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We compute corrections to the hard thermal (or dense) loop photon polarization tensor associated to a small
massm of the fermions of an electromagnetic plasma at high temperature T (or chemical potential μ). To this
aim we use the on-shell effective field theory, amended with mass corrections. We also carry out the
computation using transport theory, reaching to the same result. Intermediate steps in the computations reveal
the presence of potential infrared divergencies. We use dimensional regularization, as it is respectful with the
gauge symmetry, and then show that all infrared divergencies cancel in the final result. We compare the mass
corrections with both the power and two-loop corrections, and claim that they are equally important if the
mass is soft, that is, of order eT (or eμ), where e is the gauge coupling constant, but are dominant if the mass
obeys eT < m ≪ T (or eμ < m ≪ μ).

DOI: 10.1103/PhysRevD.104.076006

I. INTRODUCTION

Relativistic QED and QCD plasmas have attracted the
interest of the physics community for their wide range of
applications in both cosmological, astrophysical and also
heavy-ion physics. In their weak coupling regime perturba-
tive computations of different physical observables require
the resummation of Feynman diagrams [1,2], the so called
hard thermal loops (HTL), to attain a result valid at a certain
order in the gauge coupling expansion (see [3] for a review
and complete set of basic references). This makes the studies
of relativistic plasmas particularly cumbersome.
For very large values of the temperature T (or of the

chemical potential μ), a well-defined hierarchy of energy
scales appears in these relativistic plasmas, that allows for
effective field theory descriptions, very similar to those
applied for nonthermal physics. In a series of papers [4–9],
the on-shell effective field theory (OSEFT) has been
developed in order to describe the physics of the hard
scales, or scales of order T (or μ), which are on-shell degrees
of freedom. This effective field theory was initially devel-
oped to obtain quantum corrections to classical transport
equations. Then it was realized that it could be used to
improve the description of the hard scales of the plasma, and

as by-product, also the soft scales of order eT (or eμ), where
e is the gauge coupling constant.
The rationale and technical tools used by OSEFT are

the same as that of other effective field theories, such as high
density field theory (HDET) [10], or soft collinear effective
field theory (SCET) [11,12], for example. After fixing
the value of the high energy scale, in this case the energy
of the (quasi) massless fermion, which is of order ∼T for
thermal plasmas, one defines some small fluctuations around
that scale. Integrating out the high energy modes, one is left
with an effective theory for the lower scales or quantum
fluctuations. The resulting Lagrangian is organized as an
expansion of operators of increasing dimension over powers
of the high energy scale.
In this manuscript we focus our attention to thermal

corrections to the HTL photon polarization tensor associated
to the fact that fermions on the plasma might not be strictly
massless, but have indeed a small massmmuch less than the
temperature, m ≪ T. This is a realistic assumption, as only
in the cosmological epoch before the electroweak phase
transition all elementary particles were strictly massless.
While the power corrections to the HTL photon polarization
tensor have been computed with OSEFT in Ref. [5], here we
will use the OSEFT for the computation of the leading
fermion mass corrections. We also check that the same result
is obtained if derived from transport theory. Intermediate
steps in the computations reveal the presence of potential
infrared divergencies. A regularization of the momentum
integrals is needed. We use dimensional regularization, as it
is respectful with the gauge symmetry, and then show that all
infrared divergencies cancel in the final result. We also
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explain why our results remain valid in the presence of a
chemical potential, even for high values of μ and T ¼ 0.
This paper is structured as follows. In Sec. II we review

the OSEFT Lagrangian including small mass corrections.
We present the computation of the Feynman diagrams in
OSEFT that provide mass corrections to the photon
polarization tensor in Sec. III. The same result is obtained
if computed from transport theory, as shown in Sec. IV. We
then compare our results with both the power and two-loop
corrections to the HTL in Sec. V, and discuss when the
mass corrections are the dominant correction to the HTL
polarization tensor. We denote with boldface letters 3
dimensional vectors. Natural units ℏ ¼ kB ¼ 1 are used
throughout this manuscript.

II. SMALL MASS CORRECTIONS TO THE OSEFT

In this section we derive the OSEFT Lagrangian includ-
ing mass corrections to the third order in the energy
expansion. Let us briefly discuss how this is achieved.
In the spirit of the OSEFTwe split the momentum of the

energetic fermion as

qμ ¼ pvμ þ kμ; ð1Þ

where vμ is a lightlike vector, p is the high scale, while kμ is
the so called residual momentum, associated to the quan-
tum fluctuation, and is such that kμ ≪ p. For the anti-
fermion we will write

qμ ¼ −pṽμ þ kμ; ð2Þ

where ṽμ is also a lightlike vector. We will impose that

uμ ¼ vμ þ ṽμ

2
; ð3Þ

where uμ is a frame vector, such that u2 ¼ 1, thus, it is
timelike.
The OSEFT Lagrangian including small mass correc-

tions has been derived in Ref. [9], and in an arbitrary frame
it reads

Lp;v ¼ χ̄vðxÞ
�
iv ·Dþ i=D⊥

1

2pþ iṽ ·D
i=D⊥ −m2

1

2pþ iṽ ·D

�
=̃v
2
χvðxÞ

− χ̄vðxÞ
�
m

�
1

2pþ iṽ ·D
; i=D⊥

��
=̃v
2
χvðxÞ; ð4Þ

for the particle field χv, where =D⊥ ¼ Pμν
⊥ γμDν, and the

transverse projector is defined as Pμν
⊥ ¼ gμν − 1

2ðvμṽν þ vνṽμÞ. For antiparticles, the Lagrangian can be
obtained after replacing p ↔ −p and vμ ↔ ṽμ. The La-
grangian has the same structure of that of SCET amended
with small mass corrections [13,14]. Note that OSEFT and
SCET are different theories, as the power counting is not
the same (see [7] for a discussion on this point).
In writing the above Lagrangian, one assumes that the

covariant derivatives, defined as iDμ ¼ i∂μ þ eAμ, are
soft, meaning that they are much less than the high energy
scale, which here it is p. Equally, one assumes that the
mass is such that m ≪ p. The Lagrangian can then be
now expanded using that p is the hard scale of the
problem.
For applications of plasma physics in thermal field

theory, it is convenient to use the frame at rest with the
plasma, thus uμ ¼ ð1; 0Þ. Then one can replace ṽ

2
by =u ¼ γ0

(recall that =vχv ¼ 0). Expanding the Lagrangian on the
high energy scale, one gets easily the first two terms in the
energy expansion, which respect chirality

Lð0Þ
p;v ¼ χ̄vðiv ·DÞγ0χv; ð5Þ

Lð1Þ
p;v ¼ −

1

2p
χ̄v

�
D2⊥ þm2 −

e
2
σμν⊥ Fμν

�
γ0χv: ð6Þ

It is convenient to introduce local field redefinitions to
eliminate the temporal derivative appearing at second order,
as in Ref. [5]. These simplify the computations at higher
orders. Thus, after the field redefinition

χv → χ0v ¼
�
1þ =D2⊥ þm2

8p2

�
χv; ð7Þ

the Lagrangian at second order reads

Lð2Þ
p;v ¼ χ̄0v

1

8p2
ð½=D⊥; ½iṽ ·D; =D⊥��

− f=D2⊥ þm2; iv ·D − iṽ ·Dg
þ 2iem ṽμFμαγ

α⊥Þγ0χ0v: ð8Þ

Note that the term linear in the mass describes a breaking of
chirality.

MARC COMADRAN and CRISTINA MANUEL PHYS. REV. D 104, 076006 (2021)

076006-2



We will also need the Lagrangian up to third order. To eliminate temporal derivatives at that order, we perform the local
field redefinition

χv → χ00v ¼
�
1 −

i
8p3

=D⊥½ṽ ·D;=D⊥� þ
i

16p3
ð=D2⊥ þm2Þðv ·D − ṽ ·DÞ − i

16p3
ð=D2⊥ þm2Þṽ ·D

þ m
8p3

½iṽ ·D; i=D⊥�
�
χ0v; ð9Þ

so that the final Lagrangian reads

Lð3Þ
p;v ¼ 1

8p3
χ̄00vðð=D2⊥ þm2Þ2 þ ½iṽ ·D;=D⊥�2 − ðiv ·D − iṽ ·DÞð=D2⊥ þm2Þðiv ·D − iṽ ·DÞ

þ ðiv ·D − iṽ ·DÞ=D⊥½iṽ ·D; =D⊥� − ½iṽ ·D;=D⊥�=D⊥ðiv ·D − iṽ ·DÞ
þmfiv ·D − iṽ ·D; ½iṽ ·D; i=D⊥�gÞγ0χ00v: ð10Þ

Please note that in the limit m ¼ 0 we recover the same
Lagrangians derived in Ref. [5]. The pieces which are
quadratic in the mass can be recovered from those of
Ref. [5] simply by replacing =D2⊥ → =D2⊥ þm2. The linear
terms in m, originating from the expansion of the last term
in Eq. (4), describe the breaking of the chiral symmetry
induced by the fermion mass.
We present here how the OSEFT fermion propagators

are modified in the presence of a small mass. The particle/
antiparticle projectors in the frame at rest with the plasma
are defined as Pv ¼ 1

2
=vγ0 and Pṽ ¼ 1

2
ṽγ0, respectively. We

introduce chirality projectors

Pχ ¼
1þ χγ5

2
; χ ¼ �: ð11Þ

The propagators for a fermion of chirality χ in the
Keldysh formulation of the real time formalism of thermal
field theory Ref. [15] read

SR=Aχ ðkÞ ¼ PχPvγ0
k0 � iϵ − fðk; mÞ ; ð12Þ

SSχðkÞ ¼ PχPvγ0ð−2πiδðk0 − fðk; mÞÞ
× ð1 − 2nFðpþ k0ÞÞÞ; ð13Þ

where nFðxÞ ¼ 1=ðexp jxj=T þ 1Þ is the Fermi-Dirac equi-
librium distribution function. The function fðk; mÞ deter-
mines the dispersion law, and it is expanded also, we denote
as fðnÞðk; mÞ the n order term in the 1=p expansion. At
lowest order

fð0Þðk; mÞ ¼ kk; ð14Þ

and we have defined kk ¼ k · v, while

fð1Þðk;mÞ¼kkþ
k2⊥þm2

2p
;

fð2Þðk;mÞ¼kkþ
k2⊥þm2

2p
−
kkðk2⊥þm2Þ

2p2
; ð15Þ

as follows from Eqs. (6) and (8), respectively. The
propagators for the antiparticle quantum fluctuations can
be also easily deduced. They read

S̃R=Aχ ðkÞ ¼ PχPṽγ0
k0 � iϵ − f̃ðk; mÞ ; ð16Þ

S̃SχðkÞ¼−PχPṽγ0ð−2πiδðk0− f̃ðk;mÞÞð1−2nFð−pþk0ÞÞÞ;
ð17Þ

where the function f̃ðk; mÞ can be obtained from fðk; mÞ,
with the replacements v → −v and p → −p. Note the extra
minus sign in the symmetric antiparticle propagator, absent
in its particle counterpart.
In summary, the OSEFT fermion propagators in this case

can be deduced from those of the massless case simply by
replacing k2⊥ → k2⊥ þm2 in the function that determines the
dispersion relation at every order in the energy expansion.
Note that, for convenience, we keep the propagators

above unexpanded in this section, as done in Ref. [5], but in
the explicit computation of the different diagrams they are
to be expanded in a 1=p series.

III. DIAGRAMMATIC COMPUTATION OF THE
MASS CORRECTION TO THE RETARDED

PHOTON POLARIZATION TENSOR

In this section we compute the mass corrections to the
retarded photon polarization tensor computed in OSEFT.
Recall that there are two possible different topological
diagrams that contribute to the computation, the bubble and
the tadpole diagrams, see Fig. 1. The tadpole diagrams,
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absent in QED, take into account particle-photon inter-
actions mediated by an off-shell antiparticle (and viceversa
for antiparticle-photon interactions), and are needed to
respect the Ward identity obeyed by the polarization tensor,
as we will explicitly check in this manuscript.
In the Keldysh representation the particle contribution to

the bubble diagram of the retarded polarization tensor has
the structure1

Πμν
b;χðlÞ ¼

i
2

X
p;v

Z
d4k
ð2πÞ4 fTr½V

μSχSðk − lÞVνSχRðkÞ�

þ Tr½VμSχAðk − lÞVνSχSðkÞ�g; ð18Þ

while the particle contribution to the tadpole diagram can
be expressed as

Πμν
t;χðlÞ ¼ −

i
2

X
p;v

Z
d4k
ð2πÞ4 Tr ½W

μνSχSðkÞ�; ð19Þ

where the momentum dependence of the vertex functions
Vμ and Wμν are understood. Similar expressions can be
written for the antiparticle contributions to the polarization
tensor.
Using the explicit expressions of the fermion propaga-

tors, one can carry out the integral in k0 to arrive to the
general expressions

Πμν
b;χðlÞ ¼ −

X
p;v

Z
d3k
ð2πÞ3 Tr½V

μPχPvγ
0VνPvγ

0�

×
nFðpþ fðk − l; mÞÞ − nFðpþ fðk; mÞÞ

l0 þ i0þ þ fðk − l; mÞ − fðk; mÞ ;

ð20Þ
and

Πμν
t;χðlÞ ¼ −

1

2

X
p;v

Z
d3k
ð2πÞ3 Tr ½W

μνPχPvγ
0�

× ð1 − 2nFðpþ fðk; mÞÞÞ; ð21Þ
for the bubble and tadpole diagrams, respectively.

The Feynman rules needed for the computation of the
photon polarization tensor were given in Ref. [5] (see
Tables I and II of that reference). In the presence of a mass
in the OSEFT Lagrangian, new vertices appear propor-
tional to the mass squared, which are given by

Vμ
ð2Þ;m2 ¼ −

em2

2p2
γ0 δ

μivi; ð22Þ

Wμν
ð3Þ;m2 ¼ −

m2e2γ0

2p3

�
Pμν
⊥ þ ðvμ − ṽμÞðvν − ṽνÞ

2

�
: ð23Þ

There are also new vertices proportional to the mass,
which imply a change in the fermion chirality. At the order
we will compute the mass corrections, n ¼ 3 in the energy
expansion, these will not be needed, although they would
be required at fourth order in the energy expansion. Note
that at least two of these vertices would be needed in a
computation of the photon polarization tensor to preserve
the fermion chirality inside the loop.
We now evaluate the polarization tensor at different

orders, noting that we either consider the energy expansion
in the vertex functions, or in the fermion propagators,
which can be used at the desired order of accuracy.
The first nonvanishing contribution to the photon polari-

zation tensor occurs at n ¼ 1, but it does not carry any mass
dependence. This was computed in Ref. [5], and it
reproduces the HTL contribution. Let us recall the main
results here. Adding the bubble and the tadpole diagrams at
order n ¼ 1 gives

ΠμνðlÞ¼−e2
X
χ¼�

X
p;v

Z
d3k
ð2πÞ3

dnF
dp

�
Pμν
⊥
2

þvμvν− l0
vμvν

v · l

�
:

ð24Þ

where the retarded prescription l0 → l0 þ i0þ is
understood.
It is now important to return to the original momentum

variable qμ. Using the identity [5]

X
p;v

Z
d3k
ð2πÞ3 ≡

Z
d3q
ð2πÞ3 ð25Þ

and the relations [5]

p ¼ q − kk;q̂ þ
k2⊥;q̂

2q
þO

�
1

q2

�
; ð26Þ

v ¼ q̂ −
k⊥;q̂

q
−
q̂k2⊥;q̂ þ 2kk;q̂k⊥;q̂

2q2
þO

�
1

q3

�
; ð27Þ

(a) (b)

FIG. 1. (a) Bubble diagram (b) Tadpole diagram.

1We have changed the sign conventions of the definition of the
polarization tensor as with respect to those used in Ref. [5].
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nFðpÞ ¼ nFðqÞ þ
dnf
dq

�
−kk;q̂ þ

k2⊥;q̂

2q

�

þ 1

2

d2nF
dq2

k2k;q̂ þO
�
1

q3

�
; ð28Þ

where now the symbols kk;q̂ and k⊥;q̂ denote the compo-
nents of k parallel and perpendicular to q̂≡ q=q with
q ¼ jqj, respectively. We also define the vectors

vμq̂ ≡ ð1; q̂Þ; ṽμq̂ ≡ ð1;−q̂Þ: ð29Þ

After adding both the particle and antiparticle contribu-
tions to the photon polarization tensor one arrives to the
well-known HTL expression

Πμν
htlðlÞ ¼ −4e2

Z
d3q
ð2πÞ3

dnF
dq

�
δμ0δ

ν
0 − l0

vμq̂v
ν
q̂

vq̂ · l

�
: ð30Þ

At second order in the energy expansion, and in the
absence of chiral misbalance, the Bose-Einstein statistics
and the crossing symmetry demands that the polarization
tensor ΠμνðlÞ be symmetric under the simultaneous
exchange of μ ↔ ν and l ↔ −l [16]. These symmetries
explain the absence of linear terms in the photon momenta
in the polarization tensor, which ultimately explain why
there are not n ¼ 2 corrections in the polarization tensor
in OSEFT. This was explicitly checked in Refs. [5,17].
This reasoning applies actually to all the even orders of the
energy expansion, n ¼ 4; 6; 8;…. We do not expect thus
mass corrections at even orders, neither, and we actually
have checked that there are none at n ¼ 2.
The first mass corrections to the photon polarization

tensor occur at third order in the energy expansion, the
same as the power corrections to the HTL computed in
Refs. [5,17].
The mass dependent terms that arise in the bubble

diagram are

Πμν
b ðlÞ ¼ −m2e2

X
χ¼�

X
p;v

Z
d3k
ð2πÞ3

�
−

lk
2p

��
d2nF
dp2

−
1

p
dnF
dp

�
vμvν

v · l
−
lk
p
dnF
dp

vμvν

ðv · lÞ2

−
1

2p
dnF
dp

vμðvν − ṽνÞ þ vνðvμ − ṽμÞ
v · l

��
; ð31Þ

while in the tadpole one gets

Πμν
t ðlÞ ¼ −m2e2

X
χ¼�

X
p;v

Z
d3k
ð2πÞ3

�
nF
2p3

�
Pμν
⊥ þ ðvμ − ṽμÞðvν − ṽνÞ

2

�
−
Pμν
⊥

2p2

dnF
dp

�
: ð32Þ

We add the two pieces, and go back to the full momentum variables. The final result, after adding also the antiparticle
contributions, yields

Πμν
m ðlÞ ¼ −4m2e2

Z
d3q
ð2πÞ3

�
nF
2q3

�
Pμν
⊥;q̂ þ

ðvμq̂ − ṽμq̂Þðvνq̂ − ṽνq̂Þ
2

�

þ 1

q2
dnF
dq

�
−
Pμν
⊥;q̂

2
þ lk;q̂

�
vμq̂v

ν
q̂

vq̂ · l
þ lk;q̂

2

vμq̂v
ν
q̂

ðvq̂ · lÞ2
þ 1

4

vμq̂ðvνq̂ − ṽνq̂Þ þ vνq̂ðvμq̂ − ṽμq̂Þ
vq̂ · l

���
: ð33Þ

We note that the first two terms of the second line of
Eq. (33) can be written as the HTL contribution, but with
a coefficient proportional to e2m2 rather than the Debye
mass squared m2

D ¼ e2T2=3. Note also that in the tadpole
diagram the pieces that are proportional to nFðqÞ=q3 are
in principle infrared divergent. These terms have to be
evaluated using a regularization. We use dimensional
regularization (DR), by assuming that the system is in
d ¼ 3þ 2ϵ dimensions. In this case the momentum
integrals become

Z
ddq
ð2πÞd →

4

ð4πÞ2þϵΓð1þ ϵÞ
Z

∞

0

dq q2þ2ϵ

×
Z

1

−1
d cos θ ð1þ ϵ ln ðsin2θÞÞ; ð34Þ

where θ parametrizes an angle with respect to an external
vector, and ΓðzÞ stands for the Gamma function.
Furthermore, in d dimensions one has to change the coupling
constant as e2 → e2ν3−d, where ν is a renormalization scale.

MASS CORRECTIONS TO THE HARD THERMAL OR DENSE … PHYS. REV. D 104, 076006 (2021)

076006-5



The relevant infrared radial integral is

ν−2ϵ
Z

∞

0

dqq−1þ2ϵnFðqÞ¼
1

4ϵ
þ1

2
ln

�
πTe−γE

2ν

�
þOðϵÞ;

ð35Þ

where γE is Euler’s constant. However, when carrying out
the angular integrals in d ¼ 3þ 2ϵ dimensions, the pole
term and logarithm exactly cancel, as the angular integral

turns out to be proportional to ϵ (that is, it would cancel if
d ¼ 3). If dΩd is the solid angle element in d dimensions,
and Sd ¼ 2πd=Γðd=2Þ is the area of a d-dimensional unit
sphere, one can check

S−13þ2ϵ

Z
dΩ3þ2ϵð−δij þ 3q̂iq̂jÞ ¼ −

2

3
ϵþOðϵ2Þ: ð36Þ

Thus, combing the two results one gets

−4m2e2ν−2ϵ
Z

ddq
ð2πÞd

nF
2q3

�
Pμν
⊥;q̂ þ

ðvμq̂ − ṽμq̂Þðvνq̂ − ṽνq̂Þ
2

�
¼ m2e2

6π2
δij þOðϵÞ; ð37Þ

and there is no infrared divergence, but only a finite term. This finite term is ultimately needed to preserve the Ward identity
obeyed by the polarization tensor, as can be checked after computing

lμΠ
μν
m ðlÞ ¼ 4m2e2

Z
d3q
ð2πÞ3

1

q2
dnF
dq

�l2k;q̂
2

vνq̂
vq̂ · l

−
2l2k;q̂
4

vνq̂
vq̂ · l

þ lk;q̂
4

ðvνq̂ − ṽνq̂Þ
�
−
m2e2

6π2
ljδνj ¼ 0: ð38Þ

Note that if we had used a cutoff regularization of the
integrals, the IR divergent terms would also vanish, but
the above integral would not yield the finite contribution,
the last term of Eq. (38), needed to respect the gauge
invariance of the computation.
We define the longitudinal and transverse parts of the

photon polarization tensor in d dimensions by

ΠLðl0; lÞ≡ Π00ðl0; lÞ;

ΠTðl0; lÞ≡ 1

d − 1

�
δij −

lilj

l2

�
Πijðl0; lÞ: ð39Þ

We then find the following mass corrections to the
longitudinal and transverse parts of the polarization tensor

ΠL
mðl0; lÞ ¼

e2m2

2π2
l2

l20 − l2
; ð40Þ

ΠT
mðl0; lÞ ¼

e2m2

2π2
l0
2jlj ln

�
l0 þ jlj
l0 − jlj

�
: ð41Þ

Let us finally stress that Eqs. (40)–(41) remain also valid
in the presence of a finite chemical potential μ. In the
presence of a chemical potential the particle and antiparticle
contributions differ, but the final result can be recovered
from Eq. (33), simply by replacing in Eq. (33)

nFðqÞ →
1

2
½nFðq − μÞ þ nFðqþ μÞ�: ð42Þ

After an explicit evaluation of the corresponding inte-
grals, one reaches to the same mass corrections to the

polarization tensor which are valid at high temperature. In
particular, our results still hold if we take T ¼ 0 and keep
the chemical potential μ as the high scale of the problem.

IV. COMPUTATION OF THE PHOTON
POLARIZATION TENSOR FROM KINETIC

THEORY

We compute in this section the mass corrections to the
photon polarization tensor as computed from kinetic theory.
We use the transport approach derived from OSEFT, and
focus on the vectorial component of the Wigner function.
From Ref. [9], the transport equation associated to a
fermion with chirality χ up to second order in the energy
expansion reads

�
vμχ −

e
2E2

q
Sμνχ FνρðXÞð2uρ − vρχÞ

�

× ð∂X
μ − eFμρðXÞ∂ρ

qÞGχðX; qÞ ¼ 0; ð43Þ

where vμχ ¼ qμ=Eq, and we take the frame vector that
defines the system as uμ ¼ ð1; 0Þ. Furthermore

GχðX; qÞ ¼ 2πδðQχ
mÞnχðX; qÞ; ð44Þ

where nχðX; qÞ is the distribution function, and the delta
gives the on-shell constraint, Qχ

m being a function of the
momentum and the mass. The particle contribution to the
electromagnetic current is expressed, at n ¼ 2 order as
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jμðXÞ ¼ e
X
χ¼�

Z
d4q
ð2πÞ4

�
vμχ −

Sμνχ Δν

Eq
−
e
2

Sμνχ
E2
q
FνρðXÞð2uρ − vρχÞ

�
2GχðX; qÞ þO

�
1

E3
q

�
: ð45Þ

We ignore in this manuscript the possible effect of the
spin coherence function discussed in Ref. [9], which
represent coherent quantum states of mixed chiralities.
We also will ignore the terms in the transport equation,
on-shell constraint, and in the vector current proportional to
the spin tensor Sμνχ , as they are irrelevant if the chiral
chemical potential is zero, as the contribution of the two
fermion chiralities makes these pieces to cancel in the
macroscopic current. Those terms are relevant, though, to
derive the chiral magnetic effect, which is not our goal here
(see appendix of Ref. [7] for that derivation). We thus write
the on-shell constraint to the considered order of accuracy

q0 ¼ Eq ¼ qþm2

2q
: ð46Þ

Where q ¼ jqj. We now assume to be close to thermal
equilibrium, such that

Gχ ¼ Gχ
ð0Þ þ δGχ þ � � � ð47Þ

where Gχ
ð0Þ is the Wigner function in thermal equilibrium.

Using the transport equation, we find

vχ · ∂XδGχ ¼ evχμFμν
∂Gχ

ð0Þ
∂qν ; ð48Þ

and after computing

δjμðXÞ ¼ e
X
χ¼�

Z
d4q
ð2πÞ4 v

μ
χδGχðX; qÞ; ð49Þ

one derives the polarization tensor as

Πμν ¼ δjμ

δAν
: ð50Þ

It is not difficult to find the particle contribution to the
polarization tensor, which reads

ΠμνðlÞ ¼ e2
X
χ¼�

Z
d3q
ð2πÞ3

�
gμν−

lμvνmþvμmlν

l ·vm
þL2

vμmvνm
ðl ·vmÞ2

�

×
nFðq0 ¼EqÞ

Eq
; ð51Þ

where L2 ¼ l20 − l2, and

vμm ¼ vμq̂ − δμiviq̂
m2

2q2
; ð52Þ

for the particles. A similar expression holds for the
antiparticles.
We compute all the pieces up to Oðm2Þ, by noting that

1

Eq
¼ 1

q
−

m2

2q3
þ � � � ð53Þ

1

l · vm
¼ 1

l · vq̂
−

l · vq̂
ðl · vq̂Þ2

m2

2q2
þ � � � ð54Þ

nFðEqÞ ¼ nFðqÞ þ
m2

2q
dnF
dq

þ � � � ð55Þ

We thus find that the polarization tensor can be written as

ΠμνðlÞ ¼ Πμν
htlðlÞ þ Πμν

m ðlÞ: ð56Þ

The HTL part, as arising from particles and antiparticles of
the two possible chiralities, reads

Πμν
htlðlÞ ¼ 4e2

Z
d3q
ð2πÞ3

�
gμν −

lμvνq̂ þ vμq̂l
ν

l · vq̂
þ L2

vμq̂v
ν
q̂

ðl · vq̂Þ2
�

×
nFðqÞ
q

: ð57Þ

While the leading mass correction is

Πμν
m ðlÞ ¼ 4e2m2

Z
d3q
ð2πÞ3

�
gμν −

lμvνq̂ þ vμq̂l
ν

l · vq̂
þ L2

vμq̂v
ν
q̂

ðl · vq̂Þ2
��

1

2q2
dnFðqÞ
dq

�

þ 4e2m2

Z
d3q
ð2πÞ3

�
gμν − l0

lμvνq̂ þ vμq̂l
ν

ðl · vq̂Þ2
− L2

vμq̂v
ν
q̂

ðl · vq̂Þ2
þ 2L2l0

vμq̂v
ν
q̂

ðl · vq̂Þ3

−
δμiviq̂l

ν þ δνiviq̂l
μ

l · vq̂
þ L2

δμiviq̂v
ν
q̂ þ δνiviq̂v

μ
q̂

ðl · vq̂Þ2
��

−
nFðqÞ
2q3

�
: ð58Þ
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One can check that

lμΠ
μν
m ðlÞ ¼ 0; ð59Þ

so that the Ward identity is respected for the mass
dependent pieces of the polarization tensor at this order.
Note that the first integral of Eq. (58) has the same structure
than the HTL contribution, but it is proportional to the
fermion mass squared. This contribution was also found out
in the diagrammatic computation of Sec. III. The second
integral contains IR divergencies, but are of a quite different
structure as those appearing in the diagrammatic compu-
tation, see Eq. (37). The apparent IR divergencies here are
clearly nonlocal. We evaluate these integrals using DR.
Note that we only need to evaluate the integral

I1≡
Z

1

−1
d cosθð1−cos2θÞϵ 1

l0− jljcosθ

¼ 1

jlj
�
ln

�
l0þjlj
l0− jlj

�
þϵ

�
lnð4Þ ln

�
l0þjlj
l0− jlj

�

þLi2

�
−

2jlj
l0− jlj

�
−Li2

�
2jlj

l0þjlj
���

þOðϵ2Þ; ð60Þ

where Li2 stands for the Euler polylogarithmic function of
order 2. All the remaining non-local integrals can be
deduced from this one, after simple manipulations.
An explicit computation shows that after angular inte-

gration in d ¼ 3þ 2ϵ dimensions the IR divergencies
exactly cancel, but there are remaining finite pieces, which
in this case turn out to be non-local, and that allows one to
reproduce the same value of the photon polarization tensor
that we found in Sec. III.

V. DISCUSSION

We used OSEFT to assess how a small fermion mass
would affect the retarded photon polarization tensor at soft
scales in a ultrarelativistic electromagnetic plasma. While it
could be obvious that such corrections would be of
order m2=T2, the effective field theory techniques we used
allowed us their proper evaluation.
Our results could have also been derived from the

expression of the full QED polarization tensor, by assuming
that both the external momentum and the fermion mass are
small in front of the hard loop momentum, expanding the
corresponding expressions. As this expansion produces
infrared divergencies, it is important to use a regularization
of all the involved integrals before the expansion. We have
emphasized in the whole manuscript the relevance of using
a regulator that respects the gauge symmetry, as dimen-
sional regularization, to obtain physical results. OSEFT
ultimately yields the same results of this expansion, up to
possible local terms. We have presented an alternative
computation from transport theory so as to be sure of the
absence of possible extra pieces.
Our results should be compared to both the power and

two-loop corrections to the HTL tensor that have been
computed in Refs. [5,17], and [18], respectively. More
precisely, we will write

ΠI ¼ Πhtl
I þ Πm

I þ Πpow·corr
I þ Π2 loop

I ; I ¼ L; T; ð61Þ

where Πm
I were displayed in Eqs. (40), (41) and

Πhtl
L ðl0; lÞ ¼

e2T2

3

�
1 −

l0
2jlj ln

�
l0 þ jlj
l0 − jlj

��
;

Πpow·corr
L ðl0; lÞ ¼ −

e2

4π2

�
l2 −

l20
3

��
1 −

l0
2jlj ln

�
l0 þ jlj
l0 − jlj

��
;

Π2loop
L ðl0; lÞ ¼

e4T2L2

8π2l2
;

Πhtl
T ðl0; lÞ ¼

e2T2

3

l0
4l3

�
2jljl0 − L2 ln

�
l0 þ jlj
l0 − jlj

��
;

Πpow·corr
T ðl0; lÞ ¼

e2

4π2

�
l20
2
þ l40
6l2

−
2l2

3
−

l30
12l3

�
2l2 þ l20 −

3l4

l20

�
ln

�
l0 þ jlj
l0 − jlj

��
;

Π2loop
T ðl0; lÞ ¼ −

e4T2

16π2
l0
jlj ln

�
l0 þ jlj
l0 − jlj

�
: ð62Þ

For simplicity, Πpow·corr
I above is taken at the value of

the renormalization scale ν ¼ Te−γE=2−1
ffiffiffi
π

p
=2 in the

MS scheme. This fixes the scale of e2 ¼ e2ðνÞ in Πhtl
I .

Let us recall the meaning of every term in Eq. (61).
While the HTL contribution is proportional to e2T2, the
results computed in this manuscript, even if they do not
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depend on the temperature, should be viewed as a a
correction of orderm2=T2 to the HTL. Similarly, the power
corrections are of order l2=T2 respect to the HTL, while the
two-loop results are corrections of order e2. These three
corrections are of the same order if m; l ∼ eT, and should
be equally considered. However, if the mass is such that
eT < m ≪ T, then the mass corrections are dominant at
soft scales, l ∼ eT.
For example, let us take the value of the photon screening

mass, defined as −m2
S ¼ ΠLðl0 ¼ 0; l2 ¼ −m2

SÞ. Calculated
from the value of the longitudinal part of the polarization
tensor, as given in Eq. (61), results in

m2
S ¼

e2T2

3

�
1 −

e2

8π2
−

1

2π2
m2

T2

�
: ð63Þ

Note that for values m2=T2 > πα, where α is the electro-
magnetic fine structure constant ∼1=137, the mass effects
give the most important corrections.
Let us finally remind the reader here that while we

focused our discussion on thermal plasmas, our results and
also the power corrections of Refs. [5,17] remain valid in

the presence of a chemical potential, or even for high μ and
T ¼ 0. Our results can also be easily generalized to QCD,
for the mass corrections to the HTL gluon polarization
tensor, after taking into account some color factors, and
replacing e2 by g2=2 for fermions in the fundamental
representation, where g is the QCD coupling constant.
Our results might be useful to obtain a better evaluation

of different physical observables whenever the fermions in
the plasma are not strictly massless, which is a realistic
condition for most of the physical scenarios where the HTL
resummation techniques have been applied so far.
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