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Flavor mixing and CP violation from the interplay of an S; modular
group and a generalized CP symmetry
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We have performed a systematical analysis of lepton and quark mass models based on I'y = S, modular
symmetry with generalized CP symmetry. We considered both cases; neutrinos are Majorana particles and
Dirac particles. All possible nontrivial representation assignments of matter fields are considered, and the
most general form of fermion mass matrices are given. The phenomenologically viable models with the
lowest number of free parameters together with the results of fit are presented. We find out nine lepton
models with seven real free parameters (including the real and imaginary parts of modulus for Majorana
neutrinos) which can accommodate the lepton masses and neutrino oscillation data. The prediction for
leptogenesis is studied in an example lepton model. The observed baryon asymmetry as well as lepton
masses and mixing angles can be explained. For Dirac neutrinos, four lepton models with five real free
couplings are compatible with the experimental data. Ten quark models containing seven couplings are
found to be able to accommodate the hierarchical quark masses and mixing angles and the CP violation
phase. Furthermore, the S, modular symmetry can provide a unified description of lepton and quark flavor

structure, and a benchmark model is presented.
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I. INTRODUCTION

Understanding the hierarchical fermion masses and the
flavor mixing structure of quarks and leptons from the first
principle is a longstanding challenge in particle physics.
The measurement of neutrino mixing parameters provides
new clues to the above mentioned flavor puzzle. There is
still lack of a guiding principle to explain this flavor puzzle,
and one of the most extensively studied schemes is flavor
symmetry, which is traditionally based on continuous Lie
groups or discrete finite groups which relate the three
generations of fermions. See Ref. [1] for the latest review.
In traditional flavor symmetry, the flavor groups are broken
along certain directions in the flavor space by the vacuum
expectation value (VEV) of some scalar fields called
flavons. In order to realize the desired symmetry breaking
pattern, certain shaping symmetry, additional dynamics,
and fields are generally necessary. As a consequence, the
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resulting model looks quite complex. In order to overcome
this drawback, the modular invariance from a bottom-up
perspective has been proposed [2]. The modular symmetry
plays the role of flavor symmetry, the flavons are replaced
by the so-called modulus z, and the Yukawa couplings are
modular forms which are holomorphic functions of z. This
framework has been extended to invariance under more
general discrete groups and the modular forms become
more general automorphic forms [3].

In this scheme, modular symmetry is governed by the
infinite discrete group I' = SL(2, Z). The modular invari-
ant models are classified by the level N which is a positive
integer, and the matter fields are assumed to transform in
irreducible representations of the finite modular group
[y=I[/T(N) or its double covering group I’y =T'/T(N).
For a small number of finite modular groups, some fermion
masses models based on the modular invariance and their
phenomenology have been studied, such as I', = S5 [4-7],
A, [2458-32], I'y=S, [21,33-40], I's5=As
[38,41,42], T'; = PSL(2,Z;) [43], T, = T’ [44,45], ' =
Sy [46,47], and I'; = A% [48,49]. There have also been
attempts to implement modular symmetry in the Grand
Unified Theories (GUTs) to address both the lepton and
quark flavor problems [6,10,50-54]. In the modular invari-
ance approach, the crucial elements are the modular forms
of level N. For the even modular weights, the modular
forms can be arranged into multiplets of the finite modular
group I'y [2]. If the modular weights are general integers,

Published by the American Physical Society


https://orcid.org/0000-0002-2655-0209
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.076001&domain=pdf&date_stamp=2021-10-04
https://doi.org/10.1103/PhysRevD.104.076001
https://doi.org/10.1103/PhysRevD.104.076001
https://doi.org/10.1103/PhysRevD.104.076001
https://doi.org/10.1103/PhysRevD.104.076001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

QU, LIU, CHEN, and DING

PHYS. REV. D 104, 076001 (2021)

the modular forms can be organized into irreducible
multiplets of the double covering group I'y [44]. In
addition to the integer weight modular forms, there are
fractional weight modular forms for some particular level
N. Accordingly the modular group SL(2,Z) should be
extended to its metaplectic covering group and the finite
metaplectic group acts as flavor symmetry [55]. The
modular forms of weights k/2 with finite metaplectic
modular group Iy = S, [55] and the weight k/5 modular
forms with finite metaplectic modular group I's = A X Zs
[49] have been studied in the bottom-up modular invariance
approach. It has been shown that metaplectic flavor
symmetries can be derived from compactifications on
tori with magnetic background fluxes [56,57]. The VEV
of 7 is usually treated as a free parameter in modular
invariant models in order to match the experimental data,
it is remarkable that the hierarchical fermion mass
matrices may arise due to the proximity of the modulus
to the residual symmetry preserved points 7=i,—1/2 +
i\/§/2,ioo [32,58,59]. Furthermore, the generalized CP
symmetry can be consistently imposed in the context of
symplectic modular symmetry for a single modulus with
g = 1[60-62] and for multimoduli with g > 2 [63]. Notice
that the symplectic group coincides with the modular
group SL(2,Z) when g = 1. In the symmetric basis for
the modular generators S and T with p,(S) = pf(S) and
pe(T) = pI(T), the generalized CP transformation would
coincide with the canonical CP. The generalized CP
invariance enforces all coupling constants to be real if
the Clebsch-Gordan (CG) coefficients are also real in the
symmetric basis. Thus the generalized CP symmetry could
further reduce the number of free parameters of the modular
invariant models and leads to a higher predictive power.
The S, modular group has five irreducible representa-
tions: two singlets 1 and 1’, a doublet 2, and two triplets 3
and 3'. Similar to A, modular symmetry, the three gen-
erations of right-handed lepton fields and right-handed
charged leptons are usually assumed to transform as a
triplet and a singlet respectively under S, modular sym-
metry in the known S, modular invariant models, and the
doublet assignment for the lepton fields has not been
considered although it provides new features and possibil-
ities unavailable in the A, modular symmetry. Moreover, Sy
modular symmetry has been used to explain the flavor
structure of leptons so far, but it is not clear whether the S,
modular symmetry can help to address the quark flavor
problem except for a few GUT models [51,53,54]. In this
paper, we intend to perform a systematic analysis of lepton
and quark models based on I'y = S4 modular symmetry and
generalized CP; we concentrate on the viable models
involving the lowest number of free parameters. For lepton
models, we find that thirteen viable models can success-
fully describe the experimental data of lepton masses and
mixing parameters in terms of seven real parameters
including Rez and Imz. In the quark sector, at least seven

real couplings are necessary in order to accommodate the
measured values of quark masses and the Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix. Further-
more, we find that agreement with the experimental data
of quarks and lepton sectors can be achieved for a common
value of 7, and a benchmark model is presented. In modular
invariant models, which also fulfill generalized CP invari-
ance, the VEV of the modulus 7 is the unique source of both
modular symmetry breaking and CP violation. Thus
imposing generalized CP symmetry would lead to strong
correlations between the low energy CP violation phases
and CP asymmetry in leptogenesis. We shall discuss the
baryon asymmetry generated via unflavored thermal lepto-
genesis in an example model of leptons.

This paper is organized as follows. In Sec. II, we briefly
review the modular symmetry and modular forms of level
4. In Sec. III, we give the most general forms of the Yukawa
superpotential and the Majorana mass term for different
possible assignments of matter fields, the corresponding
mass matrices are presented. Moreover, we show that
different assignments can lead to the same fermion mass
matrices. In Sec. IV, we find out the phenomenologically
viable lepton and quark models with the smallest number of
free parameters, and the results of fit are presented. The
prediction for leptogenesis is studied in a minimal lepton
model. Finally, we draw our conclusions in Sec. V. The
finite modular group I'y = S, and the compact expression
of CG coefficients are listed in Appendix A. The concrete
forms of modular multiplets at weight 4, 6, and 8§ are
presented in Appendix B. We give the general modular
invariant superpotentials and mass matrices for two right-
handed neutrino case in Appendix C.

II. MODULAR SYMMETRY AND MODULAR
FORMS OF LEVEL N =4

In the modular invariant framework with a single modu-
lus, the modular symmetry is described by the modular
group which is the special linear group SL(2, Z) of degree
two over integers,

b
SL(Z,Z):{(a d>|ad—bc:1, a,b,c,deZ}. (1)
C

[SL(2, Z) is often denoted as I'.] It has two generators S and

T with
0 1 1 1
s_( ) T_< ) @)
-1 0 0 1

which satisfy the relations

§* = (8T)* =1, ST =TS>. (3)
The modular group I' has an important class of normal
subgroups called the principal congruence subgroup of level
N which is defined as
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F(N):{yeSL(Z,Z)b/E((l) (1)) modN}. (4)

Note that I'(1) = SL(2, Z) and TV € I'(N). We can obtain
the finite modular group from the quotient group
S?=(STP=T"=1, N<6, (5
where T" and I'(N) are the projective groups I' = I'/{#1}
and T'(N) =T'(N)/{£1}. Notice that I'(N) = T'(N) for
N > 2. The group I'y is usually called an inhomogeneous
finite modular group of level N. Similarly the homogeneous
finite modular group I'), can be defined as I'y =I'/T'(N)
which can also be generated by S and 7 obeying the
multiplication rules $* = (ST)? = TV = 1 [44], and addi-
tional relations are needed to render the group finite for
N > 6 [64]. The group I'y is isomorphic to the quotient
group of 'y, over its center {1, S> = —1}; consequently 'y,
is the double covering group of I'y, and I'), has twice as
many elements as I'y. Top-down constructions in string
theory generally lead to a homogeneous finite modular
group I') rather than the inhomogeneous finite modular
group 'y [61,62].

The modular group SL(2,Z) acts on the upper half-
plane H = {r € C|Im(r) > 0} by the linear fractional

transformation,
a b
= er. 6
=(¢7) ©

Obviously y and —y give the same action on the modulus z,
thus each linear fractional transformation corresponds to an
element of the projective special linear group I. If all the
points in the orbit of a modulus 7 are identified, we obtain
the coset space H/I" which is the so-called fundamental
domain D of SL(2, Z),

_ar—f—b
Ccer+d’

YT

D={reH|>1-1/2<Re(z)<1/2}, (7)

which is a hyperbolic triangle bounded by the vertical lines
Re(7) = 1, Re(r) = —1, and the circle |7| = 1. Every point
T € 'H is equivalent to a point of D via the action of
SL(2, Z), and no two distinct points inside D are equivalent
under the action of SL(2, Z) and two points of D are in the
same orbit only if they lie on the boundary of D.

The modular form of integral weight k& and level N is a
holomorphic function of 7, and it transforms under I'(N) as
follows:

a b
0 = (er+atso. ve= (") erm. )
Therefore the weight k “differential form” f(7)(dz)*/? is

invariant under the action of every element of T'(N).
The modular forms of weight k and level N span a

finite-dimensional linear space M;(I'(N)). The product
of a modular form of weight k; with a modular form of
weight k5 is a modular form of weight k; + k5. Thus the set
M(L(N)) = D M (I(N)) of all modular forms of
level N form a graded ring. Furthermore, it has been
proved that the finite-dimensional space My, (I'(N)) can
be decomposed into irreducible representations of the finite
modular groups 'y [2,44] up to the automorphy factor
(ct + d)*. That is to say, it is always possible to choose a
basis in My (T'(N)) so that Y& = (£,(z). f2(7)....)"
transform under the full modular group I' as

Yﬁzk)(yr):(Cf+d)2kpr(y)Y§2k)(r), Vy= (j Z) er,
9)

where p,(y) is the irreducible representation of quotient
group I'y.

In the present work, we are interested in the level N = 4,
the linear space of the modular forms of level 4 is well
established, and it can be constructed by making use of
Dedekind eta function or the theta constants [21,46,55],

’72h—2a (47)}75a—b (2,[)

MiT(4)) = +b:§ b>OC (z)
= @ Co)s). (10)
a+b=2k,a,b>0

where the Dedekind eta function #(z) is defined by
n@) =q"*[[(1-q"), q=e> (11
n=1

and the theta constants are defined as

0,(7) = Z€2nir(m+l/2)2’ 05(7) = ZEZﬂirmz_ (12)

mezZ mezZ

Thus the dimension of the modular space M, (['(N)) is
equal to 4k + 1. In the working basis given in Appendix A,
all the modular forms of weight k and level 4 can be
expressed as the homogeneous polynomials of degree 2k in
the modular functions §; and &, which are linear combi-
nations of 6,(z) and 05(z) as follows [55]:

91(2) = @°05(7) + (i + w)01(2).

0e) =20, (0) o), (13

with @ = €*7/3. In particular, the weight 2 modular
2)

multiplets Ygz) and Yg can be written as [55]
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TABLE I. Summary of the even weight modular forms at level
N = 4, the subscript r denotes the irreducible representations of

the inhomogeneous finite modular group I'y = §,. Here Yg?) and

Y g‘;} denote the two linearly independent weight 6 modular forms

in the triplet representation 3, and we adopt a similar notation for

8) (8) (8) y(8) ) y(8)
Yars Yo and Y3,/ Yy, and Yy Yy,

(2k)

Modular weight 2k Modular forms Yy

— 2) (2
2k=2 Y; >7 Y3 )
2% =4 AR CE (I Go

- ©) y(6) p6) 16 y© 6
2k 6 Yl > Yl’ ’ YZ ’ Y31 ’ Y31[’ Y3’
2%k =8

8 8 8 8 8 8 8
Y YS) YYs) Ya Yy Y,

v _ (Yl) _ e'n/3 (2\@91&;—&‘1‘>
2T\ 9+6v3\ 8t r2v2es, )
) v e/ 4 383‘9%3
YW=|v,|=——=| 9-v299, |. 14
3 4 3(2+\/§) 2 12 ( )
Ys 9+ /29,9

The weight 2 modular forms of level 4 can also be
constructed from the derivative of the eta function
[33,34] or the products of the Dedekind eta function
[21], the resulting g-expansions of the modular forms
would be identical when going to the same representation
basis of the modular generators S and 7'. The higher-weight
modular forms can be generated by the tensor product of
the weight 2 modular forms, and their specific forms can be
found in Appendix B. We summarize the modular multip-
lets of level 4 up to weight 8 in Table I.

III. FERMION MASS MODELS BASED
ON S; MODULAR SYMMETRY WITH
GENERALIZED CP

We shall briefly review the modular invariance approach
in the following, then recapitulate on the consistency
condition which should be fulfilled to consistently combine
modular symmetry with generalized CP symmetry.
Furthermore, we perform a systematic classification of
quark and lepton mass models based on the modular
symmetry I'y = S4 and generalized CP.

A. The framework

We formulate our models in the framework of modular
invariant approach with A/ = 1 global supersymmetry [2].
The field content consists of a set of chiral matter super-
fields ®; and a modulus superfield z; their modular
transforms under SL(2, Z) are given by

—> ®; > (ct+d)Fip ()@, (15)

where —k; is called the modular weight of the matter field
®;, and p;(y) is the unitary representation of I'y. The
Kihler potential is taken to be the minimal form following
the convention of [2]

K((D[,(i)[;T, ’f) = —hA2 log(—lT + l%)
+) (miz+ i) M@ 2 (16)
1

which gives rise to the kinetic terms of the matter fields and
the modulus field after the modular symmetry breaking
caused by the VEV of 7. Notice that the modular invariance
does not fix the Kihler potential in the bottom-up approach
[65], and the Kihler potential could receive unsuppressed
contributions from modular forms. However, generally
both traditional flavor symmetry and modular symmetry
are present in top-down approach such as the string derived
standardlike models [66—68] but the off-diagonal contri-
butions to the Kéhler metric are forbidden by the traditional
flavor group and the minimal Kéahler potential in Eq. (16)
appears as the leading-order term. Even including the
whole modular dependence in the Kihler potential in these
top-down models, the resulting phenomenological predic-
tions do not differ from those which have been obtained by
using just the standard Kihler potential Eq. (16). The
superpotential W(®;, ) can be expanded in a power series
of the involved supermultiplets ®;,

W@ 1) =D Y 4 (1)@, D (17)

where Y; ; is a modular multiplet of weight ky as
introduced in previous section. Modular invariance requires
that each term of the W(®;,r) satisfies the following
conditions,
ky=ky, +-+k,, py®p,®..8p,31. (18)
In order to improve the prediction power of the modular
invariance approach, we include the generalized CP sym-
metry further. It is known that the complex modulus z

transforms under the action of generalized CP as
[60,61,69-71]

T — 7%, (19)

up to modular transformations. The generalized CP trans-
forms a generic chiral superfield @ into the Hermitian
conjugate superfield

o(x) v D X, ®(xp), (20)
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with x = (7,X) and xp = (¢,—X), where the CP trans-
formation matrix X, is a unitary matrix acting on flavor
space. The chiral superfield ®(x) is assigned to an
irreducible unitary representation p, of the finite modular
group, then the form of the matrix X, is strongly con-
strained due to the presence of modular symmetry. First, by
applying a generalized CP transformation followed by a
modular transformation and subsequently an inverse CP
transformation, the complex modulus 7 and the matter field
@ transform as follows:

cP w7
T——1T ——

at*+ b cp! ar—b
—
ctt +d —ct+d’

®(x) L X, D(xp) L (et + )Xo (1) B (xp)

L (—et+ d) Xopi(r) X5 (%), (21)

where —k denotes the modular weight of ®. The closure of
the modular transformations and generalized CP trans-
formations requires that the following consistency con-
dition has to be satisfied [60,63],

Xpi(NX: = 7 (n)pe(u(y)), (22)

where u(y) is an outer automorphism of the modular group,

7=<a Z)Hu(7)=1(7)<a _b)- (23)

c —-c d

Here y(y) is called the character and it is a homomorphism
of SL(2,Z) into {+1,—1}. From the relations S* =
(ST)? =1 satisfied by the modular generators S and T,
it is easy to know that only two possible values of the
character are allowed [72]

or x(S)=x(T)=-1. (24)

Consequently, two possible generalized CP symmetries can
be defined in the context of modular invariance. We see that
the CP transformation X, maps the modular group element y
onto another element u(y) and the group structure of the
modular symmetry is preserved, i.e., u(y,72) = u(y;)u(y,).
Hence, it is sufficient to impose the consistency condition of
Eq. (22) on the generators S and 7. For the first kind of
generalized CP associated with the trivial character
x(S) = x(T) = 1, the consistency condition becomes

X (S) X' =pe(S7Y),

The second kind of generalized CP associated with the
nontrivial character y(S) = y(7') = —1 has been studied in
[46,63]. The explicit form of X, depends on both the
modular weight —k and the representation assignment r
of the matter field, and obviously it would be reduced the
first generalized CP for (—1)7p.(S?) = 1. Notice that
pe(S?) = %1 because of S* = 1. As a result, it is only

Xepi(T)X: ' =pp(T7Y).  (25)

relevant for the case of (—1)7%p.(S?) = —1 which implies
odd k for the inhomogeneous finite modular group I'y; the
generalized CP transformation X, is determined by [46,63]

Xepi(S)X: ' ==pe(S7"), Xppi(T)X:'=—p(T7Y), (26)

which can be satisfied if and only if the level N is even, the
dimension of the representation p, is even together with the
vanishing trace of p.(S) and p,.(T). If one intends to impose
the second generalized CP in a model, the three generations
of matter fields should be assigned to the direct sum of one-
dimensional and two-dimensional representations of the
finite modular group I'y, or I'y, and second generalized CP
acts nontrivially on the two matter fields in the doublet
representation while the generalized CP transformation of
the other matter field in the singlet representation can only be
the first one. Moreover, the minus sign in Eq. (26) implies
that the fermion mass matrix would be block diagonal and
consequently some mixing angles would be constrained to
be vanishing if the second generalized CP is implemented.
Because none of quark or lepton mixing angles are vanishing
in spite of some very small quark mixing angles, we shall not
consider the second generalized CP symmetry and focus on
the first generalized CP in the present work. Regarding the
CP transformation of the modular forms, it has been shown
that the integral-weight modular forms are in the irreducible
representations of Iy fulfilling (—1)%p,(5?) = 1 [44] so
that only the first generalized CP acts on the modular forms
and they transform in the same way as the matter fields under

the generalized CP, i.e., Yr(r)vng(—r*) = X, Y*(7) if the
basis of the modular space is properly chosen [63].

The explicit form of the generalized CP transformation
X, is determined by the consistency condition in Eq. (22)
up to an overall phase for any given irreducible represen-
tation r. For the concerned first generalized CP and the
finite modular group I'y = S, with the basis listed in
Table IX, solving the consistency conditions of Eq. (25),
we find that the generalized CP transformation X, is in
common with the representation matrix of S,

X, = pr(S)v (27)

which is a combination of the modular symmetry trans-
formation § and the canonical CP transformation. Modular
invariance requires that the action is invariant under the
modular transformation S, thus the generalized CP trans-
formation in Eq. (27) is essentially the canonical CP
transformation. Furthermore, for the level 4 modular forms
built from Ygz) () and Y gz)(r) up to weight 8, it is
straightforward to check that they transform under gener-
alized CP as follows:

YW (@) D ¥ W (=) = x, 70" (), (28)

which is consistent with the general results of [63]. As
given in Appendix A, all the CG coefficients in our
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working basis are real; thus the generalized CP symmetry
would constrain all the coupling constants to be real.

In the modular invariant theory with generalized CP
symmetry, both modular and CP symmetries are uniquely
broken by the VEV of the modulus 7. In particular, all CP
violation phases arises from nonvanishing real part of z. In
the following, we shall perform a systematic classification
of the Yukawa superpotential according to the transforma-
tion properties of the matter fields under the I'y = S,
modular symmetry. We assume the Higgs doublets H,,
and H; are an S, trivial singlet 1 and their modular weights
ku, u, are vanishing. Notice that ky 5, can always be set to
zero by redefining the modular weights of matter fields.

B. Classifying the Yukawa couplings

The modular invariance approach is formulated in the
framework of supersymmetry, and we adopt the gauge
symmetry, lepton superfields, quark superfields, and Higgs
multiplets of the minimal supersymmetric standard model.
We consider both scenarios—that neutrinos are Dirac or
Majorana particles, and the neutrino masses are generated
by the type-I seesaw mechanisms if neutrinos are Majorana
particles. It is known that at least two right-handed
neutrinos are necessary to generate the nonvanishing solar
and atmospheric neutrino mass-squared differences. We
have considered both cases with two and three right-handed
neutrinos. For simplicity, we denote the left-handed lepton
and quark doublets as F and the right-handed lepton and
quark singlets as F°¢, ie., F° € {u‘ d° E°,N°} and
F e {Q,L}. The three generations of matter fields can
be assigned to transform as a triplet F(°) ~ 3/ under the S,
modular group, the direct sum of doublet and singlet
Fl9) ~2@® 1/, or the direct sum of the three singlets
F9) ~ 15 @ 12 @ 15. If only two right-handed neutrinos
are introduced, they can transform as a doublet or two
singlets under S, as discussed in Appendix C. Therefore,
there will be many possible S, modular invariant models for
quarks and leptons. The main purpose of this paper is to
classify all of these possible fermion mass superpotentials.
In the following, we will consider modular forms of weight
less than ten, and the analytical results reached can be
easily extended to much higher weight modular forms
analogously.

Before going into the concrete discussion below, let us
explain the notation used. We denote the S, singlet and
triplet representations as 1=1° 1"=1!, 3=3° and
3 =3'. We use i, j, k, [ to represent the indices of the
singlet or the triplet representations, and they can only take
the values O or 1, ie., i,j,k [ € {0,1}. The lowercase
letters a and b are used to label the components of the
modular multiplets, and they can only take the value 1, 2,
and 3, i.e., a,b € {1,2,3}. For simplicity of the formula,
we introduce the superfluous notations Y gk% Y YE) and Y;kg
which are set to zero. Moreover, we use the capital letters A,
B, C to describe the degeneracy of the modular multiplets.
For instance, there are two weight 6 modular forms Ygf;)

Y g?} in the triplet representation 3. Furthermore, we

introduce the operations () and < > and they are defined
as (i) =i( mod 2) and <i> =i( mod 3) which take
values in the range of {0,1} and {I,2,3}, respectively.
Notice that we define < i> = 3 if i is divisible by three. It
is remarkable that the general analytical expression of the
fermion mass matrix can be read out for each possible
representation assignment of the matter fields.

In this section, we will investigate the Yukawa super-
potential for the fermion masses, which can be generally
written as

and

Wr = a(F°FH,jaf(Y))1, (29)

where all independent S, contractions should be considered
and different singlet combinations are associated with
different coefficients. The function f(Y) is some modular
form multiplet fixed by the weight and representation
assignments of the matter fields F and F*. In the following,
we give the concrete form of the Yukawa superpotential and
the corresponding fermion mass matrix for different Sy
transformation properties of F' and F°.
a. FC~3 F~3,
Let us first consider the case that both left-handed
and right-handed fermions transform as triplets under
S4. The modular weights of F¢ and F are denoted as
krpe and kjp respectively. The general Yukawa super-
potential for this assignment is given by

1

kpe+kp kpe+kr kpe+kr
Wr = a((F°F)qis Y;oij;r r))lHu/d + ZﬁA((FCF)zY;AF ’ r))lHu/d + Z ZV%((FCF%’ Y;(;z,[; " r))lHu/d
A B

=0

3
kpe+k i ke +k
=D D FiF b{“Y§<fifL2lb_1> SESURNARED Wi
A

1
kpe+k i+ i+
+ Z ; Y%Y;B’:3_F‘)1_b> [5ah(1 - (_1)( +J+l)) - (eba<—h—a>)( +]+l+1)]}[_lu/d-

(30)
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Here we have assumed that the modular form multiplets Y (kF <he) Yglfp “he), ngF “the) 'y gkp “tke) and Y g]fF k) in all S,

irreducible representations that are present. As shown in Table I, certain modular multiplets at some specific modular
weights are not allowed and thus the corresponding terms should be dropped. The fermion mass matrix can be read out from
this superpotential

o 0 0 (v ™
Mp=a|l 0 0 Y oua B | (=Y vt 0 Vufa
o vt o Yoy 0 (=D vy
164 : *
[1 _ (_1)i+j+l} Yg/fgjkr) ( 1)z+j+ly(]]<g3+kr) _Ygllfgi;rkf)
+7h Vs (1= (1Yt g e, (31)
kpe+k kpe+k i+ kpe+k
( I)HUHYglgz r) _Y;(;lgl F) [1 _ (_1)1+/+1]Y;lg’3 F)

where repeated indices are implicitly summed over. If F and F¢ are quark and charged lepton fields, the case of
kre + kr = 0 1is not viable, since it gives rise to three degenerate mass eigenvalues. On the other hand, if WWg describes
the neutrino Dirac coupling under the assumption of Majorana neutrinos, the vanishing modular weight kg 4+ kr = 0
is allowed.
b. Fr1r @12 @15, F~ 3.
In this case, the three generations of left-handed fermions F transform as a triplet of S, and the right-handed fields
F¢ are assigned to be singlets of S,. The modular weight of F and F are denoted by kr and kFT,z,s’ respectively. Notice

that permuting the assignments of three right-handed fermions F“ amount to multiplying certain permutation from the
left side of the mass matrix; consequently the results for the charged fermion masses and mixing matrix are invariant.
The superpotential for this assignment can be written as

Wr = [a(F{Ff1(Y)y + BFSFf (V) + r(FSFf3(Y)) ]Hu/d

3
- (ke +kp) ki ki)
= § E F FI?Y311+/A<2 b> u/d + E E ﬁBFzFb t7+/3<2 b>Hu/d
A

b=1
3 . (kpe+k)
T Z ZyCF3FbY3<'3+/>c <-psHuja: (32)
b=1C

which leads to the following fermion mass matrix

(kF‘ +kr) (kF’f +kr) (kF‘ +kr)

A 3<l|+J>A 1 % 301043 7\ 3(!|+J>A )

_ (kpe+kp) (kpe+kp) (kpe+kp)
MF - B 3<izij B 1 B 3(1211‘)3 3 B 3<i2%#j 32 vu/d' (33)

(kpe+kr) (ke +kie) (kpe +kr)

yC 3:’;+/)Cl yC 313+j)c3 7C 3’3+/>C2
If two right-handed fields are assigned to have the mass matrix for the assignment (kp? + kF,kpg +
same modular weight and representation assignment ki ke + kp) = (2.4.8) and ((i) + j), (i2 + j). (i3 +
and they couple with a unique modular multiplet, two 5= (O 0, 0) will have zero mass eigenvalue as well.

rows of the mass matrix would be proportional such c. FCn2@ 1, F~3.

that one mass eigenvalue would be vanishing. In some Without loss of generality, we assign the first two
specific cases, the mass matrix also gives a zero right-handed fermions F§, = (F¢, F5)” to transform as
eigenvalue. For example, from Appendix B we can a doublet under S, and the third one F¥ is the singlet.
see the modular forms Y;S,) and Y gg,), are parallel to Yg2> The modular weights of these fields are kp , krc, and
and Y;4), respectively. As a consequence, the fermion k. The general superpotential is of the following form
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The mass matrix which can be read out from this superpotential is

/ (kF‘ +kF) ; (kF‘ +kr) ; (kF‘ +kr)
Yy, Yy, 3 Yy,%
. (kpe +kp) X (kpe +kp) . (kpe +kp)
= _ +1,,1 D _ +1 1 D _ +1,,1 D
Mp=| (=1yMayy 20" (D) yn (<)Y n T | v (35)
(kF’- +kp) (kF‘ +kr) (ka +kp)
ﬁB 31+/)Bl ﬂB 31+])B3 ﬂB 3‘*!)32

In some cases, the rank of M. is less than three due to the structure of the modular forms. For instance, the rank of the
mass matrix is two for the assignment (kg + k. kpc + kp) = (2,4).
d FEr3 F~201.

We interchange the representation assignments of the left-handed and the right-handed fields discussed in above.
The left-handed fermions are assigned to the direct sum of a doublet F, = (F, F,) ~ 2 and a singlet F; ~ 1/, while
the right-handed fermions F© = (Ff, F§, F5) transform as a triplet under S,. The modular weights of these fields are
denoted as kge, kp,, and kg . Then we can straightforwardly read out the Yukawa superpotential for this kind of
assignment,

We = [a(FFpfp,(Y)) +B(FFsfp,(Y))1]Hyua

(k 4k k c+k )
Z b+1 ) a, FbF‘L;Yy:X <2+F[I)) —a> "‘/d + Z Z'BEF%FCY ‘i/ BEZ a>H"‘/d' (36)
A

—_

The resulting mass matrix is given by

| ylkpetke,) il 1 ylkeetkey) (kpe+kpy)
Y3, (=D Yy, 5 PeY yiing
_ 1 ykretkep,) i+l 1 v\kretkey,) (ke +kpy)
MF - aAY3IA,1 (_1) aAY31A‘2 /}B z+]B3 vu/d7 (37)
1 v keetkep) it 1 ylkeetkey) (kpetkpy)
Y3, 5 (=D Yy, | PeY yings

which is the transpose of the mass matrix in Eq. (35) with the indices i and j exchanged.
e. FF~21 . F~20 1.
In this case, both left-handed and right-handed fields are assigned to the direct sum of S, doublet and singlet. We
denote Fp = (Fy, Fy), F§, = (F{, FS) which transform as doublet under S, while F;, F§ are singlets. The modular
weights of these fields are kpz kpg kr,, and kg,. Then the Yukawa superpotential is given by

Wi = [a(FoFpfpp(Y))1 +B(FoF3fp3(Y))1 +v(FSFpf3p(Y))1 + 6(F§F3f33(Y))1]H 4
(kpe +ke,) (kee +kr,) (ks +ry)

= [} (F{Fy+ (=1)!FSF)Y + ap (FiF, Yzf:'f + F3FyY 5,0 )
F+kF) (F+kF) (F+F) (kF°+kF)
+ﬂBF3(F YZBZ ' +( 1) FLYZB] ' )+yCF (F Y2C2 "’ +( 1) F2Y2Cl ? )
(kp +kF3)
+OFSFAY ) 1H . (38)

which leads to
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(k‘+kF ) (kf+kF ) (kCJFkF)
0‘2AY2Ab1 ’ azlyl[* ’ pY 21;2 ’
(kpe +kp,)) (kpe +kp,)) (kpe +kp,)
Mp=| (=D)/ay, > ™ an¥ys " (=1)iBsYyn | Vusa (39)
(kpe+kep) ) (ke ke, ) (kpe+kpy)
reYach ’ (=D)'7cYach 0 1(i+3/'> ’
|
The above mass matrix can be divided into four parts Notice that odd weights kg + kFg =1,3,5,... can
also lead to vanishing M35, but the rank of M would
My — Mpp  Mp; (40) be less than three so that at least one mass eigenvalue
F Msp, Msy ) is zero. Then we proceed to consider the M5, block
consisted of the (3,3) and (3,2) entries, it would be
Let us first consider the (3,3) entry M;; which vanishing if the modular weights fulfill sz +kp, <0
involves the modular forms in the singlet representa- or kp; + kp, = 1,3,5, ... For the case of odd modu-
tions of S,. From Table I, we see that there are only H

) @ o(6) (o) ®) lar welght kFc + kg, = 1 3, 5 .., some mixing an-
four singlet modular forms ¥, ¥}, ¥;,°, and Y, up gles or masses are vanishing.! As regards the Mp;

to weight 8. H_GPCG M3; would be vanishing if the block consisted of the (1,3) and (2,3) entries, it would
following conditions are fulfilled be vanishing if the modular weight kF;) +kp, is
nonpositive or odd. However, odd kFB + kg, leads
to vanishing fermion masses or mixing angles.
PFy = LPFg =1 Although either M3 or Mp; can be vanishing, they
2, 1V o =1 can not be vanishing simultaneously otherwise some
Pry = L, PR = ‘o :
3 masses or mixing angles are constrained to be zero.
pr, =1, ppe =1 f. FFrl @12@ 15, F~20 1.
# 6, -1 -1 (41) Analogous to previous cases, we find the Yukawa
PF; PF; . .
superpotential takes the following form,

kr, + kps <0,

or kF3 +kF§ =

or sz + kFg

We = [a(F{Fpfip(Y))1 +B(F5Fpfap(Y)y + 7(F§Fpfap(Y))
+ 61 (F{F5f13(Y))y + 62(FSF5f23(Y)); + 65(F§F3f33(Y)) 1] Hyya

[‘ZAF (F Y;AerrkFD) "’( l)l'FzY(zArlJr FD)) + 6 FCF3 (:;km
+ﬂBF§(F1Y;BF§2 o + (—1)i2F2Y;BF,21 e )) + 6, F3F3Y ( Z:kﬁs)
FreFSE TG+ O EG)  syE “2)
The fermion mass matrix is determined to be
S Copad ™ s
Me= | gy i'ZTk”’) (-1 ﬂBYzéfk”’) RS @3)
rendy e s

In the above, we do not consider the singlet assignment for the left-handed fields F, because generally more free coupling
constants would be necessary in the resulting quark and lepton models, and we are mainly concerned with the models with
small number of free parameters in the present work.

'Nonzero fermion masses requires that kF( + kp, and kF( + kp,, are even while kF( + kg, is odd in this case. As aresult, both up- and
down-quark (charged lepton and neutrino) mass matrices até block diagonal 51mu1taneously such that some mixing angles are vanishing.
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C. Classifying the Majorana mass terms function f(Y) refers to the modular multiplets to ensure
modular invariance, and it is fixed by the modular weight
and representation of F°.

a. F¢~ 3k Asshown in the Appendix A, the contraction

In this subsection, we explore the superpotential for the
Majorana mass terms, which can be written as

Wie = ANFCFf(Y))y. (44) 3/ x 3’ — 3 is antisymmetric. Thus the triplet modular

forms transforming as 3 do not contribute to the

where A is the characteristic scale of flavor dynamics, and Majorana mass terms of F¢. The superpotential
all independent invariant singlets should be included. The W reads as

We = a((FFO )+ 3 Aa((FPRY i D (P F)ay™ ) IA

3
c (2kpe (2ke (2ke

= ZZAF FZ{ Y1 <Z+h 1>~ +ZﬂA 24 iaJrh 2>t 1 3’AF<3 —a— b>(35ab -} (45)

a=1 b=l

The Majorana mass matrix of F“ is symmetric

e e (2kpe) Qe (2kpe) e
aY( ) +2 BY(3’BF1) Pa ZAT 75 Y;’BFS) Pa 2A§ ~ 7B Y<3'B,Fz)
(2kpe) e (2kpe) Qe Qe e
Mpc= | BaYol! = 7a¥Vysy Vs + 20y a7 =y (A (46)
(2kpe) ke epe e (2kpe) e
Pa ZAS ;BYLS’BZ) aY< ) -y, Y.(“a’BFl) Pa ZA? + 2}’BY§'B,F3)

b. FF~20 1%
The contraction 2 x 2 — 1’ is antisymmetric and consequently it has no contribution to mass matrix. The general
superpotential for the Majorana mass is

Wee = [a(FoFfpp(Y)1 + 2B(FpF5fp3(Y))1 + v (FSFSf33(Y))1]A

— 2o, FSF Yﬁkﬁf’) Fan(FFsYan s + Fsrsyar o)
P2 (R 4 (1) Es Yt ) sy A, @)
which gives rise to the following mass matrix,
Y ;ik,?) oY izk%) PsY ;];F(;kpt)
Mpe = alYiZkFZ) anY ;ikg : ( ) /33 ;I; +kF€) A (48)
BaVars 7 )aYagy

Fenr1t @12 @ 15.
In the same fashion, we can read out the most general Majorana mass terms for the singlet assignment of F¢,

3 3
(k c+k (')
We = 305 A FiFi ) = - A PPy 42 Y AagFsry e o)

a=1 b=1 a=1 1<a<b<3

and the mass matrix is
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TABLE IL

Transformation of the fermion mass matrix under changing the representation assignments of matter fields, and P is the

diagonal matrix, diag{1,—1, 1}. In the case that both F and F* are assigned to direct sum of a doublet and a singlet under S, the
couplings a} associated with the operators (F¢ Fp )y should be transformed into —a}, and the coupling a; associated with the operator

(F5F$); should also change to —a;.

F
F¢ 3/ — 30+ 201 - 2@ 10+D Majorana mass matrix
3i 5 3(i+1) Mp—> My Mp — MgpP Mpe — Mpe
201 - 2@ 10D Mp - PMp Mgp — PMgpP Mpge - PMpcP
1" 12 @15 Mp —> My Mg — MpP Mpe — Mpe
— 1D @ 1+l @ 1+
(21{,:1’) (kFc +kF<') (kF"+kF")
an Yy : apn 1<ill+i2>2 aps 1<i|]+i3>3
o (kl:z‘ +k1:§) (2](1:5) (k];‘[+k[:(,‘)
MF" = apn 1<i1]+i2>~ a22Y1 2 ax 1<i22+i3>3 A. (50)
(kF<]'+kF§) (kre +kFg) (ZkFg)
Q3L iy viys Q3L iy viz> as3fy -

If the three generations of F* all transform as singlets
under Sy, the Lagrangian would be less constrained by
modular symmetry and consequently more free
parameters would be introduced in the Yukawa
coupling and the Majorana mass term.

D. Equivalence of different assignments

The possible quark models with S; modular symmetry
can be obtained by combining the possible forms of the up-
quark and down-quark Yukawa couplings discussed in
Sec. III C. Similarly, the possible lepton models can be
obtained for Dirac neutrinos, and the Majorana mass terms
of the right-handed neutrinos should also be considered if
the neutrinos are Majorana particles. In the present work,
the left-handed quark and lepton fields are assumed to
transform as a triplet or the direct sum of a doublet and a
singlet under S,. All three possible assignments; triplet,
doublet plus singlet, and three singlets for the right-handed
quark and lepton fields would be considered. It is notable
that different assignments can lead to the same predictions
for fermion masses and mixing matrix. For instance, if both
left-handed leptons F' and right-handed charged leptons F*
|

Dirac neutrinos: {

The phase matrix, diag{1, —1, 1}, can be absorbed into the
lepton fields; the lepton masses and mixing parameters are
left invariant. As a consequence, without loss of generality,

M, - M, diag{1l,-1,1}
M, — diag{1,—1,1}M,diag{1,—1,1} for N ~2 @ 1%,
Majorana neutrinos: M, — diag{1, -1, 1} M, diag{1, -1, 1}.

[

transform as S, triplets F¢ ~ 3/ and F ~ 3/, the mass matrix
can be read from Eq. (31) for any given modular weights.
It can be easily seen that the representation assignment
F ~ 30t Fe o 3U+1) gives the same charged lepton mass
matrix.

Two different kinds of representation assignments can
also give mass matrices related by phase transformations,
as summarized in Table II. As an example, let us consider
the case Lp = (L,L,)" ~2, Ly~15, ES~1« with
a =1, 2, 3, the general form of the charged lepton mass
matrix is given by Eq. (43). If we change the representation
assignment

Ly:15 — 18+, ES:1a — 1UatD)

(51)
the charged lepton mass matrix would turn into

M, - M diag{1, -1, 1}. (52)
Analogously, changing the representation of the right-

handed neutrinos, the light neutrino mass matrix would
change as

for N¢ ~ 3%or N ~ 1%,

(53)

[

we can take F ~ 3 for the triplet assignment of the left-
handed fields and F ~2 @ 1 for the doublet plus singlet
assignment.
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TABLE III.

The central values and the 1o errors of the mass ratios and mixing angles and CP violation phases in lepton and quark

sectors. We adopt the values of the lepton mixing parameters from NuFIT v5.0 with Super-Kamiokanda atmospheric data for normal
ordering [75]. The data of charged lepton mass ratios and quark mass ratios and quark mixing parameters are taken from [73] with the
SUSY-breaking scale Mgysy = 1 TeV and tanf = 7.5,#;, = 0.09375.

Leptons Quarks

Observables Central value and 1o error Observables Central value and 1o error
m,/m, (4.7369 + 0.0402) x 1073 m,/m, (1.9286 £ 0.6017) x 1073
m,/m, (5.8676 £ 0.0461) x 1072 me/m, (2.7247 £ 0.1200) x 1073
Am3,/107 eV? 7427031 my/mg (5.0528 £ 0.6192) x 1072
Am3, /1073 eV? 2.5175505¢ mg/m, (1.7684 £ 0.0975) x 1072
Sep/m 1.094475-15% 5Lp 69.213° £ 3.115°

sin 0%, 0.3040013 61, 0.22736 = 0.00073
sin® 04 0.02219%9 6000 01 0.00338 = 0.00012
sin? 0, 0.573X 0050 0% 0.03888 + 0.00062

Since the signal neutrinoless double beta decay has not
been observed, the nature of neutrinos is still unknown. We
shall consider both Majorana and Dirac neutrinos in this
work. The light neutrino masses are generated by the type-I
seesaw mechanism for Majorana neutrinos, and the light
neutrino mass matrix is given by the seesaw formula
M, =-MEMyIMp, where M, and My. are the Dirac
mass matrix and the Majorana mass matrix of the
right-handed neutrinos, respectively. For Dirac neutrinos,
additional symmetry is generally necessary to forbid the
right-handed neutrino Majorana mass term and it is usually
taken to be the U(1), lepton number. In the context of the
modular invariance approach, the Majorana mass terms of
the right-handed neutrino can be naturally forbidden by
taking the modular weights of right-handed neutrinos N°¢ to
be negative integers, because there are no modular forms of
negative weight.

IV. PHENOMENOLOGICALLY VIABLE MODELS
AND NUMERICAL RESULTS

From the general analytical expressions of the mass
matrix for different representations of matter fields, we can
straightforwardly obtain the possible lepton and quark
models based on S; modular symmetry. In this work, we
are interested in the models with a small number of free
parameters; lepton models with less than nine free param-
eters and quark models with less than 11 free parameters.
For each model, we perform a conventional y? analysis and
we use the well-known package T™inuit to numerically
search for minimum of the y* function and determine the
best values of the input parameters. Then we evaluate the
masses and mixing parameters of quarks and leptons at
the best-fit points, and determine whether they are within
the experimentally allowed 3¢ regions. The overall scale
factor of the mass matrix can be adjusted to reproduce any

one of the mass eigenvalues. For instance, the overall
factors of the charged lepton, up-type quark and down-type
quark mass matrices are fixed by the measured values of the
electron, top-quark and down-quark masses respectively in
the present work. The overall scale of the neutrino mass
matrix is determined by the solar neutrino mass square
difference, Am3,. We scan over the parameter space of the
models; the ratios of coupling coefficients are taken as
random numbers whose absolute values freely vary in the
range of [0,10°]. Moreover, the VEV of the complex
modulus 7 is also treated as a free parameter to optimize
the agreement between predictions and experimental data.
Since each point of 7 in the complex upper half-plane can
be mapped into the fundamental domain D given in
Eq. (7) by a modular transformation, thus it is sufficient
to limit the modulus VEV (7) in the fundamental domain D.
Under the CP transformation 7 — —7*, generalized CP
invariance implies that the fermion mass matrix becomes
Mp(=7*) = pic (S)M(2)pl(S) for the charged fermion
and Mpe(=7*) = pie(S)Mis(2)pl(S) for the Majorana
mass matrix of F¢ [63]. Therefore, at the CP dual point
7 — —7*, the predictions for fermion masses and mixing
angles are left unchanged while the signs of all CP
violation phases are flipped.

We use the fermion mass ratios, mixing angles, and CP
violation phases to construct the x> function; the exper-
imental data of the leptons and quarks are summarized in
Table IIl. The charged lepton mass ratios as well as
the quark mixing parameters and mass ratios are adopted
from [73], and they are calculated at the GUT scale
Mgyt = 2 x 10'® GeV in a minimal SUSY-breaking sce-
nario, with SUSY-breaking scale Mgygy = 1 TeV and
tanf = 7.5,4;, = 0.09375. The data of the lepton mixing
parameters are taken from the latest global fit of NuFIT
v5.0 including the atmospheric neutrino data from
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TABLE IV. Summary of the representation and modular weight assignments of the matter fields in the minimal phenomenologically
viable lepton models based on S; modular symmetry and generalized CP symmetry, the neutrinos are assumed to be Majorana particles.
Notice that the Higgs fields are invariant under S, with zero modular weight.

L1 L2 L3 L4 L5 L6 L7 L8 L9
oL 3 3 3 3 3 3 3 201 201
Pie 3 191 ®1 1911 101 a1 101 a1 201 201 201 201
One 3 3 3 3 3 3 3 3 3
ky -1 2 2 -1 -1 -1 2 1,1 11
ke 5 0,22 0,2, 4 3,57 3,59 7,5 2,2 1,1 1,1
ke 1 0 0 1 1 1 0 1 1

Super-Kamiokande [74]. Since the inverted ordering neu-
trino mass spectrum is disfavored [74], in particular after
the atmospheric neutrino data from Super-Kamiokande is
considered, we assume that neutrino masses are normal
ordering if not mentioned otherwise. It has been shown that
the effect of renormalization group evolution (RGE) on the
neutrino masses and mixing parameters can be negligible
for small values of tanf and normal ordering neutrino
masses [8]; consequently, the RGE corrections in the
neutrino sector are neglected in the following numerical
analysis. Moreover, the neutrino mass ratios and mixing
angles are almost RGE invariant for hierarchical neutrino
spectrum, while the light neutrino masses mass-squared
differences could also change under RGE. Since the y?
function is built from the neutrino mixing angles and the
ratios of neutrino mass-squared differences, we expect that
the results of fit should be nearly unchanged except that the
overall scale of the neutrino matrix may change a bit if the
RGE running of neutrino parameters is taken into account.
The leptonic Dirac CP phase 51CP has not been accurately
measured, therefore we do not include the contribution of
5%p in the y? function. If all observables at the best fit point
of a model are compatible with the experimental data at 3¢
level, this model would be regarded as phenomenologically
viable. In the following, we report the fitting results of the
viable models with the minimal number of free parameters,
and all numerical results are shown with six significant
digits. Notice that Re(r) and all CP violation phases
flipped their signs while all other observables and free
parameters are unchanged at the CP dual point.

A. Lepton models

For Majorana neutrinos, the minimal phenomenologi-
cally viable models only depend on five free parameters
besides the complex modulus z, and we find nine such
models labeled as L1-L9. Notice that the model L2 was
first presented in [60]. The S, representation and modular
weights of the lepton fields in each models are listed in
Table I'V. In the case of normal ordering of neutrino masses,
the best fit values of the coupling constants and the
corresponding predictions for the lepton masses and mixing
parameters are summarized in Table V. Although we have

considered the minimal seesaw model with two right-
handed neutrinos, three right-handed neutrinos are involved
in these minimal models. It turns out that more free
parameters are needed to accommodate the experimental
data in the modular models with two right-handed
neutrinos. In most modular symmetry models, both left-
handed leptons L and right-handed neutrinos N are
assumed to transform as a triplet under the finite modular
group while the right-handed charged leptons E¢ are
singlets. Our models L2, L3, L4, and L5 belong to this
category. It is notable that we find new possible assign-
ments here. All the lepton fields L, E¢, and N¢ are S,
triplets in the model L1. Both L and N¢ transform as triplet
3 or 3’ under S, while the right-handed charged leptons are
in the reducible representation 2 @ 1’ in the models L6
and L7. Furthermore, both L and E¢ are assigned to the
direct sum of the doublet and singlet of S, in the models
L8 and L9. From Table V, we can see that all these models
can accommodate the experimental data very well; the
atmospheric mixing angle 6,5 is predicted to be in the
second octant. The Dirac CP violation phase &L, is
determined to be sizable in these models, and it distributes
in the range of [1.27x, 1.65z]. The upcoming generation of
long-baseline neutrino oscillation experiments such as
DUNE [76-79] and Hyper-Kamiokande [80] can signifi-
cantly improve the sensitivity to 6,3 and 6Lp. It is expected
that a 5o discovery of CP violation can be reached after
ten years of data taking over 50% of the parameter space.
Thus our predictions for 6,3 and 6., can be tested in near
future.

The neutrino mass scale can be probed from direct
kinematic searches, neutrinoless double beta decay and
cosmology. The cosmological observation is sensitive to
the sum of light neutrino masses »_ m;, and the most
stringent bound is > m; < 0.12 eV at 95% confidence
level (C.L.) from the Planck Collaboration [81]. All the
minimal models satisfy this bound except L8 and L9 which
give > m; ~ 121 meV (very close to the upper limit).
Notice that the cosmological bound on the neutrino masses
significantly depend on the data sets that need to be
combined in order to break the degeneracies of the many
cosmological parameters [81]. Combining the Planck
lensing with the baryon acoustic oscillation data and the

076001-13



QU, LIU, CHEN, and DING

PHYS. REV. D 104, 076001 (2021)

TABLE V. The best-fit values of the input parameters for the minimal lepton models listed in Table IV, where neutrinos are assumed to
be Majorana particles. We give the values of the neutrino mixing angles, Dirac and Majorana CP violating phases, and the neutrino
masses at the best-fitting points. The notations m and mg, denote the effective neutrino masses measured in beta decay and neutrinoless
double decay, respectively. Note that the transformation  — —7* leaves all observables unchanged except shifting the signs of the CP

phases 6Lp, ay), and a3;.

Model L1 Model L2 L3 Model L4 L5
Re(z) —0.187862 Re(r) 0.101211 0.101211 Re(7) —0.178222 0.0667031
Im(z) 1.08920 Im(z) 1.01587 1.01587 Im(z) 1.09847 1.17412
pe/ac —0.997537 p/al 10.8023 10.8023 pe/al 1403.61 989.867
e —0.981350 ve/af 0.00256764 0.00206306 Y5 /a¢ 49.1151 7.35262
Y/ at —0.288991 yP/pP 0.0139678 0.0139677 vs/af —50.5430 —56.1149
a‘vy MeV) 151.203 a‘vy MeV) 28.5986 28.5985 a‘vy MeV) 0.258342 0.422722
@l (mev) 284671 W0 (mev) 9.42269 9.42269 @0 mey) 276094 22.7176
sin® 6’112 0.320847 sin” 6, 0.305479 0.305480 sin? 9112 0.307716 0.304326
sin? 9[13 0.0219037 sin® 6,5 0.0221663 0.0221663 sin? 9113 0.0221661 0.0221542
sin? 0%, 0.521796 sin® 653 0.486003 0.486003 sin? 05, 0.503061 0.491388
5ZCP/” 1.33257 5ZCP/7r 1.64135 1.64135 5ZCP/” 1.32003 1.46324
/7 1.32145 /7 0.353191 0.353191 /7 131197 1.14629
a7 0.528262 a7 1.25878 1.25877 a7 0.509444 1.99551
my /meV 14.0927 my /meV 12.2077 12.2077 my /meV 13.6580 11.2049
m,/meV 16.5168 m,/meV 14.9408 14.9409 m,/meV 16.1475 14.1333
ms3/meV 51.8091 ms3/meV 51.6858 51.6858 ms3/meV 51.9421 51.4017
mg/meV 16.6232 mg/meV 15.0700 15.0700 mg/meV 16.2646 14.2613
mgyp/meV 9.05214 mgp/meV 12.0702 12.0703 mgp/meV 8.82554 3.45930
e 8.91 Xmin 18.94 18.94 inin 12.33 16.66
Model L6 Model L7 Model L8 L9
Re(r) 0.0539977 Re(r) 0.101527 Re(r) —0.482375 0.193694
Im/(z) 1.17803 Im(z) 1.01583 Im(z) 1.27223 0.991160
/ot 0.0244409 B¢/ ac 36.2940 B¢/ ac 2765.82 2765.81
o fal ~0.897453 o /ac ~1.01158 ve/at 162.288 162.288
o /o ~1.18037 vP /P 0.0139495 P /aP 1.07525 ~1.07524
ajvy MeV) 132.208 a‘vy; (MeV) 8.50891 a‘vy (MeV) 0.308022 0.265064
L (mey) 22.5446 0 (mev) 9.42397 € (mev) 12,2377 6.91789
sin? 9112 0.303989 sin” 0, 0.305474 sin? 6’12 0.301943 0.301972
sin® 9113 0.0221882 sin® 6,5 0.0221662 sin? 0113 0.0221208 0.0221225
sin? 6. 0.576988 sin’ 0,5 0.486039 sin? 05, 0.613482 0.613488
5ZCP/7T 1.35100 (‘)'ICP/n' 1.64082 5ICP/” 1.27968 1.27973
/7 1.11536 /7 0.353724 /7 1.26954 1.26957
sy /m 1.99170 /1 1.25912 sy /n 0.411310 0.411373
m; /meV 11.1186 m/meV 12.2127 m; /meV 30.7304 30.7307
m,/meV 14.0649 m,/meV 14.9449 m,/meV 31.9149 31.9151
msz/meV 51.3738 msz/meV 51.6876 mz/meV 58.7721 58.7730
mg/meV 14.1949 mg/meV 15.0740 mg/meV 31.9654 31.9658
myy/meV 3.79823 myp/meV 12,0711 myp/meV 17.6386 17.6388
e 0.06264 e 18.93 e 6.45 6.45

cosmological parameters. The direct kinematic searches
provide the most model-independent approach to test the
neutrino mass, and the neutrino mass extracted from
ordinary beta decay is

acoustic scale measured by the CMB, the neutrino mass is
constrained to be > ; m; < 600 meV [81]. The limits also
become weaker when one departs from the framework of
ACDM plus neutrino mass to frameworks with more
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— 2,2 _ 200 cos20m2 4+ sin2 0 cos2 O m2 + sin2 Ol m2
my = E |U,i|*ms = \/cos 0}, cos” 0);m7 + sin” 6}, cos> 63m5 + sin® O}3m5,
i

where U is the lepton-mixing matrix. From the values of
lepton mixing angles and neutrino masses, we can deter-
mine the effective mass my, as shown in Table V. We see
that my is predicted to be around 15 meV for the models
L1-L7 and approximately 32 meV for both L8 and L9,
these values are much below the current upper limit m; <
1.1 eV given by KATRIN [82]. It is expected that KATRIN
can advance the sensitivity on mg by one order of
magnitude down to 0.2 eV after five years, and the next
generation experiments such as Project 8§ may be able to
reach the 50 meV level [83]. Therefore, a positive signal of
KATRIN or Project 8 in near future could rule out our
models.

It is known that the neutrinoless double beta (Ovf3f)
decays of even-even nuclei are important to test the
Majorana nature of neutrinos; they can provide valuable
information on the neutrino-mass spectrum and the CP-
violation phases. The amplitude of the neutrinoless double
beta decay is proportional to the effective Majorana mass
myg which is given by

=30

— 1 co2 0 cos2 0! 200 cos2 Ol . i
= | cos” @}, cos® @ 3m; + sin® O}, cos” B3¢’ m,

!

+ sin? 0! ;'@ =2%ce) 5. (55)

The strongest bound on mg is set by the KamLAND-Zen
experiment mg; < (61-165) meV [84], where the largest
uncertainty arises from the computation of the associated
nuclear matrix element. There are many Ovff decay
experiments planned and under construction, which aim
to improve the current bounds on mgs. The future large
scale Ouff decay experiments have the potential of meas-
uring the decay half-life exceeding 10?® years. For in-
stance, the SNO + Phases II is expected to reach a
sensitivity of 19 meV—46 meV [85]. The LEGEND experi-
ment intends to achieve a sensitivity of 15 meV-50 meV by
operating 1000 kg of detectors for ten years [86]. The
nEXO is the successor of EXO-200, and its projected myy
sensitivity is 5.7 meV-17.7 meV after ten years of data
taking [87]. Using the master formula of Eq. (55), we can
determine the values of the effective Majorana neutrino
mass mgy; at the best-fitting points, as given in Table V. We
see that the latest bound of KamLAND-Zen experiment is
well satisfied and the predictions are within the reach of
future tonne-scale Ouvf3f experiments except for the models
L5 and L6 which are experimentally very challenging
because of the quite low values of m.

(54)

It is remark that these minimally viable models only use
five real parameters together with the complex modulus 7 to
describe 12 observables: three charged lepton masses, three
neutrino masses, three lepton mixing angles, and three CP
violating phases. Thus, the values of the free parameters are
strongly constrained by the experimental data and the
different observables should be correlated with each other.
For example, the light neutrino mass matrix only depends
on the modulus 7 up to an overall scale in the model L1
while there are four real couplings in the charged lepton
superpotential with W, = a(E°L), Y§4) + ﬂe(ECLYg4))1 +
ye(ECLYg4>)1 + y"’(ECLY;‘,‘))l. It is notable that the hier-
archical masses of charged leptons can be reproduced
although the four coupling constants a¢, ¢, y¢, and y’¢ are
of the same order of magnitude, as can be seen from
Table V. Thus, the charged lepton masses are also
dictated by modular symmetry, and the hierarchical
mass eigenvalues arise from the departure of (z) from
the self-dual fixed point 7 =i [30,32,59]. Furthermore,
we take the models L1 and L6 as examples, and we
comprehensively scan the parameter space of these two
models. Notice that the model L6 has the smallest value of
22 and all the observables are fitted almost exactly, as
shown in Table V. The lepton masses and mixing angles
are required to lie in the experimentally preferred 3¢
regions [75]; we display the correlations among the free
parameters and observables in Figs. 1 and 2. It is worth
mentioning that the experimental data can only be
accommodated in small regions of parameter space
such that the predictions for the lepton mixing parameters
are quite precise and their allowed regions are small
as well.

Since the signal of Oy decay has not been observed,
the possibility that neutrinos are Dirac particles can not be
excluded at present. Generally, additional symmetry such
as lepton number conservation is necessary to forbid the
Majorana mass term of the right-handed neutrinos.
Modular invariance can naturally enforce Dirac neutrinos
if the modular weights of the right-handed neutrinos are
negative. In the same fashion, we can analyze the possible
Dirac neutrino mass models with S, modular symmetry and
generalized CP symmetry. We find that the phenomeno-
logically viable models make use of at least five couplings
besides the modulus 7, and four minimal models are found.
The modular transformation properties of the lepton fields
and the results of the y? analysis are reported in Table VI for
normal ordering. Notice that the model D3 was already
discussed in [40]. These models can be tested by the
measurement of @4, and &, at future long baseline
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FIG. 1. The correlations among the input parameters, lepton mixing angles, CP violation phases and neutrino masses in the model L.1.
The lepton masses and mixing angles are required to lie in the experimentally preferred 3¢ regions [75]. Notice that the transformation
7 — —7* leaves all observables unchanged except shifting the signs of the CP phases 8L, @, and a3;; consequently we don’t show the
CP conjugate region. In the last panel, the red (blue) dashed lines indicate the most general allowed regions for inverted ordering
(normal ordering) neutrino mass spectrum respectively, where the neutrino oscillation parameter are varied over their 3¢ ranges. The
present upper limit mg; < (61-165) meV from KamLAND-Zen [84] is shown by horizontal gray band. The vertical gray exclusion
band denotes the current bound coming from the cosmological data of >, m; < 0.120 eV at 95% confidence level obtained by the
Planck Collaboration [80].

neutrino oscillation experiments [76-80]. The effective If the neutrino mass spectrum is inverted ordering, we
neutrino mass m; in beta decay is predicted to be an order  find that only the model L7 can accommodate the exper-
of magnitude below the expected sensitivity of the  imental data at 3¢ level in these thirteen models. The best fit

KATRIN experiment [82]. value of the input parameters are
|
Re(r) = 0.0232107, Im(zr) = 1.68095, p°/af =0.00413628, o°/a® = —0.657212,
D/pD _ e, (ﬁDUu)z -
y?/pP = -0.936954, a‘v,; =241.356 MeV, TNA T 6.97802 meV.
a

With these best-fit values, we get the lepton mixing parameters and neutrino masses,

sin20,, = 0.313610,  sin20,5 = 0.0210026,  sin20y; = 0.589781,
Slp/m=165183,  a/m=0676802, a3 = 147450,
my = 49.7603 meV, ny = 50.5003 meV, m3 = 5.77112 meV,
mgp = 28.6115 meV, my = 49.4728 meV. (56)
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FIG. 2. The correlations among the input parameters, lepton mixing angles, CP violation phases, and neutrino masses in model L6,

where we adopt the same convention as Fig. 1.

B. Leptogenesis

Since we impose generalized CP as symmetry on the
model, all couplings in the superpotential are constrained to
be real in our working basis. As a consequence, all CP
violations uniquely arise from the modulus vacuum expect-
ation value. Thus the CP violation in leptogenesis is
naturally related to the CP violation phases 5’CP, a1, and
a3 in the lepton mixing matrix. Early studies of leptogenesis
in the context of modular symmetry models without gen-
eralized CP symmetry can be found [20,39,88]. During the
final preparations of this paper, a preprint discussing lepto-
genesis in an A; modular model with generalized CP
appeared on the arXiv [89]. In this section, we shall study
whether the measured value of the baryon asymmetry of the
Universe, Yo = (0.870300 & 0.011288) x 1071 [81], can
be correctly generated through leptogenesis in the minimal
S4 modular invariant models found in the previous section,
where the subscript 0 implies “at present time”.

The right-handed neutrino masses depend on the overall
scale A in our model. In the present work, we assume that the
right-handed neutrinos are heavy with masses above

10'? GeV, thus we work in the framework of unflavored
thermal leptogenesis. The modular invariance is formulated
in the supersymmetric context, as shown in Sec. Il A,
therefore we should consider supersymmetric leptogenesis.
The out of equilibrium decays of the lightest right-handed
neutrinos or neutrinos in the early Universe produce lepton
asymmetries. We denote the decay asymmetries for the decay
of heavy neutrino into Higgs and lepton, neutrino into
Higgsino and slepton, sneutrino into Higgsino and lepton,
and sneutrino into Higgs and slepton as €4, €7, €7, and €j,
respectively which are defined by [90,91]

Fle _FN,Z’ FN,Z _FNI?*
Y=o, EpE———, (57)

Iye+Tyez v Iyz+Dy 2
o _FN;f U7 . _F~1;—F~T,7* (58)
ir = ) iz=

Ui + 157 Y Ty + Dy

In the minimal supersymmetric standard model, all the above
decay asymmetries are equal e, =¢€; = €j, = €7
[90,91]. In the basis where the Majorana mass matrix of
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TABLE VI

Summary of the lepton models based on S; modular symmetry and generalized CP symmetry, where neutrinos are Dirac

particles. The integer k should be greater than two so that the modular weight of N¢ is negative and modular invariance forbids the
Majorana mass term of right-handed neutrinos. Notice that the Higgs fields are invariant under S, with zero modular weight. The best-fit
values of the input parameters are also included. We give the predictions for the neutrino mixing angles, and the Dirac CP violating
phase, the neutrino masses, and the effective neutrino masses m; probed by direct kinematic search in beta decay. Note that the
transformation 7 — —7* leaves all observables unchanged except shifting the sign of the CP phase &Lp.

Model L PEe PNe ky, ke ke

DI 201 3 3 k, k 4-k 2 —k(k>2)
D2 3 201 3 k 4—kd—k 2—k(k>2)
D3 3 1ol'e1 ki k 2-kd—kd-k 2—k(k>2)
D4 3 1ol 3 k 2-k4-k6-k 2 —k(k>2)
Model D1 Model D2 Model D3 D4
Re(7) 0.341590 Re(7) 0.106060 Re(7) 0.105759 0.105759
Im(z) 1.36934 Im(z) 1.00322 Im(z) 1.00325 1.00325
pla* 1.02513 peas 36.2450 Be/at 10.6683 10.6683
a5/ —0.984653 /B 0.00502042 ve /o 0.00255224 0.00200917
peas 21.6153 a5/ -1.01153 7B 0.00502523 0.00502523
vy (MeV) 15.5624 avy (MeV) 8.30904 avy (MeV) 28.2348 28.2346
v, (meV) 18.5729 pv, (meV) 24.5608 pv, (meV) 24.5625 24.5625
sin® 9, 0.302261 sin® 0, 0.307337 sin® 9, 0.307292 0.307292
sin® 0!, 0.0221688 sin® 0,5 0.0221677 sin® 9!, 0.0221678 0.221678
sin? 0, 0.595989 sin 0, 0.477844 sin’ 0 0.477805 0.477805
Scp/m 1.36269 Sbp/m 1.56812 Sbp/m 1.56839 1.56839
my /meV 25.4552 m, /meV 29.2262 m, /meV 29.2256 29.2256
m,/meV 26.8731 m,/meV 30.4692 m,/meV 30.4686 30.4686
m;/meV 56.2386 m3/meV 58.1464 m3/meV 58.1540 58.1540
my/meV 26.9378 mg/meV 30.5367 mg/meV 30.5363 30.5363
e 2.09 e 2273 e 2275 2275

the right-handed neutrinos is diagonal and real, the lepton
asymmetry parameter €, is given by [90,92]

fue = g S mm{G.iD o35 ) (59)

where 4, is the neutrino-Yukawa coupling matrix in the
convention (4,);;N¢(L; - H,) and the loop function g reads

g(x) = \/;[1 ix—ln<1 jxﬂxﬁl _\/i;‘ (60)

Nonvanishing asymmetry parameter €, , requires that the off-

diagonal entries of the product AMZ are complex and different

from zero. For the models L1, L4, L5, L6, the product /ID/IZ is
proportional to the unity matrix. Consequently the lepton
asymmetry &;, is vanishing at leading order(LO) and a net
baryon asymmetry can not be generated. The masses of the
three right-handed neutrinos are degenerate in the models L2,
L3, and L7, the baryon asymmetry is generated in the regime
of resonant leptogenesis. Hence we take the model L9 as an
example in the following.

The lepton number asymmetry is partially converted into
a nonzero baryon number asymmetry by the fast sphaleron

interactions in the thermal bath in the early Universe. For
all temperature ranges, the produced baryon asymmetry
normalized to the entropy density can be computed from
the B — L asymmetry ¥, as follows:

10

Y Ya,
B=37%A

(61)

The B — L asymmetry ¥, can be computed by solving the
following Boltzmann equations [91,93]

dYN1 . K (Z) e
4z —2Kz K;(Z)fl(Z)(YN] Y[\;ll)’
d¥y, K\(z) e
a —2Kz K;(Z)fl (Z)(YN1 YA? ),
= e K S Ry, - 1)
_(5it’+51?)KZ§;—E3fl( )Yy, = Y5)
Ki(z) g | po
- (Z)fz( ) (Yqu +Y5). (62)
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where z = M, /T with T being the temperature. K, (z) and
K, (z) are the modified Bessel functions of the second kind.
Yy, and Y denotes the density of the lightest right-handed
neutrino N; with mass M, and its supersymmetric partner
N,. The notations Y’ 5’5‘1, Y ;2, and Y 2! are corresponding
equilibrium number densities and they take the following
form,

R 45
eq _ yeq eq eq  yeq
D GRS D S ¢ =
qu €q 45 2
() =Y (2) = g K>(2), (63)

with g, = 228.75 being the number of degrees of freedom.
Moreover, the washout parameters K, and K are defined as

”hla ~ Mla|21}§
K, = , = , K= K,, 64
a m 1 1‘41 ; ( )
where
v, = vsinf, m* ~sin? fx 1.58 x 1073 eV. (65)

At the best-fit point of model L9, we find the value of
K = 1.293 x 10° > 1 which implies a strong washout. In
the strong washout regime, the functions f;(z) and f,(z)
can be approximated as [94]

1\ ] Ka(z)

K, z
fl(Z) = 2f2(Z) = L—K—I—;ln (1 +E>:| K1<Z) , (66)
with
K K, 9
"TX.nM, M) K 82 (67)

where M, = 125 GeV is the mass of Higgs boson. The free
parameters are fixed at their best-fit values are shown in
Table V—notice that only the combination (a”v,)?/ (N A)
can be determined by the data of lepton masses and mixing.
Numerically solving the Boltzmann equations, we find that
the observed baryon asymmetry can be produced for the
following values of the flavor scale

A =336 x 105 GeV. (68)

Accordingly the right-handed neutrino masses are deter-
mined to be M; ~1.985x 10" GeV, M, ~6.723 x
105 GeV and M5 ~6.833 x 10" GeV. The VEV of 7 is
the unique source of modular symmetry and generalized
CP symmetry breaking in this model. All CP violations at
both low energy and high energy should significantly
depend on (z). We plot the contour region of Y in the
plane Im(z) versus Re(z), where we fix all the coupling

constants at their best-fit values and A at the value in
Eq. (68). The green area indicates the 3¢ allowed region by
the experimental data of lepton masses and mixing angles
in the same plane. We see that there exists a small region of
7 where both the flavor structure of the lepton and the
baryon asymmetry of the Universe can be explained. At the
boundary of the fundamental domain D and the imaginary
axis, certain residual generalized CP symmetry is pre-
served such that the lepton asymmetry &, vanishes and no
matter-antimatter asymmetry can be generated. Hence the
VEV (z) should deviate from the CP conserved points in
order to obtain nontrivial CP violation in neutrino oscil-
lations, as well as a net baryon asymmetry.

Furthermore, we plot the contour plot Yz over the 7 plane
in Fig. 3 and the correlation between the Y and the Dirac
CP phase 8, in Fig. 4. Here the modulus vacuum
expectation value (z) is treated as a random complex
number in the fundamental domain, the charged lepton
masses and the neutrino mass-squared differences and all
three mixing angles are required to be within their exper-
imentally preferred 3¢ ranges [75]. Imposing the observed
baryon asymmetry Yp, the allowed region of L, would
shrink considerably and it is around 1.28z.

C. Quark models

In the same fashion as we have done in the lepton sector,
we can easily find out all possible quark models from the
general results of Sec. III B, and subsequently we perform a
x> analysis for each model to determine whether it can
accommodate the precisely measured values of six quark
masses m,,, m,, m;, my, my, my, three quark mixing angles
01,, 61;, 64;, and a CP violation phase 5, in the quark
sector. We are concerned with the models which can
reproduce the data with the smallest number of free
parameters. It turns out that the minimally viable models

1.02_ L/ B e e e e e e W B 7 Ya/¥ho
C ] 2.0
1.01 N L5
- 1 1.0
< - Kol=1 1 tos
~ 1 L _
£ 00 - N
0.5
0.99 --1.0
-15
-20
0.98 L L A
-0.2 -0.1 0.0 0.1 0.2
Re (1)
FIG. 3. The contour plot Yy in the Re(zr)-Im(r) plane. The

green region represent the region for which both lepton masses
and lepton mixing angles are compatible with experimental data
at the 30 level or better.
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FIG. 4. The correlation between Yy and 6cp. The horizonal
light blue band denotes the 95% C.L. region of Y, and the
vertical light green band represents the 3¢ range of &Lp.

labeled as Q1-Q10 make use of seven real coupling
constants in addition to the modulus 7, thus one prediction
can be reached. The transformation of quark fields under S,
and their modular weights are listed in Table VII. It can be
seen that the left-handed quark fields Q are assigned to a
triplet or doublet plus singlet of an S, modular group, while
the right-handed quark fields u“ and d¢ are singlets or the
direct sum of a doublet and a singlet. We present the
best-fit values of the input parameters and the predictions
for quark masses and CKM mixing parameters in
Table VIII. Here we have omitted these models with a
high »2. or a large number of parameters. It is known that
the quark masses and mixing parameters have been
precisely measured and their errors are quite small. The
hierarchical patterns of quark masses and CKM matrix

generally require more free parameters in a concrete model
and it is quite difficult to explain the quark data with few
(Iess than nine) parameters.

D. Toward unified description of quarks and leptons

The flavor structures of quarks and leptons are drasti-
cally different from each other, and it is not known at
present whether the quark and lepton sectors are dictated by
the same fundamental principle or not. In the previous two
sections we have discussed individually the possible lepton
and quark models with the smallest number of free
parameters. In the following, we shall investigate whether
quarks and leptons can be simultaneously described by the
S4 modular symmetry and generalized CP. In this scenario,
both lepton and quark mass matrices would depend on a
common complex modulus z, and all the CP violation
phases in lepton and quark sectors arise from the modulus
VEV (7). The quark-lepton unification has been studied in
the context of A, [11,14,28,31], T’ [45], S}, [47], and A
[49] modular symmetries. The most predictive model
contains fifteen parameters including the real and imaginary
part of the modulus 7 [47], as far as we know. The unification
description of quark and lepton mixing can also be achieved
in the paradigm of traditional flavor symmetry combined
with generalized CP, the resulting lepton and quark mixing
matrices can be predicted in terms of only four rotation
angles if the flavor group and generalized CP are sponta-
neously broken down to Z, x CP by certain flavons in the
neutrino, charged lepton, up-quark and down-quark sectors
[95-98]. However, the fermion masses are not constrained in
this approach; additional symmetries and fields are necessary
to realize the required residual symmetry.

By comprehensively scanning the possible quark-lepton
models based on S4; modular symmetry and generalized
CP, we find that the minimal models use fifteen

TABLE VII. Classification of quark fields in the minimal quark models with S, modular symmetry and generalized CP symmetry,
where k can be any integer. Notice that the Higgs fields are invariant under S, with zero modular weight.

Models Ql Q2 Q3 Q4 Q5

Po 3 3 3 3 3

Due 241 201 21 291 201

Pa 241 241 291 1ol 1 19101
ko k k k k k

ke 6—kd4—k 6—-k4—k 6—-k6—k 2—-k,6-k 2—-k, 8-k
ke 2—-k,6-k 2—-k,6-k 2-k,6-k 2—-k,4—-k, 8-k 2—-k,4—-k,6-k
Models Q6 Q7 Q8 Q9 Q10

Po 201 261 21 241 201

Pu 201 21 261 241 201

Pa 1101 11 'eple1 replepl el
ko k, k k, k k, k k, k k, k

k, —k,6 -k -k, 6 -k —k,4—-k —k,4—k —k,4—k
ky 4—Fk2—-k,—k 4—kd4—-k2-k 6—kd4—k2-k 6—k2—k —k 6—k2—k,—k
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TABLE VIII. Results of fit for the quark models listed in Table VII.

Models Q1 Q2 Q3 Models Q4 Q5
Re(7) —0.436841 —0.437014 —0.436195 Re(7) —0.00687942 0.493588
Im(z) 1.81494 1.81474 1.81557 Im(z) 1.00472 0.874580
p/a 0.00343099 0.000237927 0.000235881 pi/a 0.479893 1505.91
pi/al 0.304628 0.304084 0.304619 s/ al 680.772 612.613
ay/af 1.03883 1.03878 1.03904 ril/ad 3.32280 34.3723
a' /ol 1.00004 1.00006 1.00000 py/al —226.241 —0.186995
B3/ ad 109113 10.8935 10.9002 rd/ad 39.7179 —5.96481
ajv, (GeV) 8.84642 8.84655 8.84579 a'v, (GeV) 0.0808452 0.0865103
alv, (GeV) 0.0236747 0.0237130 0.0236988 a?v, (GeV) 0.000336231 0.000279067
01, 0.227433 0.227325 0.227439 o1, 0.227402 0.227351
o1, 0.00338504 0.00337795 0.00340799 o1, 0.00318930 0.00310537
04 0.0388938 0.0389309 0.0387763 04 0.0386561 0.0399389
5tp/° 69.4363 69.5128 69.4400 S&p/° 69.4280 70.1150
m,/m. 0.00192985 0.00192161 0.00192901 m,/m. 0.00260041 0.00310718
m./m, 0.00273544 0.00273426 0.00274461 m./m, 0.00265548 0.00297164
mg/mg 0.0458926 0.0458843 0.0459400 mg/mg 0.0504604 0.0507499
mg/my, 0.0176515 0.0176858 0.0176518 mg/my 0.0177025 0.0176849
pean 0.58521 0.588937 0.663495 Xhin 4.26505 16.2615
Models Q7 Q8 Q10 Models Q6 Q9
Re(7) —0.495895 0.307358 0.307719 Re(7) —0.495886 —0.191783
Im(z) 0.875601 2.21966 2.21896 Im(z) 0.875587 2.21983
o /a" 0.218871 0.607105 0.606631 &/ at 0.219074 0.612005
/ot 1687.47 258.331 257.759 r'/a" 1692.88 258.949
p4/ad 4.33152 0.461192 0.455737 p/al 102.878 116.077
r¢/ad 457.852 119.140 119.036 54/t 0.167218 0.150554
&4 /ad 27.0580 8.82734 8.79643 5 /a? 5.93625 —8.38832
a'v, (GeV) 0.244549 0.244977 0.245520 a"v, (GeV) 0.243972 0.244414
alv, (GeV) 0.00114978 0.00554085 0.00554569 a?v, (GeV) 0.00511694 0.00568697
o1, 0.227357 0.227366 0.227330 o1, 0.227368 0.227365
01, 0.00333108 0.00332068 0.00332544 01, 0.00332646 0.00333852
01, 0.0389070 0.0389306 0.0390165 04, 0.0388726 0.0389099
5&p/° 69.2159 69.3956 69.2651 5&p/° 69.4425 69.0265
m,/m, 0.00333311 0.00332201 0.00332677 m,/m, 0.00332849 0.00334163
m./m; 0.00273137 0.00273614 0.00274221 m./m, 0.00272492 0.00272986
my/my 0.0505789 0.0505368 0.0499235 my/my 0.0504933 0.0505272
mg/my, 0.0176638 0.0176765 0.0176811 mg/my, 0.0176839 0.0176835
pen 5.64026 5.64895 5.70768 e 5.63916 5.65984

independent parameters including Rer and Imz to explain
twenty-two observables: six quark masses m,, ., 4 ; » three
quark mixing angles 9‘]12,13723, a quark CP violation phase
8¢p, three charged lepton masses m, ., three neutrino
masses mj, 3, three lepton mixing angles 6”12’13’23, and
three leptonic CP violation phases 5’CP, Q13- In the
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following, we will present a benchmark model which
contains five real couplings in the lepton sector and eight
free couplings in the quark sector. The right-handed
neutrinos N€¢ are S, triplet 3, while all the other lepton
fields L, E¢, and quark fields Q, u®, d¢, are assigned to
2 @ 1. The transformation properties of the matter fields
are given by
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Puc =Pa =pPo =P =pL =21,

ke =kpe =2—k, ke =—k,
D D 3

kEi) - kEg - kLD - kL3 - ch — 1,

Py =3,
kdgzg—k, kQD:kQ3:k7

(69)

where k is an arbitrary integer. We see that the lepton sector is exactly the aforementioned lepton model L8. From the
general results in Secs. III B and III C, we can read out the fermion mass matrices as follows:

aYs) 0 pYS) Yy oY) pPYy)
B T T R e o
Y o @YE @V Py
2 2
0 Yy oY) vy 0 pvR)
— 2 y©® —
Mye = pN Y1 Y3, 0 |A, M, = 0 auyf% 'Buygl) Uy,
oo ¥ 0o 0 &
2 2
) o
M, = 0 alyy) pYS] | va. (70)
8 8 8 8 8
7‘11Yg1?2 +73Y ;1>1.2 nygl),l +75Y (213,1 5'Y g :
The best-fit values of the input parameters for this unified model is determined to be
Re(r) = —0.477058, Im(z) = 1.28145, p'/at = 285.958, 8" /o = 1.09989,
ri/ad =2.52383, p4/ad = —94.0937, r/ad = 6.99497, 8¢/a¢ = —83.5336,
pe/at =2752.89, y¢/a® = 161.529, pP/aP =1.07257, a'v, =0.216671 GeV,
(@’v,)?
a’v, = 0.00295117 GeV, a‘vy = 0.309865 MeV, ﬂN/( = 11.9496 meV. (71)
The masses and mixing parameters of leptons and quarks are predicted to be
sin?0}, = 0.339585, sin?0}, = 0.0215910, sin’6}, = 0.615848,
5hp/m = 1.33146, ay /= 1.29710, az/r = 0476122,
my = 29.1766 meV, my = 30.4216 meV, my = 57.2313 meV,
m,/m, = 0.00473692, m,/m, = 0.0586762, my = 16.4267 meV,
my = 30.4675 meV, m,/m. = 0.00192919, m./m; = 0.00272963,
my/my = 0.0459925, my/my = 0.0178069, 01, = 0.227381,
07, = 0.00311390, 04, = 0.0394219, 5¢p = 68.6890°, (72)

which are compatible with experimental data at 3¢ level.
All the coupling constants as well as the complex
modulus 7 are treated as random numbers, and the 3o
bounds of the mass ratios and mixing angles of both
quarks and leptons are imposed. The values of 7 com-
patible with experimental data are shown in Fig. 5, the
light blue and red areas represent the regions favored by

the quark and lepton data respectively. We see that there
indeed exists a small overlap region of 7z indicated by
black in which the flavor structure of quarks and leptons
can be accommodated simultaneously. Moreover, we
display the correlations among neutrino masses and
mixing parameters in Fig. 5. Since the common 7 region
of quark and lepton sectors is very small, the allowed
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FIG. 5.

The experimentally favored values of 7 are displayed in the first row in the quark-lepton unification model. The quark (lepton)

masses and mixing parameters are compatible with experimental data at 3¢ level or better in the light blue (red) area, and the common
values of 7 are indicated with black. The second and the third rows are for the correlation among the neutrino masses and mixing

parameters.

values of all observables scatter in quite narrow ranges
around their best-fit values.

V. CONCLUSIONS AND DISCUSSIONS

Modular invariance is an promising framework to
address the flavor puzzle of the standard model. In recent
years, much effort has gone into the study of lepton models
based on inhomogeneous and homogeneous finite modular
groups. In the present work, we have performed a system-
atic analysis of the possible lepton and quark models with
S, modular symmetry. Aiming at the minimal and pre-
dictive models, we impose the generalized CP symmetry so
that all coupling constants are constrained to be real in our
working basis and the vacuum expectation of the modulus
is the unique source of modular and CP symmetry break-
ing. In the known S; modular symmetry models [33—
40,53,54], usually the three generations of left-handed
lepton fields and right-handed charged leptons are assumed
to transform as triplet and singlet under S,. Besides the
singlet representations 1, 1" and triplet representations 3
and 3, the S, group has a doublet irreducible representation

2. The presence of doublet representation not only intro-
duces new features in the modular invariant lepton models,
but also provides a new expedient way to describe the quark
sector. We give the most general analytical expressions of
the modular invariant Yukawa superpotential of charged
fermions and the Majorana mass terms of right-handed
neutrinos. We have analyzed both scenarios where the
neutrinos are Majorana particles and Dirac particles. Under
the assumption of Majorana neutrinos, the light neutrino
masses are generated by the type-1 seesaw mechanism, and
the conventional seesaw models with three right-handed
neutrinos and the minimal seesaw models with two right-
handed neutrinos are analyzed.

We have comprehensively searched for the S, modular
invariant lepton and quark models with the lowest possible
number of free parameters. After heavy numerical analysis,
we find that the minimal lepton models make use of five
real couplings together with the modulus 7 to describe the
charged lepton masses, neutrino masses, lepton mixing
angles, and CP violation phases. Thirteen minimal lepton
models are obtained, including nine Majorana neutrino
models and four Dirac neutrino models; the classification
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of the matter fields under modular symmetry is summarized
in Tables IV and VI. Notice that the models L2 and D3 were
already presented in Ref. [60] and Ref. [40] respectively,
while all others are new. The experimental data from neutrino
oscillations, neutrinoless double decay, tritium beta decay
and cosmology on neutrino mass sum can be well accom-
modated, as shown in Tables V and VI. Moreover, the
predictions of these models are expected to be tested by
forthcoming experiments with higher sensitivities. In most
modular symmetry models, the right-handed neutrinos are
assumed to be singlets of a modular group so that at least one
parameter is introduced for each charged lepton and the
hierarchies among electron, muon, and tau masses can be
reproduced by tuning the coupling constants. From Table IV
we see that other assignments such as the triplet and double
plus singlet can also be in agreement with the experimental
data. The model L1 is particularly interesting; all the lepton
fields L, E¢, and N¢ transform as triplet 3 under S, the light
neutrino mass matrix only depends on the modulus 7z and an
overall scale, the four coupling constants in the charged
lepton-mass matrices are of the same order of magnitude and
the charged lepton-mass hierarchies arise from the deviation
from the fixed point 7 = i.

Because generalized CP symmetry enforces all coupling
constant to be real and the complex phases in the mass
matrices originate from the modular forms in our models,
the CP violation in leptogenesis is strongly correlated with
the Dirac and Majorana CP violation phases. As an
example, we have studied the leptogenesis in model L9.
By numerically solving the Boltzmann equations, we find
that the baryon asymmetry of the Universe, lepton masses,
and mixing angles can be correctly obtained in a small
region of z. The allowed range of the Dirac CP phase &L
would shrink significantly if the measured value of the
baryon asymmetry Y is taken into account.

As regards the quark models with S, modular symmetry;
at least seven real coupling constants are necessary to
describe the hierarchies patterns of quark masses and
mixing angles, and ten minimal quark models are found,
as listed in Table VII. Furthermore, we investigate whether
S; modular symmetry can address both the lepton and
quark flavor problems, and then the single complex
modulus 7 would be shared by the quark and lepton
sectors. A typical quark-lepton unification model is pre-
sented; the lepton sector is the model L8 which contains
five couplings, and the quark sector uses eight parameters.
The value of 7 is dominantly fixed by the experimental data
of lepton masses and mixing angles. The allowed range of =
and the allowed values of quark and lepton masses and
mixing parameters are very narrow, and this model can be
tested in future neutrino experiments.
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APPENDIX A: S, GROUP

The finite modular group I'y is isomorphic to the
permutation group S, which is the group of all permu-
tations of four elements. Geometrically S, is the group
of orientation-preserving symmetries of the cube or
equivalently the octahedron. As shown in Eq. (5), the
inhomogeneous finite modular group I'y = S; can be
generated by the modular generators S and T satisfying
the relations

§?= (ST} =T*=1. (A1)

In the paradigm of traditional flavor symmetry, it is
convenient to express the S; group in terms of three

generators S, T, and U obeying the multiplication
rules [99]

R =3P =R =(F 07 =BTy =1.

The generators S and T alone generate the group Ay,
and the generators 7" and U alone generate the group S;.
The two different choices of generators are related as
follows:

(A3)

The S; group has 24 elements and five irreducible
representations including two singlet representations
1, 1/, a doublet representation 2, and two triplet repre-
sentations 3 and 3. In this work, we choose the
same representation basis as that of [99], i.e., the repre-
sentation matrix of the generator 7 is diagonal. We
summarize the representation matrices of the generators
in Table IX.

We now list the Kronecker products and the correspond-
ing Clebsch-Gordan coefficients which are quite useful
when constructing S; modular invariant models. For
convenience, we denote 1=1° 1'=1',3=3° 3 =3!
for the singlet or triplet representations. We shall use a; to
denote the elements of first representation and f; stands for
the elements of the second representation of the tensor
product Ry ® R,, where R; and R, are two irreducible
representations of Sj.
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TABLE IX. The representation matrices of the generators S’, T, f]\ as well as S, 7, in the five irreducible representations of S, in the

chosen basis, where @ = ¢%7/3 is the cube root of unit.

Pe(8)

pe(U)

Pe(S) pe(T)

1LY 1 1 +1

+1 +1

g? 0) (o %)

00 -2 =2 1 =20 20
1) i%(—Z -2 1 > i;<—2 20 o )
0 -2 1 =2 -2 o 20

3,3 -1 2 2 1 0 O 1
%( 2 -1 2 ) (0 o’ 0) F (0 0
2 2 -1 0 0 o 0

1'®1 =10 ~ap,

i . af
vor-a-(( ., )
af
apy |,
af;

1 ®3 =3t~

'~ a1, + (1))

22=1"91' @2, 2N<052/)72> ,
aif
aifs a3
2®3 =393, I~ s |+ (=D anpy |,
aif af,

IRI=1gp293¢3,

31

14

where i, j, [=0, 1, and we define the notation

(i) = i(mod 2).

APPENDIX B: MODULAR MULTIPLETS OF
WEIGHT 4,6,8 AT LEVEL N =4

From the tensor products of lower weight modular
forms with the help of the Clebsch-Gordan coefficients
of S4 in Appendix A, we can get the higher-weight
modular forms. In the following we construct the weight
four, weight six, and weight eight modular multiplets.
By expressing the modular forms Y, 345 in terms of 9,
and 9, as shown in Eq. (14), we can easily identify the

104 ~ oy By + aaffs + aafpy
2 a1 f3 + arfpy + azfy
(-1

iy + afy + a3fps)

(A4)
apr —afr apy — afs
apfs—apfy | = (1) apy —anp,
afr — s a0y — a3
I
linearly-independent modular multiplets of higher

weights without examining the cumbersome nonlinear
constraints which relate redundant multiplets coming
from tensor products. The linear space of modular forms
of level 4 and weight k has dimension 2k + 1. In the
following, we shall present the explicit form of the
modular forms of weight 4,6,8.

The weight 4 modular forms can be generated
from the tensor products of Y gzg Using the Kronecker
products 2®2=101®&2, 2®3=3603 and
3@3=1®02®3® 3, the weight four modular forms
can be arranged into different S, irreducible representa-
tions 1, 2, 3 and 3'. To be more specific, we have
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v = (v, =2n,,
4 2) (2
v =), = v
Y;4> = (Yf)Yf));, = (V1Y + Yo¥s, VY5 + YoY3, Y Y3 + Vo X)),
vy = (VPP = (VY4 = Vo¥s, Y Y5 = Vo Y3, YV, Y5 — Yo Y,)T. (B1)
Then we proceed to construct weight 6 modular multiplets from the tensor products of Y gg and Y 52)33, We find

thirteen linearly independent weight six modular forms which can be decomposed into two singlets 1, 1/, a doublet 2,

and three triplets 3 and 3’ of S, as follows:

r =) =4 v,
r =) = v -1,
Yg6> = (Y(22)Y54))2 =2Y,Y,(Y1. Ya)",
Y.g) = (ygz)yg“)% =2Y,Y,(Y3. Yy, Ys)',
Y = (vPy{), = (Y2¥, 4 Y2Y5, Y3Ys + Y2Y5, Y2V + Y2Y,)T,
Y = (vPIvi)y = (Y3v, — Y2¥s, Y2Ys — Y2Y3, Y2Y5 — Y2Y,)T. (B2)
Finally, the weight 8 modular multiplets can be obtained from the tensor products of Y(223) and Yﬁ/.z,y,sn,y’ and they
decompose as 1 2 D2D3D3® 3 d 3 under Sy,
Y =), =4y,
Yg;) = (YQZ)Y;Q)z (Y7 +13)(Y,, v)",
Vo= (31)), = (V= ) (V1. -12)",
Yg? = (Y§2)Y$>)3 =2V Y5 (Y Yy + YoYs, Y ¥s + YoV 3, Y Y3+ Yo ¥y)",
Vi = (VY = (1 + ¥)(¥3. Y0, ¥5)'.
Y = (YPYE), = 2¥ Y, (Y, Y, = Yo Ys, Y Vs — YoY3, Y Vs = Yo7,
YZ(:’?I = (Yg?)ygél))y = (Y] =13)(Y3, Y4, Ys5)" (B3)

The dimension of the modular forms space My (I'(4)) is
equal to 17.

APPENDIX C: CLASSIFYING THE MINIMAL
SEESAW MODELS WITH S, MODULAR
SYMMETRY

If the light neutrino masses originate from the type-I
seesaw mechanism, the nonzero solar and atmospheric
neutrino mass-squared differences requires at least two
right-handed neutrinos. The two right-handed neutrino
models are the so-called minimal seesaw models. In the
following, we shall systematically classify the neutrino
superpotential for both doublet and singlet assignments of
right-handed neutrinos.
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(@) Np = (N, N3)

~2: The modular weight of N¢ is
denoted as ky.. Since the S, contraction2 ® 2 — 1’ is
antisymmetric with respect to the two components of
the doublet, the modular forms in the 1’ representation
can not appear in the Majorana mass terms of the right-
handed neutrinos. The most general form of the super-
potential for the heavy neutrino masses is given by

Wi :A(NDN Su(Y)h

2
. (2kNZ)
:Z NLN ( 1.<l-a-b>
a=1 b=
2ch
+Zﬁ 2A< —a—b> A (Cl)
A
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which leads to We proceed to consider the neutrino Dirac-
Yukawa couplings. If the left-handed leptons transform
( kye ) (Zkne ) as a triplet 3/ under S, with modular weight k;, the
ﬂ At o4, 1 a 1 . . . .
My = A (C2) superpotential for the Dirac neutrino masses is of
(2kND) (2kN” ) the forrn
a¥y 1Y 24"

2 1
(ka +kp)
Wp = a(NpLIp(Y))iHy = > NiLy > (-0 ayyy b, H,. (C3)

a=1 b=1 =0 A

The Dirac neutrino mass matrix can be read off as follows:

I (kzv‘ +kz) ! (ka +kp) ! (kN‘ k)
Yy, Yy, Ay Yy,5
Mp = (kye +k1) (kye +k1) (ke +k,) | P (C4)
Hl gl Np TR Cq\jH N T q\jHl ol N T
(=1) Y 3,5 (=1) ey Yau (=1) ey Yy

Under the representation transformation L:3/ — 3/*!, the mass matrix M/, changes into M, — diag{1, —1}M,.
As a consequence, the light neutrino mass matrix given by the seesaw formula is left invariant if the free coupling « is
changed into —a. The transformation of the charged lepton mass matrix under L :3/ — 3/*! can be read from Table II,
then we know that the predictions for lepton masses and mixing matrix are preserved. Therefore, it is sufficient to only
consider the case of L ~ 3 for the triplet assignment. For the doublet plus singlet assignment of the left-handed leptons:
Lp=(L;,Ly)~2and L; ~1/ whose modular weights are denoted as k; and k;, respectively, the superpotential of
the neutrino Yukawa coupling is

=a(NpLpfpp(Y))1H,+B(NpLsfp3(Y)) H,

2 2 1
(kne +kpp,) (kzv +kp, kN‘ +kiy)
:ZZNSILIJ |:allZ(_l)l(a+l)yll,<[)1_a_l)h>+ aZAY2A< a Z>:|H +ZNCL3Z:BB jlath) Y23< a: Hu-
a=1 b=1 =0 A
(C5)
Then Dirac neutrino mass matrix is given by
<kN‘ +kip) (kzvf +kip) (kye +kzy)
Mo aa¥oul ¥, 3Yas5 (C6)
b= I i (kN;)J"kLD) (ch +kip) j (kNB+kL3) Yu-
ay(=1) 1 a5 pe(=1) 28,1

If we change the representation L;:1/ — 1/*! as well as the couplings a{ - —all, the mass matrix Mp

becomes M — diag{1,—1}Mpdiag{l,—1,1} and the light neutrino mass matrix transforms as M, —

diag{1, -1, 1}M,diag{1, -1, 1}. Taking into account the charged lepton sector, the phase diag{1,—1,1} can be

absorbed by field redefinition. Thus the field L3 can be assigned to the trivial singlet 1 of S, without loss of generality.
(b) N§~1"1, N§~1~: In this case, the superpotential of the right-handed neutrino mass terms is

2 2
(kg +kne )
Wie =35 Ay NoNG o (¥) = ZAaaaN‘N‘ v 4 2Aa NgNSY (C7)
a=1 b=1 a=1
The mass matrix M. reads as
(2kNC ) (ka +kNL )
Moo — a Yy 0‘12Y1<,,+12> A (C8)
M (ke +ye) (2kye) '

0‘12Y1<,,+12> anY,
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For the triplet assignment of left-handed lepton fields L ~ 3/, the superpotential of the neutrino Dirac coupling takes
the following form,

Wp = [a(NTLf1(Y)), +ﬂ(NCsz(Y)) 1H,

3
ke c+kp)

E § aANlLb xl+jA <2— b>H + § E ﬁBNQLb ’2+/A <D—ps"Tu (C9)
=1
which gives the Dirac mass matrix
(ka]’ +kr) (kN< +kr) (kN‘ +kr)
Iy ays 301t)A Ll ap 3(11+j A3 aus Y3(z]+j)A 2 (Clo)
= v,.
b (ka +kp) (kN§ +ki) (kN§+kL) "
PBY 3 ‘2+/>B 1 BT 3x+i)B 3 BY 3liati g2

If the left-handed lepton fields transform as doublet and singlet under S,: Ly = (L, L,) ~2 and L3 ~ 1/, For the
doublet and singlet assignment: L, = (L,,L,) ~2 and L; ~ 1/, the Dirac neutrino mass terms are

Wp = [a(N§Lpf1p(Y)); + BINSLpfap(Y))y + 81 (N{Lsf13(Y))y + 62(N5L3f23(Y))1]H,

(ke +k . (ke +kp ) (ke +ky,)
= [aaN§(L 1Yy, 5 w) 4 (=1 LyYas s ) 4 SINSLyY
(N+L) (kN+kL) (N+k1_)
+BNS(L1 Y3 7+ (=1)2LyY,,3 ") + 8NSLY 2 1H,,. (C11)
The mass matrix M, is found to be
(kzw +ki,) (k N +ki ) (kye+kgy)
s, (=1 ]aAYZA L 1Y ’
My = v,. (C12)
(ka+kLD) kye+kz ) (kN[+kLg)
PeY 55 (=1) ﬂBYzm Y 0

In the same fashion as Sec. IV, we have numerically analyzed the possible minimal seesaw models with S, modular
symmetry, we find that at least eight parameters including Re(r) and Im(z) should be used to accommodate the
experimental data of leptons. Since the resulting models contain one more free parameter than the minimal models listed in
Tables V and VI, we don’t give concrete examples here.
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