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Upcoming experiments on the interaction of electrons with intense laser fields are envisaged to become
more and more accurate, which calls for theoretical computations of rates and probabilities with
correspondingly higher precision. In strong-field QED this requires the knowledge of radiative corrections
to be added to leading-order results. Here, we first derive the mass operator in momentum space of an off-
shell electron in the presence of an arbitrary plane wave. By taking the average of the mass operator in
momentum space over an on-shell electron state, we obtain a new representation, equivalent to but more
compact than the known one computed in [V. N. Baier et al., Sov. Phys. JETP 42, 400 (1976).]. Moreover,
we use the obtained mass operator to determine the electron mass shift in an arbitrary plane wave, which
generalizes the already known expression in a constant crossed field. The spin-dependent part of the
electron mass shift can be related to the anomalous magnetic moment of the electron in the plane wave. We
show that within the locally constant field approximation it is possible to conveniently define a local
expression of the electron anomalous magnetic moment, which reduces to the known expression in a
constant crossed field. Beyond the locally constant field approximation, however, the interaction between
the electron and the plane wave is nonlocal such that it is not possible to conveniently introduce an electron
anomalous magnetic moment.

DOI: 10.1103/PhysRevD.104.076003

I. INTRODUCTION

Among the most stringent experimental tests on QED the
measurement of the anomalous magnetic moment of either
a free [1,2] or a bound [3] electron plays a prominent role.
Also, from an historical point of view the anomalous
magnetic moment of the electron has a distinguished
position with Schwinger’s computation of the leading-
order contribution representing the first successful appli-
cation of covariant renormalization theory [4].
In experimental conditions like those described in Ref. [3]

electrons bound in highly-charged ions experience electric
fields of strengths of the order of the QED scale, the so-
called critical electric field of QED Ecr ¼ m2c3=ℏjej≈
1.3 × 1016 V=cm, with e < 0 and m being the electron
charge and mass, respectively [5–10]. It is desirable, how-
ever, to also test the theory in the presence of fields with a
different structure and with different properties.
High-power lasers offer an alternative tool to test QED at

the critical field scale. In fact, although the electric
fields provided by existing and forthcoming facilities are

well below the critical fields [11–16], observable quantities
depend on the laser field amplitude Fμν

0 ¼ ðE0;B0Þ
through the so-called quantum nonlinearity parameter
χ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðFμν
0 pνÞ2j

p
=mEcr, where pμ ¼ ðε; pÞ is the four-

momentum of the electron (or positron), with ε ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
[the metric tensor ημν ¼ diagðþ1;−1;−1;−1Þ

and units with ϵ0 ¼ ℏ ¼ c ¼ 1 are used] [5–10]. Indeed,
the parameter χ0 numerically corresponds to the laser
electric field amplitude in the rest frame of the electron
in units of Ecr, which is boosted as compared to the value in
the laboratory frame by a factor of the order of the electron
relativistic Lorentz factor for an ultrarelativistic electron
initially counterpropagating with respect to the plane wave.
The first experiments on strong-field QED in the

presence of intense laser radiation were carried out at
SLAC in the late 1990s [17–19] and more recently two
experiments have been performed [20,21] (see also
Refs. [22,23] for similar experiments in a crystalline field).
Moreover, devoted experimental campaigns are already
planned at DESY [24] and at SLAC [25] to further test
QED at background fields effectively of the order of Ecr
and beyond. The main differences between the first experi-
ments at SLAC and the recent ones are that: 1) at SLAC an
electron beam from a traditional accelerator was employed,
whereas recently, electron bunches produced via laser
wakefield acceleration were used, and 2) at SLAC the
so-called classical nonlinearity parameter ξ0 ¼ jejE0=mω0,
where ω0 is the central angular frequency of the laser field,
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was smaller than unity, whereas in recent experiments it
well exceeds unity. The second difference implies that
nonlinear effects in the laser amplitude are much more
pronounced in the late experiments because even an electron
at rest would be accelerated to relativistic energies in a
fraction of the laser period [5–10]. However, electron beams
produced by traditional accelerators are presently still more
stable and have a higher quality in terms of monochroma-
ticity and emittance than laser-produced beams, and allow
for more precise measurements. This is one of the aims of
the mentioned future campaigns planned at DESY [24] and
at SLAC [25], which will again use high-quality electron
beams and allow for precise measurements also in the
nonlinear regime where ξ0 > 1.
In view of the increasing accuracy of experiments testing

QED in the strong-field regime with high-intensity lasers, it
is appropriate from a theoretical point of view to start
investigating radiative corrections of the basic processes,
which have been studied in detail over the last years,
namely, nonlinear Compton scattering [6,26–52] and
nonlinear Breit-Wheeler pair production [8,27,51,53–64].
Due to technical difficulties arising when taking into
account exactly the background laser field [65–67], in
the mentioned works the laser field has been described by a
plane wave, an approximation valid if the laser field is not
too tightly focused. There are theoretical schemes that
allow to investigate strong-field QED processes taking
into account the complex spacetime structure of the
background laser field, like the so-called locally constant
field approximation (LCFA) [6,28], Baier’s semiclassical
operator approach [28,68–70], and a systematic approach
based on the Wentzel-Kramers-Brillouin (WKB) approxi-
mation [71–75].
The computation of radiative corrections, due to intrinsic

technical difficulties, has been only carried out so far within
the plane-wave approximation, meaning that the electron
states have been employed, which are solutions of the Dirac
equation in the presence of a plane-wave field (Volkov
states [76]), as well as the corresponding electron propa-
gator. The one-loop mass operator (see Fig. 1) and the one-
loop polarization operator (see Fig. 2) in the presence of an
arbitrary plane wave have been computed in Ref. [77] and
in Refs. [78–80], respectively. Finally, the one-loop vertex
correction (see Fig. 3) was recently computed in Ref. [81].
A more systematic investigation has been carried out in

the case of a constant crossed field, especially in relation to
the so-called Ritus-Narozhny conjecture, stating that at

χ0 ∼ 1=α3=2 ≫ 1, where α ¼ e2=4π is the fine-structure
constant, and ξ30 ≫ χ0 the perturbative approach to strong-
field QED breaks down as the coupling constant in this
regime is not α but rather αχ2=30 [82–91].
In the present paper, we compute the mass operator in

momentum space of an off-shell electron in the presence of
an arbitrary plane wave. We point out that in Ref. [77] only
an operator form of the mass operator is presented in the
general, off-shell case. Then, by averaging over an on-shell
Volkov state, the electron mass correction was also
obtained in Ref. [77]. The mass operator in momentum
space is defined here in such a way that the same electron
mass correction is computed by averaging the obtained
mass operator in momentum space over a free on-shell
electron state, and the resulting expression turns out to be
equivalent but more compact than that found in Ref. [77].
Then, we use the spin-dependent part of the mass shift in
the case of a linearly polarized plane wave to study the
anomalous magnetic moment of the electron. We show that
within the LCFA it is possible to introduce a local
expression of the anomalous magnetic moment of the
electron, which reduces to the known one in a constant
crossed field, already computed in Refs. [82,92]. In the case
of an arbitrary plane wave, however, the electron mass shift
features a nonlocal dependence on the plane-wave field,
which prevents a convenient description of the spin-
dependent part in terms of an electron anomalous magnetic
moment.

FIG. 1. The one-loop mass operator in an intense plane wave.
The double lines represent exact electron states and propagator in
the plane wave (Volkov states and propagator, respectively) [67].

FIG. 2. The one-loop polarization operator in an intense plane
wave. The double lines represent exact electron propagators in
the plane wave (Volkov propagators) [67].

FIG. 3. The one-loop vertex correction in an intense plane
wave. The double lines represent exact electron states and
propagator in the plane wave (Volkov states and propagator,
respectively) [67].
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II. THE ONE-LOOP MASS OPERATOR
IN A GENERAL PLANE WAVE

In this section we compute the one-loop mass operator of
an electron in a general plane wave. However, we introduce
some basic definitions first.

A. Basic definitions

For the sake of definiteness, we consider a plane wave
propagating along the direction n and thus being described
by the four-vector potential AμðϕÞ, where ϕ ¼ t − n · x is
the so-called light-cone time. It is convenient to introduce a
basis of the four-vector space starting from the two
quantities nμ ¼ ð1; nÞ and ñμ ¼ ð1;−nÞ=2 [note that
ϕ ¼ ðnxÞ]. By introducing two additional four-vectors
aμj ¼ð0;ajÞ, with j ¼ 1, 2, such that ðnajÞ ¼ −n · aj ¼ 0

and ðajaj0 Þ ¼ −aj · aj0 ¼ −δjj0 , with j; j0 ¼ 1, 2, it is clear
that the completeness relation ημν ¼ nμñν þ ñμnν − aμ1a

ν
1 −

aμ2a
ν
2 holds [note that ðnñÞ ¼ 1 and ðñajÞ ¼ 0]. Also, the

four-vector potential AμðϕÞ can be chosen to fulfill the
Lorenz condition ∂μAμ ¼ 0, with the additional constraint
A0ðϕÞ ¼ 0, and it is also assumed to fulfill the boundary
conditions limϕ→�∞ AμðϕÞ ¼ 0. This allows one to re-
present AμðϕÞ in the form AμðϕÞ ¼ ð0;AðϕÞÞ, where
n · AðϕÞ ¼ 0. Thus, the vector AðϕÞ can be written as
AðϕÞ ¼ ψ1ðϕÞa1 þ ψ2ðϕÞa2, where the two functions
ψ jðϕÞ are arbitrary, provided that they vanish for ϕ →
�∞ and they feature obvious differential properties.
Below, we will refer to the transverse (⊥) plane as the
plane spanned by the two perpendicular unit vectors aj.
Thus, together with the light-cone time ϕ ¼ t − n · x,
we also introduce the remaining three light-cone coordi-
nates τ ¼ ðñxÞ ¼ ðtþ n · xÞ=2, and x⊥ ¼ ðx⊥;1; x⊥;2Þ ¼
−ððxa1Þ; ðxa2ÞÞ ¼ ðx · a1; x · a2Þ. Analogously, the light-
cone coordinates of an arbitrary four-vector vμ ¼ ðv0; vÞ
will be indicated as v− ¼ ðnvÞ ¼ v0 − n · v, vþ ¼
ðñvÞ ¼ ðv0 þ n · vÞ=2, and v⊥ ¼ ðv⊥;1; v⊥;2Þ ¼
−ððva1Þ; ðva2ÞÞ ¼ ðv · a1; v · a2Þ.
The field tensor FμνðϕÞ ¼ ∂μAνðϕÞ − ∂νAμðϕÞ of the

plane wave is given by FμνðϕÞ ¼ nμA0νðϕÞ − nνA0μðϕÞ,
whereas the dual field tensor by F̃μνðϕÞ ¼
ð1=2ÞεμνλρFλρðϕÞ, with εμνλρ being the four-dimensional
Levi-Civita symbol, with ε0123 ¼ þ1. Here and below, the
prime in a function of ϕ indicates the derivativewith respect
to ϕ.
Since the four-vector potential AμðϕÞ of the plane wave

very often appears multiplied by the electron charge e, it is
convenient to introduce the notation AμðϕÞ ¼ eAμðϕÞ
and, correspondingly, F μνðϕÞ ¼ eFμνðϕÞ and F̃ μνðϕÞ ¼
eF̃μνðϕÞ.
The Dirac equation in the presence of a plane wave can

be solved exactly and, as we have already mentioned, the
corresponding states are known as Volkov states [67,76]
(see also Ref. [75] for a new, alternative form of the Volkov

states). Below, the four-vector pμ ¼ ðε; pÞ indicates an on-
shell electron four-momentum, i.e., ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, and σ

indicates the spin quantum number. The latter refers for the
moment to an arbitrary quantization axis and a specific
choice will be made in Sec. III. The positive-energy Volkov
state Uσðp; xÞ can be written in the form Uσðp; xÞ ¼
Eðp; xÞuσðpÞ, where

Eðp; xÞ ¼
�
1þ n̂ ÂðϕÞ

2p−

�
e
i

n
−ðpxÞ−

R
ϕ

0
dφ

h
ðpAðφÞÞ

p−
−A2ðφÞ

2p−

io
; ð1Þ

and where uσðpÞ is the free, positive-energy spinor nor-
malized as u†σðpÞuσ0 ðpÞ ¼ 2εδσσ0 [67]. In Eq. (1) we
introduced the notation v̂ ¼ γμvμ, where γμ are the Dirac
matrices and vμ is a generic four-vector. Note that the
expression in Eq. (1) can also formally be used for the
matrix Eðl; xÞ, where lμ ¼ ðl0; lÞ is a generic off-shell four-
momentum, and this matrix fulfills the identities [6,93],Z

d4xĒðl; xÞEðl0; xÞ ¼ ð2πÞ4δ4ðl − l0Þ; ð2Þ
Z

d4l
ð2πÞ4 Eðl; xÞĒðl; yÞ ¼ δ4ðx − yÞ; ð3Þ

γμ½i∂μ −AμðϕÞ�Eðl; xÞ ¼ Eðl; xÞl̂; ð4Þ

where l0μ ¼ ðl00; l0Þ is another off-shell four-momentum and
where, for a generic matrix O in the Dirac space, we have
introduced the notation Ō ¼ γ0O†γ0.
By means of the matrices Eðl; xÞ one can also define the

Volkov propagator Gðx; yÞ as [6,93]

Gðx; yÞ ¼
Z

d4l
ð2πÞ4 Eðl; xÞ

l̂þm
l2 −m2 þ i0

Ēðl; yÞ; ð5Þ

but below we will rather use the operator representation of
the Volkov propagator, where Gðx; yÞ ¼ hxjGjyi, with jxi
and jyi being the eigenstates of the four-position operator
Xμ with eigenvalue xμ and yμ, respectively, and with
[77,79,94]

G¼ 1

Π̂ðΦÞ−mþ i0
¼ 1

Π̂2ðΦÞ−m2þ i0
½Π̂ðΦÞþm�

¼ ð−iÞ
Z

∞

0

dse−im
2s

�
1þ 1

2Pτ
n̂½ÂðΦþ 2sPτÞ− ÂðΦÞ�

�

× e−i
R

s

0
ds0½P⊥−A⊥ðΦþ2s0PτÞ�2e2isPτPϕ ½Π̂ðΦÞþm�: ð6Þ

Here, we have introduced the operator Φ of the light-cone
time and the operator of the kinetic four-momentum
ΠμðΦÞ ¼ Pμ −AμðΦÞ in the plane wave, where Pμ is
the canonical four-momentum. The light-cone components
of Pμ ¼ i∂μ are given by Pϕ ¼ −i∂ϕ ¼ −ðñPÞ ¼
−ði∂t − i∂xnÞ=2, Pτ ¼ −i∂τ ¼ −ðnPÞ ¼ −ði∂t þ i∂xnÞ,
and P⊥ ¼ ðP⊥;1; P⊥;2Þ ¼ −iða1 · ∇; a2 · ∇Þ. If jpi is the
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eigenstate of the four-momentum operator Pμ with eigen-
value pμ, then, by defining hxjpi ¼ expð−iðpxÞÞ ¼
exp½−iðpþϕþ p−τ − p⊥ · x⊥Þ�, it is Pϕjpi ¼ −pþjpi,
Pτjpi ¼ −p−jpi, and P⊥jpi ¼ p⊥jpi. The operators Pϕ,
Pτ, and P⊥ are also the momenta conjugated to the light-
cone coordinates in the sense that the commutator between
the operator corresponding to each light-cone coordinate
and the associated momentum operator is equal to the
imaginary unit (all other possible commutators vanish);
½Φ; Pϕ� ¼ ½T; Pτ� ¼ i and ½X⊥;j; P⊥;k� ¼ iδjk, which are
equivalent to the manifestly covariant commutator
½Xμ; Pν� ¼ −iημν (T indicates the operator corresponding
to the light-cone variable τ).

B. The one-loop mass operator

The one-loop mass operator Mðx; x0Þ in configuration
space is defined via the equation

−iMðx; x0Þ ¼ −e2Dμνðx − x0ÞγμGðx; x0Þγν; ð7Þ

where

DμνðxÞ ¼
Z

d4q
ð2πÞ4

ημν

q2 − κ2 þ i0
e−iðqxÞ; ð8Þ

is the photon propagator, with κ2 being the square of the
fictitious photon mass, which has been introduced to avoid
infrared divergences [95].
We are interested in computing the one-loop mass

operator Mðl; l0Þ in momentum space, defined as

Mðl; l0Þ ¼
Z

d4xd4x0Ēðl; xÞMðx; x0ÞEðl0; x0Þ: ð9Þ

By substituting the expression of the photon propagator, we
have [see Eq. (7)]

Mðl; l0Þ ¼ −ie2
Z

d4xd4x0
Z

d4q
ð2πÞ4

e−iðqðx−x0ÞÞ

q2 − κ2 þ i0

× Ēðl; xÞγμGðx; x0ÞγμEðl0; x0Þ: ð10Þ

Now, we exponentiate the denominator of the photon
propagator in the usual way by introducing the
Schwinger proper time u and we use the operator form
of the electron propagator according to Eq. (6) such that the
mass operator can be written as

Mðl; l0Þ ¼ ie2
Z

d4x
Z

d4q
ð2πÞ4

Z
∞

0

dudseiuðq2−κ2Þ−ism2

Ēðl; xÞγμ
�
1þ 1

2Pτ
n̂½Âðϕþ 2sPτ − 2sq−Þ − ÂðϕÞ�

�

× e−i
R

s

0
ds0½P⊥þq⊥−A⊥ðϕþ2s0Pτ−2s0q−Þ�2e2isðPτ−q−ÞðPϕ−qþÞ½Π̂ðΦÞ þ q̂þm�γμEðl0; xÞ; ð11Þ

where we have also exploited the operator relation expðiðXqÞÞgðPÞ expð−iðXqÞÞ ¼ gðPþ qÞ, where gðPÞ is a generic
function of the four-momentum operator Pμ, intended to be expanded in a Taylor series.
As is typical in problems in the presence of a background plane wave depending only on the light-cone time ϕ, the action

of the operators P⊥ and Pτ on the matrix Eðl; xÞ is trivial, as well as the integrals over the conjugated variables x⊥ and τ,
which provide delta functions enforcing the conservation laws l⊥ ¼ l0⊥ and l− ¼ l0−,

Mðl; l0Þ ¼ ie2ð2πÞ3δ2ðl⊥ − l0⊥Þδðl− − l0−Þ
Z

dϕe−iðl0þ−lþÞϕ
Z

d4q
ð2πÞ4

Z
∞

0

dudseiuðq2−κ2Þ−ism2

× e
−i
R

s

0
ds0½l⊥þq⊥−A⊥ðϕs0 Þ�2þ2isðl−þq−Þðqþþl0þÞ−2iðl−þq−Þ

R
s

0
ds0
h
l⊥ ·A⊥ðϕs0 Þ

l−
−
A2⊥ðϕs0 Þ

2l−

i

×

�
1 −

n̂ ÂðϕÞ
2l−

���
2π̂l0 ðϕsÞ

�
1 −

n̂dΔAðϕsÞ
2ðl− þ q−Þ

�
þ γμ

�
1 −

n̂dΔAðϕsÞ
2ðl− þ q−Þ

�
q̂γμ

�

×

�
1þ n̂dΔAðϕsÞ

2l−

��
1þ n̂ ÂðϕÞ

2l−

�
þ 4

�
1þ n̂dΔAðϕsÞ

2l−

��
1þ n̂ ÂðϕÞ

2l−

�
ðm − bl0Þ�; ð12Þ

where ϕs ¼ ϕ − 2sðl− þ q−Þ and ΔAμðϕsÞ ¼ AμðϕsÞ −AμðϕÞ [dΔAðϕsÞ ¼ γμΔAμðϕsÞ], and where we have also used
Eq. (4) and the relation

ΠλðϕÞEðl; xÞ ¼
�
πλl ðϕÞ þ i

n̂Â0ðϕÞ
2l−

nλ
�
Eðl; xÞ: ð13Þ
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Here, the four-vector

πλl ðϕÞ ¼ lλ −AλðϕÞ þ ðlAðϕÞÞ
l−

nλ −
A2ðϕÞ
2l−

nλ ð14Þ

is the classical kinetic four-momentum of an electron in the plane wave AμðϕÞ, with limϕ→�∞ πλl ðϕÞ ¼ lλ.
Now, we take the four-dimensional integral in d4q exactly as in Ref. [81] in the case of the one-loop vertex correction. In

fact, the integral over d2q⊥ is Gaussian and the integral over dqþ provides either a delta function δððuþ sÞq− þ sl−Þ or its
derivative, which can then be used to take the integral in dq−. After straightforward manipulations of the preexponential
matrix, we finally obtain

Mðl; l0Þ ¼ ð2πÞ3δ2ðl⊥ − l0⊥Þδðl− − l0−Þ
α

2π

Z
dϕe−iðl0þ−lþÞϕ

Z
∞

0

duds
ðuþ sÞ2

× e
−iκ2u−i s2uþs

n
m2þ

R
1

0
dy½ΔA⊥ðϕysÞ�2−

hR
1

0
dyΔA⊥ðϕysÞ

i
2
o
þi us

uþsðl02−m2Þ

×

�
Π̂1;l0 ðϕsÞ

�
1 −

s
u
n̂dΔAðϕsÞ

2l−

�
þ n̂
2ðuþ sÞ

�
sðuþ sÞ

ul−

�Z
1

0

dy½ΔA⊥ðϕysÞ�2 −
�Z

1

0

dyΔA⊥ðϕysÞ
�
2
�

−
s2

ul−

�
ΔA⊥ðϕsÞ −

Z
1

0

dyΔA⊥ðϕysÞ
�
2
�

þ s
uþ s

Π̂2;l0 ðϕsÞ
�
1þ 2uþ s

u
n̂dΔAðϕsÞ

2l−

�
þ 2

�
1þ n̂dΔAðϕsÞ

2l−

�
ðm − bl0Þ�; ð15Þ

where we have defined the two four-vectors [see also Eq. (14)]

Πλ
1;lðϕsÞ ¼ lλ − ΔAλðϕsÞ þ

ðlΔAðϕsÞÞ
l−

nλ −
ðΔAðϕsÞÞ2

2l−
nλ; ð16Þ

Πλ
2;lðϕsÞ ¼ lλ −

Z
1

0

dyΔAλðϕysÞ þ
ðl R 1

0 dyΔAðϕysÞÞ
l−

nλ −
ðR 1

0 dyΔAðϕysÞÞ2
2l−

nλ: ð17Þ

Note that, by exploiting the delta function resulting from the integral in dqþ, we have that ϕs ¼ ϕ − 2usl−=ðuþ sÞ and
ϕys ¼ ϕ − 2yusl−=ðuþ sÞ.
Apart from the infrared divergence cured via the introduction of the finite photon mass κ, it is known that the expression

in Eq. (15) of the mass operatorMðl; l0Þ is ultraviolet divergent and requires renormalization [6,77]. The renormalization is
carried out by adding and subtracting the vacuum expression of the mass operator and by renormalizing the latter exactly as
in vacuum, because the difference between the mass operators in the plane wave and in vacuum is finite [77,82].
The resulting expression of the renormalized mass operator MRðl; l0Þ is

MRðl; l0Þ ¼ ð2πÞ3δ2ðl⊥ − l0⊥Þδðl− − l0−Þ
α

2π

Z
dϕe−iðl0þ−lþÞϕ

Z
∞

0

duds
ðuþ sÞ2 e

−iκ2u−i s2
uþsm

2

×

�
e
−i s2

uþs

nR
1

0
dy½ΔA⊥ðϕysÞ�2−

hR
1

0
dyΔA⊥ðϕysÞ

i
2
o
þi us

uþsðl02−m2Þ

×

�
Π̂1;l0 ðϕsÞ

�
1 −

s
u
n̂dΔAðϕsÞ

2l−

�
þ n̂
2ðuþ sÞ

�
sðuþ sÞ

ul−

�Z
1

0

dy½ΔA⊥ðϕysÞ�2 −
�Z

1

0

dyΔA⊥ðϕysÞ
�
2
�

−
s2

ul−

�
ΔA⊥ðϕsÞ −

Z
1

0

dyΔA⊥ðϕysÞ
�
2
�

þ s
uþ s

Π̂2;l0 ðϕsÞ
�
1þ 2uþ s

u
n̂dΔAðϕsÞ

2l−

�
þ 2

�
1þ n̂dΔAðϕsÞ

2l−

�
ðm − bl0Þ�

−
uþ 2s
uþ s

m −
u

uþ s

�
1 − 2i

uþ 2s
uþ s

m2s

�
ðm − bl0Þ�: ð18Þ

ELECTRON MASS SHIFT IN AN INTENSE PLANE WAVE PHYS. REV. D 104, 076003 (2021)

076003-5



This is our final expression of the renormalized mass
operator in momentum space for off-shell four-momenta lμ

and l0μ. Note that the terms with three gamma matrices can
be further reduced according to the identity

â b̂ ĉ¼ 1

4
trðγμâ b̂ ĉÞγμ −

1

4
trðγ5γμâ b̂ ĉÞγ5γμ

¼ âðbcÞ− b̂ðacÞ þ ĉðabÞ þ iεμνλργ5γμaνbλcρ; ð19Þ

where aμ, bμ, and cμ are three generic four-vectors and
γ5 ¼ iγ0γ1γ2γ3.
In Ref. [77] the operator formMR of the mass operator is

presented in the off-shell case. After computing the
quantity

R
d4xĒðl; xÞMREðl0; xÞ, we have ensured that it

is in agreement with Eq. (18). The advantage of computing
directly the mass operator in momentum space MRðl; l0Þ is
that matrix elements over on-shell states can be directly
evaluated, as we will do in the next section, by sandwiching
Eq. (18) between two free electron spinors.
Finally, in the case of a constant-crossed field, i.e., for

AðϕÞ ¼ −Eϕ, it can be easily shown that our expression
of MRðl; l0Þ reduces to the corresponding expression
in Ref. [82].

III. THE ELECTRON MASS SHIFT

As we have anticipated in the previous section, the
availability of the mass operator, allows for computing the
electron mass shift in an arbitrary plane wave. To this end,
we start from the Schwinger-Dyson equation

fγμ½i∂μ−AμðϕÞ�−mgΨðxÞ¼
Z

d4yMRðx;yÞΨðyÞ; ð20Þ

for the spinor ΨðxÞ, where [see Eq. (9)]

MRðx; yÞ ¼
Z

d4l
ð2πÞ4

d4l0

ð2πÞ4 Eðl; xÞMRðl; l0ÞĒðl0; yÞ: ð21Þ

We seek for a solution of Eq. (20) up to first order in α
and for convenience we introduce the following notation.
Concerning the four-momenta, we indicate as plc the three
light-cone components ðp⊥; p−Þ and, concerning the coor-
dinates, we indicate as xlc the three light-cone coordinates
ðx⊥; τÞ [in the case of an on-shell electron, the fourth
component of the four-momentum is pþ ¼ ðm2 þ
p2⊥Þ=2p− and p− > 0]. Thus, by exploiting the complete-
ness of the Volkov states Uσðp; xÞ and Vσðp; xÞ [6,93,
96–98], we expand the first-order solution Ψð1ÞðxÞ as

Ψð1ÞðxÞ ¼
X
ρ

Z
d3qlc
ð2πÞ3

1

2q−
½cð1Þρ ðq;ϕÞUρðq; xÞ

þ dð1Þρ ðq;ϕÞVρðq; xÞ�; ð22Þ

where the integral in q− goes from zero to infinity (note
that we are employing here the completeness of the
Volkov states on an hypersurface at fixed light-cone time
ϕ, which was studied in particular in Ref. [96]). By
imposing that at the lowest order, the solution reduces to
the positive-energy state characterized by the on-shell four-
momentum pμ and by the spin quantum number σ, we have

that the first-order in α coefficients cð1Þρ ðq;ϕÞ and dð1Þρ ðq;ϕÞ
are given by

cð1Þρ ðq;ϕÞ ¼ 2q−ð2πÞ3δ3ðqlc − plcÞδρσ þ δcρðq;ϕÞ; ð23Þ

dð1Þρ ðq;ϕÞ ¼ δdρðq;ϕÞ; ð24Þ

where the quantities δcð1Þρ ðq;ϕÞ and δdð1Þρ ðq;ϕÞ scale
as α.
By substituting the expansion in Eq. (22) with the

coefficients cð1Þρ ðq;ϕÞ and dð1Þρ ðq;ϕÞ in Eqs. (23) and
(24) in the Schwinger-Dyson Eq. (20) and by keeping
only up-to-linear terms in α, we obtain

in̂
X
ρ

Z
d3qlc
ð2πÞ3

1

2q−

�
dδcρðq;ϕxÞ

dϕx
Uρðq;xÞ

þdδdρðq;ϕxÞ
dϕx

Vρðq;xÞ
�
¼
Z

d4yMRðx;yÞUσðp;yÞ: ð25Þ

Now, we project this equation over the Volkov states and,
by using the orthogonality relationsZ

d3xlcŪρðq; xÞn̂Uρ0 ðq0; xÞ ¼ 2q−ð2πÞ3δ3ðqlc − q0lcÞδρρ0 ;

ð26ÞZ
d3xlcV̄ρðq; xÞn̂Uρ0 ðq0; xÞ ¼ 0; ð27Þ

Z
d3xlcV̄ρðq; xÞn̂Vρ0 ðq0; xÞ ¼ 2q−ð2πÞ3δ3ðqlc − q0lcÞδρρ0 ;

ð28Þ

we obtain the two equations

i
dδcρðq;ϕxÞ

dϕx
¼

Z
d3xlc

Z
d4yŪρðq; xÞMRðx; yÞUσðp; yÞ;

ð29Þ

i
dδdρðq;ϕxÞ

dϕx
¼

Z
d3xlc

Z
d4yV̄ρðq; xÞMRðx; yÞUσðp; yÞ:

ð30Þ

The right-hand sides of these equations can be worked
out by using the representation (21) of the mass
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operator and by introducing the matrix MRðl; l0;ϕÞ
such that

MRðl; l0Þ ¼ ð2πÞ3δ3ðllc − l0lcÞ
Z

dϕe−iðl0þ−lþÞϕMRðl; l0;ϕÞ:

ð31Þ

By taking first the integrals in d3xlc and d4y, by using the
resulting delta functions to take the integrals in d3llc and
d4l0, and then finally by taking the integral in dlþ by using
the fact that the matrixMRðl; l0;ϕÞ does not depend on lþ,
we obtain the equations

i
dδcρðq;ϕxÞ

dϕx
¼ 2mð2πÞ3δ3ðqlc − plcÞMR;ρσðp;ϕÞ; ð32Þ

i
dδdρðq;ϕxÞ

dϕx
¼ 0; ð33Þ

where MR;σσ0 ðp;ϕÞ ¼ ūσðpÞMRðp; p;ϕÞuσ0 ðpÞ=2m and
where the second equality arises because the argument of
the delta function δðq− þ p−Þ never vanishes. By using
Eqs. (18) and (19) and by rescaling the integration variables
as m2s → s and m2u → u, it is easily shown that

MR;��ðp; p;ϕÞ
m

¼ α

4π

Z
∞

0

duds
ðuþ sÞ2

�
2
uþ 2s
uþ s

�
e
−i s2

uþs

n
1þ
R

1

0
dy½Δξ⊥ðϕysÞ�2−

hR
1

0
dyΔξ⊥ðϕysÞ

i
2
o
− e−i

s2
uþs

�

þ e
−i s2

uþs

n
1þ
R

1

0
dy½Δξ⊥ðϕysÞ�2−

hR
1

0
dyΔξ⊥ðϕysÞ

i
2
o�

uþ 2s
uþ s

½Δξ⊥ðϕsÞ�2 þ
s
u

Z
1

0

dy½Δξ⊥ðϕysÞ�2

− 2
s
u

s
uþ s

�Z
1

0

dyΔξ⊥ðϕysÞ
�
2

−
s
u
2u − s
uþ s

Δξ⊥ðϕsÞ ·
Z

1

0

dyΔξ⊥ðϕysÞ

þ i
s
u

1

p−

�
ζ��;μΔξ̃μνðϕsÞΠ1;p;νðϕsÞ −

2uþ s
uþ s

ζ��;μΔξ̃μνðϕsÞΠ2;p;νðϕsÞ
���

; ð34Þ

MR;�∓
m

¼ i
α

4π

Z
∞

0

duds
ðuþ sÞ2 e

−i s2
uþs

n
1þ
R

1

0
dy½Δξ⊥ðϕysÞ�2−

hR
1

0
dyΔξ⊥ðϕysÞ

i
2
o

×
s
u

1

p−

�
ζ�∓;μΔξ̃μνðϕsÞΠ1;p;νðϕsÞ −

2uþ s
uþ s

ζ�∓;μΔξ̃μνðϕsÞΠ2;p;νðϕsÞ
�
; ð35Þ

whereΔξ⊥ðϕÞ¼ΔA⊥ðϕÞ=m, ζμσσ0¼−ūσðpÞγ5γμuσ0 ðpÞ=2m,
and Δξ̃μνðϕsÞ¼ ½ÃμνðϕsÞ− ÃμνðϕÞ�=m¼ð1=2Þεμνλρ ×
½AλρðϕsÞ−AλρðϕÞ�=m, with AμνðϕÞ¼nμAνðϕÞ−nνAμðϕÞ,
and where ϕs ¼ ϕ − 2usp−=m2ðuþ sÞ and ϕys ¼
ϕ − 2yusp−=m2ðuþ sÞ (note that the fictitious photonmass
can be set to zero).
Now, Eqs. (32) and (33) imply that we can set

δdρðq;ϕxÞ ¼ 0. By imposing the initial condition

δcρðq; 0Þ ¼ 0 and by indicating as Uð1Þ
σ ðp; xÞ the first-

order solution Ψð1ÞðxÞ corresponding to the above given
initial conditions, we have that

Uð1Þ
σ ðp;xÞ¼

�
1− i

m
p−

Z
ϕ

0

dϕ0MR;σσðp;ϕ0Þ
�
Uσðp;xÞ

− i
m
p−

Z
ϕ

0

dϕ0MR;−σσðp;ϕ0ÞU−σðp;xÞ: ð36Þ

This approximated solution is valid under the condition that
ðm=p−Þj

R ϕ
0 dϕ0MR;σσ0 ðp;ϕ0Þj ≪ 1 for all σ; σ0 ¼ �1.

Also, we conclude that radiative corrections do not mix
states with different momenta and states with positive and
negative energies. However, states with the same momen-
tum (and sign of the energy) but different spin quantum
numbers are, in general, mixed. In the case of a constant
crossed field plus a monochromatic plane wave of arbitrary
polarization, the corresponding matrixMR;σσ0 ðp;ϕÞ can be
diagonalized and one can determine the corresponding
electron quasienergies [99].
The treatment significantly simplifies in the case of a

linearly polarized plane wave and by choosing the spin
quantization axis as the direction of the magnetic field of
the plane wave in the (initial) rest frame of the electron.
In this case, we set ψ2ðϕÞ ¼ 0 and AðϕÞ ¼ ψ1ðϕÞa1 ¼
A0ψðϕÞa1, with A0 < 0 being related to the amplitude of
the electric field of the plane wave. For example, in the case
of a monochromatic plane wave with amplitude E0 and
angular frequency ω0, we would have A0 ¼ −E0=ω0 and,
e.g., ψðϕÞ ¼ cosðω0ϕÞ, whereas in the constant crossed
field case, we would have A0 ¼ −E0=ω0 and ψðϕÞ ¼ ω0ϕ,
such that the angular frequency ω0 cancels out, as it should
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in this case. In this way, the electromagnetic field tensor
FμνðϕÞ of the wave and its dual F̃μνðϕÞ can be written as
FμνðϕÞ ¼ Aμν

0 ψ 0ðϕÞ and F̃μνðϕÞ ¼ Ãμν
0 ψ 0ðϕÞ, with Aμν

0 ¼
A0ðnμaν1 − nνaμ1Þ and Ãμν

0 ¼ ð1=2ÞεμνλρA0;λρ. With the
mentioned choice of the spin quantization axis, the constant
spinor uσðpÞ fulfills the eigenvalue equation γ5ζ̂uσðpÞ ¼
σuσðpÞ, where ζμ ¼ −σūσðpÞγ5γμuσðpÞ=2m ¼
−Ãμν

0 pν=ðp−A0Þ is the spin four-vector, with ðζpÞ ¼ 0

and ζ2 ¼ −1. In the rest frame of the electron and in the
case of constant crossed field, the three-dimensional spin
vector ζ points in the same direction of the magnetic field.
In this case, one can see that the matrix MR;σσ0 ðp;ϕÞ is

diagonal, that the states in Eq. (36) with different
spin quantum numbers do not mix but the diagonal
elements MR;σσðp;ϕÞ explicitly depend on the spin
quantum number, i.e., the mass operator is not propor-
tional to the unity matrix. Also, from the validity
condition ðm=p−Þj

R ϕ
0 dϕ

0MR;σσ0 ðp;ϕ0Þj≪1, we can write

1 − iðm=p−Þ
R ϕ
0 dϕ0MR;σσðp;ϕ0Þ ≈ exp½−iðm=p−Þ

R ϕ
0 dϕ0

MR;σσðp;ϕ0Þ�. Thus, the quantity MR;σσðp;ϕÞ can be
interpreted as the electron mass shift δmσðp;ϕÞ [see
also the phase in Eq. (1) and observe that ðpxÞ¼
pþϕþp−τ−p⊥ ·x⊥, with pþ ¼ ðm2 þ p2⊥Þ=2p−] and
it is

δmσðp;ϕÞ
m

¼ α

4π

Z
∞

0

duds
ðuþ sÞ2

�
2
uþ 2s
uþ s

�
e
−i s2

uþs

n
1þ
R

1

0
dy½Δξ⊥ðϕysÞ�2−

hR
1

0
dyΔξ⊥ðϕysÞ

i
2
o
− e−i

s2
uþs

�

þ e
−i s2

uþs

n
1þ
R

1

0
dy½Δξ⊥ðϕysÞ�2−

hR
1

0
dyΔξ⊥ðϕysÞ

i
2
o

×

�
uþ 2s
uþ s

½Δξ⊥ðϕsÞ�2 þ
s
u

Z
1

0

dy½Δξ⊥ðϕysÞ�2 − 2
s
u

s
uþ s

�Z
1

0

dyΔξ⊥ðϕysÞ
�
2

−
s
u
2u − s
uþ s

Δξ⊥ðϕsÞ ·
Z

1

0

dyΔξ⊥ðϕysÞ þ 2iσ
us2

ðuþ sÞ2
Z

1

0

dyχðϕysÞ
��

; ð37Þ

where χðϕÞ ¼ −p−A0ψ
0ðϕÞ=mEcr is the local quantum

nonlinearity parameter. In the above derivation, we have
used the fact that χðϕÞ ¼ −ðζχ̃ðϕÞÞ, where χ̃μðϕÞ ¼
F̃μνðϕÞpν=mEcr.
As a check of the above expression of the mass shift, we

have ensured that in the LCFA, the mass shift δmσðp;ϕÞ
reduces to the corresponding local expression of the mass
shift found in Refs. [82,92] in the case of a background
constant crossed field. Indeed, by expanding the right-hand
side of Eq. (37) for ϕs and ϕys around ϕ up to the first order,
one finds

δmðLCFAÞ
σ

m
¼ α

2π

Z
∞

0

dudv
ð1þ vÞ3 e

−iu
h
1þ1

3

χ2ðϕÞ
v2

u2
i

×

�
5þ 7vþ 5v2

3

χ2ðϕÞ
v2

uþ iσχðϕÞ
�
; ð38Þ

where, for notational simplicity, we have not indicated the
functional dependence on pμ and ϕ. In this derivation the
changes of variables s ¼ uv and the u → ð1þ vÞu=v2 and
the identity

Z
∞

0

dudv
uð1þvÞ2

1þ2v
1þv

�
e
−iu

h
1þ1

3

χ2ðϕÞ
v2

u2
i
−e−iu

�

¼−
χ2ðϕÞ
3

Z
∞

0

dudv
ð1þvÞ2e

−iu
h
1þ1

3

χ2ðϕÞ
v2

u2
i
1þv−3v2

1þv
u
v2

ð39Þ

have been used.

A. On the anomalous magnetic moment
of the electron

In vacuum QED the derivation of the anomalous mag-
netic moment of the electron starts from the computation of
the vertex correction, with the external photon providing
the magnetic field interacting with the electron [95]. In the
present case of an electron interacting with a background
plane wave, the magnetic field of the wave can already be
exploited to derive the anomalous magnetic moment of the
electron starting from the mass operator rather than from
the more complicated vertex correction [81]. This has been
already carried out in the case of a constant crossed field in
Refs. [82,92] by computing the mass correction of the
electron in the field and then by extracting the anomalous
magnetic moment of the electron from the term in the mass
correction proportional to the electron spin.
Within the LCFA the field-dependent anomalous gyro-

magnetic factor of the electron δgðLCFAÞ ¼ gðLCFAÞ − 2
is obtained by equating the real part of the spin-
dependent mass shift with −δμðLCFAÞ · B0ðϕÞ ¼
δgðLCFAÞμBðσ=2Þζ · B0ðϕÞ, where δμðLCFAÞ is the anoma-
lous magnetic moment of the electron within the LCFA,
μB ¼ jej=2m is the Bohr magneton, B0ðϕÞ is the magnetic
field of the plane wave in the initial rest frame of the
electron, and where we have taken into account that
the spin and the magnetic moment of the electron are
oppositely directed because the electron charge is
negative. Now, we notice that ζμF̃μνðϕÞpν=m ¼
−ζ · B0ðϕÞ and, with the above choice of ζμ, that
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ζμF̃μνðϕÞpν=m ¼ −EcrχðϕÞ ¼ −mχðϕÞ=2μB. By combin-
ing the above equations, we obtain

δgðLCFAÞ

2
¼ −

α

π
Im

Z
∞

0

dudv
ð1þ vÞ3 e

−iu
h
1þ1

3

χ2ðϕÞ
v2

u2
i
; ð40Þ

which is the corresponding local expression of the anoma-
lous gyromagnetic factor of the electron in a constant
crossed field [82,92]. In particular, in the weak-field limit
χðϕÞ → 0, we obtain Schwinger’s result δg0=2 ¼ α=2π
(recall that the original prescription on the poles of the
propagators, allows one to write

R
∞
0 due−iu ¼ −i).

The derivation of the result in Eq. (40) within the LCFA
indicates that in thegeneral case of an arbitraryplanewave it is
not even possible to introduce the concept of a local electron
anomalous magnetic moment. In this case, the interaction
between the electron and the plane wave is nonlocal [see
Eq. (37) and, in particular, the last, spin-dependent term] and
it is not simply proportional to the magnetic field of the plane
wave in the rest frame of the electron evaluated at ϕ.

IV. CONCLUSIONS

In conclusion, we have obtained the expression of the
mass operator in momentum space in the presence of an

arbitrary plane wave and for an off-shell electron. We have
used the obtained expression to compute the mass shift for
an on-shell electron. By specializing to the case of a
linearly polarized wave and by choosing the spin quanti-
zation axis along the magnetic field of the plane wave in the
initial rest frame of the electron, a compact expression of
the mass shift is derived, which reduces to the expression in
a constant crossed field obtained previously in the liter-
ature. Finally, we have shown that a local expression of the
anomalous magnetic moment of the electron can be
extracted from the mass shift within the locally constant
field approximation. However, beyond the locally constant
field approximation, the interaction between the plane
wave and the electron is nonlocal, which prevents a
convenient description of the interaction of the magnetic
field of the wave and the electron simply via a magnetic
moment.
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