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We have performed a systematical analysis of lepton and quark mass models based on Γ4 ≅ S4 modular
symmetry with generalized CP symmetry. We considered both cases; neutrinos are Majorana particles and
Dirac particles. All possible nontrivial representation assignments of matter fields are considered, and the
most general form of fermion mass matrices are given. The phenomenologically viable models with the
lowest number of free parameters together with the results of fit are presented. We find out nine lepton
models with seven real free parameters (including the real and imaginary parts of modulus for Majorana
neutrinos) which can accommodate the lepton masses and neutrino oscillation data. The prediction for
leptogenesis is studied in an example lepton model. The observed baryon asymmetry as well as lepton
masses and mixing angles can be explained. For Dirac neutrinos, four lepton models with five real free
couplings are compatible with the experimental data. Ten quark models containing seven couplings are
found to be able to accommodate the hierarchical quark masses and mixing angles and the CP violation
phase. Furthermore, the S4 modular symmetry can provide a unified description of lepton and quark flavor
structure, and a benchmark model is presented.
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I. INTRODUCTION

Understanding the hierarchical fermion masses and the
flavor mixing structure of quarks and leptons from the first
principle is a longstanding challenge in particle physics.
The measurement of neutrino mixing parameters provides
new clues to the above mentioned flavor puzzle. There is
still lack of a guiding principle to explain this flavor puzzle,
and one of the most extensively studied schemes is flavor
symmetry, which is traditionally based on continuous Lie
groups or discrete finite groups which relate the three
generations of fermions. See Ref. [1] for the latest review.
In traditional flavor symmetry, the flavor groups are broken
along certain directions in the flavor space by the vacuum
expectation value (VEV) of some scalar fields called
flavons. In order to realize the desired symmetry breaking
pattern, certain shaping symmetry, additional dynamics,
and fields are generally necessary. As a consequence, the

resulting model looks quite complex. In order to overcome
this drawback, the modular invariance from a bottom-up
perspective has been proposed [2]. The modular symmetry
plays the role of flavor symmetry, the flavons are replaced
by the so-called modulus τ, and the Yukawa couplings are
modular forms which are holomorphic functions of τ. This
framework has been extended to invariance under more
general discrete groups and the modular forms become
more general automorphic forms [3].
In this scheme, modular symmetry is governed by the

infinite discrete group Γ ¼ SLð2;ZÞ. The modular invari-
ant models are classified by the level N which is a positive
integer, and the matter fields are assumed to transform in
irreducible representations of the finite modular group
ΓN≡Γ̄=Γ̄ðNÞ or its double covering group Γ0

N ≡Γ=ΓðNÞ.
For a small number of finite modular groups, some fermion
masses models based on the modular invariance and their
phenomenology have been studied, such as Γ2 ≅ S3 [4–7],
Γ3 ≅ A4 [2,4,5,8–32], Γ4 ≅ S4 [21,33–40], Γ5 ≅ A5

[38,41,42], Γ7 ≅ PSLð2;Z7Þ [43], Γ0
3 ≅ T 0 [44,45], Γ0

4 ≅
S04 [46,47], and Γ0

5 ≅ A0
5 [48,49]. There have also been

attempts to implement modular symmetry in the Grand
Unified Theories (GUTs) to address both the lepton and
quark flavor problems [6,10,50–54]. In the modular invari-
ance approach, the crucial elements are the modular forms
of level N. For the even modular weights, the modular
forms can be arranged into multiplets of the finite modular
group ΓN [2]. If the modular weights are general integers,
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the modular forms can be organized into irreducible
multiplets of the double covering group Γ0

N [44]. In
addition to the integer weight modular forms, there are
fractional weight modular forms for some particular level
N. Accordingly the modular group SLð2;ZÞ should be
extended to its metaplectic covering group and the finite
metaplectic group acts as flavor symmetry [55]. The
modular forms of weights k=2 with finite metaplectic
modular group Γ̃4 ≅ S̃4 [55] and the weight k=5 modular
forms with finite metaplectic modular group Γ̃5 ≅ A0

5 × Z5

[49] have been studied in the bottom-up modular invariance
approach. It has been shown that metaplectic flavor
symmetries can be derived from compactifications on
tori with magnetic background fluxes [56,57]. The VEV
of τ is usually treated as a free parameter in modular
invariant models in order to match the experimental data,
it is remarkable that the hierarchical fermion mass
matrices may arise due to the proximity of the modulus
to the residual symmetry preserved points τ¼i;−1=2þ
i
ffiffiffi
3

p
=2;i∞ [32,58,59]. Furthermore, the generalized CP

symmetry can be consistently imposed in the context of
symplectic modular symmetry for a single modulus with
g ¼ 1 [60–62] and for multimoduli with g ≥ 2 [63]. Notice
that the symplectic group coincides with the modular
group SLð2;ZÞ when g ¼ 1. In the symmetric basis for
the modular generators S and T with ρrðSÞ ¼ ρTr ðSÞ and
ρrðTÞ ¼ ρTr ðTÞ, the generalized CP transformation would
coincide with the canonical CP. The generalized CP
invariance enforces all coupling constants to be real if
the Clebsch-Gordan (CG) coefficients are also real in the
symmetric basis. Thus the generalized CP symmetry could
further reduce the number of free parameters of the modular
invariant models and leads to a higher predictive power.
The S4 modular group has five irreducible representa-

tions: two singlets 1 and 10, a doublet 2, and two triplets 3
and 30. Similar to A4 modular symmetry, the three gen-
erations of right-handed lepton fields and right-handed
charged leptons are usually assumed to transform as a
triplet and a singlet respectively under S4 modular sym-
metry in the known S4 modular invariant models, and the
doublet assignment for the lepton fields has not been
considered although it provides new features and possibil-
ities unavailable in the A4 modular symmetry. Moreover, S4
modular symmetry has been used to explain the flavor
structure of leptons so far, but it is not clear whether the S4
modular symmetry can help to address the quark flavor
problem except for a few GUT models [51,53,54]. In this
paper, we intend to perform a systematic analysis of lepton
and quark models based on Γ4 ≅ S4 modular symmetry and
generalized CP; we concentrate on the viable models
involving the lowest number of free parameters. For lepton
models, we find that thirteen viable models can success-
fully describe the experimental data of lepton masses and
mixing parameters in terms of seven real parameters
including Reτ and Imτ. In the quark sector, at least seven

real couplings are necessary in order to accommodate the
measured values of quark masses and the Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix. Further-
more, we find that agreement with the experimental data
of quarks and lepton sectors can be achieved for a common
value of τ, and a benchmark model is presented. In modular
invariant models, which also fulfill generalized CP invari-
ance, the VEVof the modulus τ is the unique source of both
modular symmetry breaking and CP violation. Thus
imposing generalized CP symmetry would lead to strong
correlations between the low energy CP violation phases
and CP asymmetry in leptogenesis. We shall discuss the
baryon asymmetry generated via unflavored thermal lepto-
genesis in an example model of leptons.
This paper is organized as follows. In Sec. II, we briefly

review the modular symmetry and modular forms of level
4. In Sec. III, we give the most general forms of the Yukawa
superpotential and the Majorana mass term for different
possible assignments of matter fields, the corresponding
mass matrices are presented. Moreover, we show that
different assignments can lead to the same fermion mass
matrices. In Sec. IV, we find out the phenomenologically
viable lepton and quark models with the smallest number of
free parameters, and the results of fit are presented. The
prediction for leptogenesis is studied in a minimal lepton
model. Finally, we draw our conclusions in Sec. V. The
finite modular group Γ4 ≅ S4 and the compact expression
of CG coefficients are listed in Appendix A. The concrete
forms of modular multiplets at weight 4, 6, and 8 are
presented in Appendix B. We give the general modular
invariant superpotentials and mass matrices for two right-
handed neutrino case in Appendix C.

II. MODULAR SYMMETRY AND MODULAR
FORMS OF LEVEL N = 4

In the modular invariant framework with a single modu-
lus, the modular symmetry is described by the modular
group which is the special linear group SLð2;ZÞ of degree
two over integers,

SLð2;ZÞ¼
��

a b

c d

�
jad−bc¼ 1; a;b;c;d∈Z

�
: ð1Þ

[SLð2;ZÞ is often denoted as Γ.] It has two generators S and
T with

S ¼
�

0 1

−1 0

�
; T ¼

�
1 1

0 1

�
; ð2Þ

which satisfy the relations

S4 ¼ ðSTÞ3 ¼ 1; S2T ¼ TS2: ð3Þ
The modular group Γ has an important class of normal
subgroups called the principal congruence subgroup of level
N which is defined as
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ΓðNÞ ¼
�
γ ∈ SLð2;ZÞjγ ≡

�
1 0

0 1

�
mod N

�
: ð4Þ

Note that Γð1Þ ¼ SLð2;ZÞ and TN ∈ ΓðNÞ. We can obtain
the finite modular group from the quotient group

ΓN ≡ Γ̄=Γ̄ðNÞ∶ S2 ¼ ðSTÞ3 ¼ TN ¼ 1; N < 6; ð5Þ

where Γ̄ and Γ̄ðNÞ are the projective groups Γ̄ ¼ Γ=f�1g
and Γ̄ðNÞ ¼ ΓðNÞ=f�1g. Notice that ΓðNÞ ≅ Γ̄ðNÞ for
N > 2. The group ΓN is usually called an inhomogeneous
finite modular group of levelN. Similarly the homogeneous
finite modular group Γ0

N can be defined as Γ0
N ≡ Γ=ΓðNÞ

which can also be generated by S and T obeying the
multiplication rules S4 ¼ ðSTÞ3 ¼ TN ¼ 1 [44], and addi-
tional relations are needed to render the group finite for
N ≥ 6 [64]. The group ΓN is isomorphic to the quotient
group of Γ0

N over its center f1; S2 ¼ −1g; consequently Γ0
N

is the double covering group of ΓN , and Γ0
N has twice as

many elements as ΓN . Top-down constructions in string
theory generally lead to a homogeneous finite modular
group Γ0

N rather than the inhomogeneous finite modular
group ΓN [61,62].
The modular group SLð2;ZÞ acts on the upper half-

plane H ¼ fτ ∈ CjImðτÞ > 0g by the linear fractional
transformation,

γτ ¼ aτ þ b
cτ þ d

; γ ¼
�
a b

c d

�
∈ Γ: ð6Þ

Obviously γ and −γ give the same action on the modulus τ,
thus each linear fractional transformation corresponds to an
element of the projective special linear group Γ̄. If all the
points in the orbit of a modulus τ are identified, we obtain
the coset space H=Γ which is the so-called fundamental
domain D of SLð2;ZÞ,

D ¼ fτ ∈ Hjjτj ≥ 1;−1=2 ≤ ReðτÞ ≤ 1=2g; ð7Þ

which is a hyperbolic triangle bounded by the vertical lines
ReðτÞ ¼ 1

2
, ReðτÞ ¼ − 1

2
, and the circle jτj ¼ 1. Every point

τ ∈ H is equivalent to a point of D via the action of
SLð2;ZÞ, and no two distinct points insideD are equivalent
under the action of SLð2;ZÞ and two points of D are in the
same orbit only if they lie on the boundary of D.
The modular form of integral weight k and level N is a

holomorphic function of τ, and it transforms under ΓðNÞ as
follows:

fðγτÞ ¼ ðcτ þ dÞkfðτÞ; ∀ γ ¼
�
a b

c d

�
∈ ΓðNÞ: ð8Þ

Therefore the weight k “differential form” fðτÞðdτÞk=2 is
invariant under the action of every element of ΓðNÞ.
The modular forms of weight k and level N span a

finite-dimensional linear space MkðΓðNÞÞ. The product
of a modular form of weight k1 with a modular form of
weight k2 is a modular form of weight k1 þ k2. Thus the set
MðΓðNÞÞ ¼ ⨁∞

k¼0MkðΓðNÞÞ of all modular forms of
level N form a graded ring. Furthermore, it has been
proved that the finite-dimensional space M2kðΓðNÞÞ can
be decomposed into irreducible representations of the finite
modular groups ΓN [2,44] up to the automorphy factor
ðcτ þ dÞ2k. That is to say, it is always possible to choose a

basis in M2kðΓðNÞÞ so that Yð2kÞ
r ¼ ðf1ðτÞ; f2ðτÞ;…ÞT

transform under the full modular group Γ as

Yð2kÞ
r ðγτÞ¼ ðcτþdÞ2kρrðγÞYð2kÞ

r ðτÞ; ∀γ¼
�
a b

c d

�
∈Γ;

ð9Þ

where ρrðγÞ is the irreducible representation of quotient
group ΓN .
In the present work, we are interested in the level N ¼ 4,

the linear space of the modular forms of level 4 is well
established, and it can be constructed by making use of
Dedekind eta function or the theta constants [21,46,55],

MkðΓð4ÞÞ ¼ ⨁
aþb¼2k;a;b≥0

C
η2b−2að4τÞη5a−bð2τÞ

η2aðτÞ
¼ ⨁

aþb¼2k;a;b≥0
Cθa2ðτÞθb3ðτÞ; ð10Þ

where the Dedekind eta function ηðτÞ is defined by

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ; q≡ ei2πτ; ð11Þ

and the theta constants are defined as

θ2ðτÞ ¼
X
m∈Z

e2πiτðmþ1=2Þ2 ; θ3ðτÞ ¼
X
m∈Z

e2πiτm
2

: ð12Þ

Thus the dimension of the modular space M2kðΓðNÞÞ is
equal to 4kþ 1. In the working basis given in Appendix A,
all the modular forms of weight k and level 4 can be
expressed as the homogeneous polynomials of degree 2k in
the modular functions ϑ1 and ϑ2 which are linear combi-
nations of θ2ðτÞ and θ3ðτÞ as follows [55]:

ϑ1ðτÞ ¼ ω2θ3ðτÞ þ ðiþ ωÞθ2ðτÞ;

ϑ2ðτÞ ¼
ffiffiffi
2

p þ ffiffiffi
6

p

2
θ3ðτÞ þ eiπ=4θ2ðτÞ; ð13Þ

with ω ¼ e2πi=3. In particular, the weight 2 modular

multiplets Yð2Þ
2 and Yð2Þ

3 can be written as [55]
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Yð2Þ
2 ≡

�
Y1

Y2

�
¼ eiπ=3

9þ 6
ffiffiffi
3

p
�
2
ffiffiffi
2

p
ϑ1ϑ

3
2 − ϑ41

ϑ42 þ 2
ffiffiffi
2

p
ϑ31ϑ2

�
;

Yð2Þ
3 ≡

0B@Y3

Y4

Y5

1CA ¼ eiπ=3

3ð2þ ffiffiffi
3

p Þ

0B@ 3ϑ21ϑ
2
2

ϑ42 −
ffiffiffi
2

p
ϑ31ϑ2

ϑ41 þ
ffiffiffi
2

p
ϑ1ϑ

3
2

1CA: ð14Þ

The weight 2 modular forms of level 4 can also be
constructed from the derivative of the eta function
[33,34] or the products of the Dedekind eta function
[21], the resulting q-expansions of the modular forms
would be identical when going to the same representation
basis of the modular generators S and T. The higher-weight
modular forms can be generated by the tensor product of
the weight 2 modular forms, and their specific forms can be
found in Appendix B. We summarize the modular multip-
lets of level 4 up to weight 8 in Table I.

III. FERMION MASS MODELS BASED
ON S4 MODULAR SYMMETRY WITH

GENERALIZED CP

We shall briefly review the modular invariance approach
in the following, then recapitulate on the consistency
condition which should be fulfilled to consistently combine
modular symmetry with generalized CP symmetry.
Furthermore, we perform a systematic classification of
quark and lepton mass models based on the modular
symmetry Γ4 ≅ S4 and generalized CP.

A. The framework

We formulate our models in the framework of modular
invariant approach with N ¼ 1 global supersymmetry [2].
The field content consists of a set of chiral matter super-
fields ΦI and a modulus superfield τ; their modular
transforms under SLð2;ZÞ are given by

τ → γτ ¼ aτ þ b
cτ þ d

; ΦI → ðcτ þ dÞ−kIρIðγÞΦI; ð15Þ

where −kI is called the modular weight of the matter field
ΦI , and ρIðγÞ is the unitary representation of ΓN . The
Kähler potential is taken to be the minimal form following
the convention of [2]

KðΦI; Φ̄I; τ; τ̄Þ ¼ −hΛ2 logð−iτ þ iτ̄Þ
þ
X
I

ð−iτ þ iτ̄Þ−kI jΦIj2; ð16Þ

which gives rise to the kinetic terms of the matter fields and
the modulus field after the modular symmetry breaking
caused by the VEVof τ. Notice that the modular invariance
does not fix the Kähler potential in the bottom-up approach
[65], and the Kähler potential could receive unsuppressed
contributions from modular forms. However, generally
both traditional flavor symmetry and modular symmetry
are present in top-down approach such as the string derived
standardlike models [66–68] but the off-diagonal contri-
butions to the Kähler metric are forbidden by the traditional
flavor group and the minimal Kähler potential in Eq. (16)
appears as the leading-order term. Even including the
whole modular dependence in the Kähler potential in these
top-down models, the resulting phenomenological predic-
tions do not differ from those which have been obtained by
using just the standard Kähler potential Eq. (16). The
superpotentialWðΦI; τÞ can be expanded in a power series
of the involved supermultiplets ΦI ,

WðΦI; τÞ ¼
X
n

YI1…InðτÞΦI1…ΦIn ; ð17Þ

where YI1…In is a modular multiplet of weight kY as
introduced in previous section. Modular invariance requires
that each term of the WðΦI; τÞ satisfies the following
conditions,

kY ¼ kI1 þ�� �þkIn ; ρY ⊗ ρI1 ⊗…⊗ ρIn ∋ 1: ð18Þ

In order to improve the prediction power of the modular
invariance approach, we include the generalized CP sym-
metry further. It is known that the complex modulus τ
transforms under the action of generalized CP as
[60,61,69–71]

τ⟼
CP

− τ�; ð19Þ

up to modular transformations. The generalized CP trans-
forms a generic chiral superfield Φ into the Hermitian
conjugate superfield

ΦðxÞ⟼CP XrΦ̄ðxPÞ; ð20Þ

TABLE I. Summary of the even weight modular forms at level
N ¼ 4, the subscript r denotes the irreducible representations of

the inhomogeneous finite modular group Γ4 ≅ S4. Here Y
ð6Þ
3I and

Yð6Þ
3II denote the two linearly independent weight 6 modular forms

in the triplet representation 3, and we adopt a similar notation for

Yð8Þ
2I , Y

ð8Þ
2II , and Yð8Þ

3I ; Y
ð8Þ
3II , and Yð8Þ

30I ; Y
ð8Þ
30II .

Modular weight 2k Modular forms Yð2kÞ
r

2k ¼ 2 Yð2Þ
2 ; Yð2Þ

3

2k ¼ 4 Yð4Þ
1 ; Yð4Þ

2 ; Yð4Þ
3 ; Yð4Þ

30

2k ¼ 6 Yð6Þ
1 ; Yð6Þ

10 ; Y
ð6Þ
2 ; Yð6Þ

3I ; Y
ð6Þ
3II ; Y

ð6Þ
30

2k ¼ 8 Yð8Þ
1 ; Yð8Þ

2I ; Y
ð8Þ
2II ; Y

ð8Þ
3I ; Y

ð8Þ
3II ; Y

ð8Þ
30I ; Y

ð8Þ
30II
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with x ¼ ðt; x⃗Þ and xP ¼ ðt;−x⃗Þ, where the CP trans-
formation matrix Xr is a unitary matrix acting on flavor
space. The chiral superfield ΦðxÞ is assigned to an
irreducible unitary representation ρr of the finite modular
group, then the form of the matrix Xr is strongly con-
strained due to the presence of modular symmetry. First, by
applying a generalized CP transformation followed by a
modular transformation and subsequently an inverse CP
transformation, the complex modulus τ and the matter field
Φ transform as follows:

τ!CP − τ�!γ −
aτ� þ b
cτ� þ d

!CP
−1 aτ − b
−cτ þ d

;

ΦðxÞ!CP XrΦ̄ðxPÞ!γ ðcτ� þ dÞ−kXrρ
�
rðγÞΦ̄ðxPÞ

!CP
−1ð−cτ þ dÞ−kXrρ

�
rðγÞX−1

r ΦðxÞ; ð21Þ

where −k denotes the modular weight of Φ. The closure of
the modular transformations and generalized CP trans-
formations requires that the following consistency con-
dition has to be satisfied [60,63],

Xrρ
�
rðγÞX−1

r ¼ χ−kðγÞρrðuðγÞÞ; ð22Þ
where uðγÞ is an outer automorphism of the modular group,

γ ¼
�
a b

c d

�
⟼ uðγÞ ¼ χðγÞ

�
a −b
−c d

�
: ð23Þ

Here χðγÞ is called the character and it is a homomorphism
of SLð2;ZÞ into fþ1;−1g. From the relations S4 ¼
ðSTÞ3 ¼ 1 satisfied by the modular generators S and T,
it is easy to know that only two possible values of the
character are allowed [72]

χðSÞ ¼ χðTÞ ¼ 1; or χðSÞ ¼ χðTÞ ¼ −1: ð24Þ
Consequently, two possible generalizedCP symmetries can
be defined in the context of modular invariance. We see that
theCP transformationXrmaps themodular group element γ
onto another element uðγÞ and the group structure of the
modular symmetry is preserved, i.e., uðγ1γ2Þ ¼ uðγ1Þuðγ2Þ.
Hence, it is sufficient to impose the consistency condition of
Eq. (22) on the generators S and T. For the first kind of
generalized CP associated with the trivial character
χðSÞ ¼ χðTÞ ¼ 1, the consistency condition becomes

Xrρ
�
rðSÞX−1

r ¼ ρrðS−1Þ; Xrρ
�
rðTÞX−1

r ¼ ρrðT−1Þ. ð25Þ
The second kind of generalized CP associated with the
nontrivial character χðSÞ ¼ χðTÞ ¼ −1 has been studied in
[46,63]. The explicit form of Xr depends on both the
modular weight −k and the representation assignment r
of the matter field, and obviously it would be reduced the
first generalized CP for ð−1Þ−kρrðS2Þ ¼ 1. Notice that
ρrðS2Þ ¼ �1 because of S4 ¼ 1. As a result, it is only

relevant for the case of ð−1Þ−kρrðS2Þ ¼ −1 which implies
odd k for the inhomogeneous finite modular group ΓN ; the
generalized CP transformation Xr is determined by [46,63]

Xrρ
�
rðSÞX−1

r ¼−ρrðS−1Þ; Xrρ
�
rðTÞX−1

r ¼−ρrðT−1Þ; ð26Þ
which can be satisfied if and only if the level N is even, the
dimension of the representation ρr is even together with the
vanishing trace of ρrðSÞ and ρrðTÞ. If one intends to impose
the second generalizedCP in a model, the three generations
of matter fields should be assigned to the direct sum of one-
dimensional and two-dimensional representations of the
finite modular group Γ0

N or ΓN, and second generalized CP
acts nontrivially on the two matter fields in the doublet
representation while the generalized CP transformation of
the othermatter field in the singlet representation can only be
the first one. Moreover, the minus sign in Eq. (26) implies
that the fermion mass matrix would be block diagonal and
consequently some mixing angles would be constrained to
be vanishing if the second generalized CP is implemented.
Because none of quark or leptonmixing angles arevanishing
in spite of somevery small quarkmixing angles, we shall not
consider the second generalizedCP symmetry and focus on
the first generalized CP in the present work. Regarding the
CP transformation of the modular forms, it has been shown
that the integral-weight modular forms are in the irreducible
representations of Γ0

N fulfilling ð−1Þ−kρrðS2Þ ¼ 1 [44] so
that only the first generalized CP acts on the modular forms
and they transform in the sameway as thematter fields under

the generalizedCP, i.e., YrðτÞ⟼CP Yrð−τ�Þ ¼ XrY�ðτÞ if the
basis of the modular space is properly chosen [63].
The explicit form of the generalized CP transformation

Xr is determined by the consistency condition in Eq. (22)
up to an overall phase for any given irreducible represen-
tation r. For the concerned first generalized CP and the
finite modular group Γ4 ≅ S4 with the basis listed in
Table IX, solving the consistency conditions of Eq. (25),
we find that the generalized CP transformation Xr is in
common with the representation matrix of S,

Xr ¼ ρrðSÞ; ð27Þ
which is a combination of the modular symmetry trans-
formation S and the canonical CP transformation. Modular
invariance requires that the action is invariant under the
modular transformation S, thus the generalized CP trans-
formation in Eq. (27) is essentially the canonical CP
transformation. Furthermore, for the level 4 modular forms
built from Yð2Þ

2 ðτÞ and Yð2Þ
3 ðτÞ up to weight 8, it is

straightforward to check that they transform under gener-
alized CP as follows:

YðkÞ
r ðτÞ⟼CP YðkÞ

r ð−τ�Þ ¼ XrY
ðkÞ�
r ðτÞ; ð28Þ

which is consistent with the general results of [63]. As
given in Appendix A, all the CG coefficients in our
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working basis are real; thus the generalized CP symmetry
would constrain all the coupling constants to be real.
In the modular invariant theory with generalized CP

symmetry, both modular and CP symmetries are uniquely
broken by the VEVof the modulus τ. In particular, all CP
violation phases arises from nonvanishing real part of τ. In
the following, we shall perform a systematic classification
of the Yukawa superpotential according to the transforma-
tion properties of the matter fields under the Γ4 ≅ S4
modular symmetry. We assume the Higgs doublets Hu
andHd are an S4 trivial singlet 1 and their modular weights
kHu;Hd

are vanishing. Notice that kHu;Hd
can always be set to

zero by redefining the modular weights of matter fields.

B. Classifying the Yukawa couplings

The modular invariance approach is formulated in the
framework of supersymmetry, and we adopt the gauge
symmetry, lepton superfields, quark superfields, and Higgs
multiplets of the minimal supersymmetric standard model.
We consider both scenarios—that neutrinos are Dirac or
Majorana particles, and the neutrino masses are generated
by the type-I seesaw mechanisms if neutrinos are Majorana
particles. It is known that at least two right-handed
neutrinos are necessary to generate the nonvanishing solar
and atmospheric neutrino mass-squared differences. We
have considered both cases with two and three right-handed
neutrinos. For simplicity, we denote the left-handed lepton
and quark doublets as F and the right-handed lepton and
quark singlets as Fc, i.e., Fc ∈ fuc; dc; Ec; Ncg and
F ∈ fQ;Lg. The three generations of matter fields can
be assigned to transform as a triplet FðcÞ ∼ 3i under the S4
modular group, the direct sum of doublet and singlet
FðcÞ ∼ 2 ⊕ 1i, or the direct sum of the three singlets
FðcÞ ∼ 1i1 ⊕ 1i2 ⊕ 1i3 . If only two right-handed neutrinos
are introduced, they can transform as a doublet or two
singlets under S4, as discussed in Appendix C. Therefore,
there will be many possible S4 modular invariant models for
quarks and leptons. The main purpose of this paper is to
classify all of these possible fermion mass superpotentials.
In the following, we will consider modular forms of weight
less than ten, and the analytical results reached can be
easily extended to much higher weight modular forms
analogously.

Before going into the concrete discussion below, let us
explain the notation used. We denote the S4 singlet and
triplet representations as 1≡ 10, 10 ≡ 11, 3≡ 30, and
30 ≡ 31. We use i, j, k, l to represent the indices of the
singlet or the triplet representations, and they can only take
the values 0 or 1, i.e., i; j; k; l ∈ f0; 1g. The lowercase
letters a and b are used to label the components of the
modular multiplets, and they can only take the value 1, 2,
and 3, i.e., a; b ∈ f1; 2; 3g. For simplicity of the formula,

we introduce the superfluous notations YðkÞ
1;2, Y

ðkÞ
1;3, and YðkÞ

2;3

which are set to zero. Moreover, we use the capital letters A,
B, C to describe the degeneracy of the modular multiplets.

For instance, there are two weight 6 modular forms Yð6Þ
3I and

Yð6Þ
3II in the triplet representation 3. Furthermore, we

introduce the operations hi and ≺ ≻ and they are defined
as hii ¼ ið mod 2Þ and ≺ i≻ ¼ ið mod 3Þ which take
values in the range of f0; 1g and f1; 2; 3g, respectively.
Notice that we define ≺ i≻ ¼ 3 if i is divisible by three. It
is remarkable that the general analytical expression of the
fermion mass matrix can be read out for each possible
representation assignment of the matter fields.
In this section, we will investigate the Yukawa super-

potential for the fermion masses, which can be generally
written as

WF ¼ αðFcFHu=dfðYÞÞ1; ð29Þ

where all independent S4 contractions should be considered
and different singlet combinations are associated with
different coefficients. The function fðYÞ is some modular
form multiplet fixed by the weight and representation
assignments of the matter fields F and Fc. In the following,
we give the concrete form of the Yukawa superpotential and
the corresponding fermion mass matrix for different S4
transformation properties of F and Fc.
a. Fc ∼ 3i; F ∼ 3j.

Let us first consider the case that both left-handed
and right-handed fermions transform as triplets under
S4. The modular weights of Fc and F are denoted as
kFc and kF respectively. The general Yukawa super-
potential for this assignment is given by

WF ¼ αððFcFÞ1hiþjiYðkFcþkFÞ
1hiþji Þ

1
Hu=d þ

X
A

βAððFcFÞ2YðkFcþkFÞ
2A Þ1Hu=d þ

X1
l¼0

X
B

γlBððFcFÞ3lYðkFcþkFÞ
3lB

Þ
1
Hu=d

¼
X3
a¼1

X3
b¼1

Fc
aFb

�
αYðkFcþkFÞ

1hiþji;≺aþb−1≻ þ ð−1Þ≺aþbþ1≻ðiþjÞX
A

βAY
ðkFcþkFÞ
2A;≺aþb−2≻

þ
X1
l¼0

X
B

γlBY
ðkFcþkFÞ
3lB;≺3−a−b≻½δabð1 − ð−1ÞðiþjþlÞÞ − ðϵba≺−b−a≻Þðiþjþlþ1Þ�

�
Hu=d: ð30Þ
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Here we have assumed that the modular form multiplets YðkFcþkFÞ
1 , YðkFcþkFÞ

10 , YðkFcþkFÞ
2 , YðkFcþkFÞ

3 , and YðkFcþkFÞ
30 in all S4

irreducible representations that are present. As shown in Table I, certain modular multiplets at some specific modular
weights are not allowed and thus the corresponding terms should be dropped. The fermion mass matrix can be read out from
this superpotential

MF ¼ α

0BBB@
YðkFcþkFÞ
1hiþji 0 0

0 0 YðkFcþkFÞ
1hiþji

0 YðkFcþkFÞ
1hiþji 0

1CCCAvu=d þ βA

0BBB@
0 ð−1ÞiþjYðkFcþkFÞ

2A;1 YðkFcþkFÞ
2A;2

ð−1ÞiþjYðkFcþkFÞ
2A;1 YðkFcþkFÞ

2A;2 0

YðkFcþkFÞ
2A;2 0 ð−1ÞiþjYðkFcþkFÞ

2A;1

1CCCAvu=d

þ γlB

0BBB@
½1 − ð−1Þiþjþl�YðkFcþkFÞ

3lB;1
ð−1ÞiþjþlYðkFcþkFÞ

3lB;3
−YðkFcþkFÞ

3lB;2

−YðkFcþkFÞ
3lB;3

½1 − ð−1Þiþjþl�YðkFcþkFÞ
3lB;2

ð−1ÞiþjþlYðkFcþkFÞ
3lB;1

ð−1ÞiþjþlYðkFcþkFÞ
3lB;2

−YðkFcþkFÞ
3lB;1

½1 − ð−1Þiþjþl�YðkFcþkFÞ
3lB;3

1CCCAvu=d; ð31Þ

where repeated indices are implicitly summed over. If F and Fc are quark and charged lepton fields, the case of
kFc þ kF ¼ 0 is not viable, since it gives rise to three degenerate mass eigenvalues. On the other hand, ifWF describes
the neutrino Dirac coupling under the assumption of Majorana neutrinos, the vanishing modular weight kFc þ kF ¼ 0
is allowed.

b. Fc ∼ 1i1 ⊕ 1i2 ⊕ 1i3 ; F ∼ 3j.
In this case, the three generations of left-handed fermions F transform as a triplet of S4 and the right-handed fields

Fc are assigned to be singlets of S4. The modular weight of F and Fc are denoted by kF and kFc
1;2;3

, respectively. Notice

that permuting the assignments of three right-handed fermions Fc amount to multiplying certain permutation from the
left side of the mass matrix; consequently the results for the charged fermion masses and mixing matrix are invariant.
The superpotential for this assignment can be written as

WF ¼ ½αðFc
1Ff1ðYÞÞ1 þ βðFc

2Ff2ðYÞÞ1 þ γðFc
3Ff3ðYÞÞ1�Hu=d

¼
X3
b¼1

X
A

αAFc
1FbY

ðkFc
1
þkFÞ

3hi1þjiA;≺2−b≻Hu=d þ
X3
b¼1

X
B

βBFc
2FbY

ðkFc
2
þkFÞ

3hi2þjiB;≺2−b≻Hu=d

þ
X3
b¼1

X
C

γCFc
3FbY

ðkFc
3
þkFÞ

3hi3þjiC;≺2−b≻Hu=d; ð32Þ

which leads to the following fermion mass matrix

MF ¼

0BBBBB@
αAY

ðkFc
1
þkFÞ

3hi1þjiA;1
αAY

ðkFc
1
þkFÞ

3hi1þjiA;3
αAY

ðkFc
1
þkFÞ

3hi1þjiA;2

βBY
ðkFc

2
þkFÞ

3hi2þjiB;1 βBY
ðkFc

2
þkFÞ

3hi2þjiB;3 βBY
ðkFc

2
þkFÞ

3hi2þjiB;2

γCY
ðkFc

3
þkFÞ

3hi3þjiC;1 γCY
ðkFc

3
þkFÞ

3hi3þjiC;3 γCY
ðkFc

3
þkFÞ

3hi3þjiC;2

1CCCCCAvu=d: ð33Þ

If two right-handed fields are assigned to have the
same modular weight and representation assignment
and they couple with a unique modular multiplet, two
rows of the mass matrix would be proportional such
that one mass eigenvalue would be vanishing. In some
specific cases, the mass matrix also gives a zero
eigenvalue. For example, from Appendix B we can

see the modular forms Yð8Þ
3I and Yð8Þ

3II are parallel to Y
ð2Þ
3

and Yð4Þ
3 , respectively. As a consequence, the fermion

mass matrix for the assignment ðkFc
1
þ kF; kFc

2
þ

kF; kFc
3
þ kFÞ ¼ ð2; 4; 8Þ and ðhi1 þ ji; hi2 þ ji; hi3 þ

jiÞ ¼ ð0; 0; 0Þ will have zero mass eigenvalue as well.
c. Fc ∼ 2 ⊕ 1i; F ∼ 3j.

Without loss of generality, we assign the first two
right-handed fermions Fc

D ¼ ðFc
1; F

c
2ÞT to transform as

a doublet under S4 and the third one Fc
3 is the singlet.

The modular weights of these fields are kFc
D
, kFc

3
, and

kF. The general superpotential is of the following form
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WF ¼ ½αðFc
DFf1ðYÞÞ1 þ βðFc

3Ff2ðYÞÞ1�Hu=d

¼
X2
a¼1

X3
b¼1

X1
l¼0

X
A

ð−1Þðaþ1ÞðjþlÞαlAF
c
aFbY

ðkFc
D
þkFÞ

3lA;≺2þa−b≻Hu=d þ
X3
b¼1

X
B

βBFc
3FbY

ðkFc
3
þkFÞ

3hiþjiB;≺2−b≻Hu=d: ð34Þ

The mass matrix which can be read out from this superpotential is

MF ¼

0BBBBB@
αlAY

ðkFc
D
þkFÞ

3lA;2
αlAY

ðkFc
D
þkFÞ

3lA;1
αlAY

ðkFc
D
þkFÞ

3lA;3

ð−1ÞjþlαlAY
ðkFc

D
þkFÞ

3lA;3
ð−1ÞjþlαlAY

ðkFc
D
þkFÞ

3lA;2
ð−1ÞjþlαlAY

ðkFc
D
þkFÞ

3lA;1

βBY
ðkFc

3
þkFÞ

3hiþjiB;1 βBY
ðkFc

3
þkFÞ

3hiþjiB;3 βBY
ðkFc

3
þkFÞ

3hiþjiB;2

1CCCCCAvu=d: ð35Þ

In some cases, the rank ofMF is less than three due to the structure of the modular forms. For instance, the rank of the
mass matrix is two for the assignment ðkFc

D
þ kF; kFc

3
þ kFÞ ¼ ð2; 4Þ.

d. Fc ∼ 3i; F ∼ 2 ⊕ 1j.
We interchange the representation assignments of the left-handed and the right-handed fields discussed in above.

The left-handed fermions are assigned to the direct sum of a doublet FD ¼ ðF1; F2Þ ∼ 2 and a singlet F3 ∼ 1j, while
the right-handed fermions Fc ¼ ðFc

1; F
c
2; F

c
3Þ transform as a triplet under S4. The modular weights of these fields are

denoted as kFc , kFD
, and kF3

. Then we can straightforwardly read out the Yukawa superpotential for this kind of
assignment,

WF ¼ ½αðFcFDfFD
ðYÞÞ1 þ βðFcF3fF3

ðYÞÞ1�Hu=d

¼
X3
a¼1

X2
b¼1

X1
l¼0

X
A

ð−1Þðbþ1ÞðiþlÞαlAFbFc
aY

ðkFcþkFD Þ
3lA;≺2þb−a≻Hu=d þ

X3
a¼1

X
B

βBF3Fc
aY

ðkFcþkF3 Þ
3hiþjiB;≺2−a≻Hu=d: ð36Þ

The resulting mass matrix is given by

MF ¼

0BBBBB@
αlAY

ðkFcþkFD Þ
3lA;2

ð−1ÞiþlαlAY
ðkFcþkFD Þ
3lA;3

βBY
ðkFcþkF3 Þ
3hiþjiB;1

αlAY
ðkFcþkFD Þ
3lA;1

ð−1ÞiþlαlAY
ðkFcþkFD Þ
3lA;2

βBY
ðkFcþkF3 Þ
3hiþjiB;3

αlAY
ðkFcþkFD Þ
3lA;3

ð−1ÞiþlαlAY
ðkFcþkFD Þ
3lA;1

βBY
ðkFcþkF3 Þ
3hiþjiB;2

1CCCCCAvu=d; ð37Þ

which is the transpose of the mass matrix in Eq. (35) with the indices i and j exchanged.
e. Fc ∼ 2 ⊕ 1i; F ∼ 2 ⊕ 1j.

In this case, both left-handed and right-handed fields are assigned to the direct sum of S4 doublet and singlet. We
denote FD ¼ ðF1; F2Þ, Fc

D ¼ ðFc
1; F

c
2Þ which transform as doublet under S4 while F3, Fc

3 are singlets. The modular
weights of these fields are kFc

D
, kFc

3
, kFD

, and kF3
. Then the Yukawa superpotential is given by

WF ¼ ½αðFc
DFDfDDðYÞÞ1 þ βðFc

DF3fD3ðYÞÞ1 þ γðFc
3FDf3DðYÞÞ1 þ δðFc

3F3f33ðYÞÞ1�Hu=d

¼ ½αl1ðFc
1F2 þ ð−1ÞlFc

2F1ÞY
ðkFc

D
þkFD Þ

1l
þ α2AðFc

1F1Y
ðkFc

D
þkFD Þ

2A;1 þ Fc
2F2Y

ðkFc
D
þkFD Þ

2A;2 Þ

þ βBF3ðFc
1Y

ðkFc
D
þkF3 Þ

2B;2 þ ð−1ÞjFc
2Y

ðkFc
D
þkF3 Þ

2B;1 Þ þ γCFc
3ðF1Y

ðkFc
3
þkFD Þ

2C;2 þ ð−1ÞiF2Y
ðkFc

3
þkFD Þ

2C;1 Þ

þ δFc
3F3Y

ðkFc
3
þkF3 Þ

1hiþji �Hu=d; ð38Þ

which leads to
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MF ¼

0BBBBB@
α2AY

ðkFc
D
þkFD Þ

2A;1 αl1Y
ðkFc

D
þkFD Þ

1l
βBY

ðkFc
D
þkF3 Þ

2B;2

ð−1Þlαl1Y
ðkFc

D
þkFD Þ

1l
α2AY

ðkFc
D
þkFD Þ

2A;2 ð−1ÞjβBY
ðkFc

D
þkF3 Þ

2B;1

γCY
ðkFc

3
þkFD Þ

2C;2 ð−1ÞiγCY
ðkFc

3
þkFD Þ

2C;1 δY
ðkFc

3
þkF3 Þ

1hiþji

1CCCCCAvu=d: ð39Þ

The above mass matrix can be divided into four parts

MF ¼
�
MDD MD3

M3D M33

�
: ð40Þ

Let us first consider the (3,3) entry M33 which
involves the modular forms in the singlet representa-
tions of S4. From Table I, we see that there are only

four singlet modular forms Yð4Þ
1 , Yð6Þ

1 , Yð6Þ
10 , and Y

ð8Þ
1 up

to weight 8. Hence M33 would be vanishing if the
following conditions are fulfilled

kF3
þ kFc

3
< 0;

or kF3
þ kFc

3
¼ 2;

� ρF3
¼ 1; ρFc

3
¼ 1

ρF3
¼ 10; ρFc

3
¼ 10

or kF3
þ kFc

3
≠ 6;

� ρF3
¼ 10; ρFc

3
¼ 1

ρF3
¼ 1; ρFc

3
¼ 10

: ð41Þ

Notice that odd weights kF3
þ kFc

3
¼ 1; 3; 5;… can

also lead to vanishing M33, but the rank of MF would
be less than three so that at least one mass eigenvalue
is zero. Then we proceed to consider the M3D block
consisted of the (3,3) and (3,2) entries, it would be
vanishing if the modular weights fulfill kFc

3
þkFD

≤0

or kFc
3
þ kFD

¼ 1; 3; 5;…. For the case of odd modu-
lar weight kFc

3
þ kFD

¼ 1; 3; 5;…, some mixing an-
gles or masses are vanishing.1 As regards the MD3

block consisted of the (1,3) and (2,3) entries, it would
be vanishing if the modular weight kFc

D
þ kF3

is
nonpositive or odd. However, odd kFc

D
þ kF3

leads
to vanishing fermion masses or mixing angles.
Although either M3D or MD3 can be vanishing, they
can not be vanishing simultaneously otherwise some
masses or mixing angles are constrained to be zero.

f. Fc ∼ 1i1 ⊕ 1i2 ⊕ 1i3 ; F ∼ 2 ⊕ 1j.
Analogous to previous cases, we find the Yukawa

superpotential takes the following form,

WF ¼ ½αðFc
1FDf1DðYÞÞ1 þ βðFc

2FDf2DðYÞÞ1 þ γðFc
3FDf3DðYÞÞ1

þ δ1ðFc
1F3f13ðYÞÞ1 þ δ2ðFc

2F3f23ðYÞÞ1 þ δ3ðFc
3F3f33ðYÞÞ1�Hu=d

¼ ½αAFc
1ðF1Y

ðkFc
1
þkFD Þ

2A;2 þ ð−1Þi1F2Y
ðkFc

1
þkFD Þ

2A;1 Þ þ δ1Fc
1F3Y

ðkFc
1
þkF3 Þ

1hi1þji

þ βBFc
2ðF1Y

ðkFc
2
þkFD Þ

2B;2 þ ð−1Þi2F2Y
ðkFc

2
þkFD Þ

2B;1 Þ þ δ2Fc
2F3Y

ðkFc
2
þkF3 Þ

1hi2þji

þ γCFc
3ðF1Y

ðkFc
3
þkFD Þ

2C;2 þ ð−1Þi3F2Y
ðkFc

3
þkFD Þ

2C;1 Þ þ δ3Fc
3F3Y

ðkFc
3
þkF3 Þ

1hi3þji �Hu=d: ð42Þ

The fermion mass matrix is determined to be

MF ¼

0BBBBB@
αAY

ðkFc
1
þkFD Þ

2A;2 ð−1Þi1αAY
ðkFc

1
þkFD Þ

2A;1 δ1Y
ðkFc

1
þkF3 Þ

1hi1þji

βBY
ðkFc

2
þkFD Þ

2B;2 ð−1Þi2βBY
ðkFc

2
þkFD Þ

2B;1 δ2Y
ðkFc

2
þkF3 Þ

1hi2þji

γCY
ðkFc

3
þkFD Þ

2C;2 ð−1Þi3γCY
ðkFc

3
þkFD Þ

2C;1 δ3Y
ðkFc

3
þkF3 Þ

1hi3þji

1CCCCCAvu=d: ð43Þ

In the above, we do not consider the singlet assignment for the left-handed fields F, because generally more free coupling
constants would be necessary in the resulting quark and lepton models, and we are mainly concerned with the models with
small number of free parameters in the present work.

1Nonzero fermion masses requires that kFc
3
þ kF3

and kFc
D
þ kFD

are even while kFc
D
þ kF3

is odd in this case. As a result, both up- and
down-quark (charged lepton and neutrino) mass matrices are block diagonal simultaneously such that some mixing angles are vanishing.
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C. Classifying the Majorana mass terms

In this subsection, we explore the superpotential for the
Majorana mass terms, which can be written as

WFc ¼ ΛðFcFcfðYÞÞ1; ð44Þ

where Λ is the characteristic scale of flavor dynamics, and
all independent invariant singlets should be included. The

function fðYÞ refers to the modular multiplets to ensure
modular invariance, and it is fixed by the modular weight
and representation of Fc.
a. Fc ∼ 3k. As shown in the Appendix A, the contraction

3i × 3i → 3 is antisymmetric. Thus the triplet modular
forms transforming as 3 do not contribute to the
Majorana mass terms of Fc. The superpotential
WFc reads as

WFc ¼ ½αððFcFcÞ1Yð2kFc Þ
1 Þ1 þ

X
A

βAððFcFÞ2Yð2kFc Þ
2A Þ1 þ

X
B

γ0BððFcFcÞ30Yð2kFc Þ
30B Þ1�Λ

¼
X3
a¼1

X3
b¼1

ΛFc
aFc

bfαYð2kFc Þ
1;≺aþb−1≻ þ

X
A

βAY
ð2kFc Þ
2A;≺aþb−2≻ þ

X
B

γ0BY
ð2kFc Þ
30A;≺3−a−b≻ð3δab − 1Þg: ð45Þ

The Majorana mass matrix of Fc is symmetric

MFc ¼

0BBB@
αYð2kFc Þ

1 þ 2γ0BY
ð2kFc Þ
30B;1 βAY

ð2kFc Þ
2A;1 − γ0BY

ð2kFc Þ
30B;3 βAY

ð2kFc Þ
2A;2 − γ0BY

ð2kFc Þ
30B;2

βAY
ð2kFc Þ
2A;1 − γ0BY

ð2kFc Þ
30B;3 βAY

ð2kFc Þ
2A;2 þ 2γ0BY

ð2kFc Þ
30B;2 αYð2kFc Þ

1 − γ0BY
ð2kFc Þ
30B;1

βAY
ð2kFc Þ
2A;2 − γ0BY

ð2kFc Þ
30B;2 αYð2kFc Þ

1 − γ0BY
ð2kFc Þ
30B;1 βAY

ð2kFc Þ
2A;1 þ 2γ0BY

ð2kFc Þ
30B;3

1CCCAΛ: ð46Þ

b. Fc ∼ 2 ⊕ 1i.
The contraction 2 × 2 → 10 is antisymmetric and consequently it has no contribution to mass matrix. The general

superpotential for the Majorana mass is

WFc ¼ ½αðFc
DF

c
DfDDðYÞÞ1 þ 2βðFc

DF
c
3fD3ðYÞÞ1 þ γðFc

3F
c
3f33ðYÞÞ1�Λ

¼ ½2α1Fc
1F

c
2Y

ð2kFc
D
Þ

1l
þ α2AðFc

1F
c
1Y

ð2kFc
D
Þ

2A;1 þ Fc
2F

c
2Y

ð2kFc
D
Þ

2A;2 Þ

þ 2βBFc
3ðFc

1Y
ðkFc

D
þkFc

3
Þ

2B;2 þ ð−1ÞiFc
2Y

ðkFc
D
þkFc

3
Þ

2B;1 Þ þ γFc
3F

c
3Y

ð2kFc
3
Þ

1 �Λ; ð47Þ

which gives rise to the following mass matrix,

MFc ¼

0BBBBB@
α2AY

ð2kFc
D
Þ

2A;1 α1Y
ð2kFc

D
Þ

1 βBY
ðkFc

D
þkFc

3
Þ

2B;2

α1Y
ð2kFc

D
Þ

1 α2AY
ð2kFc

D
Þ

2A;2 ð−1ÞiβBY
ðkFc

D
þkFc

3
Þ

2B;1

βBY
ðkFc

3
þkFc

D
Þ

2B;2 ð−1ÞiβBY
ðkFc

3
þkFc

D
Þ

2B;1 γY
ð2kFc

3
Þ

1

1CCCCCAΛ: ð48Þ

c. Fc ∼ 1i1 ⊕ 1i2 ⊕ 1i3 .
In the same fashion, we can read out the most general Majorana mass terms for the singlet assignment of Fc,

WFc ¼
X3
a¼1

X3
b¼1

ΛαabFc
aFc

bfabðYÞ ¼
X3
a¼1

ΛαaaFc
aFc

aY
ð2kFca Þ
1 þ 2

X
1≤a<b≤3

ΛαabFc
aFc

bY
ðkFcaþkFc

b
Þ

1<iaþib>
; ð49Þ

and the mass matrix is
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MFc ¼

0BBBBB@
α11Y

ð2kFc
1
Þ

1 α12Y
ðkFc

1
þkFc

2
Þ

1<i1þi2>
α13Y

ðkFc
1
þkFc

3
Þ

1<i1þi3>

α12Y
ðkFc

1
þkFc

2
Þ

1<i1þi2>
α22Y

ð2kFc
2
Þ

1 α23Y
ðkFc

2
þkFc

3
Þ

1<i2þi3>

α13Y
ðkFc

1
þkFc

3
Þ

1<i1þi3>
α23Y

ðkFc
2
þkFc

3
Þ

1<i2þi3>
α33Y

ð2kFc
3
Þ

1

1CCCCCAΛ: ð50Þ

If the three generations of Fc all transform as singlets
under S4, the Lagrangian would be less constrained by
modular symmetry and consequently more free
parameters would be introduced in the Yukawa
coupling and the Majorana mass term.

D. Equivalence of different assignments

The possible quark models with S4 modular symmetry
can be obtained by combining the possible forms of the up-
quark and down-quark Yukawa couplings discussed in
Sec. III C. Similarly, the possible lepton models can be
obtained for Dirac neutrinos, and the Majorana mass terms
of the right-handed neutrinos should also be considered if
the neutrinos are Majorana particles. In the present work,
the left-handed quark and lepton fields are assumed to
transform as a triplet or the direct sum of a doublet and a
singlet under S4. All three possible assignments; triplet,
doublet plus singlet, and three singlets for the right-handed
quark and lepton fields would be considered. It is notable
that different assignments can lead to the same predictions
for fermion masses and mixing matrix. For instance, if both
left-handed leptons F and right-handed charged leptons Fc

transform as S4 triplets Fc ∼ 3i and F ∼ 3j, the mass matrix
can be read from Eq. (31) for any given modular weights.
It can be easily seen that the representation assignment
F ∼ 3hiþ1i; Fc ∼ 3hjþ1i gives the same charged lepton mass
matrix.
Two different kinds of representation assignments can

also give mass matrices related by phase transformations,
as summarized in Table II. As an example, let us consider
the case LD ¼ ðL1; L2ÞT ∼ 2, L3 ∼ 1i3 , Ec

a ∼ 1ja with
a ¼ 1, 2, 3, the general form of the charged lepton mass
matrix is given by Eq. (43). If we change the representation
assignment

L3∶1i3 → 1hi3þ1i; Ec
a∶1ja → 1hjaþ1i; ð51Þ

the charged lepton mass matrix would turn into

Me → Mediagf1;−1; 1g: ð52Þ

Analogously, changing the representation of the right-
handed neutrinos, the light neutrino mass matrix would
change as

Dirac neutrinos∶
�
Mν → Mνdiagf1;−1; 1g for Nc ∼ 3k orNc

a ∼ 1ka ;

Mν → diagf1;−1; 1gMνdiagf1;−1; 1g for Nc ∼ 2 ⊕ 1k;

Majorana neutrinos∶ Mν → diagf1;−1; 1gMνdiagf1;−1; 1g: ð53Þ

The phase matrix, diagf1;−1; 1g, can be absorbed into the
lepton fields; the lepton masses and mixing parameters are
left invariant. As a consequence, without loss of generality,

we can take F ∼ 3 for the triplet assignment of the left-
handed fields and F ∼ 2 ⊕ 1 for the doublet plus singlet
assignment.

TABLE II. Transformation of the fermion mass matrix under changing the representation assignments of matter fields, and P is the
diagonal matrix, diagf1;−1; 1g. In the case that both F and Fc are assigned to direct sum of a doublet and a singlet under S4, the
couplings αl1 associated with the operators ðFc

DFDÞ1l should be transformed into −αl1, and the coupling α1 associated with the operator
ðFc

DF
c
DÞ1 should also change to −α1.

F

Fc 3j → 3hjþ1i 2 ⊕ 1j → 2 ⊕ 1hjþ1i Majorana mass matrix

3i → 3hiþ1i MF → MF MF → MFP MFc → MFc

2 ⊕ 1i → 2 ⊕ 1hiþ1i MF → PMF MF → PMFP MFc → PMFcP
1i1 ⊕ 1i2 ⊕ 1i3 MF → MF MF → MFP MFc → MFc

→ 1hi1þ1i ⊕ 1hi2þ1i ⊕ 1hi3þ1i
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Since the signal neutrinoless double beta decay has not
been observed, the nature of neutrinos is still unknown. We
shall consider both Majorana and Dirac neutrinos in this
work. The light neutrino masses are generated by the type-I
seesaw mechanism for Majorana neutrinos, and the light
neutrino mass matrix is given by the seesaw formula
Mν ¼ −MT

DM
−1
NcMD, where MD and MNc are the Dirac

mass matrix and the Majorana mass matrix of the
right-handed neutrinos, respectively. For Dirac neutrinos,
additional symmetry is generally necessary to forbid the
right-handed neutrino Majorana mass term and it is usually
taken to be the Uð1ÞL lepton number. In the context of the
modular invariance approach, the Majorana mass terms of
the right-handed neutrino can be naturally forbidden by
taking the modular weights of right-handed neutrinos Nc to
be negative integers, because there are no modular forms of
negative weight.

IV. PHENOMENOLOGICALLY VIABLE MODELS
AND NUMERICAL RESULTS

From the general analytical expressions of the mass
matrix for different representations of matter fields, we can
straightforwardly obtain the possible lepton and quark
models based on S4 modular symmetry. In this work, we
are interested in the models with a small number of free
parameters; lepton models with less than nine free param-
eters and quark models with less than 11 free parameters.
For each model, we perform a conventional χ2 analysis and
we use the well-known package TMinuit to numerically
search for minimum of the χ2 function and determine the
best values of the input parameters. Then we evaluate the
masses and mixing parameters of quarks and leptons at
the best-fit points, and determine whether they are within
the experimentally allowed 3σ regions. The overall scale
factor of the mass matrix can be adjusted to reproduce any

one of the mass eigenvalues. For instance, the overall
factors of the charged lepton, up-type quark and down-type
quark mass matrices are fixed by the measured values of the
electron, top-quark and down-quark masses respectively in
the present work. The overall scale of the neutrino mass
matrix is determined by the solar neutrino mass square
difference, Δm2

21. We scan over the parameter space of the
models; the ratios of coupling coefficients are taken as
random numbers whose absolute values freely vary in the
range of ½0; 105�. Moreover, the VEV of the complex
modulus τ is also treated as a free parameter to optimize
the agreement between predictions and experimental data.
Since each point of τ in the complex upper half-plane can
be mapped into the fundamental domain D given in
Eq. (7) by a modular transformation, thus it is sufficient
to limit the modulus VEV hτi in the fundamental domainD.
Under the CP transformation τ → −τ�, generalized CP
invariance implies that the fermion mass matrix becomes
MFð−τ�Þ ¼ ρ�FcðSÞM�

FðτÞρ†FðSÞ for the charged fermion
and MFcð−τ�Þ ¼ ρ�FcðSÞM�

FcðτÞρ†FcðSÞ for the Majorana
mass matrix of Fc [63]. Therefore, at the CP dual point
τ → −τ�, the predictions for fermion masses and mixing
angles are left unchanged while the signs of all CP
violation phases are flipped.
We use the fermion mass ratios, mixing angles, and CP

violation phases to construct the χ2 function; the exper-
imental data of the leptons and quarks are summarized in
Table III. The charged lepton mass ratios as well as
the quark mixing parameters and mass ratios are adopted
from [73], and they are calculated at the GUT scale
MGUT ¼ 2 × 1016 GeV in a minimal SUSY-breaking sce-
nario, with SUSY-breaking scale MSUSY ¼ 1 TeV and
tan β ¼ 7.5; η̄b ¼ 0.09375. The data of the lepton mixing
parameters are taken from the latest global fit of NuFIT
v5.0 including the atmospheric neutrino data from

TABLE III. The central values and the 1σ errors of the mass ratios and mixing angles and CP violation phases in lepton and quark
sectors. We adopt the values of the lepton mixing parameters from NuFIT v5.0 with Super-Kamiokanda atmospheric data for normal
ordering [75]. The data of charged lepton mass ratios and quark mass ratios and quark mixing parameters are taken from [73] with the
SUSY-breaking scale MSUSY ¼ 1 TeV and tan β ¼ 7.5; η̄b ¼ 0.09375.

Leptons Quarks

Observables Central value and 1σ error Observables Central value and 1σ error

me=mμ ð4.7369� 0.0402Þ × 10−3 mu=mc ð1.9286� 0.6017Þ × 10−3

mμ=mτ ð5.8676� 0.0461Þ × 10−2 mc=mt ð2.7247� 0.1200Þ × 10−3

Δm2
21=10

−5 eV2 7.42þ0.21
−0.20 md=ms ð5.0528� 0.6192Þ × 10−2

Δm2
31=10

−3 eV2 2.517þ0.026
−0.028 ms=mb ð1.7684� 0.0975Þ × 10−2

δlCP=π 1.0944þ0.1500
−0.1333 δqCP 69.213°� 3.115°

sin2 θl12 0.304þ0.012
−0.012 θq12 0.22736� 0.00073

sin2 θl13 0.02219þ0.00062
−0.00063 θq13 0.00338� 0.00012

sin2 θl23 0.573þ0.016
−0.020 θq23 0.03888� 0.00062
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Super-Kamiokande [74]. Since the inverted ordering neu-
trino mass spectrum is disfavored [74], in particular after
the atmospheric neutrino data from Super-Kamiokande is
considered, we assume that neutrino masses are normal
ordering if not mentioned otherwise. It has been shown that
the effect of renormalization group evolution (RGE) on the
neutrino masses and mixing parameters can be negligible
for small values of tan β and normal ordering neutrino
masses [8]; consequently, the RGE corrections in the
neutrino sector are neglected in the following numerical
analysis. Moreover, the neutrino mass ratios and mixing
angles are almost RGE invariant for hierarchical neutrino
spectrum, while the light neutrino masses mass-squared
differences could also change under RGE. Since the χ2

function is built from the neutrino mixing angles and the
ratios of neutrino mass-squared differences, we expect that
the results of fit should be nearly unchanged except that the
overall scale of the neutrino matrix may change a bit if the
RGE running of neutrino parameters is taken into account.
The leptonic Dirac CP phase δlCP has not been accurately
measured, therefore we do not include the contribution of
δlCP in the χ2 function. If all observables at the best fit point
of a model are compatible with the experimental data at 3σ
level, this model would be regarded as phenomenologically
viable. In the following, we report the fitting results of the
viable models with the minimal number of free parameters,
and all numerical results are shown with six significant
digits. Notice that Rehτi and all CP violation phases
flipped their signs while all other observables and free
parameters are unchanged at the CP dual point.

A. Lepton models

For Majorana neutrinos, the minimal phenomenologi-
cally viable models only depend on five free parameters
besides the complex modulus τ, and we find nine such
models labeled as L1–L9. Notice that the model L2 was
first presented in [60]. The S4 representation and modular
weights of the lepton fields in each models are listed in
Table IV. In the case of normal ordering of neutrino masses,
the best fit values of the coupling constants and the
corresponding predictions for the lepton masses and mixing
parameters are summarized in Table V. Although we have

considered the minimal seesaw model with two right-
handed neutrinos, three right-handed neutrinos are involved
in these minimal models. It turns out that more free
parameters are needed to accommodate the experimental
data in the modular models with two right-handed
neutrinos. In most modular symmetry models, both left-
handed leptons L and right-handed neutrinos Nc are
assumed to transform as a triplet under the finite modular
group while the right-handed charged leptons Ec are
singlets. Our models L2, L3, L4, and L5 belong to this
category. It is notable that we find new possible assign-
ments here. All the lepton fields L, Ec, and Nc are S4
triplets in the model L1. Both L and Nc transform as triplet
3 or 30 under S4 while the right-handed charged leptons are
in the reducible representation 2 ⊕ 10 in the models L6
and L7. Furthermore, both L and Ec are assigned to the
direct sum of the doublet and singlet of S4 in the models
L8 and L9. From Table V, we can see that all these models
can accommodate the experimental data very well; the
atmospheric mixing angle θ23 is predicted to be in the
second octant. The Dirac CP violation phase δlCP is
determined to be sizable in these models, and it distributes
in the range of ½1.27π; 1.65π�. The upcoming generation of
long-baseline neutrino oscillation experiments such as
DUNE [76–79] and Hyper-Kamiokande [80] can signifi-
cantly improve the sensitivity to θ23 and δlCP. It is expected
that a 5σ discovery of CP violation can be reached after
ten years of data taking over 50% of the parameter space.
Thus our predictions for θ23 and δlCP can be tested in near
future.
The neutrino mass scale can be probed from direct

kinematic searches, neutrinoless double beta decay and
cosmology. The cosmological observation is sensitive to
the sum of light neutrino masses

P
mi, and the most

stringent bound is
P

mi < 0.12 eV at 95% confidence
level (C.L.) from the Planck Collaboration [81]. All the
minimal models satisfy this bound except L8 and L9 which
give

P
mi ≃ 121 meV (very close to the upper limit).

Notice that the cosmological bound on the neutrino masses
significantly depend on the data sets that need to be
combined in order to break the degeneracies of the many
cosmological parameters [81]. Combining the Planck
lensing with the baryon acoustic oscillation data and the

TABLE IV. Summary of the representation and modular weight assignments of the matter fields in the minimal phenomenologically
viable lepton models based on S4 modular symmetry and generalized CP symmetry, the neutrinos are assumed to be Majorana particles.
Notice that the Higgs fields are invariant under S4 with zero modular weight.

L1 L2 L3 L4 L5 L6 L7 L8 L9

ρL 3 3 3 3 3 3 3 2 ⊕ 1 2 ⊕ 1
ρEc 3 1 ⊕ 10 ⊕ 1 1 ⊕ 10 ⊕ 10 1 ⊕ 10 ⊕ 1 1 ⊕ 10 ⊕ 1 2 ⊕ 10 2 ⊕ 10 2 ⊕ 1 2 ⊕ 10
ρNc 3 30 30 3 3 3 30 3 3
kL −1 2 2 −1 −1 −1 2 1, 1 1, 1
kEc 5 0, 2, 2 0, 2, 4 3, 5, 7 3, 5, 9 7, 5 2, 2 1, 1 1, 1
kNc 1 0 0 1 1 1 0 1 1
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acoustic scale measured by the CMB, the neutrino mass is
constrained to be

P
i mi < 600 meV [81]. The limits also

become weaker when one departs from the framework of
ΛCDM plus neutrino mass to frameworks with more

cosmological parameters. The direct kinematic searches
provide the most model-independent approach to test the
neutrino mass, and the neutrino mass extracted from
ordinary beta decay is

TABLE V. The best-fit values of the input parameters for the minimal lepton models listed in Table IV, where neutrinos are assumed to
be Majorana particles. We give the values of the neutrino mixing angles, Dirac and Majorana CP violating phases, and the neutrino
masses at the best-fitting points. The notationsmβ andmββ denote the effective neutrino masses measured in beta decay and neutrinoless
double decay, respectively. Note that the transformation τ → −τ� leaves all observables unchanged except shifting the signs of the CP
phases δlCP, α21, and α31.

Model L1 Model L2 L3 Model L4 L5

Rehτi −0.187862 Rehτi 0.101211 0.101211 Rehτi −0.178222 0.0667031
Imhτi 1.08920 Imhτi 1.01587 1.01587 Imhτi 1.09847 1.17412
βe=αe −0.997537 βe=αe 10.8023 10.8023 βe=αe 1403.61 989.867
γe=αe −0.981350 γe=αe 0.00256764 0.00206306 γe1=α

e 49.1151 7.35262
γ0e=αe −0.288991 γD=βD 0.0139678 0.0139677 γe2=α

e −50.5430 −56.1149
αevd (MeV) 151.203 αevd (MeV) 28.5986 28.5985 αevd (MeV) 0.258342 0.422722
ðαDvuÞ2
βNΛ (meV) 28.4671 ðβDvuÞ2

αNΛ (meV) 9.42269 9.42269 ðαDvuÞ2
βNΛ (meV) 27.6094 22.7176

sin2 θl12 0.320847 sin2 θ12 0.305479 0.305480 sin2 θl12 0.307716 0.304326
sin2 θl13 0.0219037 sin2 θ13 0.0221663 0.0221663 sin2 θl13 0.0221661 0.0221542
sin2 θl23 0.521796 sin2 θ23 0.486003 0.486003 sin2 θl23 0.503061 0.491388
δlCP=π 1.33257 δlCP=π 1.64135 1.64135 δlCP=π 1.32003 1.46324
α21=π 1.32145 α21=π 0.353191 0.353191 α21=π 1.31197 1.14629
α31=π 0.528262 α31=π 1.25878 1.25877 α31=π 0.509444 1.99551
m1=meV 14.0927 m1=meV 12.2077 12.2077 m1=meV 13.6580 11.2049
m2=meV 16.5168 m2=meV 14.9408 14.9409 m2=meV 16.1475 14.1333
m3=meV 51.8091 m3=meV 51.6858 51.6858 m3=meV 51.9421 51.4017
mβ=meV 16.6232 mβ=meV 15.0700 15.0700 mβ=meV 16.2646 14.2613
mββ=meV 9.05214 mββ=meV 12.0702 12.0703 mββ=meV 8.82554 3.45930
χ2min 8.91 χ2min 18.94 18.94 χ2min 12.33 16.66

Model L6 Model L7 Model L8 L9

Rehτi 0.0539977 Rehτi 0.101527 Rehτi −0.482375 0.193694
Imhτi 1.17803 Imhτi 1.01583 Imhτi 1.27223 0.991160
βe=αe1 0.0244409 βe=αe 36.2940 βe=αe 2765.82 2765.81
αe2=α

e
1 −0.897453 α0e=αe −1.01158 γe=αe 162.288 162.288

α0e=αe1 −1.18037 γD=βD 0.0139495 βD=αD 1.07525 −1.07524
αe1vd (MeV) 132.208 αevd (MeV) 8.50891 αevd (MeV) 0.308022 0.265064
ðαDvuÞ2
βNΛ (meV) 22.5446 ðβDvuÞ2

αNΛ (meV) 9.42397 ðαDvuÞ2
βNΛ (meV) 12.2377 6.91789

sin2 θl12 0.303989 sin2 θ12 0.305474 sin2 θl12 0.301943 0.301972
sin2 θl13 0.0221882 sin2 θ13 0.0221662 sin2 θl13 0.0221208 0.0221225
sin2 θl23 0.576988 sin2 θ23 0.486039 sin2 θl23 0.613482 0.613488
δlCP=π 1.35100 δlCP=π 1.64082 δlCP=π 1.27968 1.27973
α21=π 1.11536 α21=π 0.353724 α21=π 1.26954 1.26957
α31=π 1.99170 α31=π 1.25912 α31=π 0.411310 0.411373
m1=meV 11.1186 m1=meV 12.2127 m1=meV 30.7304 30.7307
m2=meV 14.0649 m2=meV 14.9449 m2=meV 31.9149 31.9151
m3=meV 51.3738 m3=meV 51.6876 m3=meV 58.7721 58.7730
mβ=meV 14.1949 mβ=meV 15.0740 mβ=meV 31.9654 31.9658
mββ=meV 3.79823 mββ=meV 12.0711 mββ=meV 17.6386 17.6388
χ2min 0.06264 χ2min 18.93 χ2min 6.45 6.45
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mβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

jUeij2m2
i

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θl12 cos

2 θl13m
2
1 þ sin2 θl12 cos

2 θl13m
2
2 þ sin2 θl13m

2
3

q
; ð54Þ

where U is the lepton-mixing matrix. From the values of
lepton mixing angles and neutrino masses, we can deter-
mine the effective mass mβ, as shown in Table V. We see
that mβ is predicted to be around 15 meV for the models
L1–L7 and approximately 32 meV for both L8 and L9,
these values are much below the current upper limit mβ <
1.1 eV given by KATRIN [82]. It is expected that KATRIN
can advance the sensitivity on mβ by one order of
magnitude down to 0.2 eV after five years, and the next
generation experiments such as Project 8 may be able to
reach the 50 meV level [83]. Therefore, a positive signal of
KATRIN or Project 8 in near future could rule out our
models.
It is known that the neutrinoless double beta (0νββ)

decays of even-even nuclei are important to test the
Majorana nature of neutrinos; they can provide valuable
information on the neutrino-mass spectrum and the CP-
violation phases. The amplitude of the neutrinoless double
beta decay is proportional to the effective Majorana mass
mββ which is given by

mββ ¼
���X

i

U2
eimi

���
¼ j cos2 θl12 cos2 θl13m1 þ sin2 θl12 cos

2 θl13e
iα21m2

þ sin2 θl13e
iðα31−2δlCPÞm3j: ð55Þ

The strongest bound on mββ is set by the KamLAND-Zen
experiment mββ < ð61–165Þ meV [84], where the largest
uncertainty arises from the computation of the associated
nuclear matrix element. There are many 0νββ decay
experiments planned and under construction, which aim
to improve the current bounds on mββ. The future large
scale 0νββ decay experiments have the potential of meas-
uring the decay half-life exceeding 1028 years. For in-
stance, the SNOþ Phases II is expected to reach a
sensitivity of 19 meV–46 meV [85]. The LEGEND experi-
ment intends to achieve a sensitivity of 15 meV–50 meV by
operating 1000 kg of detectors for ten years [86]. The
nEXO is the successor of EXO-200, and its projected mββ

sensitivity is 5.7 meV–17.7 meV after ten years of data
taking [87]. Using the master formula of Eq. (55), we can
determine the values of the effective Majorana neutrino
mass mββ at the best-fitting points, as given in Table V. We
see that the latest bound of KamLAND-Zen experiment is
well satisfied and the predictions are within the reach of
future tonne-scale 0νββ experiments except for the models
L5 and L6 which are experimentally very challenging
because of the quite low values of mββ.

It is remark that these minimally viable models only use
five real parameters together with the complex modulus τ to
describe 12 observables: three charged lepton masses, three
neutrino masses, three lepton mixing angles, and three CP
violating phases. Thus, the values of the free parameters are
strongly constrained by the experimental data and the
different observables should be correlated with each other.
For example, the light neutrino mass matrix only depends
on the modulus τ up to an overall scale in the model L1
while there are four real couplings in the charged lepton

superpotential withWe ¼ αeðEcLÞ1Yð4Þ
1 þ βeðEcLYð4Þ

2 Þ1þ
γeðEcLYð4Þ

3 Þ1 þ γ0eðEcLYð4Þ
30 Þ1. It is notable that the hier-

archical masses of charged leptons can be reproduced
although the four coupling constants αe, βe, γe, and γ0e are
of the same order of magnitude, as can be seen from
Table V. Thus, the charged lepton masses are also
dictated by modular symmetry, and the hierarchical
mass eigenvalues arise from the departure of hτi from
the self-dual fixed point τ ¼ i [30,32,59]. Furthermore,
we take the models L1 and L6 as examples, and we
comprehensively scan the parameter space of these two
models. Notice that the model L6 has the smallest value of
χ2min and all the observables are fitted almost exactly, as
shown in Table V. The lepton masses and mixing angles
are required to lie in the experimentally preferred 3σ
regions [75]; we display the correlations among the free
parameters and observables in Figs. 1 and 2. It is worth
mentioning that the experimental data can only be
accommodated in small regions of parameter space
such that the predictions for the lepton mixing parameters
are quite precise and their allowed regions are small
as well.
Since the signal of 0νββ decay has not been observed,

the possibility that neutrinos are Dirac particles can not be
excluded at present. Generally, additional symmetry such
as lepton number conservation is necessary to forbid the
Majorana mass term of the right-handed neutrinos.
Modular invariance can naturally enforce Dirac neutrinos
if the modular weights of the right-handed neutrinos are
negative. In the same fashion, we can analyze the possible
Dirac neutrino mass models with S4 modular symmetry and
generalized CP symmetry. We find that the phenomeno-
logically viable models make use of at least five couplings
besides the modulus τ, and four minimal models are found.
The modular transformation properties of the lepton fields
and the results of the χ2 analysis are reported in Table VI for
normal ordering. Notice that the model D3 was already
discussed in [40]. These models can be tested by the
measurement of θl23 and δlCP at future long baseline
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neutrino oscillation experiments [76–80]. The effective
neutrino mass mβ in beta decay is predicted to be an order
of magnitude below the expected sensitivity of the
KATRIN experiment [82].

If the neutrino mass spectrum is inverted ordering, we
find that only the model L7 can accommodate the exper-
imental data at 3σ level in these thirteen models. The best fit
value of the input parameters are

Rehτi ¼ 0.0232107; Imhτi ¼ 1.68095; βe=αe1 ¼ 0.00413628; α0e=αe ¼ −0.657212;

γD=βD ¼ −0.936954; αevd ¼ 241.356 MeV;
ðβDvuÞ2
αNΛ

¼ 6.97802 meV:

With these best-fit values, we get the lepton mixing parameters and neutrino masses,

sin2θ12 ¼ 0.313610; sin2θ13 ¼ 0.0210026; sin2θ23 ¼ 0.589781;

δlCP=π ¼ 1.65183; α21=π ¼ 0.676802; α31 ¼ 1.47450;

m1 ¼ 49.7603 meV; m2 ¼ 50.5003 meV; m3 ¼ 5.77112 meV;

mββ ¼ 28.6115 meV; mβ ¼ 49.4728 meV: ð56Þ

FIG. 1. The correlations among the input parameters, lepton mixing angles, CP violation phases and neutrino masses in the model L1.
The lepton masses and mixing angles are required to lie in the experimentally preferred 3σ regions [75]. Notice that the transformation
τ → −τ� leaves all observables unchanged except shifting the signs of the CP phases δlCP, α21 and α31; consequently we don’t show the
CP conjugate region. In the last panel, the red (blue) dashed lines indicate the most general allowed regions for inverted ordering
(normal ordering) neutrino mass spectrum respectively, where the neutrino oscillation parameter are varied over their 3σ ranges. The
present upper limit mββ < ð61–165Þ meV from KamLAND-Zen [84] is shown by horizontal gray band. The vertical gray exclusion
band denotes the current bound coming from the cosmological data of

P
i mi < 0.120 eV at 95% confidence level obtained by the

Planck Collaboration [80].
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B. Leptogenesis

Since we impose generalized CP as symmetry on the
model, all couplings in the superpotential are constrained to
be real in our working basis. As a consequence, all CP
violations uniquely arise from the modulus vacuum expect-
ation value. Thus the CP violation in leptogenesis is
naturally related to the CP violation phases δlCP, α21, and
α31 in the lepton mixing matrix. Early studies of leptogenesis
in the context of modular symmetry models without gen-
eralized CP symmetry can be found [20,39,88]. During the
final preparations of this paper, a preprint discussing lepto-
genesis in an A4 modular model with generalized CP
appeared on the arXiv [89]. In this section, we shall study
whether the measured value of the baryon asymmetry of the
Universe, YB0 ¼ ð0.870300� 0.011288Þ × 10−10 [81], can
be correctly generated through leptogenesis in the minimal
S4 modular invariant models found in the previous section,
where the subscript 0 implies “at present time”.
The right-handed neutrino masses depend on the overall

scaleΛ in ourmodel. In the present work, we assume that the
right-handed neutrinos are heavy with masses above

1012 GeV, thus we work in the framework of unflavored
thermal leptogenesis. The modular invariance is formulated
in the supersymmetric context, as shown in Sec. III A,
therefore we should consider supersymmetric leptogenesis.
The out of equilibrium decays of the lightest right-handed
neutrinos or neutrinos in the early Universe produce lepton
asymmetries.Wedenote the decay asymmetries for the decay
of heavy neutrino into Higgs and lepton, neutrino into
Higgsino and slepton, sneutrino into Higgsino and lepton,
and sneutrino into Higgs and slepton as ε1l, ε1l̃, ε1̃l, and ε1̃l
respectively which are defined by [90,91]

ε1l ≡ ΓN1l − ΓN1l̄

ΓN1l þ ΓN1l̄
; ε1l̃ ≡

ΓN1l̃
− ΓN1l̃

�

ΓN1l̃
þ ΓN1l̃

�
; ð57Þ

ε1̃l ≡
ΓÑ�

1
l − ΓÑ1l̄

ΓÑ�
1
l þ ΓÑ1l̄

; ε1̃ l̃ ≡
ΓÑ1l̃

− ΓÑ�
1
l̃�

ΓÑ1l̃
þ ΓÑ�

1
l̃�
: ð58Þ

In theminimal supersymmetric standardmodel, all the above
decay asymmetries are equal ε1l ¼ ε1l̃ ¼ ε1̃l ¼ ε1̃ l̃
[90,91]. In the basis where the Majorana mass matrix of

FIG. 2. The correlations among the input parameters, lepton mixing angles, CP violation phases, and neutrino masses in model L6,
where we adopt the same convention as Fig. 1.
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the right-handed neutrinos is diagonal and real, the lepton
asymmetry parameter ε1l is given by [90,92]

ε1l ¼ 1

8πðλνλ†νÞ11
X
i¼2;3

Imf½ðλνλ†νÞ1i�2gg
�
M2

i

M2
1

�
; ð59Þ

where λν is the neutrino-Yukawa coupling matrix in the
convention ðλνÞijNc

i ðLj ·HuÞ and the loop function g reads

gðxÞ ¼ ffiffiffi
x

p �
2

1 − x
− ln

�
1þ x
x

�	
!x≫1 −

3ffiffiffi
x

p : ð60Þ

Nonvanishing asymmetry parameter ε1l requires that the off-
diagonal entries of the product λνλ

†
ν are complex anddifferent

from zero. For the models L1, L4, L5, L6, the product λνλ
†
ν is

proportional to the unity matrix. Consequently the lepton
asymmetry ε1l is vanishing at leading order(LO) and a net
baryon asymmetry can not be generated. The masses of the
three right-handed neutrinos are degenerate in themodels L2,
L3, and L7, the baryon asymmetry is generated in the regime
of resonant leptogenesis. Hence we take the model L9 as an
example in the following.
The lepton number asymmetry is partially converted into

a nonzero baryon number asymmetry by the fast sphaleron

interactions in the thermal bath in the early Universe. For
all temperature ranges, the produced baryon asymmetry
normalized to the entropy density can be computed from
the B − L asymmetry ŶΔ as follows:

YB ¼ 10

31
ŶΔ; ð61Þ

The B − L asymmetry ŶΔ can be computed by solving the
following Boltzmann equations [91,93]

dYN1

dz
¼ −2Kz

K1ðzÞ
K2ðzÞ

f1ðzÞðYN1
− Yeq

N1
Þ;

dYÑ1

dz
¼ −2Kz

K1ðzÞ
K2ðzÞ

f1ðzÞðYÑ1
− Yeq

Ñ1
Þ;

dŶΔ

dz
¼ −ðε1l þ ε1l̃ÞKz

K1ðzÞ
K2ðzÞ

f1ðzÞðYN1
− Yeq

N1
Þ

− ðε1̃l þ ε1̃ l̃ÞKz
K1ðzÞ
K2ðzÞ

f1ðzÞðYÑ1
− Yeq

Ñ1
Þ

− Kz
K1ðzÞ
K2ðzÞ

f2ðzÞ
ŶΔ

Ŷeq
l

ðYeq
N1

þ Yeq
Ñ1
Þ; ð62Þ

TABLE VI. Summary of the lepton models based on S4 modular symmetry and generalized CP symmetry, where neutrinos are Dirac
particles. The integer k should be greater than two so that the modular weight of Nc is negative and modular invariance forbids the
Majorana mass term of right-handed neutrinos. Notice that the Higgs fields are invariant under S4 with zero modular weight. The best-fit
values of the input parameters are also included. We give the predictions for the neutrino mixing angles, and the Dirac CP violating
phase, the neutrino masses, and the effective neutrino masses mβ probed by direct kinematic search in beta decay. Note that the
transformation τ → −τ� leaves all observables unchanged except shifting the sign of the CP phase δlCP.

Model ρL ρEc ρNc kL kEc kNc

D1 2 ⊕ 1 3 3 k, k 4 − k 2 − kðk > 2Þ
D2 3 2 ⊕ 10 30 k 4 − k; 4 − k 2 − kðk > 2Þ
D3 3 1 ⊕ 10 ⊕ 1 30 k 2 − k; 4 − k; 4 − k 2 − kðk > 2Þ
D4 3 1 ⊕ 10 ⊕ 10 30 k 2 − k; 4 − k; 6 − k 2 − kðk > 2Þ

Model D1 Model D2 Model D3 D4

Rehτi 0.341590 Rehτi 0.106060 Rehτi 0.105759 0.105759
Imhτi 1.36934 Imhτi 1.00322 Imhτi 1.00325 1.00325
βν=αν 1.02513 βe=αe1 36.2450 βe=αe 10.6683 10.6683
αe2=α

e
1 −0.984653 γν=βν 0.00502042 γe=αe 0.00255224 0.00200917

βe=αe1 21.6153 αe2=α
e
1 −1.01153 γν=βν 0.00502523 0.00502523

αe1vd (MeV) 15.5624 αe1vd (MeV) 8.30904 αevd (MeV) 28.2348 28.2346
ανvu (meV) 18.5729 βνvu (meV) 24.5608 βνvu (meV) 24.5625 24.5625
sin2 θl12 0.302261 sin2 θ12 0.307337 sin2 θl12 0.307292 0.307292
sin2 θl13 0.0221688 sin2 θ13 0.0221677 sin2 θl13 0.0221678 0.221678
sin2 θl23 0.595989 sin2 θ23 0.477844 sin2 θl23 0.477805 0.477805
δlCP=π 1.36269 δlCP=π 1.56812 δlCP=π 1.56839 1.56839
m1=meV 25.4552 m1=meV 29.2262 m1=meV 29.2256 29.2256
m2=meV 26.8731 m2=meV 30.4692 m2=meV 30.4686 30.4686
m3=meV 56.2386 m3=meV 58.1464 m3=meV 58.1540 58.1540
mβ=meV 26.9378 mβ=meV 30.5367 mβ=meV 30.5363 30.5363
χ2min 2.09 χ2min 22.73 χ2min 22.75 22.75
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where z ¼ M1=T with T being the temperature. K1ðzÞ and
K2ðzÞ are the modified Bessel functions of the second kind.
YN1

and YÑ1
denotes the density of the lightest right-handed

neutrino N1 with mass M1 and its supersymmetric partner
Ñ1. The notations Yeq

N1
, Yeq

Ñ1
, and Ŷeq

l are corresponding

equilibrium number densities and they take the following
form,

Ŷeq
l ¼ Yeq

l̃
þ Yeq

l ; Yeq
l̃
≃ Yeq

l ≃
45

π4g�
;

Yeq
N1
ðzÞ ¼ Yeq

Ñ1
ðzÞ ≃ 45

2π4g�
z2K2ðzÞ; ð63Þ

with g� ¼ 228.75 being the number of degrees of freedom.
Moreover, the washout parameters Kα and K are defined as

Kα ¼
m̃1α

m� ; m̃1α ≡ jλ1αj2v2u
M1

; K ¼
X
α

Kα; ð64Þ

where

vu ¼ v sin β; m� ≃ sin2 β × 1.58 × 10−3 eV: ð65Þ

At the best-fit point of model L9, we find the value of
K ¼ 1.293 × 106 ≫ 1 which implies a strong washout. In
the strong washout regime, the functions f1ðzÞ and f2ðzÞ
can be approximated as [94]

f1ðzÞ ¼ 2f2ðzÞ ¼
�
Ks

zK
þ z

t
ln

�
1þ t

z

�	
K2ðzÞ
K1ðzÞ

; ð66Þ

with

t ¼ K
Ks lnðM1=MhÞ

;
Ks

K
¼ 9

8π2
: ð67Þ

whereMh ¼ 125 GeV is the mass of Higgs boson. The free
parameters are fixed at their best-fit values are shown in
Table V—notice that only the combination ðαDvuÞ2=ðβNΛÞ
can be determined by the data of lepton masses and mixing.
Numerically solving the Boltzmann equations, we find that
the observed baryon asymmetry can be produced for the
following values of the flavor scale

Λ ¼ 3.36 × 1015 GeV: ð68Þ

Accordingly the right-handed neutrino masses are deter-
mined to be M1 ≃ 1.985 × 1015 GeV, M2 ≃ 6.723 ×
1015 GeV and M3 ≃ 6.833 × 1015 GeV. The VEV of τ is
the unique source of modular symmetry and generalized
CP symmetry breaking in this model. All CP violations at
both low energy and high energy should significantly
depend on hτi. We plot the contour region of YB in the
plane Imhτi versus Rehτi, where we fix all the coupling

constants at their best-fit values and Λ at the value in
Eq. (68). The green area indicates the 3σ allowed region by
the experimental data of lepton masses and mixing angles
in the same plane. We see that there exists a small region of
τ where both the flavor structure of the lepton and the
baryon asymmetry of the Universe can be explained. At the
boundary of the fundamental domain D and the imaginary
axis, certain residual generalized CP symmetry is pre-
served such that the lepton asymmetry ε1l vanishes and no
matter-antimatter asymmetry can be generated. Hence the
VEV hτi should deviate from the CP conserved points in
order to obtain nontrivial CP violation in neutrino oscil-
lations, as well as a net baryon asymmetry.
Furthermore, we plot the contour plot YB over the τ plane

in Fig. 3 and the correlation between the YB and the Dirac
CP phase δlCP in Fig. 4. Here the modulus vacuum
expectation value hτi is treated as a random complex
number in the fundamental domain, the charged lepton
masses and the neutrino mass-squared differences and all
three mixing angles are required to be within their exper-
imentally preferred 3σ ranges [75]. Imposing the observed
baryon asymmetry YB, the allowed region of δlCP would
shrink considerably and it is around 1.28π.

C. Quark models

In the same fashion as we have done in the lepton sector,
we can easily find out all possible quark models from the
general results of Sec. III B, and subsequently we perform a
χ2 analysis for each model to determine whether it can
accommodate the precisely measured values of six quark
masses mu, mc, mt, md, ms, mb, three quark mixing angles
θq12, θ

q
13, θ

q
23, and a CP violation phase δqCP in the quark

sector. We are concerned with the models which can
reproduce the data with the smallest number of free
parameters. It turns out that the minimally viable models

FIG. 3. The contour plot YB in the Rehτi–Imhτi plane. The
green region represent the region for which both lepton masses
and lepton mixing angles are compatible with experimental data
at the 3σ level or better.
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labeled as Q1–Q10 make use of seven real coupling
constants in addition to the modulus τ, thus one prediction
can be reached. The transformation of quark fields under S4
and their modular weights are listed in Table VII. It can be
seen that the left-handed quark fields Q are assigned to a
triplet or doublet plus singlet of an S4 modular group, while
the right-handed quark fields uc and dc are singlets or the
direct sum of a doublet and a singlet. We present the
best-fit values of the input parameters and the predictions
for quark masses and CKM mixing parameters in
Table VIII. Here we have omitted these models with a
high χ2min or a large number of parameters. It is known that
the quark masses and mixing parameters have been
precisely measured and their errors are quite small. The
hierarchical patterns of quark masses and CKM matrix

generally require more free parameters in a concrete model
and it is quite difficult to explain the quark data with few
(less than nine) parameters.

D. Toward unified description of quarks and leptons

The flavor structures of quarks and leptons are drasti-
cally different from each other, and it is not known at
present whether the quark and lepton sectors are dictated by
the same fundamental principle or not. In the previous two
sections we have discussed individually the possible lepton
and quark models with the smallest number of free
parameters. In the following, we shall investigate whether
quarks and leptons can be simultaneously described by the
S4 modular symmetry and generalized CP. In this scenario,
both lepton and quark mass matrices would depend on a
common complex modulus τ, and all the CP violation
phases in lepton and quark sectors arise from the modulus
VEV hτi. The quark-lepton unification has been studied in
the context of A4 [11,14,28,31], T 0 [45], S04 [47], and A0

5

[49] modular symmetries. The most predictive model
contains fifteen parameters including the real and imaginary
part of the modulus τ [47], as far as we know. The unification
description of quark and lepton mixing can also be achieved
in the paradigm of traditional flavor symmetry combined
with generalized CP, the resulting lepton and quark mixing
matrices can be predicted in terms of only four rotation
angles if the flavor group and generalized CP are sponta-
neously broken down to Z2 × CP by certain flavons in the
neutrino, charged lepton, up-quark and down-quark sectors
[95–98]. However, the fermion masses are not constrained in
this approach; additional symmetries and fields are necessary
to realize the required residual symmetry.
By comprehensively scanning the possible quark-lepton

models based on S4 modular symmetry and generalized
CP, we find that the minimal models use fifteen

TABLE VII. Classification of quark fields in the minimal quark models with S4 modular symmetry and generalized CP symmetry,
where k can be any integer. Notice that the Higgs fields are invariant under S4 with zero modular weight.

Models Q1 Q2 Q3 Q4 Q5

ρQ 3 3 3 3 3
ρuc 2 ⊕ 1 2 ⊕ 10 2 ⊕ 10 2 ⊕ 1 2 ⊕ 10
ρdc 2 ⊕ 1 2 ⊕ 1 2 ⊕ 1 1 ⊕ 10 ⊕ 1 1 ⊕ 1 ⊕ 1

kQ k k k k k
kuc 6 − k; 4 − k 6 − k; 4 − k 6 − k; 6 − k 2 − k; 6 − k 2 − k; 8 − k
kdc 2 − k; 6 − k 2 − k; 6 − k 2 − k; 6 − k 2 − k; 4 − k; 8 − k 2 − k; 4 − k; 6 − k

Models Q6 Q7 Q8 Q9 Q10

ρQ 2 ⊕ 1 2 ⊕ 1 2 ⊕ 1 2 ⊕ 1 2 ⊕ 1
ρuc 2 ⊕ 10 2 ⊕ 10 2 ⊕ 1 2 ⊕ 1 2 ⊕ 1
ρdc 1 ⊕ 1 ⊕ 1 10 ⊕ 1 ⊕ 1 10 ⊕ 10 ⊕ 1 10 ⊕ 1 ⊕ 1 10 ⊕ 10 ⊕ 1

kQ k, k k, k k, k k, k k, k
kuc −k; 6 − k −k; 6 − k −k; 4 − k −k; 4 − k −k; 4 − k
kdc 4 − k; 2 − k;−k 4 − k; 4 − k; 2 − k 6 − k; 4 − k; 2 − k 6 − k; 2 − k;−k 6 − k; 2 − k;−k

FIG. 4. The correlation between YB and δCP. The horizonal
light blue band denotes the 95% C.L. region of YB, and the
vertical light green band represents the 3σ range of δlCP.
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independent parameters including Reτ and Imτ to explain
twenty-two observables: six quark massesmu;c;t;d;s;b, three
quark mixing angles θq12;13;23, a quark CP violation phase
δqCP, three charged lepton masses me;μ;τ, three neutrino
masses m1;2;3, three lepton mixing angles θl12;13;23, and

three leptonic CP violation phases δlCP, α21;31. In the

following, we will present a benchmark model which
contains five real couplings in the lepton sector and eight
free couplings in the quark sector. The right-handed
neutrinos Nc are S4 triplet 3, while all the other lepton
fields L, Ec, and quark fields Q, uc, dc, are assigned to
2 ⊕ 1. The transformation properties of the matter fields
are given by

TABLE VIII. Results of fit for the quark models listed in Table VII.

Models Q1 Q2 Q3 Models Q4 Q5

Rehτi −0.436841 −0.437014 −0.436195 Rehτi −0.00687942 0.493588
Imhτi 1.81494 1.81474 1.81557 Imhτi 1.00472 0.874580
βu=αu1 0.00343099 0.000237927 0.000235881 βu1=α

u 0.479893 1505.91

βd1=α
d 0.304628 0.304084 0.304619 βd=αd 680.772 612.613

αu2=α
u
1 1.03883 1.03878 1.03904 γd1=α

d 3.32280 34.3723

α0u=αu1 1.00004 1.00006 1.00000 βu2=α
u
1 −226.241 −0.186995

βd2=α
d 10.9113 10.8935 10.9002 γd2=α

d 39.7179 −5.96481
αu1vu (GeV) 8.84642 8.84655 8.84579 αuvu (GeV) 0.0808452 0.0865103

αdvd (GeV) 0.0236747 0.0237130 0.0236988 αdvd (GeV) 0.000336231 0.000279067

θq12 0.227433 0.227325 0.227439 θq12 0.227402 0.227351

θq13 0.00338504 0.00337795 0.00340799 θq13 0.00318930 0.00310537

θq23 0.0388938 0.0389309 0.0387763 θq23 0.0386561 0.0399389

δqCP=° 69.4363 69.5128 69.4400 δqCP=° 69.4280 70.1150

mu=mc 0.00192985 0.00192161 0.00192901 mu=mc 0.00260041 0.00310718
mc=mt 0.00273544 0.00273426 0.00274461 mc=mt 0.00265548 0.00297164
md=ms 0.0458926 0.0458843 0.0459400 md=ms 0.0504604 0.0507499
ms=mb 0.0176515 0.0176858 0.0176518 ms=mb 0.0177025 0.0176849

χ2min 0.58521 0.588937 0.663495 χ2min 4.26505 16.2615

Models Q7 Q8 Q10 Models Q6 Q9

Rehτi −0.495895 0.307358 0.307719 Rehτi −0.495886 −0.191783
Imhτi 0.875601 2.21966 2.21896 Imhτi 0.875587 2.21983
δu=αu 0.218871 0.607105 0.606631 δu=αu 0.219074 0.612005
γu=αu 1687.47 258.331 257.759 γu=αu 1692.88 258.949

βd=αd 4.33152 0.461192 0.455737 βd=αd 102.878 116.077

γd=αd 457.852 119.140 119.036 δd3=α
d 0.167218 0.150554

δd=αd 27.0580 8.82734 8.79643 δd1=α
d 5.93625 −8.38832

αuvu (GeV) 0.244549 0.244977 0.245520 αuvu (GeV) 0.243972 0.244414

αdvd (GeV) 0.00114978 0.00554085 0.00554569 αdvd (GeV) 0.00511694 0.00568697

θq12 0.227357 0.227366 0.227330 θq12 0.227368 0.227365

θq13 0.00333108 0.00332068 0.00332544 θq13 0.00332646 0.00333852

θq23 0.0389070 0.0389306 0.0390165 θq23 0.0388726 0.0389099

δqCP=° 69.2159 69.3956 69.2651 δqCP=° 69.4425 69.0265

mu=mc 0.00333311 0.00332201 0.00332677 mu=mc 0.00332849 0.00334163
mc=mt 0.00273137 0.00273614 0.00274221 mc=mt 0.00272492 0.00272986
md=ms 0.0505789 0.0505368 0.0499235 md=ms 0.0504933 0.0505272
ms=mb 0.0176638 0.0176765 0.0176811 ms=mb 0.0176839 0.0176835

χ2min 5.64026 5.64895 5.70768 χ2min 5.63916 5.65984
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ρuc ¼ ρdc ¼ ρQ ¼ ρEc ¼ ρL ¼ 2 ⊕ 1; ρcN ¼ 3;

kucD ¼ kdcD ¼ 2 − k; kuc
3
¼ −k; kdc

3
¼ 8 − k; kQD

¼ kQ3
¼ k;

kEc
D
¼ kEc

3
¼ kLD

¼ kL3
¼ kNc ¼ 1; ð69Þ

where k is an arbitrary integer. We see that the lepton sector is exactly the aforementioned lepton model L8. From the
general results in Secs. III B and III C, we can read out the fermion mass matrices as follows:

Me ¼

0BBB@
αeYð2Þ

2;1 0 βeYð2Þ
2;2

0 αeYð2Þ
2;2 βeYð2Þ

2;1

γeYð2Þ
2;2 γeYð2Þ

2;1 0

1CCCAvd; MD ¼

0BBB@
αDYð2Þ

3;2 αDYð2Þ
3;3 βDYð2Þ

3;1

αDYð2Þ
3;1 αDYð2Þ

3;2 βDYð2Þ
3;3

αDYð2Þ
3;3 αDYð2Þ

3;1 βDYð2Þ
3;2

1CCCAvu;

MNc ¼ βN

0BBB@
0 Yð2Þ

2;1 Yð2Þ
2;2

Yð2Þ
2;1 Yð2Þ

2;2 0

Yð2Þ
2;2 0 Yð2Þ

2;1

1CCCAΛ; Mu ¼

0BBB@
αuYð2Þ

2;1 0 βuYð2Þ
2;2

0 αuYð2Þ
2;2 βuYð2Þ

2;1

0 0 δu

1CCCAvu;

Md ¼

0BBB@
αdYð2Þ

2;1 0 βdYð2Þ
2;2

0 αdYð2Þ
2;2 βdYð2Þ

2;1

γd1Y
ð8Þ
2I;2 þ γd2Y

ð8Þ
2II;2 γd1Y

ð8Þ
2I;1 þ γd2Y

ð8Þ
2II;1 δdYð8Þ

1

1CCCAvd: ð70Þ

The best-fit values of the input parameters for this unified model is determined to be

Rehτi ¼ −0.477058; Imhτi ¼ 1.28145; βu=αu ¼ 285.958; δu=αu ¼ 1.09989;

γd1=α
d ¼ 2.52383; βd=αd ¼ −94.0937; γd2=α

d ¼ 6.99497; δd=αd ¼ −83.5336;

βe=αe ¼ 2752.89; γe=αe ¼ 161.529; βD=αD ¼ 1.07257; αuvu ¼ 0.216671 GeV;

αdvd ¼ 0.00295117 GeV; αevd ¼ 0.309865 MeV;
ðαDvuÞ2
βNΛ

¼ 11.9496 meV: ð71Þ

The masses and mixing parameters of leptons and quarks are predicted to be

sin2θl12 ¼ 0.339585; sin2θl13 ¼ 0.0215910; sin2θl23 ¼ 0.615848;

δlCP=π ¼ 1.33146; α21=π ¼ 1.29710; α31=π ¼ 0.476122;

m1 ¼ 29.1766 meV; m2 ¼ 30.4216 meV; m3 ¼ 57.2313 meV;

me=mμ ¼ 0.00473692; mμ=mτ ¼ 0.0586762; mββ ¼ 16.4267 meV;

mβ ¼ 30.4675 meV; mu=mc ¼ 0.00192919; mc=mt ¼ 0.00272963;

md=ms ¼ 0.0459925; ms=mb ¼ 0.0178069; θq12 ¼ 0.227381;

θq13 ¼ 0.00311390; θq23 ¼ 0.0394219; δqCP ¼ 68.6890°; ð72Þ

which are compatible with experimental data at 3σ level.
All the coupling constants as well as the complex
modulus τ are treated as random numbers, and the 3σ
bounds of the mass ratios and mixing angles of both
quarks and leptons are imposed. The values of τ com-
patible with experimental data are shown in Fig. 5, the
light blue and red areas represent the regions favored by

the quark and lepton data respectively. We see that there
indeed exists a small overlap region of τ indicated by
black in which the flavor structure of quarks and leptons
can be accommodated simultaneously. Moreover, we
display the correlations among neutrino masses and
mixing parameters in Fig. 5. Since the common τ region
of quark and lepton sectors is very small, the allowed
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values of all observables scatter in quite narrow ranges
around their best-fit values.

V. CONCLUSIONS AND DISCUSSIONS

Modular invariance is an promising framework to
address the flavor puzzle of the standard model. In recent
years, much effort has gone into the study of lepton models
based on inhomogeneous and homogeneous finite modular
groups. In the present work, we have performed a system-
atic analysis of the possible lepton and quark models with
S4 modular symmetry. Aiming at the minimal and pre-
dictive models, we impose the generalizedCP symmetry so
that all coupling constants are constrained to be real in our
working basis and the vacuum expectation of the modulus
is the unique source of modular and CP symmetry break-
ing. In the known S4 modular symmetry models [33–
40,53,54], usually the three generations of left-handed
lepton fields and right-handed charged leptons are assumed
to transform as triplet and singlet under S4. Besides the
singlet representations 1, 10 and triplet representations 3
and 30, the S4 group has a doublet irreducible representation

2. The presence of doublet representation not only intro-
duces new features in the modular invariant lepton models,
but also provides a new expedient way to describe the quark
sector. We give the most general analytical expressions of
the modular invariant Yukawa superpotential of charged
fermions and the Majorana mass terms of right-handed
neutrinos. We have analyzed both scenarios where the
neutrinos are Majorana particles and Dirac particles. Under
the assumption of Majorana neutrinos, the light neutrino
masses are generated by the type-I seesaw mechanism, and
the conventional seesaw models with three right-handed
neutrinos and the minimal seesaw models with two right-
handed neutrinos are analyzed.
We have comprehensively searched for the S4 modular

invariant lepton and quark models with the lowest possible
number of free parameters. After heavy numerical analysis,
we find that the minimal lepton models make use of five
real couplings together with the modulus τ to describe the
charged lepton masses, neutrino masses, lepton mixing
angles, and CP violation phases. Thirteen minimal lepton
models are obtained, including nine Majorana neutrino
models and four Dirac neutrino models; the classification

FIG. 5. The experimentally favored values of τ are displayed in the first row in the quark-lepton unification model. The quark (lepton)
masses and mixing parameters are compatible with experimental data at 3σ level or better in the light blue (red) area, and the common
values of τ are indicated with black. The second and the third rows are for the correlation among the neutrino masses and mixing
parameters.
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of the matter fields under modular symmetry is summarized
in Tables IVand VI. Notice that the models L2 and D3 were
already presented in Ref. [60] and Ref. [40] respectively,
while all others are new. The experimental data fromneutrino
oscillations, neutrinoless double decay, tritium beta decay
and cosmology on neutrino mass sum can be well accom-
modated, as shown in Tables V and VI. Moreover, the
predictions of these models are expected to be tested by
forthcoming experiments with higher sensitivities. In most
modular symmetry models, the right-handed neutrinos are
assumed to be singlets of a modular group so that at least one
parameter is introduced for each charged lepton and the
hierarchies among electron, muon, and tau masses can be
reproduced by tuning the coupling constants. From Table IV
we see that other assignments such as the triplet and double
plus singlet can also be in agreement with the experimental
data. The model L1 is particularly interesting; all the lepton
fields L, Ec, and Nc transform as triplet 3 under S4, the light
neutrino mass matrix only depends on the modulus τ and an
overall scale, the four coupling constants in the charged
lepton-mass matrices are of the same order of magnitude and
the charged lepton-mass hierarchies arise from the deviation
from the fixed point τ ¼ i.
Because generalized CP symmetry enforces all coupling

constant to be real and the complex phases in the mass
matrices originate from the modular forms in our models,
the CP violation in leptogenesis is strongly correlated with
the Dirac and Majorana CP violation phases. As an
example, we have studied the leptogenesis in model L9.
By numerically solving the Boltzmann equations, we find
that the baryon asymmetry of the Universe, lepton masses,
and mixing angles can be correctly obtained in a small
region of τ. The allowed range of the Dirac CP phase δlCP
would shrink significantly if the measured value of the
baryon asymmetry YB is taken into account.
As regards the quark models with S4 modular symmetry;

at least seven real coupling constants are necessary to
describe the hierarchies patterns of quark masses and
mixing angles, and ten minimal quark models are found,
as listed in Table VII. Furthermore, we investigate whether
S4 modular symmetry can address both the lepton and
quark flavor problems, and then the single complex
modulus τ would be shared by the quark and lepton
sectors. A typical quark-lepton unification model is pre-
sented; the lepton sector is the model L8 which contains
five couplings, and the quark sector uses eight parameters.
The value of τ is dominantly fixed by the experimental data
of lepton masses and mixing angles. The allowed range of τ
and the allowed values of quark and lepton masses and
mixing parameters are very narrow, and this model can be
tested in future neutrino experiments.
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APPENDIX A: S4 GROUP

The finite modular group Γ4 is isomorphic to the
permutation group S4 which is the group of all permu-
tations of four elements. Geometrically S4 is the group
of orientation-preserving symmetries of the cube or
equivalently the octahedron. As shown in Eq. (5), the
inhomogeneous finite modular group Γ4 ≅ S4 can be
generated by the modular generators S and T satisfying
the relations

S2 ¼ ðSTÞ3 ¼ T4 ¼ 1: ðA1Þ

In the paradigm of traditional flavor symmetry, it is
convenient to express the S4 group in terms of three
generators Ŝ, bT; and Û obeying the multiplication
rules [99]

Ŝ2¼ T̂3¼ Û2¼ðŜ T̂Þ3 ¼ðŜ ÛÞ2 ¼ðT̂ ÛÞ2¼ðŜ T̂ ÛÞ4¼ 1:

ðA2Þ

The generators Ŝ and T̂ alone generate the group A4,
and the generators T̂ and Û alone generate the group S3.
The two different choices of generators are related as
follows:

S¼ Ŝ Û;T ¼ ŜT̂2Û;ST¼ T̂; or

Ŝ¼ðST2Þ2; T̂¼ ST;Û¼T2ST2: ðA3Þ

The S4 group has 24 elements and five irreducible
representations including two singlet representations
1, 10, a doublet representation 2, and two triplet repre-
sentations 3 and 30. In this work, we choose the
same representation basis as that of [99], i.e., the repre-
sentation matrix of the generator T̂ is diagonal. We
summarize the representation matrices of the generators
in Table IX.
We now list the Kronecker products and the correspond-

ing Clebsch-Gordan coefficients which are quite useful
when constructing S4 modular invariant models. For
convenience, we denote 1≡ 10, 10 ≡ 11, 3≡ 30, 30 ≡ 31

for the singlet or triplet representations. We shall use αi to
denote the elements of first representation and βi stands for
the elements of the second representation of the tensor
product R1 ⊗ R2, where R1 and R2 are two irreducible
representations of S4.
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1i ⊗ 1j ¼ 1hiþji ∼ αβ;

1i ⊗ 2 ¼ 2 ∼
�

αβ1

ð−1Þiαβ2

�
;

1i ⊗ 3j ¼ 3hiþji ∼

0B@ αβ1

αβ2

αβ3

1CA;

2 ⊗ 2 ¼ 10 ⊕ 11 ⊕ 2;

8<:
1l ∼ α1β2 þ ð−1Þlα2β1

2 ∼
�
α2β2

α1β1

�
;

2 ⊗ 3i ¼ 30 ⊕ 31; 3l ∼

0B@α1β2

α1β3

α1β1

1CAþ ð−1Þiþl

0B@α2β3

α2β1

α2β2

1CA;

3i ⊗ 3j ¼ 1hiþji ⊕ 2 ⊕ 30 ⊕ 31;

8>>>>>>>>><>>>>>>>>>:

1hiþji ∼ α1β1 þ α2β3 þ α3β2

2 ∼

 
α1β3 þ α2β2 þ α3β1

ð−1Þiþjðα1β2 þ α2β1 þ α3β3Þ

!

3l ∼

0B@α1β1 − α3β2

α3β3 − α2β1

α2β2 − α1β3

1CA − ð−1Þiþjþl

0B@α1β1 − α2β3

α3β3 − α1β2

α2β2 − α3β1

1CA
; ðA4Þ

where i, j, l ¼ 0, 1, and we define the notation
hii≡ iðmod 2Þ.

APPENDIX B: MODULAR MULTIPLETS OF
WEIGHT 4,6,8 AT LEVEL N = 4

From the tensor products of lower weight modular
forms with the help of the Clebsch-Gordan coefficients
of S4 in Appendix A, we can get the higher-weight
modular forms. In the following we construct the weight
four, weight six, and weight eight modular multiplets.
By expressing the modular forms Y1;2;3;4;5 in terms of ϑ1
and ϑ2 as shown in Eq. (14), we can easily identify the

linearly-independent modular multiplets of higher
weights without examining the cumbersome nonlinear
constraints which relate redundant multiplets coming
from tensor products. The linear space of modular forms
of level 4 and weight k has dimension 2kþ 1. In the
following, we shall present the explicit form of the
modular forms of weight 4,6,8.
The weight 4 modular forms can be generated

from the tensor products of Yð2Þ
2;3. Using the Kronecker

products 2 ⊗ 2 ¼ 1 ⊕ 10 ⊕ 2, 2 ⊗ 3 ¼ 3 ⊕ 30 and
3 ⊗ 3 ¼ 1 ⊕ 2 ⊕ 3 ⊕ 30, the weight four modular forms
can be arranged into different S4 irreducible representa-
tions 1, 2, 3 and 30. To be more specific, we have

TABLE IX. The representation matrices of the generators Ŝ, T̂,cU; as well as S, T, in the five irreducible representations of S4 in the
chosen basis, where ω ¼ e2πi=3 is the cube root of unit.

ρrðŜ) ρrðT̂Þ ρrðÛÞ ρrðSÞ ρrðTÞ
1, 10 1 1 �1 �1 �1

2
�
1 0

0 1

� �
ω 0

0 ω2

� �
0 1

1 0

� �
0 1

1 0

� �
0 ω2

ω 0

�
3, 30

1
3

 −1 2 2

2 −1 2

2 2 −1

!  
1 0 0

0 ω2 0

0 0 ω

!
∓
 
1 0 0

0 0 1

0 1 0

!
� 1

3

 
1 −2 −2
−2 −2 1

−2 1 −2

!
� 1

3

 
1 −2ω2 −2ω
−2 −2ω2 ω
−2 ω2 −2ω

!
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Yð4Þ
1 ¼ ðYð2Þ

2 Yð2Þ
2 Þ1 ¼ 2Y1Y2;

Yð4Þ
2 ¼ ðYð2Þ

2 Yð2Þ
2 Þ2 ¼ ðY2

2; Y
2
1ÞT;

Yð4Þ
3 ¼ ðYð2Þ

2 Yð2Þ
3 Þ3 ¼ ðY1Y4 þ Y2Y5; Y1Y5 þ Y2Y3; Y1Y3 þ Y2Y4ÞT;

Yð4Þ
30 ¼ ðYð2Þ

2 Yð2Þ
3 Þ30 ¼ ðY1Y4 − Y2Y5; Y1Y5 − Y2Y3; Y1Y3 − Y2Y4ÞT: ðB1Þ

Then we proceed to construct weight 6 modular multiplets from the tensor products of Yð2Þ
2;3 and Yð4Þ

1;2;3;30 . We find
thirteen linearly independent weight six modular forms which can be decomposed into two singlets 1, 10, a doublet 2,
and three triplets 3 and 30 of S4 as follows:

Yð6Þ
1 ¼ ðYð2Þ

2 Yð4Þ
2 Þ1 ¼ Y3

1 þ Y3
2;

Yð6Þ
10 ¼ ðYð2Þ

2 Yð4Þ
2 Þ10 ¼ Y3

1 − Y3
2;

Yð6Þ
2 ¼ ðYð2Þ

2 Yð4Þ
1 Þ2 ¼ 2Y1Y2ðY1; Y2ÞT;

Yð6Þ
3I ¼ ðYð2Þ

3 Yð4Þ
1 Þ3 ¼ 2Y1Y2ðY3; Y4; Y5ÞT;

Yð6Þ
3II ¼ ðYð2Þ

3 Yð4Þ
2 Þ3 ¼ ðY2

2Y4 þ Y2
1Y5; Y2

2Y5 þ Y2
1Y3; Y2

2Y3 þ Y2
1Y4ÞT;

Yð6Þ
30 ¼ ðYð2Þ

3 Yð4Þ
2 Þ30 ¼ ðY2

2Y4 − Y2
1Y5; Y2

2Y5 − Y2
1Y3; Y2

2Y3 − Y2
1Y4ÞT: ðB2Þ

Finally, the weight 8 modular multiplets can be obtained from the tensor products of Yð2Þ
2;3 and Yð6Þ

1;10;2;3I;3II;30 , and they
decompose as 1 ⊕ 2 ⊕ 2 ⊕ 3 ⊕ 3 ⊕ 30 ⊕ 30 under S4,

Yð8Þ
1 ¼ ðYð2Þ

2 Yð6Þ
2 Þ1 ¼ 4Y2

1Y
2
2;

Yð8Þ
2I ¼ ðYð2Þ

2 Yð6Þ
1 Þ2 ¼ ðY3

1 þ Y3
2ÞðY1; Y2ÞT;

Yð8Þ
2II ¼ ðYð2Þ

2 Yð6Þ
10 Þ2 ¼ ðY3

1 − Y3
2ÞðY1;−Y2ÞT;

Yð8Þ
3I ¼ ðYð2Þ

2 Yð6Þ
3I Þ3 ¼ 2Y1Y2ðY1Y4 þ Y2Y5; Y1Y5 þ Y2Y3; Y1Y3 þ Y2Y4ÞT;

Yð8Þ
3II ¼ ðYð2Þ

3 Yð6Þ
1I Þ3 ¼ ðY3

1 þ Y3
2ÞðY3; Y4; Y5ÞT;

Yð8Þ
30I ¼ ðYð2Þ

2 Yð6Þ
3I Þ30 ¼ 2Y1Y2ðY1Y4 − Y2Y5; Y1Y5 − Y2Y3; Y1Y3 − Y2Y4ÞT;

Yð8Þ
30II ¼ ðYð2Þ

3 Yð6Þ
10I Þ30 ¼ ðY3

1 − Y3
2ÞðY3; Y4; Y5ÞT: ðB3Þ

The dimension of the modular forms space M8ðΓð4ÞÞ is
equal to 17.

APPENDIX C: CLASSIFYING THE MINIMAL
SEESAW MODELS WITH S4 MODULAR

SYMMETRY

If the light neutrino masses originate from the type-I
seesaw mechanism, the nonzero solar and atmospheric
neutrino mass-squared differences requires at least two
right-handed neutrinos. The two right-handed neutrino
models are the so-called minimal seesaw models. In the
following, we shall systematically classify the neutrino
superpotential for both doublet and singlet assignments of
right-handed neutrinos.

(a) Nc
D ¼ ðNc

1; N
c
2Þ ∼ 2: The modular weight of Nc is

denoted as kNc . Since the S4 contraction 2 ⊗ 2 → 10 is
antisymmetric with respect to the two components of
the doublet, the modular forms in the 10 representation
can not appear in the Majorana mass terms of the right-
handed neutrinos. The most general form of the super-
potential for the heavy neutrino masses is given by

WNc ¼ΛðNc
DN

c
DfMðYÞÞ1

¼
X2
a¼1

X2
b¼1

Nc
aNc

b

�
αY

ð2kNc
D
Þ

1;≺1−a−b≻

þ
X
A

βAY
ð2kNc

D
Þ

2A;≺−a−b≻
�
Λ; ðC1Þ
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which leads to

MNc ¼

0B@ βAY
ð2kNc

D
Þ

2A;1 αY
ð2kNc

D
Þ

1

αY
ð2kNc

D
Þ

1 βAY
ð2kNc

D
Þ

2A;2

1CAΛ: ðC2Þ

We proceed to consider the neutrino Dirac-
Yukawa couplings. If the left-handed leptons transform
as a triplet 3j under S4 with modular weight kL, the
superpotential for the Dirac neutrino masses is of
the form

WD ¼ αðNc
DLfDðYÞÞ1Hu ¼

X2
a¼1

X3
b¼1

Nc
aLb

X1
l¼0

X
A

ð−1Þðaþ1ÞðjþlÞαlAY
ðkNc

D
þkLÞ

3lA;≺2þa−b≻Hu; ðC3Þ

The Dirac neutrino mass matrix can be read off as follows:

MD ¼

0B@ αlAY
ðkNc

D
þkLÞ

3lA;2
αlAY

ðkNc
D
þkLÞ

3lA;1
αlAY

ðkNc
D
þkLÞ

3lA;3

ð−1ÞjþlαlAY
ðkNc

D
þkLÞ

3lA;3
ð−1ÞjþlαlAY

ðkNc
D
þkLÞ

3lA;2
ð−1ÞjþlαlAY

ðkNc
D
þkLÞ

3lA;1

1CAvu: ðC4Þ

Under the representation transformation L∶3j → 3jþ1, the mass matrix MD changes into MD → diagf1;−1gMD.
As a consequence, the light neutrino mass matrix given by the seesaw formula is left invariant if the free coupling α is
changed into −α. The transformation of the charged lepton mass matrix under L∶3j → 3jþ1 can be read from Table II,
then we know that the predictions for lepton masses and mixing matrix are preserved. Therefore, it is sufficient to only
consider the case of L ∼ 3 for the triplet assignment. For the doublet plus singlet assignment of the left-handed leptons:
LD ≡ ðL1; L2Þ ∼ 2 and L3 ∼ 1j whose modular weights are denoted as kLD

and kL3
respectively, the superpotential of

the neutrino Yukawa coupling is

WD ¼ αðNc
DLDfDDðYÞÞ1HuþβðNc

DL3fD3ðYÞÞ1Hu

¼
X2
a¼1

X2
b¼1

Nc
aLb

�
αl1
X1
l¼0

ð−1Þlðaþ1ÞY
ðkNc

D
þkLD Þ

1l;≺1−a−b≻þ
X
A

α2AY
ðkNc

D
þkLD Þ

2A;≺−a−b≻
	
Huþ

X2
a¼1

Nc
aL3

X
B

βBð−1Þjðaþ1ÞY
ðkNc

D
þkL3 Þ

2B;≺−a≻ Hu:

ðC5Þ

Then Dirac neutrino mass matrix is given by

MD ¼

0B@ α2AY
ðkNc

D
þkLD Þ

2A;1 αl1Y
ðkNc

D
þkLD Þ

1l
βBY

ðkNc
D
þkL3 Þ

2B;2

αl1ð−1ÞlY
ðkNc

D
þkLD Þ

1l
α2AY

ðkNc
D
þkLD Þ

2A;2 βBð−1ÞjY
ðkNc

D
þkL3 Þ

2B;1

1CAvu: ðC6Þ

If we change the representation L3∶1j → 1jþ1 as well as the couplings αl1 → −αl1, the mass matrix MD
becomes MD → diagf1;−1gMDdiagf1;−1; 1g and the light neutrino mass matrix transforms as Mν →
diagf1;−1; 1gMνdiagf1;−1; 1g. Taking into account the charged lepton sector, the phase diagf1;−1; 1g can be
absorbed by field redefinition. Thus the field L3 can be assigned to the trivial singlet 1 of S4 without loss of generality.

(b) Nc
1 ∼ 1i1 , Nc

2 ∼ 1i2 : In this case, the superpotential of the right-handed neutrino mass terms is

WNc ¼
X2
a¼1

X2
b¼1

ΛαabNc
aNc

bfabðYÞ ¼
X2
a¼1

ΛαaaNc
aNc

aY
ð2kNc

a
Þ

1 þ 2Λα12Nc
1N

c
2Y

ðkNc
a
þkNc

b
Þ

1hi1þi2i : ðC7Þ

The mass matrix MNc reads as

MNc ¼

0B@ α11Y
ð2kNc

1
Þ

1 α12Y
ðkNc

1
þkNc

2
Þ

1hi1þi2i

α12Y
ðkNc

1
þkNc

2
Þ

1hi1þi2i α22Y
ð2kNc

2
Þ

1

1CAΛ: ðC8Þ
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For the triplet assignment of left-handed lepton fields L ∼ 3j, the superpotential of the neutrino Dirac coupling takes
the following form,

WD ¼ ½αðNc
1Lf1ðYÞÞ1 þ βðNc

2Lf2ðYÞÞ1�Hu

¼
X3
b¼1

X
A

αANc
1LbY

ðkNc
1
þkLÞ

3hi1þjiA;≺2−b≻Hu þ
X3
b¼1

X
B

βBNc
2LbY

ðkNc
2
þkLÞ

3hi2þjiA;≺2−b≻Hu; ðC9Þ

which gives the Dirac mass matrix

MD ¼

0B@αAY
ðkNc

1
þkLÞ

3hi1þjiA;1
αAY

ðkNc
1
þkLÞ

3hi1þjiA;3
αAY

ðkNc
1
þkLÞ

3hi1þjiA;2

βBY
ðkNc

2
þkLÞ

3hi2þjiB;1 βBY
ðkNc

2
þkLÞ

3hi2þjiB;3 βBY
ðkNc

2
þkLÞ

3hi2þjiB;2

1CAvu: ðC10Þ

If the left-handed lepton fields transform as doublet and singlet under S4: LD ≡ ðL1; L2Þ ∼ 2 and L3 ∼ 1j, For the
doublet and singlet assignment: LD ≡ ðL1; L2Þ ∼ 2 and L3 ∼ 1j, the Dirac neutrino mass terms are

WD ¼ ½αðNc
1LDf1DðYÞÞ1 þ βðNc

2LDf2DðYÞÞ1 þ δ1ðNc
1L3f13ðYÞÞ1 þ δ2ðNc

2L3f23ðYÞÞ1�Hu

¼ ½αANc
1ðL1Y

ðkNc
1
þkLD Þ

2A;2 þ ð−1Þi1L2Y
ðkNc

1
þkLD Þ

2A;1 Þ þ δ1Nc
1L3Y

ðkNc
1
þkL3 Þ

1<i1þj>

þ βBNc
2ðL1Y

ðkNc
2
þkLD Þ

2B;2 þ ð−1Þi2L2Y
ðkNc

2
þkLD Þ

2B;1 Þ þ δ2Nc
2L3Y

ðkNc
2
þkL3 Þ

1<i2þj> �Hu: ðC11Þ

The mass matrix MD is found to be

MD ¼

0B@ αAY
ðkNc

1
þkLD Þ

2A;2 ð−1Þi1αAY
ðkNc

1
þkLD Þ

2A;1 δ1Y
ðkNc

1
þkL3 Þ

1hi1þji

βBY
ðkNc

2
þkLD Þ

2B;2 ð−1Þi2βBY
ðkNc

2
þkLD Þ

2B;1 δ2Y
ðkNc

2
þkL3 Þ

1hi2þji

1CAvu: ðC12Þ

In the same fashion as Sec. IV, we have numerically analyzed the possible minimal seesaw models with S4 modular
symmetry, we find that at least eight parameters including Rehτi and Imhτi should be used to accommodate the
experimental data of leptons. Since the resulting models contain one more free parameter than the minimal models listed in
Tables V and VI, we don’t give concrete examples here.
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