞ. Both sets are classified by a quantum number
ζ ¼ � which labels particles (ζ ¼ þ) and antiparticles
(ζ ¼ −). The electric field (4) vanishes at jtj → ∞, but its
vector potentials are different at t → −∞ and t → þ∞, see
Eq. (4). The above mentioned solutions ζφnðtÞ and ζφnðtÞ
have the following asymptotic behavior,

ζφnðtÞ ¼ ζN exp ð−iζεntÞ; ζεn ¼ ζω1; t → þ∞;

ζφnðtÞ ¼ ζN exp ð−iζεntÞ; ζεn ¼ ζω2; t → −∞;

ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ π2⊥

q
; ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpx þ eE0σÞ2 þ π2⊥

q
;

ð18Þ

where ζN and ζN are normalization constants.
Solutions (10) with the asymptotic conditions (18) have

the following form:

þφnðtÞ ¼ þNUn;1ð1þ zÞα1ð1 − zÞα2M̂nwn;1

�
zþ 1

2

�
;

−φnðtÞ ¼ −NUn;2ð1þ zÞα1ð1 − zÞα2M̂nwn;2

�
zþ 1

2

�
;

þφnðtÞ ¼ þNUn;3ð1þ zÞα1ð1 − zÞα2M̂nwn;3

�
zþ 1

2

�
;

−φnðtÞ ¼ −NUn;4ð1þ zÞα1ð1 − zÞα2M̂nwn;4

�
zþ 1

2

�
;

ð19Þ

where the constants Un;i, i ¼ 1, 2, 3, 4, are2These functions are also often denoted as 2F1ðα; β; γ; ξÞ.
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Un;1 ¼
21−α1−3α2eiπα2ða − 1Þb

ð2α2 − 1Þðb − α1 þ α2 − α3Þ
;

Un;2 ¼
2α2−α1þ2e−iπα2α2
a − α1 þ α2 þ α3

;

Un;3 ¼
2−be−iπðα2−bÞa − 1

a − b − 1
;

Un;4 ¼
21−ae−iπðα2−aÞbða − bÞ

aðb − α1 þ α2 − α3Þ − bðaþ α1 − α2 − α3Þ
: ð20Þ

The linear independence of solutions ζφnðtÞ and ζφnðtÞ
(19) with different ζ can be proved as follows: using
well-known relation (A3), given in Appendix, one sees
that Wronskians of the functions φ are proportional to
Wronskians of the functions w, namely,

Wð−φ; þφÞ ¼ Wðþφ; −φÞ ¼ ΩnðzÞWðwn;1; wn;2Þ;
Wð−φ; þφÞ ¼ Wðþφ; −φÞ ¼ ΩnðzÞWðwn;3; wn;4Þ;

ΩnðzÞ ¼ 22ðα1þα2Þð1þ zÞ2α1ð1 − zÞ2α2

×
ða − bÞα3 þ 2ðα21 − α22Þ

4ða − 1Þb : ð21Þ

In the case under consideration we have Wðwn;1; wn;2Þ ¼
Wðwn;3; wn;4Þ ¼ 0, which implies Wðζφ; −ζφÞ ¼ Wðζφ;
−ζφÞ ¼ 0 and, thus, proves the linear independence of
the corresponding functions φ.
Since a second-order ordinary linear equation has two

linearly independent solutions, all solutions with the
same quantum numbers n are found and they form
complete sets.

We denote by fζψnðXÞg and by fζψnðXÞg in- and out-
solutions of Dirac equation (5) which are constructed via

ζφnðtÞ and ζφnðtÞ correspondingly by the help of Eqs. (6)
and (7).
Using the equal-time inner product (which is time-

independent for bispinors under consideration)

ðψ ;ψÞ ¼
Z

drψ†ðXÞψðXÞ; dr ¼ dx1dx2…dxD ð22Þ

of Dirac bispinors, we easily calculate the normalization
constants ζN and ζN , using explicit forms of their
asymptotics,

ζN ¼ ζCY; ζC¼ ½2ω1ðω1 − χζpxÞ�−1=2; Y ¼ V−1=2
ðd−1Þ;

ζN ¼ ζCY; ζC¼ f2ω2½ω2− χζðpxþ eE0σÞ�g−1=2:
In doing this, we use the standard volume regularization
in which the r-integration in Eq. (22) is over a large
spatial box of the volume Vðd−1Þ ¼ L1 × � � � × LD in D-
dimensional Euclidean space, in this case, periodic boun-
dary conditions are assumed for the Dirac bispinors. At the
same time, one can see that the in- and out-solutions with
different quantum numbers n are orthogonal.
One can also see that in-solutions with quantum numbers

n are expressed via out-solutions with the same quantum
numbers n. Thus,

ζψnðtÞ ¼
X
ζ0
gnðζ0 jζÞζ0ψnðtÞ: ð23Þ

Coefficients gðζ0 jζÞ can be found with the help of the inner
product (22),

ðζψn; ζ
0
ψn0 Þ ¼ gnðζ0 jζÞδnn0 ; gnðζ0 jζÞ ¼ gnðζjζ0 Þ�;

X
ζ0
gnðζjζ0 Þgnðζ0 jζ00 Þ ¼ δζζ00 : ð24Þ

Equations (23) and (24) imply the following decomposition of the corresponding scalar functions:

ζφnðtÞ ¼ gnðþjζÞþφnðtÞ þ gnð−jζÞ−φnðtÞ: ð25Þ
Using the Kummer relations (A9) and (A10) for the hypergeometric equation [39] and decompositions (25), we find the

coefficients gnðζjζ0 Þ to be

gnðþjþÞ ¼ þN
þN

2b−α1−3α2þ1 sin ðπbÞΓða − bÞΓðbþ 1Þ
ðb − α1 þ α2 − α3Þ sin ð2πα2ÞΓð2α1 − bÞΓð2α2Þ

;

gnð−jþÞ ¼ − þN
−N

2a−α1−3α2ða − α1 þ α2 þ α3Þ sin ðπaÞΓðb − aÞΓðaÞ
sin ð2πα2ÞΓðb − 2α2 þ 1ÞΓð2α2Þ

;

gnðþj−Þ ¼ − −N
þN

2b−α1þα2þ1πΓða − bÞ
ða − α1 þ α2 þ α3Þ sin ð2πα2ÞΓðaÞΓð−2α2ÞΓða − 2α1Þ

;

gnð−j−Þ ¼ − −N
−N

2a−α1þα2πðb − α1 þ α2 − α3ÞΓðb − aÞ
sin ð2πα2ÞΓðbþ 1ÞΓð−2α2ÞΓð1 − aþ 2α2Þ

; ð26Þ

where ΓðxÞ is the gamma-function.
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III. VACUUM INSTABILITY CHARACTERISTICS

Here, using exact solutions that were found above, we
already can calculate characteristics of the vacuum insta-
bility in the electric field (4), namely the vacuum-to-
vacuum transition probability Pv, differential Nn and total
N mean numbers of created pairs. As it follows from the
general formulation of strong–field QED with t-electric
potential steps, all these characteristics are expressed via
coefficients (26),

Pv¼ exp

�X
n

lnð1−NnÞ
�
; Nn¼jgnð−jþÞj2; N¼

X
n

Nn:

ð27Þ

First, using Eqs. (26), we find the differential numbers
Nn. They are

Nn¼
sinh 2σπðω0þω1−ω2=2Þsinh 2σπðω0−ω1þω2=2Þ

sinh 4σπω1 sinh 2σπω2

;

ω0¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpx−eE0σÞ2þπ2⊥

q
;

ω1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
xþπ2⊥

q
; ω2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpxþeE0σÞ2þπ2⊥

q
: ð28Þ

To further analysis it is convenient to use the gauge
invariant longitudinal kinetic momentum, PxðtÞ ¼ px þ
eAxðtÞ and the increment ΔW of the longitudinal kinetic
momentum,

ΔW ¼ Pxðt → −∞Þ − Pxðt → þ∞Þ: ð29Þ

In the case under consideration we have ΔW ¼ eE0σ.
Let us analyze the dependence of the calculated quan-

tities on the parameter σ, which determines the shape of the
analytic asymmetric electric field. First, we consider small
values of the parameter σ,

σ ≪ ðeE0Þ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ π2⊥

q
: ð30Þ

In this case, the electric field (4) and its potential change
rapidly, and the electric field is a short pulse corresponding
to a small increment ΔW. As it follows from Eq. (28), in
this case, the differential mean numbers Nn are also small
enough for any px and π⊥,

Nn ¼
ðeE0σÞ2π2⊥
4ðp2

x þ π2⊥Þ2
�
1þO

�
eE0σ

p2
x þ π2⊥

��
: ð31Þ

It is the case of a weak external field such a result can be
derived in the framework of perturbation theory with
respect to the external field. At small longitudinal
momenta, p2

x ≪ π2⊥, expression (31) is reduced to the one

Nn ≈
ðΔWÞ2
4π2⊥

; ð32Þ

which coincides with the result obtained, for example, for a
weak pulse of T-constant electric field with the height
ΔW ¼ eET of a corresponding step in the same range of
longitudinal momenta (see [36]). Since the form of T-const
field is quite different from the one of the field (4), we
conclude that in the case of a small ΔW the leading term of
the distribution Nn is given by Eq. (32) that depends only
on ΔW and does not depend on the field configuration.
As it follows from a semiclassical consideration, most

particles produced at a time instant t have zero longitudinal
kinetic momenta and then are accelerated by a field. Thus,
we expect to find maximum of the distribution Nn when
longitudinal kinetic momenta at time tmax,

PxðtmaxÞ ¼ p0
x; p0

x ¼ px þ eE0σ=
ffiffiffi
3

p
; ð33Þ

is zero. Because of that in what follows we use value p0
x,

which is best suited for analysis of Nn.
Parameters ω (28), being written in terms p0

x, have the
form:

ω0 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p0

x − eE0σð1þ 1=
ffiffiffi
3

p
Þ�2 þ π2⊥

q
;

ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0

x − eE0σ=
ffiffiffi
3

p
Þ2 þ π2⊥

q
;

ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p0

x þ eE0σð1 − 1=
ffiffiffi
3

p
Þ�2 þ π2⊥

q
: ð34Þ

Let us consider the electric field for which σ → 0 and
E−1
0 → 0, such that the increment ΔW ¼ eE0σ is a finite

quantity. At the same time, we assume that for sufficiently
small σ parameters ω0, ω1 and ω2 satisfy the following
inequalities:

ΔWσ ≪ 1; max fσω0; σω1; σω2g ≪ 1: ð35Þ

In this case, one can approximate the mean numbers Nn as:

Nn ≈
ω2
0 − ðω1 − ω2=2Þ2

2ω2ω1

: ð36Þ

If the increment ΔW is large enough, ΔW ≫ π⊥; p0
x, then

one can represent Eq. (36) as follows:

Nn ¼ 1þO

�
max

�
p0
x

ΔW
;

π2⊥
ðΔWÞ2

��
: ð37Þ

We see that in this case the differential mean numbers Nn
reach the maximum possible value for fermions Nn ≈ 1, in
a wide range of the momenta p0

x and π⊥. The width of each
of these ranges is only one order less that ΔW. Note that
this is a characteristic feature of short strong pulses with
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large potential steps, which can be observed in all exactly
solvable cases, see review [18].
In what follows we consider the case of big σ,

σ ≫ ðeE0Þ−1=2max f1; m2=eE0g; ð38Þ

which corresponds to a slowly varying electric field,

2σπ½ω0 � ðω1 −ω2=2Þ� ≫ 1; 4σπω1 ≫ 1; 4σπω2 ≫ 1:

ð39Þ

In this case the differential mean numbers (28) can be
approximately presented as:

Nn ≈ exp ½−πτ�; τ ¼ 2σð2ω1 þ ω2 − 2ω0Þ: ð40Þ

One can check that the mean numbers Nn (28) are
negligibly small,

Nn ≪ e−πm
2=eEmax ; ð41Þ

in ranges where initial and final longitudinal kinetic
momenta Pxð−∞Þ and Pxðþ∞Þ are not large,

jp0
x − eE0σ=

ffiffiffi
3

p
j <

ffiffiffiffiffiffiffiffi
eE0

p
K;

jp0
x þ eE0σð1 − 1=

ffiffiffi
3

p
Þj <

ffiffiffiffiffiffiffiffi
eE0

p
K; ð42Þ

or are too large,

ffiffiffiffiffiffiffiffi
eE0

p
K < p0

x − eE0σ=
ffiffiffi
3

p
;ffiffiffiffiffiffiffiffi

eE0

p
K < −½p0

x þ eE0σð1 − 1=
ffiffiffi
3

p
Þ�: ð43Þ

Thus, one can conclude that main contributions to the
mean numbers Nn originate from the range of momentum
p0
x determined by the double inequality:

½
ffiffiffiffiffiffiffiffi
eE0

p
K− eE0σð1− 1=

ffiffiffi
3

p
Þ�<p0

x < eE0σ=
ffiffiffi
3

p
−

ffiffiffiffiffiffiffiffi
eE0

p
K:

ð44Þ

Let us turn to Eq. (40). The function τ has a minimum at
p0
x ¼ 0, which corresponds to the mean number Nn of crea-

ted particles by a constant uniform field with EðtÞ ¼ Emax,
then τ grows monotonically as both jp0

xj and π⊥ grow. One
can show that the mean numberNn is exponentially small in
the range of large transversal momenta, π⊥ ≳ ffiffiffiffiffiffiffiffi

eE0

p
K.

Therefore the following range of π⊥ is of interest:

π⊥ ≪
ffiffiffiffiffiffiffiffi
eE0

p
K: ð45Þ

Conditions (44) and (45) determine a range Ω of momenta,
beyond which the distributionNn is negligible. In this range,
the following approximation of the parameter τ holds true:

Nn ≈ Nas
n ¼ exp ð−πτÞ;

τ ≈
18σπ2⊥ðeE0σÞ2

2
ffiffiffi
3

p ðeE0σÞ3 − 9
ffiffiffi
3

p
eE0σp02

x þ 9p03
x

: ð46Þ

One can see that in two limiting cases:

eE0σ=
ffiffiffi
3

p
− p0

x →
ffiffiffiffiffiffiffiffi
eE0

p
K;

p0
x þ eE0σð1 − 1=

ffiffiffi
3

p
Þ →

ffiffiffiffiffiffiffiffi
eE0

p
K; ð47Þ

eitherω1 orω2 reach theirmaxima and the function τ reaches
its maximal values τþmax or τ−max respectively. One can see that
τ�max → ∞ as

ffiffiffiffiffiffiffiffi
eE0

p
σ → ∞.

In a wide range of transversal and longitudinal momenta,
π⊥ ≪ eE0σ, p0

x ≪ eE0σ, the differential mean numbers Nn
do not depend on the parameter σ and coincide with ones in
the constant electric field Emax, which are

Nn ≈ N0
n ¼ e−πτ0 ; τ0 ¼ τjp0

x¼0 ¼ λ ¼ π2⊥
eEmax

; ð48Þ

see Refs. [2,40].
The total number of pairs created from the vacuum

(N ¼ P
n Nn) by a uniform electric field, is proportional to

the space volume Vðd−1Þ as N ¼ Vðd−1Þρ. One can see that
the number density ρ has the form:

ρ ¼ 1

ð2πÞd−1
X
s

Z
Nndp: ð49Þ

In deriving Eq. (49) the sum over all momenta p was
transformed into an integral. Then the integral in the right
hand side of Eq. (49) can be approximated by an integral
over a subrange Ω (given by Eqs. (44) and (45) that
represents a dominant contribution with respect to the total
increment to the number density of created particles,

Ω∶ρΩ ¼ 1

ð2πÞd−1
X
s

Z
p∈Ω

Nn dp: ð50Þ

This quantity can be calculated using Eq. (50) with
differential numbers Nn approximated by Eq. (46). In this
case, the leading term ρΩ is formed over the range given by
Eqs. (44) and (45). In this approximation, the mean
numbers Nn do not depend on the spin polarization
parameters s. Thus, the summation over s produces the
factor JðdÞ ¼ 2½d=2�−1 (the number of spin degrees of free-
dom), such that:

ρΩ ¼ JðdÞ
ð2πÞd−1

Z
p∈Ω

Nn dp: ð51Þ

Taking into account Eq. (46), we approximate integral
(51) as:
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ρΩ ≈
JðdÞ

ð2πÞd−1
Z

ðIþp⊥ þ I−p⊥Þdp⊥;

Iþp⊥ ¼
Z

eE0σ=
ffiffi
3

p
−

ffiffiffiffiffiffi
eE0

p
K

0

e−πτdp0
x;

I−p⊥ ¼
Z

0

−½eE0σð1−1=
ffiffi
3

p Þ− ffiffiffiffiffiffi
eE0

p
K�
e−πτdp0

x: ð52Þ

To calculate Iþp⊥ and I−p⊥ , it is convenient to represent τ as
follows τ ¼ λðqþ 1Þ and to pass from the integration over
p0
x to the integration over a parameter q (the transition

to such a variable provides exponential decrease of the
integrand with increasing q, and the expansion of the pre-
exponential factor in powers of q has the form of an
asymptotic series). To this end we have to find p0

x as a
function of q using Eq. (46). Such a function can be found
from the cubic equation

r3 −
ffiffiffi
3

p
r2 þ 2q

3
ffiffiffi
3

p ðqþ 1Þ ¼ 0; r ¼ p0
x

eE0σ
: ð53Þ

Note that when p0
x → eE0σ=

ffiffiffi
3

p
−

ffiffiffiffiffiffiffiffi
eE0

p
K and p0

x →
−½eE0σð1− 1=

ffiffiffi
3

p Þ− ffiffiffiffiffiffiffiffi
eE0

p
K�, the parameter τ reaches the

limiting values τ�max ¼ λðq�max þ 1Þ respectively. How-
ever, since contributions of the factor exp ð−πτÞ to integrals
(52) outside of range (44) are exponentially small, one
can extend limits of the integration over q to �∞.
Equation (53) has three real solutions:

r1 ¼
2ffiffiffi
3

p cos
αðqÞ
3

þ 1=
ffiffiffi
3

p
; αðqÞ ¼ arccos½ðqþ 1Þ−1�;

r2 ¼ −
2ffiffiffi
3

p cos

�
αðqÞ
3

þ π

3

�
þ 1=

ffiffiffi
3

p
;

r3 ¼ −
2ffiffiffi
3

p cos

�
αðqÞ
3

−
π

3

�
þ 1=

ffiffiffi
3

p
; ð54Þ

see, e.g., [41].
Since 0 < q < þ∞, the following inequality holds true

0 ≤ αðqÞ ≤ π=2, which implies:

0 ≤
αðqÞ
3

≤
π

6
;

π

3
≤
�
αðqÞ
3

þ π

3

�
≤
π

2
;

−
π

3
≤
�
αðqÞ
3

−
π

3

�
≤ −

π

6
: ð55Þ

Then

1 ≤ r1 ≤
ffiffiffi
3

p
; 0 ≤ r2 ≤

1ffiffiffi
3

p ;

�
1ffiffiffi
3

p − 1

�
≤ r3 ≤ 0

ð56Þ

such that solutions r2 and r3 represent the parameter
p0
x in the subranges p0

x ∈ ð−eE0σð1 − 1=
ffiffiffi
3

p Þ; 0Þ and
p0
x ∈ ð0; eE0σ=

ffiffiffi
3

p Þ, respectively.
Thus, the integrals Iþp⊥ and I−p⊥ take the forms:

I�p⊥ ¼ � 2ΔW
3

ffiffiffi
3

p
Z þ∞

0

dq
ðqþ 1Þ−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðqþ 1Þ−2

p sin

�
αðqÞ
3

� π

3

�
exp ½−πλðqþ 1Þ�; ð57Þ

where ΔW ¼ eE0σ, and their sum can be represented as:

I−p⊥ þ Iþp⊥ ¼ 2

3
ΔW

Z þ∞

0

dq
ð1þ qÞ−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ qÞ−2

p cos
αðqÞ
3

exp ½−πλðqþ 1Þ�: ð58Þ

Substituting (58) into (52) and integrating over dpðd−2Þ
⊥ , we get:

N ≈ Vðd−1ÞρΩ; ρΩ ¼ β
ΔW
eEmax

k; β ¼ JðdÞ½eEmax�d=2
ð2πÞd−1 exp

�
−

πm2

eEmax

�
;

k ¼ 2

3

Z þ∞

0

dqðq2 þ 2qÞ−1=2ðqþ 1Þ−d=2 cos αðqÞ
3

exp

�
−

πm2

eEmax
q

�
: ð59Þ

The corresponding probability Pv of the vacuum to
remain a vacuum reads:

Pv ¼ exp ½−μN�; μ ¼
X∞
l¼0

ðlþ 1Þ−d=2 exp
�
−l

πm2

eEmax

�
:

ð60Þ

In this approximation, it is possible to find explicitly
additional characteristics of the vacuum instability, namely,
leading terms in representations of vacuum means of the
current density vector hjμðtÞi and of the energy-momentum
tensor (EMT) hTμνðtÞi, supposing that field (4) weakens at
macroscopically large time t ¼ tout ≫ tmax; see, e.g.,
Ref. [34] for a field representation of these quantities.
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At this time instant, the solutions ζψnðXÞ are reduced to free
particle plane waves in agreement with Eq. (18). The
renormalized vacuum polarization contributions to the
quantities hjμðtÞi and hTμνðtÞi vanish in the absence of
the external field. Therefore, for t ≥ tout, these vacuum
means are constant and represent the mean current density
and EMT of created particles. The latter quantities can
be calculated via differential mean numbers Nn given

by Eq. (46). Dominant contributions to hjμðtoutÞi and
hTμνðtoutÞi are formed in subranges Ω, defined by
Eqs. (44) and (45). Thus, the nonzero means are

hj1ðtoutÞi ≈ 2eρΩ; ð61Þ

and

hT00ðtoutÞi ≈ hT11ðtoutÞi ≈
JðdÞ

ð2πÞd−1
2ðΔWÞ2
3

ffiffiffi
3

p ðeEmaxÞd=2−1

×
Z þ∞

0

ð1þ qÞ−d=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2q

p cos

�
2αðqÞ
3

�
exp

�
−

πm2

eEmax
ðqþ 1Þ

�
dq;

hTllðtoutÞi ≈
JðdÞ

ð2πÞd−1
ðeEmaxÞd=2ffiffiffi

3
p

Z þ∞

0

ð1þ qÞ−d=2−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2q

p

×

�
cos

2αðqÞ
3

−
1

2

�
−1

exp

�
−

πm2

eEmax
ðqþ 1Þ

�
dq; l ¼ 2;…; D: ð62Þ

We see that the mean number density ρΩ and the mean
current density hj1ðtoutÞi of created pairs are proportional to
the increment ΔW of the kinetic momentum. This latter
quantity defines the total number of states ΔWL=2π with
the longitudinal momenta px, in which particles can be
created (here L is the length of the system along the axis x).
The vacuum means hT00ðtoutÞi ≈ hT11ðtoutÞi are propor-
tional to the square of the increment, while the vacuum
means hTllðtoutÞi do not depend onΔW if the latter quantity
is sufficiently large. Note that this is typical to any slowly
varying field [34]. The latter property allows one to
compare number densities of created pairs due to various
slowly varying electric fields. Among all exactly solvable
cases discussed above, a special place is occupied by the
case of T-constant electric field which is constant within
the large time interval T. The fields of other exactly
solvable cases decrease to zero with distance from the
corresponding maxima, so one may expect that in these
cases the pair production efficiency will be lower. Thus, it is
natural to compare the number density of created pairs by
fields with equal Emax and increment ΔW with the case of
T-constant field considered in detail in Refs. [36]. In the
latter case we set Emax ¼ E andΔW ¼ eET. The density of
created pairs due to T-constant field reads:

ρΩT ¼ β
ΔW
eEmax

: ð63Þ

It is a linear function of the time duration T and the quantity
β, given by Eq. (59), is the pairs production rate. In the
exactly solvable cases with Sauter-like electric field (3) and
in the peak field configurations of the exponential electric
field (see Refs. [18,19]) the latter quantities are

ðiÞ ρΩS ¼ ρΩT kS for Sauter-like field;

ðiiÞ ρΩp ¼ ρΩT kp for exponential peak field;

ðiiiÞ ρΩsq ¼ ρΩT ksq for inverse square peak field; ð64Þ

where

kS ¼
1

2

Z
∞

0

dqq−1=2ðqþ 1Þ−ðdþ1Þ=2 exp
�
−qπ

m2

eEmax

�
;

kp ¼
Z

∞

0

dq

ðqþ 1Þd=2þ1
exp

�
−qπ

m2

eEmax

�
;

ksq ¼
1

2

Z
∞

0

dq

ðqþ 1Þd=2 exp
�
−qπ

m2

eEmax

�
: ð65Þ

Formulas (59) and (65) show how differences in the
shapes of t-steps affect the integrands for factors k’s. These
factors for a not so strong electric field (m2=eEmax > 1) can
be approximated as:

k ≈
ffiffiffi
2

p

3
kS; kS ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
eEmax

p
m

; ksq ≈
1

2
kp; kp ≈

eEmax

πm2
:

ð66Þ

In this case, we see that the number density of created pairs
by analytic asymmetric and Sauter-like fields comparable
to each other but less the density ρΩT in T-constant field by
the order factor

ffiffiffiffiffiffiffiffiffiffiffiffi
eEmax

p
=m. The mean number densities ρΩp

and ρΩsq are comparable to each other, but due to the factor
eEmax=m2 are less than the density ρΩT . The obtained
estimates mean that for the case of not very strong electric
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fields, vacuum instability effects by the analytic asymmet-
ric and Sauter-like fields decrease over time, deviating from
their maximum values, much more slowly than by sharp-
peak fields.
In the case of a strong electric field (πm2=eEmax ≪ 1)

exponential factors in integrals (65) can be approximated
by units. Then, in this approximation, the factors k’s differ
slightly and have the form:

k ≈
�
0.65 if d ¼ 4

0.77 if d ¼ 3
; kS ≈

�
0.67 if d ¼ 4

0.79 if d ¼ 3
;

ksq ≈
1

d − 1
; kp ≈

2

d
:

Thus, if all the above mentioned t-steps are strong enough,
intensities of the corresponding pair productions are quite
similar.

IV. SLOWLY VARYING FIELD
APPROXIMATION

A new semiclassical approximation approach that is not
restricted by a smallness of differential mean numbers of
created pairs was recently proposed for treating the vacuum
instability in strong-field QED with t-steps slowly varying
with time [34]. This approach is closely related to the
leading term approximation of derivative expansion in
field-theoretic calculations [42–45] (see Ref. [46] for a
review). In fact, it is an extension of a locally constant field
approximation (LCFA) for calculating vacuummean values
of physical quantities. It maintains the nonperturbative
character of QED calculations even in the absence of the
exact solutions. In this approximation one can see an
universal character of the vacuum effects caused by a
strong electric field, defining the slowly varying regime in
general terms. In particular, one finds representations for
the total density of created pairs and vacuum mean values
of the current density and energy-momentum tensor as a
functional of an external electric field. In this section we
compare the results of such an approximation to ones
elaborated from exact solutions presented above for suffi-
ciently large σ.

We call EðtÞ a slowly varying electric field on a time
interval Δt from t to tþ Δt if the following condition
holds true:

				
_EðtÞΔt
EðtÞ

				 ≪ 1; ð67Þ

where EðtÞ and _EðtÞ are mean values of EðtÞ and _EðtÞ on
the time interval Δt, respectively, and Δt is significantly
larger than the time scale Δtsc,

Δt=Δtsc ≫ 1;

Δtsc ¼ ½eEðtÞ�−1=2 max f1; m2=eEðtÞg: ð68Þ

Property (67) is inherent to the field (4) for sufficiently
large σ satisfying condition (38) and for Δt satisfying both
Eq. (68) and the condition

Δt=σ ≪ 1: ð69Þ

In this case one can approximate the mean value EðtÞ in the
time interval Δt as EðtÞ ≈ EðtÞ. For a given p⊥ one can
consider the time interval Δt as a sufficiently large if

Δt
ffiffiffiffiffiffiffiffiffiffiffi
eEðtÞ

p
≫ max f1; λðtÞg; λðtÞ ¼ π2⊥=eEðtÞ: ð70Þ

Since the field under consideration (as all the above
mentioned fields) weakens as t → �∞ there always exist
some time instants tin and tout such that for any Δt, which
satisfies condition (69), the parameter λðtÞ achieves critical
values λout=in ¼ Δt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eEðtout=inÞ

p
> 1 respectively. For big

λðtÞ, satisfying inequalities λðtÞ > λout or λðtÞ > λin, con-
dition (70) is not valid. Because of this the slowly varying
field approximation is applicable only in the domain of a
strong enough field when tin < t < tout. However, the
violation of the vacuum stability by a small electric field,
EðtÞ < Eðtout=inÞ, is negligibly small.
In the domain of a strong enough field the leading term

in the density ρΩ in the slowly varying field approxima-
tion reads:

ρΩ ≈
JðdÞ

ð2πÞd−1
Z

tout

tin

eEðtÞdt
Z

dp⊥Nuniv
n ; Nuniv

n ¼ exp

�
−π

π2⊥
eEðtÞ

�
; ð71Þ

and the probability of the vacuum to remain a vacuum has the form:

Pv ≈ exp

�
−
Vðd−1ÞJðdÞ
ð2πÞd−1

X∞
l¼0

Z
tout

tin

dtð−1Þð1−κÞl=2 ½eEðtÞ�
d=2

ðlþ 1Þd=2 exp
�
−π

ðlþ 1Þm2

eEðtÞ
��

; ð72Þ

respectively, with the field EðtÞ given by Eq. (4).
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Let us compare these results with the ones presented in
Eq. (57). One can represent Eq. (71) in the form

ρΩ ≈
JðdÞ

ð2πÞd−1
Z

dp⊥ðJþp⊥ þ J−p⊥Þ;

Jþp⊥ ¼
Z

∞

tmax

dt½eEðtÞ�Nuniv
n ; J−p⊥ ¼

Z
tmax

−∞
dt½eEðtÞ�Nuniv

n :

ð73Þ

The electric field EðtÞ, given by Eq. (4) is related to the
quantity WðtÞ as

WðtÞ ¼ −eE0σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ exp ðt=σÞp ;

such that eEðtÞdt ¼ dWðtÞ. On the other hand, one can
relate the functions EðtÞ and WðtÞ via a cubic equation,

y3 − y − 2EðtÞ=E0 ¼ 0; ð74Þ

where the notation y ¼ WðtÞ=ðeE0σÞ is used. It is con-
venient to introduce a variable q such that

q ¼ ð3
ffiffiffi
3

p
EðtÞ=E0Þ−1 − 1: ð75Þ

We can express WðtÞ as a function of the field EðtÞ or as a
function of the variable q using solutions of equation (74).
This equation has three real solutions,

y1 ¼
2ffiffiffi
3

p cos
αðqÞ
3

; y2 ¼ −
2ffiffiffi
3

p cos

�
αðqÞ
3

þ π

3

�
;

y3 ¼ −
2ffiffiffi
3

p cos

�
αðqÞ
3

−
π

3

�
; αðqÞ ¼ arccos½ðqþ 1Þ−1�;

ð76Þ

see, e.g., [41]. Since WðtÞ is negative, only the solutions
y2;3 are relevant. One can see that for solutions y2;3 the
differential dWðtÞ takes the form:

dWðtÞ ¼ 2eE0σ

3
ffiffiffi
3

p sin

�
αðqÞ
3

� π

3

� ð1þ qÞ−1dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2q

p : ð77Þ

Passing from the integration over t to the integration over
the parameter q in Eq. (73), we find:

J�p⊥ ¼ I�p⊥ ; ð78Þ

where the quantities I�p⊥ are given by Eq. (57).
It follows from Eq. (78) that the density of created pairs

(71) and the probability of the vacuum to remain a vacuum
(72) obtained with the help of the slowly varying field
approximation coincide with expressions (59) and (60),
respectively. In the framework of the slowly varying field

approximation one can obtain expressions for the vacuum
means of current density and EMT given by Eqs. (61) and
(62), respectively.

V. FINAL REMARKS

As stated in the Introduction, until now, there were
known only few exactly solvable cases in strong-fieldQED
with t-steps. In the paper we present a new case of this kind,
the corresponding t-step is given by a time-dependent
analytic asymmetric field (4). For a nonperturbative analy-
sis of the vacuum instability generated by such an external
field, we have followed the well-known general approach
proposed in the works [5,12], based on the use of the
corresponding exact solutions (in particular in- and out-
solutions) of the Dirac equation.
One of the main and new result of the work was finding

such solutions. It must be said that this problem turned out
to be completely nontrivial. Unlike previously mentioned
exactly solvable cases, for the asymmetric analytical field
we had to apply an original method based on an analogue of
Darboux transformation. With help of this method, we find
solutions of the Dirac equation in the form of the differ-
ential transformation (12) of the Gaussian hypergeometric
functions. Then we construct complete sets of in- and out-
solutions of the Dirac equation with the asymmetric
analytic field, see Sec. II.
With the help of these sets (following the above

mentioned nonperturbative techniques), we have calculated
exactly basic characteristics of the vacuum instability in the
electric field under consideration, namely the vacuum-
to-vacuum transition probability Pv, differential Nn and
total N mean numbers of created pairs, see Sec. III. Next,
we compare the obtained characteristics with the corre-
sponding characteristics of vacuum instability in other
exactly solvable cases. We analyze the dependence of
the calculated quantities on the timescale parameter σ,
which determines the shape of the analytic asymmetric
electric field.
We note that in the case of a weak analytic asymmetric

field, the obtained results are reduced to results which can
be derived in the framework of a perturbation theory with
respect to the external field. This, in particular, is evidenced
by the expression for the differential mean numbers (32)
obtained for the case of the weak field.
If the analytic asymmetric electric field is strong and

the increment ΔW of the longitudinal momentum is large
enough we deal with the case of a rapidly changing elec-
tric field. In this case, as it follows from Eq. (37), the
differential mean numbers Nn reach their maximum pos-
sible for fermions values Nn ≈ 1, in wide ranges of the
momenta p0

x and π⊥. The width of each of these ranges is
only one order less than the increment ΔW, see Eq. (37).
Note that this behavior is inherent to all short pulses with
large potential steps belonging to exactly solvable cases,
see Ref. [18].
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As was already mentioned, among external fields of all
exactly solvable cases, only the external field of the new
case, considered in the present work, is given by an analytic
function, which is not symmetric with respect to its
maximum value. This circumstance makes it possible to
analyze nonperturbatively exactly the influence of such
asymmetry on effects of the vacuum instability. In particu-
lar, the influence of the asymmetry on the particle pro-
duction can be seen by the example of considering the
differential numbers (28). Due to this asymmetry these
quantities behave differently as functions of positive and
negative longitudinal momenta px. Apparently, a more
detailed analysis of asymmetry effects should be carried out
by comparing the vacuum instability in the analytic
asymmetric field with the one in Sauter-like field, since
the latter field is similar but differs by the presence of an
asymmetric right part. In this case, it may be useful to
clarify the role of the symmetry (with respect to the middle
point), which has no particular physical significance,
inherent in the configurations of external fields that are
simplified for obtaining exact solutions.
This is evident in the further analysis. For example, when

analyzing the differential mean numbers [see Eq. (40)] in
the case of large σ, or equivalently in the case of the slowly
varying analytic asymmetric electric field, the function τ
which determines the behavior of these numbers, contains
in the leading term in the denominator a third-order term in
longitudinal kinetic momenta at time tmax, p0

x [see Eq. (46)]
which significantly changes the behavior of the mean
differential numbers over the regions of momenta in
comparison with their behavior (see Ref. [36]) in the case
of symmetric Sauter-like electric field.
The exact results obtained make it possible to see clearly

how the vacuum instability behaves in a slowly varying
field, which, in particular, corresponds to large values of the
parameter σ. In this case, it was shown (see Eq. (46) and the
accompanying discussion) that, in a fairly wide range of
momenta π⊥ ≪ eE0σ, p0

x ≪ eE0σ, the differential mean
numbers do not depend on σ and coincide with ones
produced by a constant electric field field, see Eq. (48).
It is also shown that the total vacuum mean number of
created pairs N ≈ Vðd−1ÞρΩ, as well as the corresponding
density ρΩ and the current density, are proportional to the
incrementΔW, while dominant contributions to the energy-
momentum tensor of created particles are proportional to
the square of the increment, similar to the cases of other
slowly varying fields (see Ref. [18]).
In Sec. IV, we compare the total mean number N of

created pairs in the regime of the slowly varying field with
an estimate obtained in an universal slowly varying field
approximation proposed in Ref. [34], thus demonstrating
the effectiveness of the latter. We stress that the agreement
with predictions of the universal slowly varying field
approximation is quite expected, since in this case the
density ρΩ is proportional to a large parameter, namely, the

amount of “work” that the field does by generating pairs.
The shape of the electric field determines the proportion-
ality factor, see Eqs. (65) and (59). These factors are quite
similar for strong electric fields, but are significantly
different otherwise. It also should be noted that the cubic
dependence of the differential mean numbers (46) on the
longitudinal momenta p0

x, which arises due to the asym-
metry, is essential for a correct calculation of the total mean
number N. Indeed, if for some reason, one omits the cubic
term in representation (46), the resulting total mean number
N would be significantly different. In addition to the above,
the field asymmetry affects the differential mean numbers
since the leading term in the factor τ−1 depends on p03

x .
There was no such dependence for the case of the
symmetric Sauter-like field, as can be seen by comparing
Eq. (46) of the current work with the corresponding results
in the article [18].
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APPENDIX: SOME PROPERTIES OF
HYPERGEOMETRIC FUNCTIONS

The hypergeometric function Fða; b; c; zÞ ¼
2F1ða; b; c; zÞ (here and in what follows it is supposed
that parameters a and b are not equal to 0;−1;−2, …) is
defined by series

Fða; b; c; zÞ ¼
Xþ∞

n¼0

ðaÞnðbÞn
ðcÞn

zn

n!
¼ ΓðcÞ

ΓðaÞΓðbÞ

×
Xþ∞

n¼0

Γðaþ nÞΓðbþ nÞ
Γðcþ nÞ

zn

n!
; jzj < 1:

ðA1Þ

Note that in the solutions (16) and (17) the arguments
1 − ξ−1 and ξ−1 in the corresponding hypergeometric
functions are less than unity and the series (A1) converges.
At jzj ¼ 1 the series (A1) converges absolutely when

Reðc − a − bÞ > 0. The integral representation

Fða; b; c; zÞ

¼ ΓðcÞ
ΓðbÞΓðc − bÞ

Z
1

0

tb−1ð1 − tÞc−b−1ð1 − ztÞ−adt;

ðRec > Reb > 0Þ ðA2Þ

gives an analytical continuation for the function
Fða; b; c; zÞ to the complex z-plane with a cut along
the real axis from 1 to ∞ (since the right-hand side
is an unambiguous analytic function in the domain
jarg ð1 − zÞj ≤ π). From the integral representation (A2)
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it is easy to see that limz→0 Fða; b; c; zÞ ¼ 1. The formula
for differentiating the hypergeometric function has the
form:

d
dz

Fða; b; c; zÞ ¼ ab
c
Fðaþ 1; bþ 1; cþ 1; zÞ: ðA3Þ

It is follows from (A2) that

Fða; b; c; zÞ ¼ ð1 − zÞc−a−bFðc − a; c − b; c; zÞ; jzj < 1:

ðA4Þ

Hypergeometric function can be transformed as

Fða; b; c; zÞ

¼ ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞFða; b; aþ b − cþ 1; 1 − zÞ

þ ð1 − zÞc−a−b ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ

× Fðc − a; c − b; c − a − bþ 1; 1 − zÞ;
ðjarg ð1 − zÞj < πÞ; ðA5Þ

The hypergeometric equation in its general form,

zð1 − zÞw00ðzÞ þ ½c − ðaþ bþ 1Þz�w0ðzÞ − abwðzÞ ¼ 0;

ðA6Þ

has three regular singular points z ¼ 0; 1;∞. When none of
the numbers c, c − a − b, a − b is integer, the general
solution wðzÞ of the hypergeometric equation (A6) can be
obtained as

wðzÞ ¼ c1w1ðzÞ þ c2w2ðzÞ; z → 0;

wðzÞ ¼ c1w3ðzÞ þ c2w4ðzÞ; z → 1;

wðzÞ ¼ c1w5ðzÞ þ c2w6ðzÞ; z → ∞: ðA7Þ

where c1 and c2 are some constants, and the functions
wjðzÞ, j ¼ 1;…; 6, have the form:

w1ðzÞ ¼ Fða; b; c; zÞ;
w2ðzÞ ¼ z1−cFða − cþ 1; b − cþ 1; 2 − c; zÞ;
w3ðzÞ ¼ Fða; b; aþ bþ 1 − c; 1 − zÞ;
w4ðzÞ ¼ ð1 − zÞc−a−bFðc − b; c − a; c − a − bþ 1; 1 − zÞ;
w5ðzÞ ¼ z−aFða; a − cþ 1; a − bþ 1; z−1Þ;
w6ðzÞ ¼ z−bFðb; b − cþ 1; b − aþ 1; z−1Þ: ðA8Þ
The Kummer relations and for the hypergeometric equation
[39] allow us to represent the functions w1ðzÞ and w2ðzÞ via
the functions w3ðzÞ and w4ðzÞ,

w1ðzÞ ¼ eiπð2α1−bÞ
Γð2ðα1þ 1Þ−a−bÞΓðb−aþ 1Þ

Γð2−aÞΓð2α1−aþ 1Þ w4ðzÞ

− eiπð2α1−aÞ
Γð2ðα1þ 1Þ−a−bÞΓða−b− 1Þ

Γð1−bÞΓð2α1 −bÞ w3ðzÞ;

ðA9Þ

w2ðzÞ ¼ eiπða−1Þ
Γðaþb− 2α1ÞΓðb−aþ 1Þ

Γðb− 2α1þ 1ÞΓðbÞ w4ðzÞ

þ eiπb
Γðaþb− 2α1ÞΓða−b− 1Þ

Γða− 2α1ÞΓða− 1Þ w3ðzÞ: ðA10Þ

[1] J. Schwinger, Phys. Rev. 82, 664 (1951).
[2] A. I. Nikishov, in Quantum Electrodynamics of Phenomena

in Intense Fields, Proc. P.N. Lebedev Phys. Inst. (Nauka,
Moscow, 1979), Vol. 111, p. 153.

[3] N. D. Birrell and P. C. W. Davies, Quantum Fields in
Curved Space (Cambridge University Press, Cambridge,
England, 1982).

[4] W. Greiner, B. Müller, and J. Rafelski, Quantum Electro-
dynamics of Strong Fields (Springer-Verlag, Berlin, 1985).

[5] E. S. Fradkin, D. M. Gitman, and S. M. Shvartsman,
Quantum Electrodynamics with Unstable Vacuum
(Springer-Verlag, Berlin, 1991).

[6] A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko,
Vacuum Quantum Effects in Strong Fields (Friedmann
Laboratory, St. Petersburg, 1994).

[7] R. Ruffini, G. Vereshchagin, and S. S. Xue, Phys. Rep. 487,
1 (2010).

[8] G. V. Dunne, Eur. Phys. J. D 55, 327 (2009).
[9] N. Vandecasteele, A. Barreiro, M. Lazzeri, A. Bachtold, and

F. Mauri, Phys. Rev. B 82, 045416 (2010).
[10] S. P. Gavrilov, D. M. Gitman, and N. Yokomizo, Phys. Rev.

D 86, 125022 (2012).
[11] M. I. Katsnelson, G. E. Volovik, and M. A. Zubkov, Ann.

Phys. (Amsterdam) 336, 36 (2013).
[12] D.M.Gitman, Sov. Phys. J. 19, 1309 (1976); 19, 1314 (1976);

D.M. Gitman and S. P. Gavrilov, Sov. Phys. J. 20, 75
(1977); D.M. Gitman, J. Phys. A 10, 2007 (1977); E. S.
Fradkin and D.M. Gitman, Fortschr. Phys. 29, 381 (1981).

[13] E. Brezin and C. Itzykson, Phys. Rev. D 2, 1191 (1970).
[14] N. B. Narozhny and A. I. Nikishov, Sov. Phys. JETP 38, 427

(1974), http://www.jetp.ras.ru/cgi-bin/e/index/e/38/3/p427?
a=list.

[15] V. M. Mostepanenko and V. M. Frolov, Sov. J. Nucl. Phys.
(USA) 19, 451 (1974).

VACUUM INSTABILITY IN TIME-DEPENDENT ELECTRIC … PHYS. REV. D 104, 076008 (2021)

076008-13

https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1016/j.physrep.2009.10.004
https://doi.org/10.1016/j.physrep.2009.10.004
https://doi.org/10.1140/epjd/e2009-00022-0
https://doi.org/10.1103/PhysRevB.82.045416
https://doi.org/10.1103/PhysRevD.86.125022
https://doi.org/10.1103/PhysRevD.86.125022
https://doi.org/10.1016/j.aop.2013.05.013
https://doi.org/10.1016/j.aop.2013.05.013
https://doi.org/10.1007/BF00891200
https://doi.org/10.1007/BF00891201
https://doi.org/10.1007/BF00891431
https://doi.org/10.1007/BF00891431
https://doi.org/10.1088/0305-4470/10/11/026
https://doi.org/10.1002/prop.19810290902
https://doi.org/10.1103/PhysRevD.2.1191
http://www.jetp.ras.ru/cgi-bin/e/index/e/38/3/p427?a=list
http://www.jetp.ras.ru/cgi-bin/e/index/e/38/3/p427?a=list
http://www.jetp.ras.ru/cgi-bin/e/index/e/38/3/p427?a=list
http://www.jetp.ras.ru/cgi-bin/e/index/e/38/3/p427?a=list
http://www.jetp.ras.ru/cgi-bin/e/index/e/38/3/p427?a=list


[16] S. P. Gavrilov and D. M. Gitman, Phys. Rev. D 93, 045002
(2016).

[17] S. P. Gavrilov and D. M. Gitman, Eur. Phys. J. C 80, 820
(2020).

[18] T. C. Adorno, S. P. Gavrilov, and D. M. Gitman, Int. J. Mod.
Phys. A 32, 1750105 (2017).

[19] T. C. Adorno, S. P. Gavrilov, and D.M. Gitman, Eur. Phys.
J. C 78, 1021 (2018).

[20] N. B. Narozhny and A. I. Nikishov, Yad. Fiz. 11, 1072
(1970) [Transl.Sov. J. Nucl. Phys. (USA) 11, 596
(1970)].

[21] F. Gelis and N. Tanji, Prog. Part. Nucl. Phys. 87, 1 (2016).
[22] M. Lewkowicz and B. Rosenstein, Phys. Rev. Lett. 102,

106802 (2009).
[23] B. Rosenstein, M. Lewkowicz, H. C. Kao, and Y.

Korniyenko, Phys. Rev. B 81, 041416(R) (2010).
[24] H. C. Kao, M. Lewkowicz, and B. Rosenstein, Phys. Rev. B

82, 035406 (2010).
[25] N. Vandecasteele, A. Barreiro, M. Lazzeri, A. Bachtold, and

F. Mauri, Phys. Rev. B 82, 045416 (2010).
[26] M. A. Zubkov, Pis’ma Zh. Eksp. Teor. Fiz. 95, 540 (2012).
[27] L. Klimchitskaya and V. M. Mostepanenko, Phys. Rev. D

87, 125011 (2013).
[28] F. Fillion-Gourdeau and S. MacLean, Phys. Rev. B 92,

035401 (2015).
[29] S. Vajna, B. Dóra, and R. Moessner, Phys. Rev. B 92,

085122 (2015).
[30] P. R. Anderson and E. Mottola, Phys. Rev. D 89, 104038

(2014).
[31] E. T. Akhmedov and F. K. Popov, J. High Energy Phys. 09

(2015) 085.

[32] C. Stahl, E. Strobel, and S. S. Xue, Phys. Rev. D 93, 025004
(2016).

[33] Ch.-M. Chen and S. P. Kim, Phys. Rev. D 101, 085014
(2020).

[34] S. P. Gavrilov and D. M. Gitman, Phys. Rev. D 95, 076013
(2017).

[35] R. Brauer and H. Weyl, Am. J. Math. 57, 425 (1935).
[36] S. P. Gavrilov and D. M. Gitman, Phys. Rev. D 53, 7162

(1996).
[37] NIST Digital Library of Mathematical Functions, edited by

F.W. J. Olver et al., http://dlmf.nist.gov/, 2015-08-07
DLMF Update; Version 1.0.10.

[38] F. M. Arscott, Heun’s Differential Equations, edited by A.
Ronveaux (Oxford University Press, Oxford, 1995).

[39] Higher Transcendental Functions, edited by A. Erdélyi,
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